Patterns of nitrogen-fixing tree abundance in forests across Asia and America
1. Symbiotic nitrogen (N)-fixing trees can provide large quantities of new N to ecosystems, but only if they are sufficiently abundant. The overall abundance and latitudinal abundance distributions of N-fixing trees are well characterised in the Americas, but less well outside the Americas. 2. Here,...
Saved in:
Published in | The Journal of ecology Vol. 107; no. 6; pp. 2598 - 2610 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
John Wiley & Sons Ltd
01.11.2019
Blackwell Publishing Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | 1. Symbiotic nitrogen (N)-fixing trees can provide large quantities of new N to ecosystems, but only if they are sufficiently abundant. The overall abundance and latitudinal abundance distributions of N-fixing trees are well characterised in the Americas, but less well outside the Americas. 2. Here, we characterised the abundance of N-fixing trees in a network of forest plots spanning five continents, ~5,000 tree species and ~4 million trees. The majority of the plots (86%) were in America or Asia. In addition, we examined whether the observed pattern of abundance of N-fixing trees was correlated with mean annual temperature and precipitation. 3. Outside the tropics, N-fixing trees were consistently rare in the forest plots we examined. Within the tropics, N-fixing trees were abundant in American but not Asian forest plots (~7% versus ~ 1 % of basal area and stems). This disparity was not explained by mean annual temperature or precipitation. Our finding of low N-fixing tree abundance in the Asian tropics casts some doubt on recent high estimates of N fixation rates in this region, which do not account for disparities in N-fixing tree abundance between the Asian and American tropics. 4. Synthesis. Inputs of nitrogen to forests depend on symbiotic nitrogen fixation, which is constrained by the abundance of N-fixing trees. By analysing a large dataset of ~4 million trees, we found that N-fixing trees were consistently rare in the Asian tropics as well as across higher latitudes in Asia, America and Europe. The rarity of N-fixing trees in the Asian tropics compared with the American tropics might stem from lower intrinsic N limitation in Asian tropical forests, although direct support for any mechanism is lacking. The paucity of N-fixing trees throughout Asian forests suggests that N inputs to the Asian tropics might be lower than previously thought. |
---|---|
AbstractList | 1. Symbiotic nitrogen (N)-fixing trees can provide large quantities of new N to ecosystems, but only if they are sufficiently abundant. The overall abundance and latitudinal abundance distributions of N-fixing trees are well characterised in the Americas, but less well outside the Americas. 2. Here, we characterised the abundance of N-fixing trees in a network of forest plots spanning five continents, ~5,000 tree species and ~4 million trees. The majority of the plots (86%) were in America or Asia. In addition, we examined whether the observed pattern of abundance of N-fixing trees was correlated with mean annual temperature and precipitation. 3. Outside the tropics, N-fixing trees were consistently rare in the forest plots we examined. Within the tropics, N-fixing trees were abundant in American but not Asian forest plots (~7% versus ~ 1 % of basal area and stems). This disparity was not explained by mean annual temperature or precipitation. Our finding of low N-fixing tree abundance in the Asian tropics casts some doubt on recent high estimates of N fixation rates in this region, which do not account for disparities in N-fixing tree abundance between the Asian and American tropics. 4. Synthesis. Inputs of nitrogen to forests depend on symbiotic nitrogen fixation, which is constrained by the abundance of N-fixing trees. By analysing a large dataset of ~4 million trees, we found that N-fixing trees were consistently rare in the Asian tropics as well as across higher latitudes in Asia, America and Europe. The rarity of N-fixing trees in the Asian tropics compared with the American tropics might stem from lower intrinsic N limitation in Asian tropical forests, although direct support for any mechanism is lacking. The paucity of N-fixing trees throughout Asian forests suggests that N inputs to the Asian tropics might be lower than previously thought. Symbiotic nitrogen (N)‐fixing trees can provide large quantities of new N to ecosystems, but only if they are sufficiently abundant. The overall abundance and latitudinal abundance distributions of N‐fixing trees are well characterised in the Americas, but less well outside the Americas. Here, we characterised the abundance of N‐fixing trees in a network of forest plots spanning five continents, ~5,000 tree species and ~4 million trees. The majority of the plots (86%) were in America or Asia. In addition, we examined whether the observed pattern of abundance of N‐fixing trees was correlated with mean annual temperature and precipitation. Outside the tropics, N‐fixing trees were consistently rare in the forest plots we examined. Within the tropics, N‐fixing trees were abundant in American but not Asian forest plots (~7% versus ~1% of basal area and stems). This disparity was not explained by mean annual temperature or precipitation. Our finding of low N‐fixing tree abundance in the Asian tropics casts some doubt on recent high estimates of N fixation rates in this region, which do not account for disparities in N‐fixing tree abundance between the Asian and American tropics. Synthesis . Inputs of nitrogen to forests depend on symbiotic nitrogen fixation, which is constrained by the abundance of N‐fixing trees. By analysing a large dataset of ~4 million trees, we found that N‐fixing trees were consistently rare in the Asian tropics as well as across higher latitudes in Asia, America and Europe. The rarity of N‐fixing trees in the Asian tropics compared with the American tropics might stem from lower intrinsic N limitation in Asian tropical forests, although direct support for any mechanism is lacking. The paucity of N‐fixing trees throughout Asian forests suggests that N inputs to the Asian tropics might be lower than previously thought. Symbiotic nitrogen (N)‐fixing trees can provide large quantities of new N to ecosystems, but only if they are sufficiently abundant. The overall abundance and latitudinal abundance distributions of N‐fixing trees are well characterised in the Americas, but less well outside the Americas.Here, we characterised the abundance of N‐fixing trees in a network of forest plots spanning five continents, ~5,000 tree species and ~4 million trees. The majority of the plots (86%) were in America or Asia. In addition, we examined whether the observed pattern of abundance of N‐fixing trees was correlated with mean annual temperature and precipitation.Outside the tropics, N‐fixing trees were consistently rare in the forest plots we examined. Within the tropics, N‐fixing trees were abundant in American but not Asian forest plots (~7% versus ~1% of basal area and stems). This disparity was not explained by mean annual temperature or precipitation. Our finding of low N‐fixing tree abundance in the Asian tropics casts some doubt on recent high estimates of N fixation rates in this region, which do not account for disparities in N‐fixing tree abundance between the Asian and American tropics.Synthesis. Inputs of nitrogen to forests depend on symbiotic nitrogen fixation, which is constrained by the abundance of N‐fixing trees. By analysing a large dataset of ~4 million trees, we found that N‐fixing trees were consistently rare in the Asian tropics as well as across higher latitudes in Asia, America and Europe. The rarity of N‐fixing trees in the Asian tropics compared with the American tropics might stem from lower intrinsic N limitation in Asian tropical forests, although direct support for any mechanism is lacking. The paucity of N‐fixing trees throughout Asian forests suggests that N inputs to the Asian tropics might be lower than previously thought. Symbiotic nitrogen (N)‐fixing trees can provide large quantities of new N to ecosystems, but only if they are sufficiently abundant. The overall abundance and latitudinal abundance distributions of N‐fixing trees are well characterised in the Americas, but less well outside the Americas. Here, we characterised the abundance of N‐fixing trees in a network of forest plots spanning five continents, ~5,000 tree species and ~4 million trees. The majority of the plots (86%) were in America or Asia. In addition, we examined whether the observed pattern of abundance of N‐fixing trees was correlated with mean annual temperature and precipitation. Outside the tropics, N‐fixing trees were consistently rare in the forest plots we examined. Within the tropics, N‐fixing trees were abundant in American but not Asian forest plots (~7% versus ~1% of basal area and stems). This disparity was not explained by mean annual temperature or precipitation. Our finding of low N‐fixing tree abundance in the Asian tropics casts some doubt on recent high estimates of N fixation rates in this region, which do not account for disparities in N‐fixing tree abundance between the Asian and American tropics. Synthesis. Inputs of nitrogen to forests depend on symbiotic nitrogen fixation, which is constrained by the abundance of N‐fixing trees. By analysing a large dataset of ~4 million trees, we found that N‐fixing trees were consistently rare in the Asian tropics as well as across higher latitudes in Asia, America and Europe. The rarity of N‐fixing trees in the Asian tropics compared with the American tropics might stem from lower intrinsic N limitation in Asian tropical forests, although direct support for any mechanism is lacking. The paucity of N‐fixing trees throughout Asian forests suggests that N inputs to the Asian tropics might be lower than previously thought. Inputs of nitrogen to forests depend on symbiotic nitrogen fixation, which is constrained by the abundance of N‐fixing trees. By analysing a large dataset of ~4 million trees, we found that N‐fixing trees were consistently rare in the Asian tropics as well as across higher latitudes in Asia, America and Europe. The rarity of N‐fixing trees in the Asian tropics compared with the American tropics might stem from lower intrinsic N limitation in Asian tropical forests, although direct support for any mechanism is lacking. The paucity of N‐fixing trees throughout Asian forests suggests that N inputs to the Asian tropics might be lower than previously thought. |
Author | Nathalang, Anuttara Gunatilleke, I. A. U. Nimal Larson, Andrew J. Chanthorn, Wirong Ku, Chen-Chia Hsieh, Chang-Fu Vallejo, Martha I. Wang, Xihua Wolf, Amy Mi, Xiangcheng Chisholm, Ryan A. Inman-Narahari, Faith M. Malhi, Yadvinder Lum, Shawn K. Y. Myers, Jonathan A. Wang, Bin Tan, Sylvester Bourg, Norm Kong, Lee Sing Zhu, Li Hau, Billy C. H. Parker, Geoffrey Hubbell, Stephen P. da Silva, João Batista Novotny, Vojtech Drescher, Michael Král, Kamil den Ouden, Jan Su, Sheng-Hsin Valencia, Renato Ong, Perry Bunyavejchewin, Sarayudh Dattaraja, H. S. Ma, Keping Rahman, Kassim Abd Johnson, Daniel J. Lin, Luxiang Phillips, Richard P. Fletcher, Christine Lai, Jiangshan Cordell, Susan Ostertag, Rebecca Cao, Min Howe, Robert Giardina, Christian P. Sun, I-Fang Liu, Shirong Condit, Richard Xu, Han Toko, Pagi S. Morecroft, Michael Sang, Weiguo Li, Yide Davies, Stuart J. Weiblen, George D. Vicentini, Alberto Brockelman, Warren Y. Lin, YiChing Vrška, Tomáš Lutz, James A. Chao, Wei-Chun Sack, Lawren Suresh, H. S. Allen, David Menge, Duncan N. L. de Andrade, Ana Crist |
Author_xml | – sequence: 1 givenname: Duncan N. L. surname: Menge fullname: Menge, Duncan N. L. – sequence: 2 givenname: Ryan A. surname: Chisholm fullname: Chisholm, Ryan A. – sequence: 3 givenname: Stuart J. surname: Davies fullname: Davies, Stuart J. – sequence: 4 givenname: Kamariah Abu surname: Salim fullname: Salim, Kamariah Abu – sequence: 5 givenname: David surname: Allen fullname: Allen, David – sequence: 6 givenname: Mauricio surname: Alvarez fullname: Alvarez, Mauricio – sequence: 7 givenname: Norm surname: Bourg fullname: Bourg, Norm – sequence: 8 givenname: Warren Y. surname: Brockelman fullname: Brockelman, Warren Y. – sequence: 9 givenname: Sarayudh surname: Bunyavejchewin fullname: Bunyavejchewin, Sarayudh – sequence: 10 givenname: Nathalie surname: Butt fullname: Butt, Nathalie – sequence: 11 givenname: Min surname: Cao fullname: Cao, Min – sequence: 12 givenname: Wirong surname: Chanthorn fullname: Chanthorn, Wirong – sequence: 13 givenname: Wei-Chun surname: Chao fullname: Chao, Wei-Chun – sequence: 14 givenname: Keith surname: Clay fullname: Clay, Keith – sequence: 15 givenname: Richard surname: Condit fullname: Condit, Richard – sequence: 16 givenname: Susan surname: Cordell fullname: Cordell, Susan – sequence: 17 givenname: João Batista surname: da Silva fullname: da Silva, João Batista – sequence: 18 givenname: H. S. surname: Dattaraja fullname: Dattaraja, H. S. – sequence: 19 givenname: Ana Cristina Segalin surname: de Andrade fullname: de Andrade, Ana Cristina Segalin – sequence: 20 givenname: Alexandre A. surname: de Oliveira fullname: de Oliveira, Alexandre A. – sequence: 21 givenname: Jan surname: den Ouden fullname: den Ouden, Jan – sequence: 22 givenname: Michael surname: Drescher fullname: Drescher, Michael – sequence: 23 givenname: Christine surname: Fletcher fullname: Fletcher, Christine – sequence: 24 givenname: Christian P. surname: Giardina fullname: Giardina, Christian P. – sequence: 25 givenname: C. V. Savitri surname: Gunatilleke fullname: Gunatilleke, C. V. Savitri – sequence: 26 givenname: I. A. U. Nimal surname: Gunatilleke fullname: Gunatilleke, I. A. U. Nimal – sequence: 27 givenname: Billy C. H. surname: Hau fullname: Hau, Billy C. H. – sequence: 28 givenname: Fangliang surname: He fullname: He, Fangliang – sequence: 29 givenname: Robert surname: Howe fullname: Howe, Robert – sequence: 30 givenname: Chang-Fu surname: Hsieh fullname: Hsieh, Chang-Fu – sequence: 31 givenname: Stephen P. surname: Hubbell fullname: Hubbell, Stephen P. – sequence: 32 givenname: Faith M. surname: Inman-Narahari fullname: Inman-Narahari, Faith M. – sequence: 33 givenname: Patrick A. surname: Jansen fullname: Jansen, Patrick A. – sequence: 34 givenname: Daniel J. surname: Johnson fullname: Johnson, Daniel J. – sequence: 35 givenname: Lee Sing surname: Kong fullname: Kong, Lee Sing – sequence: 36 givenname: Kamil surname: Král fullname: Král, Kamil – sequence: 37 givenname: Chen-Chia surname: Ku fullname: Ku, Chen-Chia – sequence: 38 givenname: Jiangshan surname: Lai fullname: Lai, Jiangshan – sequence: 39 givenname: Andrew J. surname: Larson fullname: Larson, Andrew J. – sequence: 40 givenname: Xiankun surname: Li fullname: Li, Xiankun – sequence: 41 givenname: Yide surname: Li fullname: Li, Yide – sequence: 42 givenname: Luxiang surname: Lin fullname: Lin, Luxiang – sequence: 43 givenname: YiChing surname: Lin fullname: Lin, YiChing – sequence: 44 givenname: Shirong surname: Liu fullname: Liu, Shirong – sequence: 45 givenname: Shawn K. Y. surname: Lum fullname: Lum, Shawn K. Y. – sequence: 46 givenname: James A. surname: Lutz fullname: Lutz, James A. – sequence: 47 givenname: Keping surname: Ma fullname: Ma, Keping – sequence: 48 givenname: Yadvinder surname: Malhi fullname: Malhi, Yadvinder – sequence: 49 givenname: Sean surname: McMahon fullname: McMahon, Sean – sequence: 50 givenname: William surname: McShea fullname: McShea, William – sequence: 51 givenname: Xiangcheng surname: Mi fullname: Mi, Xiangcheng – sequence: 52 givenname: Michael surname: Morecroft fullname: Morecroft, Michael – sequence: 53 givenname: Jonathan A. surname: Myers fullname: Myers, Jonathan A. – sequence: 54 givenname: Anuttara surname: Nathalang fullname: Nathalang, Anuttara – sequence: 55 givenname: Vojtech surname: Novotny fullname: Novotny, Vojtech – sequence: 56 givenname: Perry surname: Ong fullname: Ong, Perry – sequence: 57 givenname: David A. surname: Orwig fullname: Orwig, David A. – sequence: 58 givenname: Rebecca surname: Ostertag fullname: Ostertag, Rebecca – sequence: 59 givenname: Geoffrey surname: Parker fullname: Parker, Geoffrey – sequence: 60 givenname: Richard P. surname: Phillips fullname: Phillips, Richard P. – sequence: 61 givenname: Kassim Abd surname: Rahman fullname: Rahman, Kassim Abd – sequence: 62 givenname: Lawren surname: Sack fullname: Sack, Lawren – sequence: 63 givenname: Weiguo surname: Sang fullname: Sang, Weiguo – sequence: 64 givenname: Guochun surname: Shen fullname: Shen, Guochun – sequence: 65 givenname: Ankur surname: Shringi fullname: Shringi, Ankur – sequence: 66 givenname: Jessica surname: Shue fullname: Shue, Jessica – sequence: 67 givenname: Sheng-Hsin surname: Su fullname: Su, Sheng-Hsin – sequence: 68 givenname: Raman surname: Sukumar fullname: Sukumar, Raman – sequence: 69 givenname: I-Fang surname: Sun fullname: Sun, I-Fang – sequence: 70 givenname: H. S. surname: Suresh fullname: Suresh, H. S. – sequence: 71 givenname: Sylvester surname: Tan fullname: Tan, Sylvester – sequence: 72 givenname: Sean C. surname: Thomas fullname: Thomas, Sean C. – sequence: 73 givenname: Pagi S. surname: Toko fullname: Toko, Pagi S. – sequence: 74 givenname: Renato surname: Valencia fullname: Valencia, Renato – sequence: 75 givenname: Martha I. surname: Vallejo fullname: Vallejo, Martha I. – sequence: 76 givenname: Alberto surname: Vicentini fullname: Vicentini, Alberto – sequence: 77 givenname: Tomáš surname: Vrška fullname: Vrška, Tomáš – sequence: 78 givenname: Bin surname: Wang fullname: Wang, Bin – sequence: 79 givenname: Xihua surname: Wang fullname: Wang, Xihua – sequence: 80 givenname: George D. surname: Weiblen fullname: Weiblen, George D. – sequence: 81 givenname: Amy surname: Wolf fullname: Wolf, Amy – sequence: 82 givenname: Han surname: Xu fullname: Xu, Han – sequence: 83 givenname: Sandra surname: Yap fullname: Yap, Sandra – sequence: 84 givenname: Li surname: Zhu fullname: Zhu, Li – sequence: 85 givenname: Tak surname: Fung fullname: Fung, Tak |
BookMark | eNqFkc1rGzEQxUVJoE7ac6-CUuhlk5G0snZ7Myb9IiU5pGcxkrVBZi25khY3_321cVpKoFSXgeH9Rm_mnZGTEIMj5A2DC1bfJRNL2XDVygsmWN-_IIs_nROyAOC8gVapl-Qs5y0ALJWEBfl2i6W4FDKNAw2-pHjvQjP4nz7c05Kco2imsMFgHfWBDjG5XDJFm2LOdJU9Ugwbutq55C2-IqcDjtm9fqrn5PvHq7v15-b65tOX9eq6sa2CvkEQveIt58CEAd6yzoHqZLsRwvZd1zFjhg6dFWhhMCiNQjkgmo0dwNS2OCcfjnMPWO1Wqy7ogMn6rCN6PXqTMD3ow5R0GOeyn0zWUrKeQYXfH-F9ij-muo7e-WzdOGJwccqaC1UdcbHkVfr2mXQbpxTqalUFS2jrdduqkkfV41GSG7T1BYuPoST0o2ag54T0nIee89CPCVXu8hm3T343G_838fTTwY_u4X9y_fVq_Zt7d-S2ucT0N1fXULqVvON9x8QvP9uvgg |
CitedBy_id | crossref_primary_10_1111_gcb_15677 crossref_primary_10_1111_geb_13535 crossref_primary_10_1111_ele_13437 crossref_primary_10_1111_geb_13236 crossref_primary_10_1111_nph_20178 crossref_primary_10_3390_f15010164 crossref_primary_10_3389_ffgc_2023_1206225 crossref_primary_10_1093_treephys_tpae159 crossref_primary_10_1007_s10021_024_00947_4 crossref_primary_10_1002_ecy_70016 crossref_primary_10_1111_1365_2745_13600 crossref_primary_10_2139_ssrn_3983964 crossref_primary_10_3390_f15101729 crossref_primary_10_1016_j_soilbio_2021_108150 crossref_primary_10_1146_annurev_ecolsys_011720_090819 crossref_primary_10_1086_730538 crossref_primary_10_1111_1365_2664_14717 crossref_primary_10_1111_1365_2745_13819 crossref_primary_10_1002_jobm_202200043 crossref_primary_10_1111_oik_08908 crossref_primary_10_3389_fagro_2021_725804 crossref_primary_10_3390_plants12030605 crossref_primary_10_1002_ldr_4719 crossref_primary_10_1016_j_geoderma_2020_114424 crossref_primary_10_5194_bg_18_4143_2021 crossref_primary_10_1038_s41586_022_05502_6 crossref_primary_10_5902_1980509847958 crossref_primary_10_1002_ecm_1562 crossref_primary_10_1111_rec_14288 crossref_primary_10_1111_jbi_14840 crossref_primary_10_1038_s42003_020_1041_y crossref_primary_10_1016_j_catena_2022_106333 crossref_primary_10_1007_s10533_023_01030_1 crossref_primary_10_1007_s10533_021_00883_8 crossref_primary_10_1086_717017 |
Cites_doi | 10.1111/nph.12221 10.1007/s10021-002-0207-4 10.1371/journal.pone.0012056 10.1111/nph.14494 10.1016/j.soilbio.2014.05.024 10.1073/pnas.1523683113 10.1007/978-3-662-03664-8 10.1890/14-2246.1 10.12705/622.12 10.1002/ecy.1529 10.5194/bg-10-2525-2013 10.1111/ele.12335 10.1146/annurev-ecolsys-102710-145034 10.1126/science.283.5401.554 10.1111/nph.13734 10.2307/j.ctt22726mc.21 10.1371/journal.pone.0036131 10.1111/1365-2745.12138 10.1016/j.foreco.2016.05.017 10.1029/2009GL041009 10.1111/gcb.13716 10.1002/ecy.1504 10.2307/2937039 10.1371/journal.pone.0164522 10.1046/j.1469-8137.1997.00755.x 10.1038/srep39102 10.1007/BF01007581 10.1002/ecs2.1847 10.1038/nature07028 10.1890/14-0157.1 10.1002/joc.1276 10.1002/9781444316384 10.1111/j.1744-7429.2012.00862.x 10.1002/ecy.2034 10.1111/ele.12778 10.1111/ele.12543 10.1038/nature12525 10.1890/11-1952.1 10.1111/nph.14474 10.1038/s41559-018-0759-0 10.1007/978-0-387-74075-1 10.3759/tropics.8.45 10.1007/s11434-016-1132-9 10.1088/1748-9326/10/4/044016 10.1111/ele.13129 10.1126/science.1222056 10.1029/2018GB005973 10.5194/bg-8-2907-2011 10.1073/pnas.1707094114 10.1038/s41559-018-0559-6 10.1111/1365-2745.12758 10.2307/1934145 10.2307/2399464 10.1371/journal.pone.0082784 10.1890/ES14-000159.1 10.1111/nph.14080 10.5194/bg-14-2003-2017 10.1126/science.aan4399 10.1007/s00442-010-1838-3 10.1890/13-2124.1 10.1126/science.1124712 10.1111/aec.12187 10.1111/gcb.12712 10.1890/11-1927.1 10.1371/journal.pone.0088709 10.1002/ecy.2637 10.1038/s41467-019-09424-2 10.1038/nature05134 10.5194/bg-13-1491-2016 10.1007/978-1-4615-6968-8_1 |
ContentType | Journal Article |
Copyright | 2019 British Ecological Society 2019 The Authors. Journal of Ecology © 2019 British Ecological Society Journal of Ecology © 2019 British Ecological Society Wageningen University & Research |
Copyright_xml | – notice: 2019 British Ecological Society – notice: 2019 The Authors. Journal of Ecology © 2019 British Ecological Society – notice: Journal of Ecology © 2019 British Ecological Society – notice: Wageningen University & Research |
DBID | AAYXX CITATION 7QG 7SN 7SS 7ST 8FD C1K F1W FR3 H95 L.G M7N P64 RC3 SOI 7S9 L.6 QVL |
DOI | 10.1111/1365-2745.13199 |
DatabaseName | CrossRef Animal Behavior Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts Environment Abstracts AGRICOLA AGRICOLA - Academic NARCIS:Publications |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Environment Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Ecology Botany |
EISSN | 1365-2745 |
EndPage | 2610 |
ExternalDocumentID | oai_library_wur_nl_wurpubs_551910 10_1111_1365_2745_13199 JEC13199 45282981 |
Genre | article |
GeographicLocations | Asia South America North America Europe |
GeographicLocations_xml | – name: Asia – name: South America – name: Europe – name: North America |
GrantInformation_xml | – fundername: Smithsonian Tropical Research Institute – fundername: Harvard University – fundername: Rockefeller Foundation – fundername: Smithsonian Institution – fundername: James S. McDonnell Foundation funderid: 220020470 – fundername: John D. and Catherine T. MacArthur Foundation – fundername: Andrew W. Mellon Foundation – fundername: National Science Foundation funderid: DEB-1457650; DEB-1545761 – fundername: Frank Levinson Family Foundation |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1OC 29K 2WC 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 85S 8UM 930 A03 AAESR AAEVG AAHBH AAHKG AAHQN AAKGQ AAMMB AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABJNI ABLJU ABPFR ABPLY ABPPZ ABPVW ABTLG ACAHQ ACCZN ACFBH ACGFO ACGFS ACGOD ACNCT ACPOU ACPRK ACSCC ACSTJ ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADMHG ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEUYR AEYWJ AFAZZ AFBPY AFEBI AFFPM AFGKR AFRAH AFWVQ AFXHP AFZJQ AGHNM AGXDD AGYGG AHBTC AIAGR AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BKOMP BMNLL BMXJE BNHUX BROTX BRXPI BY8 D-E D-F D-I DCZOG DIK DPXWK DR2 DRFUL DRSTM DU5 E3Z EAU EBS ECGQY EJD F00 F01 F04 F5P G-S G.N GODZA H.T H.X HGLYW HZI HZ~ IHE IX1 J0M JAS JBS JENOY JLS JST K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 R.K ROL RX1 SUPJJ TN5 UB1 UPT V8K W8V W99 WBKPD WH7 WIH WIK WIN WNSPC WOHZO WQJ WXSBR WYISQ XG1 Y6R YF5 YQT YZZ ZCA ZZTAW ~02 ~IA ~KM ~WT .Y3 24P 2AX 3-9 31~ 42X 8WZ A6W AAHHS AAISJ ABBHK ABEFU ABPQH ABTAH ABXSQ ABYAD ACCFJ ACHIC ACTWD ACUBG ADULT AEEZP AEQDE AEUPB AEUQT AFPWT AHXOZ AILXY AIWBW AJBDE AQVQM AS~ CAG CBGCD COF CUYZI DEVKO DOOOF ESX FVMVE GTFYD HF~ HGD HQ2 HTVGU HVGLF IPSME JAAYA JBMMH JBZCM JEB JHFFW JKQEH JLEZI JLXEF JPL JPM JSODD LW6 MVM SA0 WHG WRC XIH YXE ZCG ZY4 AAYXX ABAWQ ABSQW ACHJO AGUYK CITATION 7QG 7SN 7SS 7ST 8FD C1K F1W FR3 H95 L.G M7N P64 RC3 SOI 7S9 L.6 08R AAJUZ ABCVL ABHUG ABPTK ABWRO ACXME ADAWD ADDAD ADZLD AESBF AFDAS AFVGU AGJLS AIHXQ B4K CWIXF DWIUU IPNFZ PQEST QVL UMP |
ID | FETCH-LOGICAL-c4709-a03972422013b02418e07854d33c98881bbf8aec3ac0fba5b7a5faabdcf0bec33 |
IEDL.DBID | DR2 |
ISSN | 0022-0477 |
IngestDate | Thu Oct 13 09:31:27 EDT 2022 Fri Jul 11 18:34:20 EDT 2025 Fri Jul 25 19:17:56 EDT 2025 Tue Jul 01 03:13:43 EDT 2025 Thu Apr 24 22:54:54 EDT 2025 Wed Jan 22 16:39:29 EST 2025 Thu Jul 03 21:32:10 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4709-a03972422013b02418e07854d33c98881bbf8aec3ac0fba5b7a5faabdcf0bec33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-9112-5340 0000-0001-9749-8324 0000-0002-9854-2179 0000-0003-1517-6191 0000-0003-4736-9844 0000-0003-4604-5063 0000-0002-1345-4138 0000-0001-9853-6062 0000-0002-7009-7202 0000-0001-5526-8109 0000-0002-7978-5554 0000-0003-2727-0871 0000-0002-1085-3344 0000-0003-1039-4157 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/1365-2745.13199 |
PQID | 2306042744 |
PQPubID | 37508 |
PageCount | 13 |
ParticipantIDs | wageningen_narcis_oai_library_wur_nl_wurpubs_551910 proquest_miscellaneous_2374182362 proquest_journals_2306042744 crossref_citationtrail_10_1111_1365_2745_13199 crossref_primary_10_1111_1365_2745_13199 wiley_primary_10_1111_1365_2745_13199_JEC13199 jstor_primary_10_2307_45282981 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2019 |
PublicationDateYYYYMMDD | 2019-11-01 |
PublicationDate_xml | – month: 11 year: 2019 text: November 2019 |
PublicationDecade | 2010 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | The Journal of ecology |
PublicationYear | 2019 |
Publisher | John Wiley & Sons Ltd Blackwell Publishing Ltd |
Publisher_xml | – name: John Wiley & Sons Ltd – name: Blackwell Publishing Ltd |
References | 2002; 14 2017; 7 2017; 8 2018; 360 2019; 10 2013; 62 1999; 46 1999; 283 2001; 49 1988; 75 2013; 8 2017; 114 2015; 15182 2012; 52 1994; 64 2005; 25 1971; 52 2014; 5 2018; 2 2013; 10 2015; 40 2003; 6 2016; 113 2013; 199 1982 2014; 17 2014; 9 2014; 95 2012; 336 2010; 5 2011; 165 2006; 443 1997; 136 2012; 82 2017; 20 2019; 3 2016; 19 2016; 209 2019; 33 2015; 96 2013; 502 2017; 23 2015; 10 2013; 101 2009 1998 2008 2016; 97 1994 2005 1993 2004 2006; 313 2018; 21 2017; 214 2019; 100 2011; 8 2016; 13 2017; 215 2016; 11 1990; 3 2009; 36 2017; 14 2017; 98 2015; 21 2011; 42 2019 2016; 211 2016; 375 2018 2016; 61 2015 2014 2008; 454 2013 2012; 7 2012; 44 2017; 105 2014; 76 1998; 8 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 Lee H.‐S. (e_1_2_8_41_1) 2002; 14 e_1_2_8_3_1 e_1_2_8_81_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 R Development Core Team (e_1_2_8_63_1) 2013 e_1_2_8_62_1 e_1_2_8_60_1 e_1_2_8_83_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 Soper F. M. (e_1_2_8_68_1) 2018 e_1_2_8_70_1 Yang X. (e_1_2_8_84_1) 2014 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_34_1 e_1_2_8_76_1 e_1_2_8_51_1 e_1_2_8_74_1 Bunyavejchewin S. (e_1_2_8_10_1) 2001; 49 e_1_2_8_30_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 Menge D. N. L. (e_1_2_8_53_1) 2019 e_1_2_8_27_1 e_1_2_8_48_1 Sheffer E. (e_1_2_8_67_1) 2015; 15182 e_1_2_8_69_1 Losos E. C. (e_1_2_8_44_1) 2004 Lee H.‐S. (e_1_2_8_40_1) 2005 e_1_2_8_2_1 e_1_2_8_80_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_65_1 e_1_2_8_61_1 e_1_2_8_82_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 Manokaran N. (e_1_2_8_49_1) 1990; 3 e_1_2_8_58_1 e_1_2_8_79_1 Binkley D. (e_1_2_8_8_1) 1994 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_77_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_75_1 Bunyavejchewin S. (e_1_2_8_11_1) 2009 e_1_2_8_52_1 e_1_2_8_73_1 e_1_2_8_50_1 e_1_2_8_71_1 |
References_xml | – volume: 165 start-page: 511 year: 2011 end-page: 520 article-title: Facultative nitrogen fixation by canopy legumes in a lowland tropical forest publication-title: Oecologia – year: 2009 – volume: 46 start-page: 233 year: 1999 end-page: 246 article-title: The presence of nitrogen fixing legumes in terrestrial communities: Evolutionary vs. ecological considerations publication-title: Biogeochemistry – year: 2005 – volume: 95 start-page: 2236 year: 2014 end-page: 2245 article-title: Nitrogen fixation strategies can explain the latitudinal shift in nitrogen‐fixing tree abundance publication-title: Ecology – volume: 17 start-page: 1282 year: 2014 end-page: 1289 article-title: Interactions among nitrogen fixation and soil phosphorus acquisition strategies in lowland tropical rainforests publication-title: Ecology Letters – volume: 19 start-page: 62 year: 2016 end-page: 70 article-title: Taxonomic identity determines N fixation by canopy trees across lowland tropical forests publication-title: Ecology Letters – volume: 62 start-page: 249 year: 2013 end-page: 266 article-title: Global legume diversity assessment: Concepts, key indicators, and strategies publication-title: Taxon – volume: 5 start-page: 129 year: 2014 article-title: Ontogenetic trait variation influences tree community assembly across environmental gradients publication-title: Ecosphere – volume: 3 start-page: 239 year: 2019 end-page: 250 article-title: Global plant‐symbiont organization and emergence of biogeochemical cycles resolved by evolution‐based trait modelling publication-title: Nature Ecology and Evolution – volume: 20 start-page: 842 year: 2017 end-page: 851 article-title: Nitrogen‐fixing tree abundance in higher‐latitude North America is not constrained by diversity publication-title: Ecology Letters – start-page: 57 year: 1994 end-page: 72 – volume: 313 start-page: 98 year: 2006 end-page: 101 article-title: The importance of demographic niches to tree diversity publication-title: Science – volume: 6 start-page: 773 year: 2003 end-page: 785 article-title: Nitrogen export from forested watersheds in the Oregon coast range: The role of N ‐fixing red alder publication-title: Ecosystems – volume: 8 start-page: e82784 year: 2013 article-title: The importance of large‐diameter trees to forest structural heterogeneity publication-title: PLoS ONE – volume: 199 start-page: 41 year: 2013 end-page: 51 article-title: The mycorrhizal‐associated nutrient economy: A new framework for predicting carbon‐nutrient couplings in temperate forests publication-title: New Phytologist – volume: 33 start-page: 501 issue: 4 year: 2019 end-page: 523 article-title: Diverse mycorrhizal associations enhance terrestrial C storage in a global model publication-title: Global Biogeochemical Cycles – year: 2014 – volume: 101 start-page: 1400 year: 2013 end-page: 1408 article-title: Nitrogen and phosphorus interact to control tropical symbiotic N fixation: A test in publication-title: Journal of Ecology – year: 1998 – volume: 61 start-page: 1163 issue: 15 year: 2016 end-page: 1170 article-title: CForBio: a network monitoring Chinese forest biodiversity publication-title: Science Bulletin – volume: 5 start-page: e12056 year: 2010 article-title: Phylogenetic constraints do not explain the rarity of nitrogen‐fixing trees in late‐successional temperate forests publication-title: PLoS ONE – volume: 7 start-page: 39102 year: 2017 article-title: Diversity and carbon storage across the tropical forest biome publication-title: Scientific Reports – volume: 98 start-page: 3127 year: 2017 end-page: 3140 article-title: Why are nitrogen‐fixing trees rare at higher compared to lower latitudes? publication-title: Ecology – volume: 360 start-page: 58 year: 2018 end-page: 62 article-title: Convergent evidence for widespread rock nitrogen sources in Earth's surface environment publication-title: Science – volume: 14 start-page: 379 year: 2002 end-page: 400 article-title: Floristic and structural diversity of 52 hectares of mixed dipterocarp forest in Lambir Hills National Park, Sarawak, Malaysia publication-title: Journal of Tropical Forest Science – volume: 75 start-page: 1 year: 1988 end-page: 34 article-title: Changes in plant community diversity and floristic composition on environmental and geographical gradients publication-title: Annals of the Missouri Botanical Garden – volume: 64 start-page: 149 year: 1994 end-page: 175 article-title: Mechanisms of primary succession following deglaciation at Glacier Bay, Alaska publication-title: Ecological Monographs – volume: 3 start-page: 14 year: 1990 end-page: 24 article-title: Stand structure of Pasoh Forest Reserve, a lowland rainforest in Peninsular Malaysia publication-title: Journal of Tropical Forest Science – volume: 9 start-page: e88709 year: 2014 article-title: Migration patterns of subgenus in Europe since the Last Glacial Maximum: A systematic review publication-title: PLoS ONE – volume: 7 start-page: e36131 year: 2012 article-title: Ecological importance of large‐diameter trees in a temperate mixed‐conifer forest publication-title: PLoS ONE – volume: 211 start-page: 1195 year: 2016 end-page: 1201 article-title: Can evolutionary constraints explain the rarity of nitrogen‐fixing trees in high‐latitude forests? publication-title: New Phytologist – volume: 215 start-page: 40 year: 2017 end-page: 56 article-title: Biogeography of nodulated legumes and their nitrogen‐fixing symbionts publication-title: New Phytologist – start-page: 500 year: 1993 end-page: 547 – volume: 283 start-page: 554 year: 1999 end-page: 557 article-title: Light gap disturbances, recruitment limitation, and tree diversity in a neotropical forest publication-title: Science – volume: 40 start-page: 151 year: 2015 end-page: 159 article-title: Forest carbon in lowland Papua New Guinea: Local variation and the importance of small trees publication-title: Austral Ecology – year: 2008 – year: 2004 – volume: 82 start-page: 277 year: 2012 end-page: 296 article-title: Precipitation, soils, NPP, and biodiversity: Resurrection of Albrecht's curve publication-title: Ecological Monographs – volume: 96 start-page: 1734 year: 2015 article-title: Forest census and map data for two temperate deciduous forest edge woodlot patches in Baltimore, Maryland, USA publication-title: Ecology – volume: 97 start-page: 2177 year: 2016 end-page: 2183 article-title: Aridity, not fire, favors nitrogen‐fixing plants across tropical savanna and forest biomes publication-title: Ecology – volume: 105 start-page: 1246 year: 2017 end-page: 1255 article-title: Greater root phosphatase activity in nitrogen‐fixing rhizobial but not actinorhizal plants with declining phosphorus availability publication-title: Journal of Ecology – volume: 114 start-page: 8817 year: 2017 end-page: 8822 article-title: Nitrogen‐fixing trees inhibit growth of regenerating Costa Rican rainforests publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 52 start-page: 577 year: 1971 end-page: 586 article-title: The nonconcept of species diversity: A critique and alternative parameters publication-title: Ecology – volume: 21 start-page: 528 year: 2015 end-page: 549 article-title: CTFS‐ForestGEO: A worldwide network monitoring forests in an era of global change publication-title: Global Change Biology – year: 2015 – volume: 214 start-page: 1506 year: 2017 end-page: 1517 article-title: Nutrient acquisition, soil phosphorus partitioning and competition among trees in a lowland tropical rainforest publication-title: New Phytologist – volume: 36 start-page: L24403 year: 2009 article-title: Nitrogen constraints on terrestrial carbon uptake: Implications for the global carbon‐climate feedback publication-title: Geophysical Research Letters – volume: 10 start-page: 1493 year: 2019 article-title: Nitrogen‐fixing trees could exacerbate climate change under elevated nitrogen deposition publication-title: Nature Communications – volume: 100 start-page: e02637 year: 2019 article-title: Successional dynamics of nitrogen fixation and forest growth in regenerating Costa Rican rainforests publication-title: Ecology – volume: 454 start-page: 327 year: 2008 end-page: 330 article-title: A unifying framework for dinitrogen fixation in the terrestrial biosphere publication-title: Nature – volume: 136 start-page: 375 year: 1997 end-page: 405 article-title: Actinorhizal symbioses and their N fixation publication-title: New Phytologist – year: 2019 article-title: Data from: Patterns of nitrogen‐fixing tree abundance in forests across Asia and America publication-title: Dryad Digital Repository – volume: 97 start-page: 2986 year: 2016 end-page: 2997 article-title: Absence of net long‐term successional facilitation by alder in a boreal Alaska floodplain publication-title: Ecology – volume: 23 start-page: 4777 year: 2017 end-page: 4787 article-title: Global climate change will increase the abundance of symbiotic nitrogen‐fixing trees in much of North America publication-title: Global Change Biology – volume: 2 start-page: 1104 year: 2018 end-page: 1111 article-title: Legume abundance along successional and rainfall gradients in neotropical forests publication-title: Nature Ecology & Evolution – volume: 13 start-page: 1491 year: 2016 end-page: 1518 article-title: Variability of projected terrestrial biosphere responses to elevated levels of atmospheric CO due to uncertainty in biological nitrogen fixation publication-title: Biogeosciences – volume: 8 start-page: e01847 issue: 6 year: 2017 article-title: Reconciling niches and neutrality in a subalpine temperate forest publication-title: Ecosphere – volume: 502 start-page: 224 year: 2013 end-page: 227 article-title: Key role of symbiotic dinitrogen fixation in tropical forest secondary succession publication-title: Nature – volume: 336 start-page: 1639 year: 2012 article-title: Comment on “Global correlations in tropical tree species richness and abundance reject neutrality” publication-title: Science – volume: 8 start-page: 45 year: 1998 end-page: 60 article-title: Topographic analysis of a large‐scale research plot in seasonal dry evergreen forest at Huai Kha Khaeng Wildlife Sanctuary, Thailand publication-title: Tropics – volume: 10 start-page: 2525 year: 2013 end-page: 2537 article-title: The distribution of soil phosphorus for global biogeochemical modeling publication-title: Biogeosciences – volume: 8 start-page: 2907 year: 2011 end-page: 2916 article-title: Phosphorus transformations as a function of pedogenesis: A synthesis of soil phosphorus data using Hedley fractionation method publication-title: Biogeosciences – volume: 95 start-page: 2047 year: 2014 end-page: 2054 article-title: Spatially non‐random tree mortality and ingrowth maintain equilibrium pattern in an old‐growth ‐ forest publication-title: Ecology – volume: 25 start-page: 1965 year: 2005 end-page: 1978 article-title: Very high resolution interpolated climate surfaces for global land areas publication-title: International Journal of Climatology – volume: 375 start-page: 134 year: 2016 end-page: 145 article-title: Tree spatial patterns of expansion over 37 years publication-title: Forest Ecology and Management – volume: 14 start-page: 2003 year: 2017 end-page: 2017 article-title: Modelling the demand for new nitrogen fixation by terrestrial ecosystems publication-title: Biogeosciences – volume: 443 start-page: 444 year: 2006 end-page: 447 article-title: Continental‐scale patterns of canopy tree composition and function across Amazonia publication-title: Nature – year: 2018 article-title: Nitrogen fixation and foliar nitrogen do not predict phosphorus acquisition strategies in tropical trees publication-title: Journal of Ecology – volume: 10 start-page: 044016 year: 2015 article-title: Effects of model structural uncertainty on carbon cycle projections: Biological nitrogen fixation as a case study publication-title: Environmental Research Letters – volume: 44 start-page: 637 year: 2012 end-page: 648 article-title: Ectomycorrhizal associations of the Dipterocarpaceae publication-title: Biotropica – volume: 52 start-page: 2533 year: 2012 end-page: 2547 article-title: Coverage‐based rarefaction and extrapolation: Standardizing samples by completeness rather than size publication-title: Ecology – volume: 42 start-page: 489 year: 2011 end-page: 512 article-title: Functional ecology of free‐living nitrogen fixation: A contemporary perspective publication-title: Annual Review of Ecology, Evolution, and Systematics – volume: 21 start-page: 1486 year: 2018 end-page: 1495 article-title: Phosphatase activity and nitrogen fixation reflect species differences, not nutrient trading or nutrient balance, across tropical rainforest trees publication-title: Ecology Letters – volume: 113 start-page: 674 year: 2016 end-page: 679 article-title: Region effects influence local tree species diversity publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 76 start-page: 268 year: 2014 end-page: 277 article-title: Soil fluxes of methane, nitrous oxide, and nitric oxide from aggrading forests in coastal Oregon publication-title: Soil Biology and Biochemistry – volume: 11 start-page: e0164522 year: 2016 article-title: Demography of symbiotic nitrogen‐fixing trees explains their rarity and successional decline in temperate forests in the United States publication-title: PLoS ONE – start-page: 1 year: 1982 end-page: 84 – volume: 209 start-page: 965 year: 2016 end-page: 977 article-title: Higher survival drives the success of nitrogen‐fixing trees through succession in Costa Rican rainforests publication-title: New Phytologist – volume: 15182 year: 2015 article-title: Biome‐scale nitrogen fixation strategies selected by climatic constraints on nitrogen cycle publication-title: Nature Plants – volume: 49 start-page: 89 year: 2001 end-page: 106 article-title: Stand structure of a seasonal dry evergreen forest at Huai Kha Khaeng Wildlife Sanctuary, western Thailand publication-title: Natural History Bulletin of the Siam Society – year: 2013 – ident: e_1_2_8_61_1 doi: 10.1111/nph.12221 – ident: e_1_2_8_16_1 doi: 10.1007/s10021-002-0207-4 – volume-title: Tropical forest diversity and dynamism: Findings from a large‐scale plot network year: 2004 ident: e_1_2_8_44_1 – volume-title: R: A language and environment for statistical computing year: 2013 ident: e_1_2_8_63_1 – ident: e_1_2_8_55_1 doi: 10.1371/journal.pone.0012056 – ident: e_1_2_8_59_1 doi: 10.1111/nph.14494 – ident: e_1_2_8_22_1 doi: 10.1016/j.soilbio.2014.05.024 – volume-title: Forest trees of Huai Kha Khaeng wildlife sanctuary, Thailand: Data from the 50‐hectare forest dynamic plot year: 2009 ident: e_1_2_8_11_1 – ident: e_1_2_8_66_1 doi: 10.1073/pnas.1523683113 – ident: e_1_2_8_17_1 doi: 10.1007/978-3-662-03664-8 – ident: e_1_2_8_20_1 doi: 10.1890/14-2246.1 – ident: e_1_2_8_81_1 doi: 10.12705/622.12 – ident: e_1_2_8_14_1 doi: 10.1002/ecy.1529 – volume-title: A global database of soil phosphorus compiled from studies using Hedley fractionation year: 2014 ident: e_1_2_8_84_1 – ident: e_1_2_8_83_1 doi: 10.5194/bg-10-2525-2013 – ident: e_1_2_8_58_1 doi: 10.1111/ele.12335 – ident: e_1_2_8_64_1 doi: 10.1146/annurev-ecolsys-102710-145034 – ident: e_1_2_8_34_1 doi: 10.1126/science.283.5401.554 – ident: e_1_2_8_52_1 doi: 10.1111/nph.13734 – ident: e_1_2_8_29_1 doi: 10.2307/j.ctt22726mc.21 – ident: e_1_2_8_48_1 doi: 10.1371/journal.pone.0036131 – ident: e_1_2_8_7_1 doi: 10.1111/1365-2745.12138 – ident: e_1_2_8_38_1 doi: 10.1016/j.foreco.2016.05.017 – ident: e_1_2_8_78_1 doi: 10.1029/2009GL041009 – ident: e_1_2_8_43_1 doi: 10.1111/gcb.13716 – ident: e_1_2_8_60_1 doi: 10.1002/ecy.1504 – volume: 15182 year: 2015 ident: e_1_2_8_67_1 article-title: Biome‐scale nitrogen fixation strategies selected by climatic constraints on nitrogen cycle publication-title: Nature Plants – ident: e_1_2_8_15_1 doi: 10.2307/2937039 – ident: e_1_2_8_42_1 doi: 10.1371/journal.pone.0164522 – ident: e_1_2_8_36_1 doi: 10.1046/j.1469-8137.1997.00755.x – ident: e_1_2_8_72_1 doi: 10.1038/srep39102 – ident: e_1_2_8_19_1 doi: 10.1007/BF01007581 – ident: e_1_2_8_25_1 doi: 10.1002/ecs2.1847 – ident: e_1_2_8_32_1 doi: 10.1038/nature07028 – ident: e_1_2_8_47_1 doi: 10.1890/14-0157.1 – ident: e_1_2_8_30_1 doi: 10.1002/joc.1276 – ident: e_1_2_8_70_1 doi: 10.1002/9781444316384 – ident: e_1_2_8_9_1 doi: 10.1111/j.1744-7429.2012.00862.x – ident: e_1_2_8_50_1 doi: 10.1002/ecy.2034 – ident: e_1_2_8_51_1 doi: 10.1111/ele.12778 – ident: e_1_2_8_80_1 doi: 10.1111/ele.12543 – ident: e_1_2_8_6_1 doi: 10.1038/nature12525 – ident: e_1_2_8_13_1 doi: 10.1890/11-1952.1 – ident: e_1_2_8_71_1 doi: 10.1111/nph.14474 – ident: e_1_2_8_45_1 doi: 10.1038/s41559-018-0759-0 – ident: e_1_2_8_2_1 doi: 10.1007/978-0-387-74075-1 – year: 2018 ident: e_1_2_8_68_1 article-title: Nitrogen fixation and foliar nitrogen do not predict phosphorus acquisition strategies in tropical trees publication-title: Journal of Ecology – ident: e_1_2_8_12_1 doi: 10.3759/tropics.8.45 – ident: e_1_2_8_24_1 doi: 10.1007/s11434-016-1132-9 – ident: e_1_2_8_79_1 doi: 10.1088/1748-9326/10/4/044016 – ident: e_1_2_8_5_1 doi: 10.1111/ele.13129 – ident: e_1_2_8_23_1 doi: 10.1126/science.1222056 – year: 2019 ident: e_1_2_8_53_1 article-title: Data from: Patterns of nitrogen‐fixing tree abundance in forests across Asia and America publication-title: Dryad Digital Repository – ident: e_1_2_8_73_1 doi: 10.1029/2018GB005973 – ident: e_1_2_8_82_1 doi: 10.5194/bg-8-2907-2011 – ident: e_1_2_8_33_1 – ident: e_1_2_8_74_1 doi: 10.1073/pnas.1707094114 – ident: e_1_2_8_26_1 doi: 10.1038/s41559-018-0559-6 – ident: e_1_2_8_62_1 doi: 10.1111/1365-2745.12758 – volume-title: The 52‐hectare Forest Research Plot at Lambir Hills, Sarawak, Malaysia: Tree distribution maps, diameter tables and species documentation year: 2005 ident: e_1_2_8_40_1 – start-page: 57 volume-title: The biology and management of red alder year: 1994 ident: e_1_2_8_8_1 – ident: e_1_2_8_35_1 doi: 10.2307/1934145 – ident: e_1_2_8_28_1 doi: 10.2307/2399464 – ident: e_1_2_8_46_1 doi: 10.1371/journal.pone.0082784 – ident: e_1_2_8_69_1 doi: 10.1890/ES14-000159.1 – ident: e_1_2_8_54_1 doi: 10.1111/nph.14080 – ident: e_1_2_8_65_1 doi: 10.5194/bg-14-2003-2017 – ident: e_1_2_8_31_1 doi: 10.1126/science.aan4399 – ident: e_1_2_8_4_1 doi: 10.1007/s00442-010-1838-3 – ident: e_1_2_8_56_1 doi: 10.1890/13-2124.1 – ident: e_1_2_8_18_1 doi: 10.1126/science.1124712 – volume: 49 start-page: 89 year: 2001 ident: e_1_2_8_10_1 article-title: Stand structure of a seasonal dry evergreen forest at Huai Kha Khaeng Wildlife Sanctuary, western Thailand publication-title: Natural History Bulletin of the Siam Society – volume: 3 start-page: 14 year: 1990 ident: e_1_2_8_49_1 article-title: Stand structure of Pasoh Forest Reserve, a lowland rainforest in Peninsular Malaysia publication-title: Journal of Tropical Forest Science – ident: e_1_2_8_77_1 doi: 10.1111/aec.12187 – ident: e_1_2_8_3_1 doi: 10.1111/gcb.12712 – ident: e_1_2_8_37_1 doi: 10.1890/11-1927.1 – ident: e_1_2_8_21_1 doi: 10.1371/journal.pone.0088709 – ident: e_1_2_8_75_1 doi: 10.1002/ecy.2637 – ident: e_1_2_8_39_1 doi: 10.1038/s41467-019-09424-2 – ident: e_1_2_8_76_1 doi: 10.1038/nature05134 – ident: e_1_2_8_57_1 doi: 10.5194/bg-13-1491-2016 – ident: e_1_2_8_27_1 doi: 10.1007/978-1-4615-6968-8_1 – volume: 14 start-page: 379 year: 2002 ident: e_1_2_8_41_1 article-title: Floristic and structural diversity of 52 hectares of mixed dipterocarp forest in Lambir Hills National Park, Sarawak, Malaysia publication-title: Journal of Tropical Forest Science |
SSID | ssj0006750 |
Score | 2.4621837 |
Snippet | 1. Symbiotic nitrogen (N)-fixing trees can provide large quantities of new N to ecosystems, but only if they are sufficiently abundant. The overall abundance... Symbiotic nitrogen (N)‐fixing trees can provide large quantities of new N to ecosystems, but only if they are sufficiently abundant. The overall abundance and... Symbiotic nitrogen (N)-fixing trees can provide large quantities of new N to ecosystems, but only if they are sufficiently abundant. The overall abundance and... |
SourceID | wageningen proquest crossref wiley jstor |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2598 |
SubjectTerms | Abundance Annual precipitation Asia data collection Determinants of plant community diversity and structure ecosystems Europe forest Forests latitude legume meta-analysis Nitrogen Nitrogen fixation nitrogen-fixing trees Nitrogenation North America nutrient limitation Plant species Precipitation Smithsonian ForestGEO South America stems Symbionts symbiosis Temperature Trees Tropical climate Tropical environments Tropical forests tropics |
Title | Patterns of nitrogen-fixing tree abundance in forests across Asia and America |
URI | https://www.jstor.org/stable/45282981 https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1365-2745.13199 https://www.proquest.com/docview/2306042744 https://www.proquest.com/docview/2374182362 http://www.narcis.nl/publication/RecordID/oai:library.wur.nl:wurpubs%2F551910 |
Volume | 107 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Na9wwEB1KSCCXtklb6jYJKvTQixd7Ja_XxzRsCIF-UBroTYwkC5YGuax3SdNTf0J_Y39JZ2R7kw2EUnrZNbvSYaQ3nmdr5g3Aa-tkOUU7ThV6-qAAklZoXFp7R_ipjLeGC5zfvZ-cXajzL8WQTci1MJ0-xPqFG3tGvF-zg6Npbzl5X02lilFOMOISPv6FadGnGwEposPZoBeeqbLsxX04l-fO_I241KUmbpDO3Svy7xALnjZ5bAxEp4_ADCZ0-SdfR6ulGdkfd9Qd_8vGx_Cwp6niuMPVHjyowz7sdI0rr_dh-21DpJIudmZR9fr6CXz4GJU6QysaL-g-sWjIht8_f_n5dzJH8OG3QMN1JwQzMQ-C2DKZ3AqMCyKO2zkKDE70Z0hP4eJ09vnkLO27NaRWlVmVYkbUhgI-MQppKPLn05roR6GclLai5-zcGD_F2kq0mTdYmBILj4QL6zMCkpTPYCs0oX4OwmVYoKPZJnesEGhqIi1WusyO7cSpSQKjYa-07aXMuaPGpR4eaXjhNC-cjguXwJv1hG-disf9Q4_i5t8ex8nyWhV86DzNEzgYUKF7f295xIS7liiVwKv13-SpfPyCoW5WPIaVgsbEGBKQN2jSgZtGtZp1vntM6KvVQodL_iKnbDWxWmJ1ZHXEyt8s0Oezk3jx4l8nvIRd2r2qK7U8gK3lYlUfEudamqPoVn8APtsf1A |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED7BYGIvAwaIsDGMxAMvqZLaaZrHbepUxjYQ2qS9Wf4RSxWTg5pWYzzxJ_A38pfszkm6dhJCiJc0Uu1IZ3-X-xz7vgN4ZyzPh8r0Y6EcXjCAxIXSNi6dRfwU2hlNCc4np4PxuTi6yC6WcmEafYjFBzfyjPC-JgenD9JLXt6mU4mslyKOivvwgOp6h2XVl1sJKSTESacYnog8b-V96DTPnQesRKbmcOIK7dy4Qg_3IeVplcmGUHT4GExnRHMC5WtvPtM98-OOvuP_WfkENlumyvYaaD2Fe6XfgvWmduX1Fjzcr5BX4s36KAhfXz-DT5-DWKevWeUYviqmFRrx--cvN_mO9jDa_2ZKU-oJIo1NPEPCjDbXTIURYXv1RDHlLWu3kZ7D-eHo7GActwUbYiPypIhVguwGYz6SCq4x-KfDEhlIJiznpsCldqq1G6rScGUSp1Wmc5U5hdAwLkEscf4C1nzly5fAbKIyZbG3Ti2JBOoSeYvhNjF9M7BiEEGvmyxpWjVzKqpxKbtVDQ2cpIGTYeAieL_o8K0R8vhz090w-8vt6Ly8FBntOw_TCHY6WMjW5WtqMaDCJUJE8HbxNzor7cAoX1ZzakNiQX0kDRHwWzhJT3WjaklS3y0o5NV8Kv0l_aBf1hKJLRI7tDqA5W8WyKPRQbh59a8d3sCj8dnJsTz-cPpxGzZwJosm83IH1mbTefkaKdhM7wYfuwE6OSPv |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB5BoagXHgVU01IWiQMXR3a8fh37SFQKlApRidtqH14polpXcaK2nPgJ_Mb-ks6s7bSphBDikljKbqTZ_cbz2TvzDcA7bZK8kHoYcmnxAwNIWEplwsoaxE-prFZU4Pz5KDs44Yff0z6bkGphWn2IxQs38gx_vyYHPzP2lpN31VQ8HcQIo_I-POBZVBCw97_eKEghH456wfCI53mn7kPJPHf-YCkwtbmJS6xz7Rwd3PmKp2Ui6yPR-Amo3oY2AeXHYD5TA_3zjrzjfxn5FB53PJXttMB6Bvcqtw6rbefKy3V4uFsjq8SL1ZGXvb58Dl-OvVSna1htGd4opjXacPXrt51coDmMTr-ZVFR4gjhjE8eQLqPJDZN-QdhOM5FMOsO6Q6QXcDIefds7CLt2DaHmeVSGMkJugxEfKUWiMPTHRYX8I-UmSXSJD9qxUraQlU6kjqySqcplaiUCQ9sIkZQkL2HF1a7aAGYimUqDs1VsSCJQVchadGIiPdSZ4VkAg36vhO60zKmlxqnon2lo4QQtnPALF8D7xYSzVsbjz0O3_ebfHkfZ8oKndOpcxAFs9agQncM3NCKjtiWcB_B28TO6Kp2_SFfVcxpDUkFDpAwBJDdoEo66RjWChL47TIjz-VS4U_pCr2wE0lqkdWi1x8rfLBCHoz1_8epfJ7yBR8f7Y_Hpw9HHTVjDjSzbssstWJlN59Vr5F8zte097BrB_yKn |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Patterns+of+nitrogen-fixing+tree+abundance+in+forests+across+Asia+and+America&rft.jtitle=The+Journal+of+ecology&rft.au=Menge%2C+Duncan+N.L&rft.au=Chisholm%2C+Ryan+A&rft.au=Davies%2C+Stuart+J&rft.au=Abu+Salim%2C+Kamariah&rft.date=2019-11-01&rft.issn=0022-0477&rft.eissn=1365-2745&rft_id=info:doi/10.1111%2F1365-2745.13199&rft.externalDBID=n%2Fa&rft.externalDocID=oai_library_wur_nl_wurpubs_551910 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-0477&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-0477&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-0477&client=summon |