Repurposing face mask waste to construct floating photothermal evaporator for autonomous solar ocean farming
Plastic waste caused by the extensive usage of face masks during COVID‐19 pandemic has become a severe threat to natural environment and ecosystem. Herein, an eco‐friendly approach to repurpose face mask waste for clean water production via solar thermal evaporation is proposed. By taking advantage...
Saved in:
Published in | EcoMat (Beijing, China) Vol. 4; no. 2 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
John Wiley & Sons, Inc
01.03.2022
Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Plastic waste caused by the extensive usage of face masks during COVID‐19 pandemic has become a severe threat to natural environment and ecosystem. Herein, an eco‐friendly approach to repurpose face mask waste for clean water production via solar thermal evaporation is proposed. By taking advantage of its interwind structure, face mask holds the promise to be an ideal candidate material for constructing photothermal evaporator. In‐situ surface modifications are performed successively with polyvinyl alcohol and polypyrrole to improve its wettability and solar absorption (97%). The obtained face mask‐based evaporator achieves significantly enhanced solar efficiency (91.5%) and long‐term salt‐rejection stability. The harvested clean water befits plant growing to enable farming on sea surface. A floating photothermal evaporation prototype is then developed to demonstrate autonomous solar ocean farming, with plants successfully cultivated over time. As such, the proposed strategy provides a promising solution towards ecological sustainability by tapping multiple benefits.
This work presents an eco‐friendly way to recycle large amount of wasted face masks into solar absorbers for clean water production. A prototype of floating farm is further demonstrated, using recycled face mask to convert abundant seawater into portable water for plants irrigation. Plants can be well thrived, giving a promising solution to land soil crisis and polymer white pollution. |
---|---|
AbstractList | Plastic waste caused by the extensive usage of face masks during COVID‐19 pandemic has become a severe threat to natural environment and ecosystem. Herein, an eco‐friendly approach to repurpose face mask waste for clean water production via solar thermal evaporation is proposed. By taking advantage of its interwind structure, face mask holds the promise to be an ideal candidate material for constructing photothermal evaporator. In‐situ surface modifications are performed successively with polyvinyl alcohol and polypyrrole to improve its wettability and solar absorption (97%). The obtained face mask‐based evaporator achieves significantly enhanced solar efficiency (91.5%) and long‐term salt‐rejection stability. The harvested clean water befits plant growing to enable farming on sea surface. A floating photothermal evaporation prototype is then developed to demonstrate autonomous solar ocean farming, with plants successfully cultivated over time. As such, the proposed strategy provides a promising solution towards ecological sustainability by tapping multiple benefits.
image Abstract Plastic waste caused by the extensive usage of face masks during COVID‐19 pandemic has become a severe threat to natural environment and ecosystem. Herein, an eco‐friendly approach to repurpose face mask waste for clean water production via solar thermal evaporation is proposed. By taking advantage of its interwind structure, face mask holds the promise to be an ideal candidate material for constructing photothermal evaporator. In‐situ surface modifications are performed successively with polyvinyl alcohol and polypyrrole to improve its wettability and solar absorption (97%). The obtained face mask‐based evaporator achieves significantly enhanced solar efficiency (91.5%) and long‐term salt‐rejection stability. The harvested clean water befits plant growing to enable farming on sea surface. A floating photothermal evaporation prototype is then developed to demonstrate autonomous solar ocean farming, with plants successfully cultivated over time. As such, the proposed strategy provides a promising solution towards ecological sustainability by tapping multiple benefits. Plastic waste caused by the extensive usage of face masks during COVID‐19 pandemic has become a severe threat to natural environment and ecosystem. Herein, an eco‐friendly approach to repurpose face mask waste for clean water production via solar thermal evaporation is proposed. By taking advantage of its interwind structure, face mask holds the promise to be an ideal candidate material for constructing photothermal evaporator. In‐situ surface modifications are performed successively with polyvinyl alcohol and polypyrrole to improve its wettability and solar absorption (97%). The obtained face mask‐based evaporator achieves significantly enhanced solar efficiency (91.5%) and long‐term salt‐rejection stability. The harvested clean water befits plant growing to enable farming on sea surface. A floating photothermal evaporation prototype is then developed to demonstrate autonomous solar ocean farming, with plants successfully cultivated over time. As such, the proposed strategy provides a promising solution towards ecological sustainability by tapping multiple benefits. This work presents an eco‐friendly way to recycle large amount of wasted face masks into solar absorbers for clean water production. A prototype of floating farm is further demonstrated, using recycled face mask to convert abundant seawater into portable water for plants irrigation. Plants can be well thrived, giving a promising solution to land soil crisis and polymer white pollution. Plastic waste caused by the extensive usage of face masks during COVID‐19 pandemic has become a severe threat to natural environment and ecosystem. Herein, an eco‐friendly approach to repurpose face mask waste for clean water production via solar thermal evaporation is proposed. By taking advantage of its interwind structure, face mask holds the promise to be an ideal candidate material for constructing photothermal evaporator. In‐situ surface modifications are performed successively with polyvinyl alcohol and polypyrrole to improve its wettability and solar absorption (97%). The obtained face mask‐based evaporator achieves significantly enhanced solar efficiency (91.5%) and long‐term salt‐rejection stability. The harvested clean water befits plant growing to enable farming on sea surface. A floating photothermal evaporation prototype is then developed to demonstrate autonomous solar ocean farming, with plants successfully cultivated over time. As such, the proposed strategy provides a promising solution towards ecological sustainability by tapping multiple benefits. |
Author | Guo, Shuai Qu, Hao Zhang, Yaoxin Li, Meng Zhang, Songlin Zhang, Xueping Yang, Jiachen Tan, Swee Ching |
Author_xml | – sequence: 1 givenname: Shuai surname: Guo fullname: Guo, Shuai organization: National University of Singapore – sequence: 2 givenname: Yaoxin surname: Zhang fullname: Zhang, Yaoxin organization: National University of Singapore – sequence: 3 givenname: Hao surname: Qu fullname: Qu, Hao organization: National University of Singapore – sequence: 4 givenname: Meng surname: Li fullname: Li, Meng organization: Chongqing University – sequence: 5 givenname: Songlin surname: Zhang fullname: Zhang, Songlin organization: National University of Singapore – sequence: 6 givenname: Jiachen surname: Yang fullname: Yang, Jiachen organization: National University of Singapore – sequence: 7 givenname: Xueping surname: Zhang fullname: Zhang, Xueping organization: National University of Singapore – sequence: 8 givenname: Swee Ching orcidid: 0000-0003-2074-8385 surname: Tan fullname: Tan, Swee Ching email: msetansc@nus.edu.sg organization: National University of Singapore |
BookMark | eNp9kVFrFTEQhRepYK198RcEfBNuzSR7N5tHKbUWWgqiz2E2O2n3uruzJllL_725vSJSxIcwIXzn5DDndXU080xV9RbkGUipPhBP6gwUGPuiOlbbxmw0GH301_1VdZrSThZ4K2tVw3E1fqFljQunYb4TAT2JCdN38YApk8gsPM8px9VnEUbGvKeWe86c7ylOOAr6iQtHzBxFKAfXzDNPvCaReMQo2BPOxThORfqmehlwTHT6e55U3z5dfD3_vLm-vbw6_3i98bWRdkON0SWytb6FFnxvjJRdC4p66NBbo6khY_VW9irQ1qtOASH5gJps4wH0SXV18O0Zd26Jw4Tx0TEO7umB453DmAc_kjPB9rrTJEPb1wqa1voAMoSurbHRYIvXu4PXEvnHSim7Ha9xLvGdakqGGmRTF-r9gfKRU4oU_vwK0u3Lcfty3FM5BZbPYD_ksluec8Rh_LcEDpKHYaTH_5i7i9sbddD8AjSEpKk |
CitedBy_id | crossref_primary_10_1038_s44221_024_00363_x crossref_primary_10_1002_adfm_202300318 crossref_primary_10_1002_adma_202208081 crossref_primary_10_1016_j_jclepro_2023_138088 crossref_primary_10_1016_j_seppur_2022_122166 crossref_primary_10_1016_j_mtphys_2025_101658 crossref_primary_10_1002_aenm_202400135 crossref_primary_10_1021_acs_est_3c03457 crossref_primary_10_1016_j_cej_2024_156563 crossref_primary_10_1142_S1793604724510330 crossref_primary_10_1016_j_seppur_2024_127331 crossref_primary_10_1039_D3NR06146A crossref_primary_10_1016_j_desal_2024_117766 crossref_primary_10_1016_j_desal_2024_117527 crossref_primary_10_1016_j_seppur_2024_126368 crossref_primary_10_1002_smll_202302886 crossref_primary_10_1002_smll_202307416 crossref_primary_10_1021_acs_nanolett_4c05191 crossref_primary_10_1016_j_cej_2023_144684 crossref_primary_10_1016_j_desal_2024_118077 crossref_primary_10_1016_j_cej_2023_148248 crossref_primary_10_1016_j_nanoen_2022_108142 crossref_primary_10_1016_j_desal_2023_116792 crossref_primary_10_26599_NRE_2022_9120014 crossref_primary_10_1016_j_desal_2023_116791 crossref_primary_10_1016_j_biochi_2024_10_017 crossref_primary_10_1016_j_nanoen_2024_110580 crossref_primary_10_1021_acs_est_3c05887 crossref_primary_10_1002_eom2_12422 crossref_primary_10_1016_j_ijheatmasstransfer_2024_126170 crossref_primary_10_1021_acsapm_4c01700 crossref_primary_10_1016_j_jcis_2023_09_116 crossref_primary_10_1002_adfm_202306806 crossref_primary_10_1016_j_solmat_2024_112770 crossref_primary_10_1016_j_desal_2024_117416 crossref_primary_10_1016_j_desal_2025_118843 crossref_primary_10_1016_j_cej_2023_147276 crossref_primary_10_1016_j_carpta_2025_100695 crossref_primary_10_1016_j_apsusc_2023_157862 crossref_primary_10_1016_j_nanoen_2024_110057 crossref_primary_10_1016_j_cis_2024_103252 crossref_primary_10_1016_j_desal_2024_117551 crossref_primary_10_1016_j_desal_2025_118560 crossref_primary_10_1016_j_jcis_2024_05_147 crossref_primary_10_1002_smll_202407280 crossref_primary_10_1016_j_desal_2024_118361 crossref_primary_10_1016_j_jcis_2023_05_105 crossref_primary_10_1021_acs_iecr_4c03251 crossref_primary_10_1016_j_jcis_2022_12_016 crossref_primary_10_1016_j_seppur_2024_130962 crossref_primary_10_1016_j_mtener_2025_101803 crossref_primary_10_1002_smll_202411262 crossref_primary_10_1016_j_csite_2024_105545 crossref_primary_10_1016_j_desal_2023_117267 crossref_primary_10_1016_j_device_2023_100099 crossref_primary_10_1016_j_desal_2022_116015 crossref_primary_10_1016_j_seppur_2024_129736 crossref_primary_10_1016_j_desal_2022_115686 crossref_primary_10_1016_j_desal_2024_118013 crossref_primary_10_1016_j_nanoen_2024_109572 crossref_primary_10_1002_ente_202300263 crossref_primary_10_1016_j_ijbiomac_2024_135844 crossref_primary_10_1016_j_jcis_2023_10_158 crossref_primary_10_1016_j_desal_2022_115975 crossref_primary_10_1002_adfm_202417169 crossref_primary_10_1016_j_desal_2024_117715 crossref_primary_10_1016_j_renene_2024_121116 crossref_primary_10_1016_j_scib_2024_09_015 crossref_primary_10_1016_j_nanoen_2022_107996 crossref_primary_10_1002_smll_202304877 crossref_primary_10_1016_j_desal_2023_116567 crossref_primary_10_1016_j_renene_2023_119663 crossref_primary_10_1016_j_applthermaleng_2022_118950 crossref_primary_10_1016_j_desal_2024_118146 crossref_primary_10_1002_adfm_202421067 crossref_primary_10_1016_j_jcis_2023_06_205 crossref_primary_10_1016_j_gee_2024_03_002 crossref_primary_10_1021_acsaem_4c03384 crossref_primary_10_1016_j_cej_2024_153097 crossref_primary_10_1016_j_mtphys_2024_101574 crossref_primary_10_1002_smsc_202400021 crossref_primary_10_20517_energymater_2023_74 crossref_primary_10_1016_j_desal_2022_115942 crossref_primary_10_1016_j_scitotenv_2022_158396 crossref_primary_10_1002_adfm_202311128 crossref_primary_10_1016_j_solener_2024_112998 crossref_primary_10_1016_j_cej_2025_160224 crossref_primary_10_1016_j_ijbiomac_2025_142366 crossref_primary_10_1016_j_desal_2024_117685 crossref_primary_10_1016_j_jclepro_2023_136498 crossref_primary_10_1016_j_enconman_2024_118340 crossref_primary_10_1016_j_desal_2024_117342 crossref_primary_10_1016_j_desal_2022_116251 crossref_primary_10_1016_j_jcis_2025_02_020 crossref_primary_10_1002_solr_202300414 crossref_primary_10_1016_j_materresbull_2022_111916 crossref_primary_10_1002_eom2_12348 crossref_primary_10_1016_j_jhazmat_2024_136355 crossref_primary_10_1016_j_cej_2025_159765 crossref_primary_10_1002_adfm_202422725 crossref_primary_10_1016_j_jcis_2023_08_044 crossref_primary_10_1016_j_jece_2023_110879 crossref_primary_10_1002_solr_202300382 crossref_primary_10_1016_j_cej_2024_155423 crossref_primary_10_1016_j_desal_2023_116868 crossref_primary_10_1016_j_seppur_2024_128698 crossref_primary_10_1002_smll_202403141 crossref_primary_10_1007_s40843_021_2010_1 crossref_primary_10_1016_j_desal_2023_116907 crossref_primary_10_1016_j_colsurfa_2024_134674 crossref_primary_10_1016_j_apsusc_2024_160110 crossref_primary_10_1016_j_nanoen_2023_108805 crossref_primary_10_1002_adfm_202409611 crossref_primary_10_1016_j_desal_2024_117579 crossref_primary_10_1016_j_desal_2025_118647 crossref_primary_10_1016_j_cej_2023_145452 crossref_primary_10_1016_j_desal_2022_116368 crossref_primary_10_1016_j_jcis_2023_11_125 crossref_primary_10_1039_D4EE05898D crossref_primary_10_1016_j_desal_2023_116380 crossref_primary_10_1007_s43154_022_00080_x crossref_primary_10_1016_j_carbpol_2024_122304 crossref_primary_10_1002_solr_202300347 crossref_primary_10_1016_j_ijbiomac_2024_137043 crossref_primary_10_1016_j_solener_2022_04_044 crossref_primary_10_1002_advs_202407295 crossref_primary_10_1016_j_seppur_2024_129017 crossref_primary_10_1002_adfm_202408554 crossref_primary_10_1016_j_desal_2023_116937 crossref_primary_10_1007_s40820_023_01191_6 crossref_primary_10_1002_adfm_202414427 crossref_primary_10_1016_j_desal_2023_116811 crossref_primary_10_1016_j_desal_2023_117223 crossref_primary_10_1016_j_nanoen_2022_107287 crossref_primary_10_1016_j_cej_2024_148671 crossref_primary_10_1016_j_xcrp_2022_101014 crossref_primary_10_1039_D2EN01099B crossref_primary_10_1016_j_nanoen_2023_109074 crossref_primary_10_1016_j_nanoen_2024_110369 crossref_primary_10_1016_j_applthermaleng_2022_118646 crossref_primary_10_1002_adma_202313090 crossref_primary_10_1016_j_watres_2024_122432 crossref_primary_10_1016_j_cej_2024_152092 crossref_primary_10_1016_j_watres_2023_120514 crossref_primary_10_1016_j_jcis_2023_04_073 crossref_primary_10_1002_eom2_12323 crossref_primary_10_1016_j_cej_2025_159221 crossref_primary_10_1016_j_solener_2023_112187 crossref_primary_10_1038_s41598_024_69655_2 crossref_primary_10_1016_j_carbon_2022_11_035 crossref_primary_10_1016_j_nanoen_2025_110781 crossref_primary_10_1016_j_cej_2024_155762 crossref_primary_10_1016_j_desal_2023_116408 crossref_primary_10_1016_j_solener_2024_112889 crossref_primary_10_1021_acsnano_4c06339 crossref_primary_10_1016_j_scib_2024_08_023 crossref_primary_10_1016_j_applthermaleng_2024_122786 crossref_primary_10_1016_j_cej_2022_136701 crossref_primary_10_1002_smll_202304037 crossref_primary_10_1016_j_desal_2022_116341 crossref_primary_10_1039_D2TA09950K crossref_primary_10_1016_j_desal_2023_116886 |
Cites_doi | 10.1021/acsami.6b14755 10.1039/D0EE01572E 10.1016/j.nanoen.2020.105436 10.1016/0032-3861(85)90315-5 10.1039/D0EE03991H 10.1016/j.nanoen.2019.104006 10.1002/eom2.12140 10.1002/smll.201906319 10.3389/fmats.2020.00283 10.1002/eom2.12139 10.1038/s41467-021-21124-4 10.1016/j.joule.2019.10.008 10.1002/smll.201601924 10.1016/j.nanoen.2021.106443 10.1002/eom2.12143 10.1007/978-0-387-73861-1_3 10.1007/978-94-017-1217-0_1 10.1016/j.chemosphere.2021.129601 10.1002/adma.201806730 10.1002/adfm.202007648 10.1002/adma.202002936 10.1002/advs.202003939 10.1021/acs.est.8b03300 10.1021/acsami.9b12156 10.1002/adma.201606762 10.1016/j.joule.2021.05.010 10.1002/eom2.12018 10.1016/j.electacta.2020.136742 10.1021/acsenergylett.0c01797 10.1007/s12274-021-3834-9 10.1002/adfm.202100025 10.1021/accountsmr.1c00057 10.1002/advs.201903478 10.1002/adma.201806446 10.1021/acsmaterialslett.1c00304 10.1021/accountsmr.0c00104 10.1038/s41565-018-0097-z 10.1126/sciadv.1500323 10.1002/advs.202003155 10.1039/D0EN00683A 10.1002/eom2.12147 10.1016/j.joule.2020.10.003 10.1016/j.isci.2018.04.003 10.1016/j.cej.2020.127716 |
ContentType | Journal Article |
Copyright | 2022 The Authors. published by The Hong Kong Polytechnic University and John Wiley & Sons Australia, Ltd. 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 The Authors. published by The Hong Kong Polytechnic University and John Wiley & Sons Australia, Ltd. – notice: 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION 8FE 8FG ABJCF ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BGLVJ BHPHI CCPQU COVID D1I DWQXO GNUQQ HCIFZ KB. PATMY PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PYCSY DOA |
DOI | 10.1002/eom2.12179 |
DatabaseName | Wiley Online Library Open Access (WRLC) CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College Coronavirus Research Database ProQuest Materials Science Collection ProQuest Central Korea ProQuest Central Student ProQuest SciTech Premium Collection Materials Science Database Environmental Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Environmental Science Collection DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Materials Science Database ProQuest Central (New) ProQuest Materials Science Collection ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Technology Collection ProQuest SciTech Collection Environmental Science Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection Environmental Science Database ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2567-3173 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_7f9d3b3e0f8d421689cf10ffb84a6319 10_1002_eom2_12179 EOM212179 |
Genre | article |
GrantInformation_xml | – fundername: The Ministry of Education Academic Research Fund Tier 2 funderid: R‐284‐000‐217‐112 |
GroupedDBID | 0R~ 1OC 24P AAHHS ABJCF ACCFJ ACCMX ACXQS ADKYN ADZMN ADZOD AEEZP AEQDE AEUYN AFKRA AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ATCPS AVUZU BENPR BGLVJ BHPHI CCPQU EBS EDH GROUPED_DOAJ HCIFZ IAO IEP ITC KB. M~E PATMY PDBOC PHGZM PHGZT PIMPY PYCSY AAYXX CITATION 8FE 8FG AAMMB ABUWG AEFGJ AGXDD AIDQK AIDYY AZQEC COVID D1I DWQXO GNUQQ PKEHL PQEST PQGLB PQQKQ PQUKI PRINS WIN PUEGO |
ID | FETCH-LOGICAL-c4709-e67325699c8181cd7700b812ed1bac973e6e79350d2fe5c2b21eaecfa3e96c113 |
IEDL.DBID | DOA |
ISSN | 2567-3173 |
IngestDate | Wed Aug 27 01:20:08 EDT 2025 Wed Aug 13 09:16:08 EDT 2025 Thu Apr 24 22:57:10 EDT 2025 Tue Jul 01 02:50:12 EDT 2025 Wed Jun 18 06:49:59 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4709-e67325699c8181cd7700b812ed1bac973e6e79350d2fe5c2b21eaecfa3e96c113 |
Notes | Funding information Shuai Guo and Yaoxin Zhang contributed equally to this work. The Ministry of Education Academic Research Fund Tier 2, Grant/Award Number: R‐284‐000‐217‐112 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-2074-8385 |
OpenAccessLink | https://doaj.org/article/7f9d3b3e0f8d421689cf10ffb84a6319 |
PQID | 2635041064 |
PQPubID | 5066170 |
PageCount | 10 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_7f9d3b3e0f8d421689cf10ffb84a6319 proquest_journals_2635041064 crossref_primary_10_1002_eom2_12179 crossref_citationtrail_10_1002_eom2_12179 wiley_primary_10_1002_eom2_12179_EOM212179 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2022 2022-03-00 20220301 2022-03-01 |
PublicationDateYYYYMMDD | 2022-03-01 |
PublicationDate_xml | – month: 03 year: 2022 text: March 2022 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: Beijing |
PublicationTitle | EcoMat (Beijing, China) |
PublicationYear | 2022 |
Publisher | John Wiley & Sons, Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley |
References | 2021; 8 2021; 5 2021; 3 2021; 89 2021; 2 2019; 31 2019; 11 2008 2020; 16 2020; 13 2017; 29 2003 2002 2020; 32 1985; 26 2017; 9 2021; 14 2020; 7 2017; 109 2021; 79 2020; 5 2020; 4 2018; 3 2021; 31 2016; 2 2021; 12 2020; 2 2021 2019; 65 1971; 12 2017; 13 2021; 416 2021; 272 2018; 52 2020; 354 2018; 13 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_26_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_21_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_23_1 e_1_2_8_41_1 e_1_2_8_40_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_16_1 e_1_2_8_37_1 Malcolm CV (e_1_2_8_44_1) 1971; 12 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 (e_1_2_8_42_1) 2017 e_1_2_8_30_1 |
References_xml | – volume: 3 issue: 6 year: 2021 article-title: Perspective for removing volatile organic compounds during solar‐driven water evaporation toward water production publication-title: EcoMat – volume: 4 start-page: 2532 issue: 12 year: 2020 end-page: 2536 article-title: Digestion of ambient humidity for energy generation publication-title: Joule – volume: 14 start-page: 1771 issue: 4 year: 2021 end-page: 1793 article-title: Passive, high‐efficiency thermally‐localized solar desalination publication-title: Energ Environ Sci – volume: 31 issue: 23 year: 2021 article-title: Hierarchically designed salt‐resistant solar evaporator based on Donnan effect for stable and high‐performance brine treatment publication-title: Adv Funct Mater – volume: 5 start-page: 3397 issue: 11 year: 2020 end-page: 3404 article-title: Guaranteeing complete salt rejection by channeling saline water through fluidic Photothermal structure toward synergistic zero energy clean water production and in situ energy generation publication-title: ACS Energy Lett – start-page: 55 year: 2008 end-page: 97 – volume: 9 start-page: 2535 issue: 3 year: 2017 end-page: 2540 article-title: Developing polymer cathode material for the chloride ion battery publication-title: ACS Appl Mater Interfaces – year: 2021 article-title: Applications of bio‐derived/bio‐inspired materials in the field of interfacial solar steam generation publication-title: Nano Res – year: 2003 – volume: 13 issue: 6 year: 2017 article-title: Transparent nanofibrous mesh self‐assembled from molecular LEGOs for high efficiency air filtration with new functionalities publication-title: Small – volume: 12 start-page: 998 issue: 1 year: 2021 article-title: Designing a next generation solar crystallizer for real seawater brine treatment with zero liquid discharge publication-title: Nat Commun – volume: 2 issue: 1 year: 2020 article-title: Designing a bioinspired synthetic tree by unidirectional freezing for simultaneous solar steam generation and salt collection publication-title: EcoMat – volume: 79 year: 2021 article-title: Robust, 3D‐printed hydratable plastics for effective solar desalination publication-title: Nano Energy – volume: 52 start-page: 11822 issue: 20 year: 2018 end-page: 11830 article-title: Solar evaporator with controlled salt precipitation for zero liquid discharge desalination publication-title: Environ Sci Technol – volume: 12 start-page: 41 issue: 2 year: 1971 end-page: 44 article-title: Growing plants with salty water publication-title: J Dep Agric West Aust Series 4 – volume: 8 issue: 6 year: 2021 article-title: Biodegradable, efficient, and breathable multi‐use face mask filter publication-title: Adv Sci – volume: 7 start-page: 3746 issue: 12 year: 2020 end-page: 3758 article-title: Electrostatic polyester air filter composed of conductive nanowires and photocatalytic nanoparticles for particulate matter removal and formaldehyde decomposition publication-title: Environ Sci Nano – volume: 7 start-page: 283 year: 2020 article-title: Polymer applications for medical care in the COVID‐19 pandemic crisis: will we still speak ill of these materials? Review publication-title: Front Mater – volume: 8 issue: 6 year: 2021 article-title: Machine‐learning‐assisted autonomous humidity management system based on solar‐regenerated super hygroscopic complex publication-title: Adv Sci – volume: 13 start-page: 4891 issue: 12 year: 2020 end-page: 4902 article-title: Manipulating unidirectional fluid transportation to drive sustainable solar water extraction and brine‐drenching induced energy generation publication-title: Energ Environ Sci – volume: 109 year: 2017 – volume: 31 issue: 3 year: 2021 article-title: Bioinspired fractal design of waste biomass‐derived solar‐thermal materials for highly efficient solar evaporation publication-title: Adv Funct Mater – volume: 89 year: 2021 article-title: A bio‐inspired nanocomposite membrane with improved light‐trapping and salt‐rejecting performance for solar‐driven interfacial evaporation applications publication-title: Nano Energy – volume: 2 start-page: 198 issue: 4 year: 2021 end-page: 209 article-title: Interfacial solar vapor generation: materials and structural design publication-title: Acc Mater Res – volume: 31 issue: 10 year: 2019 article-title: Solar energy triggered clean water harvesting from humid air existing above sea surface enabled by a hydrogel with ultrahigh hygroscopicity publication-title: Adv Mater – start-page: 1 year: 2002 end-page: 15 – volume: 3 issue: 5 year: 2021 article-title: Interfacial solar evaporation driven lead removal from a contaminated soil publication-title: EcoMat – volume: 65 year: 2019 article-title: Food‐derived carbonaceous materials for solar desalination and thermo‐electric power generation publication-title: Nano Energy – volume: 31 issue: 10 year: 2019 article-title: Super moisture‐absorbent gels for all‐weather atmospheric water harvesting publication-title: Adv Mater – volume: 26 start-page: 1372 issue: 9 year: 1985 end-page: 1384 article-title: Speciality products based on commodity polymers publication-title: Polymer – volume: 29 issue: 28 year: 2017 article-title: Mushrooms as efficient solar steam‐generation devices publication-title: Adv Mater – volume: 5 start-page: 1873 issue: 7 year: 2021 end-page: 1887 article-title: Integrated solar‐driven PV cooling and seawater desalination with zero liquid discharge publication-title: Joule – volume: 7 issue: 9 year: 2020 article-title: Structure architecting for salt‐rejecting solar interfacial desalination to achieve high‐performance evaporation with in situ energy generation publication-title: Adv Sci – volume: 2 start-page: 374 issue: 5 year: 2021 end-page: 384 article-title: Engineering hydrogels for efficient solar desalination and water purification publication-title: Acc Mater Res – volume: 2 issue: 2 year: 2016 article-title: Four billion people facing severe water scarcity publication-title: Sci Adv – volume: 272 year: 2021 article-title: The COVID‐19 pandemic face mask waste: a blooming threat to the marine environment publication-title: Chemosphere – volume: 16 issue: 14 year: 2020 article-title: Hydro‐assisted self‐regenerating brominated N‐alkylated thiophene diketopyrrolopyrrole dye nanofibers—a sustainable synthesis route for renewable air filter materials publication-title: Small – volume: 354 year: 2020 article-title: Bifunctionality behavior of phase controlled nickel selenides in alkaline water electrolysis application publication-title: Electrochim Acta – volume: 3 start-page: e12143 issue: 6 year: 2021 article-title: Solar‐driven brine desalination and concentration by controlled salt excretion publication-title: EcoMat. – volume: 3 start-page: 1112 issue: 8 year: 2021 end-page: 1129 article-title: Solar water evaporation toward water purification and beyond publication-title: ACS Mater Lett – volume: 3 start-page: 31 year: 2018 end-page: 39 article-title: A barbeque‐analog route to carbonize moldy bread for efficient steam generation publication-title: iScience – volume: 416 year: 2021 article-title: Redox flow desalination based on the temperature difference as a driving force publication-title: Chem Eng J – volume: 11 start-page: 38674 issue: 42 year: 2019 end-page: 38682 article-title: Portable trilayer photothermal structure for hybrid energy harvesting and synergic water purification publication-title: ACS Appl Mater Interfaces – volume: 3 issue: 5 year: 2021 article-title: Adjustable photothermal device induced by magnetic field for efficient solar‐driven desalination publication-title: EcoMat – volume: 32 issue: 39 year: 2020 article-title: A moisture‐hungry copper complex harvesting air moisture for potable water and autonomous urban agriculture publication-title: Adv Mater – volume: 13 start-page: 489 issue: 6 year: 2018 end-page: 495 article-title: Highly efficient solar vapour generation via hierarchically nanostructured gels publication-title: Nat Nanotechnol – volume: 4 start-page: 176 issue: 1 year: 2020 end-page: 188 article-title: Energy harvesting from atmospheric humidity by a hydrogel‐integrated ferroelectric‐semiconductor system publication-title: Joule – ident: e_1_2_8_30_1 doi: 10.1021/acsami.6b14755 – ident: e_1_2_8_32_1 doi: 10.1039/D0EE01572E – ident: e_1_2_8_48_1 doi: 10.1016/j.nanoen.2020.105436 – ident: e_1_2_8_2_1 doi: 10.1016/0032-3861(85)90315-5 – ident: e_1_2_8_25_1 doi: 10.1039/D0EE03991H – ident: e_1_2_8_22_1 doi: 10.1016/j.nanoen.2019.104006 – ident: e_1_2_8_28_1 doi: 10.1002/eom2.12140 – ident: e_1_2_8_8_1 doi: 10.1002/smll.201906319 – ident: e_1_2_8_4_1 doi: 10.3389/fmats.2020.00283 – ident: e_1_2_8_27_1 doi: 10.1002/eom2.12139 – ident: e_1_2_8_34_1 doi: 10.1038/s41467-021-21124-4 – ident: e_1_2_8_46_1 doi: 10.1016/j.joule.2019.10.008 – volume-title: 2017 WHO Guidelines for Drinking Water Quality: First Addendum to the year: 2017 ident: e_1_2_8_42_1 – ident: e_1_2_8_9_1 doi: 10.1002/smll.201601924 – ident: e_1_2_8_39_1 doi: 10.1016/j.nanoen.2021.106443 – ident: e_1_2_8_38_1 doi: 10.1002/eom2.12143 – ident: e_1_2_8_43_1 – ident: e_1_2_8_3_1 doi: 10.1007/978-0-387-73861-1_3 – ident: e_1_2_8_6_1 doi: 10.1007/978-94-017-1217-0_1 – ident: e_1_2_8_5_1 doi: 10.1016/j.chemosphere.2021.129601 – ident: e_1_2_8_19_1 doi: 10.1002/adma.201806730 – ident: e_1_2_8_37_1 doi: 10.1002/adfm.202007648 – ident: e_1_2_8_45_1 doi: 10.1002/adma.202002936 – ident: e_1_2_8_47_1 doi: 10.1002/advs.202003939 – ident: e_1_2_8_35_1 doi: 10.1021/acs.est.8b03300 – ident: e_1_2_8_20_1 doi: 10.1021/acsami.9b12156 – ident: e_1_2_8_24_1 doi: 10.1002/adma.201606762 – ident: e_1_2_8_26_1 doi: 10.1016/j.joule.2021.05.010 – ident: e_1_2_8_36_1 doi: 10.1002/eom2.12018 – ident: e_1_2_8_40_1 doi: 10.1016/j.electacta.2020.136742 – ident: e_1_2_8_31_1 doi: 10.1021/acsenergylett.0c01797 – ident: e_1_2_8_12_1 doi: 10.1007/s12274-021-3834-9 – ident: e_1_2_8_33_1 doi: 10.1002/adfm.202100025 – ident: e_1_2_8_15_1 doi: 10.1021/accountsmr.1c00057 – ident: e_1_2_8_14_1 doi: 10.1002/advs.201903478 – ident: e_1_2_8_29_1 doi: 10.1002/adma.201806446 – ident: e_1_2_8_16_1 doi: 10.1021/acsmaterialslett.1c00304 – ident: e_1_2_8_17_1 doi: 10.1021/accountsmr.0c00104 – ident: e_1_2_8_23_1 doi: 10.1038/s41565-018-0097-z – ident: e_1_2_8_11_1 doi: 10.1126/sciadv.1500323 – ident: e_1_2_8_7_1 doi: 10.1002/advs.202003155 – ident: e_1_2_8_10_1 doi: 10.1039/D0EN00683A – ident: e_1_2_8_18_1 doi: 10.1002/eom2.12147 – ident: e_1_2_8_13_1 doi: 10.1016/j.joule.2020.10.003 – volume: 12 start-page: 41 issue: 2 year: 1971 ident: e_1_2_8_44_1 article-title: Growing plants with salty water publication-title: J Dep Agric West Aust Series 4 – ident: e_1_2_8_21_1 doi: 10.1016/j.isci.2018.04.003 – ident: e_1_2_8_41_1 doi: 10.1016/j.cej.2020.127716 |
SSID | ssj0002504241 |
Score | 2.5711374 |
Snippet | Plastic waste caused by the extensive usage of face masks during COVID‐19 pandemic has become a severe threat to natural environment and ecosystem. Herein, an... Abstract Plastic waste caused by the extensive usage of face masks during COVID‐19 pandemic has become a severe threat to natural environment and ecosystem.... |
SourceID | doaj proquest crossref wiley |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Contact angle Coronaviruses COVID-19 Desalination Evaporation Evaporators Face face mask waste Farming Landfill Light Materials selection Medical wastes Natural environment Pandemics photothermal evaporation Plastic debris Polymerization Polymers Polypyrroles Polyvinyl alcohol Protective equipment solar desalination Solar energy Solar heating solar ocean farming Spectrum analysis Water supply Wettability |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3daxQxEA96fdEH8RNPqwT0RWHpbja7mzyJlStFaBWx0LeQj0mF9i5n96r_vjO53HmC9GmXJWSX-SXzkZ35DWNv0YX2YQhDBUHJSnZRVqrXvgoaah2DxQsVJ5-c9sdn8vN5d14O3MaSVrnRiVlRh-TpjPyASFNqiQGM_LD8WVHXKPq7Wlpo3GV7qIKVmrC9w9np12_bUxYi6EIbteUlFQeQ5oIoFSh3a8cSZcL-f7zMXV81G5ujh-xB8RL5xzWsj9gdWDxm93e4A58wDByXKKREsT6P1gOf2_GS_7YIG18l7lPhhuXxKllKbubLH2mVC67mODf8spnCOF1z9Fu5vVlReUO6GflI0S5Hu2YXODHlylw8ZWdHs--fjqvSOqHycqh1Bf3QojOjtUeD3CAaQ107tOUQGme9HlroAXdmVwcRofPCiQYs-GhbQPCapn3GJou0gOeMizqA8Aiack46rawbOozZGofBiMLXTNm7jRiNL7zi1N7iyqwZkYUhkZss8il7sx27XLNp_HfUIaGxHUEM2PlBur4wZUOZIerQuhbqqIIUTa-0j00do1PS9qhXpmx_g6Up23I0fxfRlL3P-N7yGWb25UTkuxe3z_WS3RNUFJEz0_bZBMGFV-iqrNzrsh7_AGCn6sE priority: 102 providerName: ProQuest – databaseName: Wiley Online Library Open Access (WRLC) dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEBZpemkPpU-6eRRBe2nBRJZly4JcmpIQCml7aCA3occohWZXS7xp_35ntF4ngVLoycaMZXs-j2ZGzHxi7B2G0CHqqCuIvapUm1TVdyZU0YAwKTo8UHPy2Zfu9Fx9vmgvttjhphdmzQ8xLbiRZZT5mgzc-eHgljQU8lwSN4I2D9hD6q2lgj6pvk0rLETOJcvWlejWaTFONxM_qTy4vf2eRyrE_feizbsxa3E6J0_ZkzFa5B_X8D5jW7B4zh7f4RB8wTCBXKKyMuX8PLkAfO6Gn_y3Q_j4KvOQR45Ynq6yoyJnvvyRV6Xxao5jwy9XqIzzNcf4lbubFbU55JuBD5T1cvRvboEDU83M5Ut2fnL8_dNpNW6hUAWlhamg0w1-vTEBHXONqGghPPp0iLV3wegGOkALbUWUCdogvazBQUiuAQSxrptXbHuRF_CacSkiyIDg9d4rb3rndYu5W-0xKenxMTP2fqNGG0Z-cdrm4squmZGlJZXbovIZezvJLtesGn-VOiI0Jgliwi4X8vWlHQ3L6mRi4xsQqY9K1l1vQqpFSr5XrsP5Zcb2Nlja0TwHSww8QmE2rGbsQ8H3H69hj7-eyXK28z_Cu-yRpFaJUq-2x7YRatjHAGbl35T_9A-uQev_ priority: 102 providerName: Wiley-Blackwell |
Title | Repurposing face mask waste to construct floating photothermal evaporator for autonomous solar ocean farming |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Feom2.12179 https://www.proquest.com/docview/2635041064 https://doaj.org/article/7f9d3b3e0f8d421689cf10ffb84a6319 |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3faxQxEA5aX_RBbFU8rUegfVFYms1md5NHK3cWoT8QC30L-TFRsHd7eKf--85kt8cKpb70ZXdZQjbMTPabD2a-MHaIKXSIbWwLiFoVqk6q0I0JRTQgTIoOb9ScfHrWnFyqz1f11eioL6oJ6-WBe8MdtcnEylcgko5Klo02IZUiJa-Va6os-CkR80Zkiv7BJMyF2LTVI5VH0C0kSSlQzdYIgbJQ_z_Z5ThHzSAzf8aeDtkh_9Cvapc9gOUeezLSDHzOkDCu0DgdcXyeXAC-cOsf_I9Dd_FNx0M3aMLydN05Kmrmq-_dJjdaLXBu-O2ydHH3k2O-yt2vDbU1IP_na2K5HPHMLXFiqpH59oJdzmdfP54Uw5EJRVCtMAU0bYVJjDEBgbhEL7RCeMRwiKV3wbQVNIA7shZRJqiD9LIEByG5CtBpZVm9ZDvLbgmvGJciggzoLO298kY739bI1UqPJETjZybs3Y0ZbRj0xOlYi2vbKyFLSya32eQTdrAdu-pVNG4ddUze2I4g5ev8AuPBDvFg_xcPE7Z_40s7bMe1JcUdoZD9qgl7n_17xzLs7PxU5qfX97GgN-yxpJaJXLe2z3YwBOAtJjIbP2UPpbrAq55_mrJHx7Oziy_THMd_AfZK9Xo |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQAHxFNdWsAScAApquM4Dx8Q4tFlS7vl0kq9GT-LRHe9bbZU_Cl-IzPeZFkk1FtPiSJr4syMPTPOzDeEvAQX2rra1Zl3jchEGUTWVNJmTnomg9NwweLk8UE1OhJfjsvjNfK7r4XBtMp-T0wbtYsWz8i3ETSFCQhgxLvZWYZdo_Dvat9CY6EWe_7XJYRs7dvdTyDfV5wPdw4_jrKuq0BmRc1k5qu6ADsvpQVblcNEa8YMmDnvcqOtrAtfeVDakjkefGm54bnX3gZdePiuPC-A7g1yUxRgybEyffh5eaaDcGBgEZcoqHzbxwlHAAfMFFuxe6k9wD8-7apnnEzb8B652_mk9P1Cie6TNT99QO6sIBU-JBCmzkAkEU8WaNDW04luf9BLDUpC55Ha2CHR0nAaNaZS09n3OE_lXROg7X_qBJgczyl4yVRfzLGYIl60tMXYmoIV1VMgjJk5J4_I0bWw9DFZn8ap3yCUM-e5BRVpjBFGNtrUJUSIuYHQp4HXDMjrno3Kdijm2EzjVC3wl7lClqvE8gF5sRw7W2B3_HfUB5TGcgTibacH8fxEdctX1UG6whSehcYJnleNtCFnIZhG6Ap2sQHZ6mWpuk2gVX9VdkDeJPleMQ2183XM092Tq2k9J7dGh-N9tb97sLdJbnMsx0g5cVtkHQTtn4KTNDfPkmZS8u26l8If2eEmAg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3daxNBEB9qCqIP4idGqy6oDwpH7vb2vh5ErE1orY1FLPRt3c8KNtnYSy3-a_51zmwuMYL0rU93HMvc3szszszezG8AXqALbWxlq8TZWiSi8CKpy8YktnFp463CCxUnH4zL3SPx4bg43oDfy1oYSqtc7olxo7bB0Bn5gEBTUoEBjBj4Li3icGf0dvYjoQ5S9Kd12U5joSL77tcFhm_tm70dlPVLzkfDL-93k67DQGJElTaJK6scbX7TGLRbGU66SlONJs_ZTCvTVLkrHSpwkVruXWG45plTzniVO_zGLMuR7jXYrCgq6sHm9nB8-Hl1wkPgYGgfV5iofODChBOcA-WNrVnB2CzgHw933U-Ohm50G251Hip7t1CpO7Dhpnfh5hpu4T3AoHWGAgp0zsC8Mo5NVPudXShUGTYPzIQOl5b506AosZrNvoV5LPaaIG33U0X45HDG0Gdm6nxOpRXhvGUtRdoMbaqaImHK0zm5D0dXwtQH0JuGqXsIjKfWcYMKU2stdFMrXRUYL2YaA6EaX9OHV0s2StNhmlNrjVO5QGPmklguI8v78Hw1drZA8vjvqG2SxmoEoW_HB-HsRHaLWVa-sbnOXeprK3hW1o3xWeq9roUqcU_rw9ZSlrLbElr5V4H78DrK95JpyOGnAx7vHl1O6xlcx2UgP-6N9x_DDU61GTFBbgt6KGf3BD2muX7aqSaDr1e9Gv4ARCIrlA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Repurposing+face+mask+waste+to+construct+floating+photothermal+evaporator+for+autonomous+solar+ocean+farming&rft.jtitle=EcoMat+%28Beijing%2C+China%29&rft.au=Shuai+Guo&rft.au=Yaoxin+Zhang&rft.au=Hao+Qu&rft.au=Meng+Li&rft.date=2022-03-01&rft.pub=Wiley&rft.eissn=2567-3173&rft.volume=4&rft.issue=2&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Feom2.12179&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_7f9d3b3e0f8d421689cf10ffb84a6319 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2567-3173&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2567-3173&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2567-3173&client=summon |