Spontaneous In Vivo Chondrogenesis of Bone Marrow‐Derived Mesenchymal Progenitor Cells by Blocking Vascular Endothelial Growth Factor Signaling

This study assessed whether simple inhibition of angiogenesis by vascular endothelial growth factor (VEGF) blockade is sufficient to direct in vivo chondrogenic differentiation of implanted human mesenchymal stromal/stem cells (MSCs). MSCs transduced to express sFlk‐1 and directly implanted subcutan...

Full description

Saved in:
Bibliographic Details
Published inStem cells translational medicine Vol. 5; no. 12; pp. 1730 - 1738
Main Authors Marsano, Anna, Medeiros da Cunha, Carolina M., Ghanaati, Shahram, Gueven, Sinan, Centola, Matteo, Tsaryk, Roman, Barbeck, Mike, Stuedle, Chiara, Barbero, Andrea, Helmrich, Uta, Schaeren, Stefan, Kirkpatrick, James C., Banfi, Andrea, Martin, Ivan
Format Journal Article
LanguageEnglish
Published Durham, NC, USA AlphaMed Press 01.12.2016
Oxford University Press
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This study assessed whether simple inhibition of angiogenesis by vascular endothelial growth factor (VEGF) blockade is sufficient to direct in vivo chondrogenic differentiation of implanted human mesenchymal stromal/stem cells (MSCs). MSCs transduced to express sFlk‐1 and directly implanted subcutaneously in nude mice without in vitro preculture spontaneously differentiated into the chondrocytic lineage with a stable phenotype for the observation time‐period of 12 weeks. These findings suggest that VEGF blockade is a robust strategy to enhance cartilage repair by endogenous or grafted mesenchymal progenitors. Acknowledgements Chondrogenic differentiation of bone marrow‐derived mesenchymal stromal/stem cells (MSCs) can be induced by presenting morphogenetic factors or soluble signals but typically suffers from limited efficiency, reproducibility across primary batches, and maintenance of phenotypic stability. Considering the avascular and hypoxic milieu of articular cartilage, we hypothesized that sole inhibition of angiogenesis can provide physiological cues to direct in vivo differentiation of uncommitted MSCs to stable cartilage formation. Human MSCs were retrovirally transduced to express a decoy soluble vascular endothelial growth factor (VEGF) receptor‐2 (sFlk1), which efficiently sequesters endogenous VEGF in vivo, seeded on collagen sponges and immediately implanted ectopically in nude mice. Although naïve cells formed vascularized fibrous tissue, sFlk1‐MSCs abolished vascular ingrowth into engineered constructs, which efficiently and reproducibly developed into hyaline cartilage. The generated cartilage was phenotypically stable and showed no sign of hypertrophic evolution up to 12 weeks. In vitro analyses indicated that spontaneous chondrogenic differentiation by blockade of angiogenesis was related to the generation of a hypoxic environment, in turn activating the transforming growth factor‐β pathway. These findings suggest that VEGF blockade is a robust strategy to enhance cartilage repair by endogenous or grafted mesenchymal progenitors. This article outlines the general paradigm of controlling the fate of implanted stem/progenitor cells by engineering their ability to establish specific microenvironmental conditions rather than directly providing individual morphogenic cues. Chondrogenic differentiation of mesenchymal stromal/stem cells (MSCs) is typically targeted by morphogen delivery, which is often associated with limited efficiency, stability, and robustness. This article proposes a strategy to engineer MSCs with the capacity to establish specific microenvironmental conditions, supporting their own targeted differentiation program. Sole blockade of angiogenesis mediated by transduction for sFlk‐1, without delivery of additional morphogens, is sufficient for inducing MSC chondrogenic differentiation. The findings represent a relevant step forward in the field because the method allowed reducing interdonor variability in MSC differentiation efficiency and, importantly, onset of a stable, nonhypertrophic chondrocyte phenotype.
AbstractList Abstract Chondrogenic differentiation of bone marrow-derived mesenchymal stromal/stem cells (MSCs) can be induced by presenting morphogenetic factors or soluble signals but typically suffers from limited efficiency, reproducibility across primary batches, and maintenance of phenotypic stability. Considering the avascular and hypoxic milieu of articular cartilage, we hypothesized that sole inhibition of angiogenesis can provide physiological cues to direct in vivo differentiation of uncommitted MSCs to stable cartilage formation. Human MSCs were retrovirally transduced to express a decoy soluble vascular endothelial growth factor (VEGF) receptor-2 (sFlk1), which efficiently sequesters endogenous VEGF in vivo, seeded on collagen sponges and immediately implanted ectopically in nude mice. Although naïve cells formed vascularized fibrous tissue, sFlk1-MSCs abolished vascular ingrowth into engineered constructs, which efficiently and reproducibly developed into hyaline cartilage. The generated cartilage was phenotypically stable and showed no sign of hypertrophic evolution up to 12 weeks. In vitro analyses indicated that spontaneous chondrogenic differentiation by blockade of angiogenesis was related to the generation of a hypoxic environment, in turn activating the transforming growth factor-β pathway. These findings suggest that VEGF blockade is a robust strategy to enhance cartilage repair by endogenous or grafted mesenchymal progenitors. This article outlines the general paradigm of controlling the fate of implanted stem/progenitor cells by engineering their ability to establish specific microenvironmental conditions rather than directly providing individual morphogenic cues. Significance Chondrogenic differentiation of mesenchymal stromal/stem cells (MSCs) is typically targeted by morphogen delivery, which is often associated with limited efficiency, stability, and robustness. This article proposes a strategy to engineer MSCs with the capacity to establish specific microenvironmental conditions, supporting their own targeted differentiation program. Sole blockade of angiogenesis mediated by transduction for sFlk-1, without delivery of additional morphogens, is sufficient for inducing MSC chondrogenic differentiation. The findings represent a relevant step forward in the field because the method allowed reducing interdonor variability in MSC differentiation efficiency and, importantly, onset of a stable, nonhypertrophic chondrocyte phenotype.
: Chondrogenic differentiation of bone marrow-derived mesenchymal stromal/stem cells (MSCs) can be induced by presenting morphogenetic factors or soluble signals but typically suffers from limited efficiency, reproducibility across primary batches, and maintenance of phenotypic stability. Considering the avascular and hypoxic milieu of articular cartilage, we hypothesized that sole inhibition of angiogenesis can provide physiological cues to direct in vivo differentiation of uncommitted MSCs to stable cartilage formation. Human MSCs were retrovirally transduced to express a decoy soluble vascular endothelial growth factor (VEGF) receptor-2 (sFlk1), which efficiently sequesters endogenous VEGF in vivo, seeded on collagen sponges and immediately implanted ectopically in nude mice. Although naïve cells formed vascularized fibrous tissue, sFlk1-MSCs abolished vascular ingrowth into engineered constructs, which efficiently and reproducibly developed into hyaline cartilage. The generated cartilage was phenotypically stable and showed no sign of hypertrophic evolution up to 12 weeks. In vitro analyses indicated that spontaneous chondrogenic differentiation by blockade of angiogenesis was related to the generation of a hypoxic environment, in turn activating the transforming growth factor-β pathway. These findings suggest that VEGF blockade is a robust strategy to enhance cartilage repair by endogenous or grafted mesenchymal progenitors. This article outlines the general paradigm of controlling the fate of implanted stem/progenitor cells by engineering their ability to establish specific microenvironmental conditions rather than directly providing individual morphogenic cues.SIGNIFICANCEChondrogenic differentiation of mesenchymal stromal/stem cells (MSCs) is typically targeted by morphogen delivery, which is often associated with limited efficiency, stability, and robustness. This article proposes a strategy to engineer MSCs with the capacity to establish specific microenvironmental conditions, supporting their own targeted differentiation program. Sole blockade of angiogenesis mediated by transduction for sFlk-1, without delivery of additional morphogens, is sufficient for inducing MSC chondrogenic differentiation. The findings represent a relevant step forward in the field because the method allowed reducing interdonor variability in MSC differentiation efficiency and, importantly, onset of a stable, nonhypertrophic chondrocyte phenotype.
This study assessed whether simple inhibition of angiogenesis by vascular endothelial growth factor (VEGF) blockade is sufficient to direct in vivo chondrogenic differentiation of implanted human mesenchymal stromal/stem cells (MSCs). MSCs transduced to express sFlk-1 and directly implanted subcutaneously in nude mice without in vitro preculture spontaneously differentiated into the chondrocytic lineage with a stable phenotype for the observation time-period of 12 weeks. These findings suggest that VEGF blockade is a robust strategy to enhance cartilage repair by endogenous or grafted mesenchymal progenitors.
This study assessed whether simple inhibition of angiogenesis by vascular endothelial growth factor (VEGF) blockade is sufficient to direct in vivo chondrogenic differentiation of implanted human mesenchymal stromal/stem cells (MSCs). MSCs transduced to express sFlk‐1 and directly implanted subcutaneously in nude mice without in vitro preculture spontaneously differentiated into the chondrocytic lineage with a stable phenotype for the observation time‐period of 12 weeks. These findings suggest that VEGF blockade is a robust strategy to enhance cartilage repair by endogenous or grafted mesenchymal progenitors. Acknowledgements Chondrogenic differentiation of bone marrow‐derived mesenchymal stromal/stem cells (MSCs) can be induced by presenting morphogenetic factors or soluble signals but typically suffers from limited efficiency, reproducibility across primary batches, and maintenance of phenotypic stability. Considering the avascular and hypoxic milieu of articular cartilage, we hypothesized that sole inhibition of angiogenesis can provide physiological cues to direct in vivo differentiation of uncommitted MSCs to stable cartilage formation. Human MSCs were retrovirally transduced to express a decoy soluble vascular endothelial growth factor (VEGF) receptor‐2 (sFlk1), which efficiently sequesters endogenous VEGF in vivo, seeded on collagen sponges and immediately implanted ectopically in nude mice. Although naïve cells formed vascularized fibrous tissue, sFlk1‐MSCs abolished vascular ingrowth into engineered constructs, which efficiently and reproducibly developed into hyaline cartilage. The generated cartilage was phenotypically stable and showed no sign of hypertrophic evolution up to 12 weeks. In vitro analyses indicated that spontaneous chondrogenic differentiation by blockade of angiogenesis was related to the generation of a hypoxic environment, in turn activating the transforming growth factor‐β pathway. These findings suggest that VEGF blockade is a robust strategy to enhance cartilage repair by endogenous or grafted mesenchymal progenitors. This article outlines the general paradigm of controlling the fate of implanted stem/progenitor cells by engineering their ability to establish specific microenvironmental conditions rather than directly providing individual morphogenic cues. Chondrogenic differentiation of mesenchymal stromal/stem cells (MSCs) is typically targeted by morphogen delivery, which is often associated with limited efficiency, stability, and robustness. This article proposes a strategy to engineer MSCs with the capacity to establish specific microenvironmental conditions, supporting their own targeted differentiation program. Sole blockade of angiogenesis mediated by transduction for sFlk‐1, without delivery of additional morphogens, is sufficient for inducing MSC chondrogenic differentiation. The findings represent a relevant step forward in the field because the method allowed reducing interdonor variability in MSC differentiation efficiency and, importantly, onset of a stable, nonhypertrophic chondrocyte phenotype.
: Chondrogenic differentiation of bone marrow-derived mesenchymal stromal/stem cells (MSCs) can be induced by presenting morphogenetic factors or soluble signals but typically suffers from limited efficiency, reproducibility across primary batches, and maintenance of phenotypic stability. Considering the avascular and hypoxic milieu of articular cartilage, we hypothesized that sole inhibition of angiogenesis can provide physiological cues to direct in vivo differentiation of uncommitted MSCs to stable cartilage formation. Human MSCs were retrovirally transduced to express a decoy soluble vascular endothelial growth factor (VEGF) receptor-2 (sFlk1), which efficiently sequesters endogenous VEGF in vivo, seeded on collagen sponges and immediately implanted ectopically in nude mice. Although naïve cells formed vascularized fibrous tissue, sFlk1-MSCs abolished vascular ingrowth into engineered constructs, which efficiently and reproducibly developed into hyaline cartilage. The generated cartilage was phenotypically stable and showed no sign of hypertrophic evolution up to 12 weeks. In vitro analyses indicated that spontaneous chondrogenic differentiation by blockade of angiogenesis was related to the generation of a hypoxic environment, in turn activating the transforming growth factor-β pathway. These findings suggest that VEGF blockade is a robust strategy to enhance cartilage repair by endogenous or grafted mesenchymal progenitors. This article outlines the general paradigm of controlling the fate of implanted stem/progenitor cells by engineering their ability to establish specific microenvironmental conditions rather than directly providing individual morphogenic cues. Chondrogenic differentiation of mesenchymal stromal/stem cells (MSCs) is typically targeted by morphogen delivery, which is often associated with limited efficiency, stability, and robustness. This article proposes a strategy to engineer MSCs with the capacity to establish specific microenvironmental conditions, supporting their own targeted differentiation program. Sole blockade of angiogenesis mediated by transduction for sFlk-1, without delivery of additional morphogens, is sufficient for inducing MSC chondrogenic differentiation. The findings represent a relevant step forward in the field because the method allowed reducing interdonor variability in MSC differentiation efficiency and, importantly, onset of a stable, nonhypertrophic chondrocyte phenotype.
Author Schaeren, Stefan
Gueven, Sinan
Tsaryk, Roman
Medeiros da Cunha, Carolina M.
Marsano, Anna
Banfi, Andrea
Stuedle, Chiara
Barbero, Andrea
Centola, Matteo
Helmrich, Uta
Martin, Ivan
Ghanaati, Shahram
Kirkpatrick, James C.
Barbeck, Mike
Author_xml – sequence: 1
  givenname: Anna
  surname: Marsano
  fullname: Marsano, Anna
– sequence: 2
  givenname: Carolina M.
  surname: Medeiros da Cunha
  fullname: Medeiros da Cunha, Carolina M.
– sequence: 3
  givenname: Shahram
  surname: Ghanaati
  fullname: Ghanaati, Shahram
– sequence: 4
  givenname: Sinan
  surname: Gueven
  fullname: Gueven, Sinan
– sequence: 5
  givenname: Matteo
  surname: Centola
  fullname: Centola, Matteo
– sequence: 6
  givenname: Roman
  surname: Tsaryk
  fullname: Tsaryk, Roman
– sequence: 7
  givenname: Mike
  surname: Barbeck
  fullname: Barbeck, Mike
– sequence: 8
  givenname: Chiara
  surname: Stuedle
  fullname: Stuedle, Chiara
– sequence: 9
  givenname: Andrea
  surname: Barbero
  fullname: Barbero, Andrea
– sequence: 10
  givenname: Uta
  surname: Helmrich
  fullname: Helmrich, Uta
– sequence: 11
  givenname: Stefan
  surname: Schaeren
  fullname: Schaeren, Stefan
– sequence: 12
  givenname: James C.
  surname: Kirkpatrick
  fullname: Kirkpatrick, James C.
– sequence: 13
  givenname: Andrea
  surname: Banfi
  fullname: Banfi, Andrea
  email: ivan.martin@usb.ch
– sequence: 14
  givenname: Ivan
  surname: Martin
  fullname: Martin, Ivan
  email: Andrea.Banfi@usb.ch
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27460852$$D View this record in MEDLINE/PubMed
BookMark eNqFkUFvFCEYholpY2vt1aMh8eJltsAMzExMTNqxrU3aaLK1V0KB2aEysMLMNnvzJ-hf9JfIdNuNepELEJ7v5Xu_9wXYcd5pAF5hNKM1Y0dRDv2MIEwzlBP8DOwTTMuM0QrtbM-s2AOHMd6htFjNaoKegz1SFgxVlOyDn_Old4Nw2o8RXjh4Y1YeNp13KviFdjqaCH0LT9LH8EqE4O9_ff_xQQez0gpe6aid7Na9sPDzA28GH2CjrY3wdg1PrJdfjVvAGxHlaEWAp075odPWpIrzJDZ08EzIqWhuFk7YBL8Eu62wUR8-7gfgy9npdfMxu_x0ftEcX2ayKBHKJEZ1GkIpEEYlq1WFJaUkmW41qluFFW0VUaguKoKkqGXy2-aypaoVSjIs8gPwfqO7HG97raR2QxCWL4PpRVhzLwz_-8WZji_8ilNc1awoksDbR4Hgv406Drw3USbvm2lyXBFWkqLAZULf_IPe-TEkv5ETktRYlRckUbMNJYOPMeh22wxGfAqcT4HzKXA-BZ4KXv9pYYs_xZuAdxvg3li9_o8cnzfXeboxiknqGeW_AbcKvjU
CitedBy_id crossref_primary_10_1177_03635465211005102
crossref_primary_10_1002_mrd_23683
crossref_primary_10_1126_scitranslmed_aav7756
crossref_primary_10_3390_bioengineering8040046
crossref_primary_10_1016_j_bioactmat_2017_06_001
crossref_primary_10_1155_2020_8837654
crossref_primary_10_3390_biomimetics6020040
crossref_primary_10_1016_j_gendis_2020_10_006
crossref_primary_10_1073_pnas_1720658115
crossref_primary_10_1080_15476278_2021_1991199
crossref_primary_10_1002_jbmr_3599
crossref_primary_10_1080_15548627_2021_1872227
crossref_primary_10_3390_ijms242316783
crossref_primary_10_1016_j_bone_2020_115686
crossref_primary_10_1016_j_ijbiomac_2022_09_065
crossref_primary_10_3389_fcell_2021_703038
crossref_primary_10_1007_s12015_021_10162_6
crossref_primary_10_1016_j_matdes_2022_110981
crossref_primary_10_1016_j_mtbio_2019_100009
crossref_primary_10_1002_adhm_202202550
crossref_primary_10_3390_cells11244034
crossref_primary_10_1080_09537104_2020_1775188
crossref_primary_10_1016_j_jot_2017_03_005
crossref_primary_10_1096_fj_202302391RR
crossref_primary_10_1002_jor_23670
crossref_primary_10_1007_s10439_019_02272_7
crossref_primary_10_1002_advs_202100351
crossref_primary_10_1038_s41526_017_0032_x
crossref_primary_10_1089_ten_tea_2018_0211
crossref_primary_10_1007_s00018_021_04105_0
crossref_primary_10_1002_sctm_19_0319
crossref_primary_10_1016_j_yexcr_2020_112436
crossref_primary_10_1016_j_biotechadv_2018_07_004
crossref_primary_10_3390_ijms18112478
crossref_primary_10_3389_fbioe_2017_00032
Cites_doi 10.1111/j.1749-6632.2000.tb06320.x
10.1172/JCI37630
10.1159/000046610
10.1089/107632703762687573
10.1016/B978-0-12-391498-9.00005-X
10.1126/science.1168755
10.1002/jcp.22605
10.1073/pnas.0503544102
10.1242/jcs.113.1.59
10.1073/pnas.1000302107
10.1359/jbmr.080103
10.1172/JCI117156
10.1002/art.24153
10.1186/s13287-015-0075-4
10.1006/bbrc.1996.1355
10.1002/jcp.20238
10.1242/jcs.062901
10.1089/ten.tec.2011.0413
10.1016/j.injury.2008.01.038
10.1002/stem.291
10.1158/1541-7786.315.2.6
10.1016/j.biomaterials.2012.08.045
10.1016/S0014-4827(03)00138-1
10.1016/j.joca.2007.09.003
10.5966/sctm.2013-0079
10.1002/jcp.21446
10.1038/nrrheum.2010.196
10.1089/ten.2005.11.1421
10.1002/term.1661
10.1016/0304-4165(86)90306-5
10.1002/dvdy.1212
10.1006/excr.1997.3858
10.1002/art.10950
10.1016/j.bone.2005.04.040
10.1016/j.cell.2014.12.002
10.1080/14653240802398845
10.1002/art.24443
10.1016/j.joca.2013.07.017
10.1016/j.aanat.2014.11.003
10.1038/9467
10.1073/pnas.0803194105
10.1073/pnas.1410977111
10.1002/1529-0131(200107)44:7<1608::AID-ART284>3.0.CO;2-T
10.1089/ten.tea.2012.0455
10.1006/mvre.2002.2434
10.1172/JCI200419383
10.1126/science.1181928
10.1016/j.bbrc.2005.07.145
10.1038/mt.2008.5
10.1016/j.biomaterials.2011.07.041
10.1016/j.matbio.2004.06.003
ContentType Journal Article
Copyright 2016 AlphaMed Press
AlphaMed Press.
2016. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
AlphaMed Press 2016
Copyright_xml – notice: 2016 AlphaMed Press
– notice: AlphaMed Press.
– notice: 2016. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: AlphaMed Press 2016
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
3V.
7X7
7XB
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M7P
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.5966/sctm.2015-0321
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
ProQuest Central (Corporate)
ProQuest - Health & Medical Complete保健、医学与药学数据库
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
AUTh Library subscriptions: ProQuest Central
ProQuest Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni Edition)
Biological Science Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic
Publicly Available Content Database


MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: AUTh Library subscriptions: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
DocumentTitleAlternate Spontaneous Chondrogenesis by VEGF Blockade
EISSN 2157-6580
EndPage 1738
ExternalDocumentID 10_5966_sctm_2015_0321
27460852
SCT320165121730
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID 0R~
1OC
24P
53G
5RE
7X7
8FE
8FH
8FI
8FJ
AAHHS
AAKDD
AAPXW
AAVAP
ABPTD
ABUWG
ABXVV
ACCFJ
ACXQS
ADBBV
ADKYN
ADZMN
AEEZP
AENEX
AEQDE
AFKRA
AIWBW
AJAOE
AJBDE
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
AVUZU
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
CCPQU
DIK
EBD
EBS
EJD
EMOBN
FYUFA
GROUPED_DOAJ
H13
HCIFZ
HMCUK
HYE
HZ~
LK8
M7P
O9-
OK1
OVD
PIMPY
PQQKQ
PROAC
RHI
ROX
RPM
SV3
TOX
UKHRP
WIN
CGR
CUY
CVF
ECM
EIF
J6A
NPM
OJZSN
AAYXX
CITATION
3V.
7XB
8FK
AZQEC
DWQXO
GNUQQ
K9.
PQEST
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c4700-c1095967a010769d81c552215fe09fd1d5fd2d094820ca9c608f3cf5dfadc61a3
IEDL.DBID RPM
ISSN 2157-6564
IngestDate Tue Sep 17 21:21:10 EDT 2024
Tue Aug 27 04:38:08 EDT 2024
Fri Sep 13 08:17:11 EDT 2024
Fri Aug 23 00:26:42 EDT 2024
Fri May 24 00:06:05 EDT 2024
Sat Aug 24 01:01:30 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Hypoxia
Chondrogenesis
Mesenchymal stromal/stem cells
Vascular endothelial growth factor blockade
Language English
License AlphaMed Press.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4700-c1095967a010769d81c552215fe09fd1d5fd2d094820ca9c608f3cf5dfadc61a3
Notes Contributed equally.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.proquest.com/docview/2289668342/abstract/?pq-origsite=%requestingapplication%
PMID 27460852
PQID 2289668342
PQPubID 4370291
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5189644
proquest_miscellaneous_1826724417
proquest_journals_2289668342
crossref_primary_10_5966_sctm_2015_0321
pubmed_primary_27460852
wiley_primary_10_5966_sctm_2015_0321_SCT320165121730
PublicationCentury 2000
PublicationDate December 2016
PublicationDateYYYYMMDD 2016-12-01
PublicationDate_xml – month: 12
  year: 2016
  text: December 2016
PublicationDecade 2010
PublicationPlace Durham, NC, USA
PublicationPlace_xml – name: Durham, NC, USA
– name: United States
– name: Oxford
PublicationTitle Stem cells translational medicine
PublicationTitleAlternate Stem Cells Transl Med
PublicationYear 2016
Publisher AlphaMed Press
Oxford University Press
Publisher_xml – name: AlphaMed Press
– name: Oxford University Press
References 2001; 222
2010; 107
2013; 21
2005; 335
2004; 23
2008; 39
2008; 105
2012; 18
1998; 238
2004; 2
2001; 44
2009; 119
2001; 106
1996; 226
2013; 19
2014; 3
2010; 28
2005; 102
2003; 9
2008; 23
2003; 48
1980
2005; 37
2003; 287
2009; 323
2015; 160
2015; 6
2000; 113
2010; 327
2009; 60
2008; 16
2010; 123
2011; 32
2008; 10
2015; 9
2014; 111
1999; 5
2012; 33
2011; 7
2000; 902
2011; 226
2014; 108
1986; 883
2004; 113
2002; 64
2005; 203
2015; 198
2008; 216
2016
1994; 93
2005; 11
18366089 - J Cell Physiol. 2008 Sep;216(3):708-15
26990890 - Anat Histol Embryol. 2017 Feb;46(1):43-50
22070632 - Tissue Eng Part C Methods. 2012 Apr;18(4):283-92
12625958 - Tissue Eng. 2003 Feb;9(1):95-103
24512714 - Curr Top Dev Biol. 2014;108:319-38
25621374 - Ann Anat. 2015 Mar;198:1-10
20110505 - Science. 2010 Jan 29;327(5965):580-3
16259597 - Tissue Eng. 2005 Sep-Oct;11(9-10):1421-8
14722611 - J Clin Invest. 2004 Jan;113(2):188-99
19404941 - Arthritis Rheum. 2009 May;60(5):1390-405
11465712 - Arthritis Rheum. 2001 Jul;44(7):1608-19
15464359 - Matrix Biol. 2004 Aug;23(5):267-76
25594184 - Cell. 2015 Jan 15;160(1-2):285-98
20501701 - J Cell Sci. 2010 Jun 15;123(Pt 12):2068-76
23611597 - Tissue Eng Part A. 2013 Sep;19(17-18):1960-71
23225781 - J Tissue Eng Regen Med. 2015 Dec;9(12 ):1394-403
24436440 - Stem Cells Transl Med. 2014 Feb;3(2):241-54
18632559 - Proc Natl Acad Sci U S A. 2008 Jul 22;105(29):10185-90
10371499 - Nat Med. 1999 Jun;5(6):623-8
12799186 - Exp Cell Res. 2003 Jul 1;287(1):98-105
21792913 - J Cell Physiol. 2011 Oct;226(10):2562-70
18985474 - Cytotherapy. 2008;10(7):676-85
10591625 - J Cell Sci. 2000 Jan;113 ( Pt 1):59-69
18334985 - Mol Ther. 2008 Apr;16(4):718-25
11815711 - Acta Haematol. 2001;106(4):148-56
19116905 - Arthritis Rheum. 2009 Jan;60(1):155-65
18433297 - J Bone Miner Res. 2008 May;23(5):596-609
16023419 - Bone. 2005 Sep;37(3):313-22
12746904 - Arthritis Rheum. 2003 May;48(5):1315-25
11747085 - Dev Dyn. 2001 Nov;222(3):522-33
19307726 - J Clin Invest. 2009 Apr;119(4):964-75
8806634 - Biochem Biophys Res Commun. 1996 Sep 13;226(2):324-8
22999467 - Biomaterials. 2012 Dec;33(35):8967-74
21119608 - Nat Rev Rheumatol. 2011 Jan;7(1):33-42
12453433 - Microvasc Res. 2002 Nov;64(3):384-97
9457080 - Exp Cell Res. 1998 Jan 10;238(1):265-72
17945514 - Osteoarthritis Cartilage. 2008 Mar;16(3):279-86
16172397 - Proc Natl Acad Sci U S A. 2005 Sep 27;102(39):14016-21
15235107 - Mol Cancer Res. 2004 Jun;2(6):315-26
18313473 - Injury. 2008 Apr;39 Suppl 1:S58-65
25205812 - Proc Natl Acad Sci U S A. 2014 Sep 23;111(38):13954-9
20406908 - Proc Natl Acad Sci U S A. 2010 Apr 20;107(16):7251-6
20039367 - Stem Cells. 2010 Mar 31;28(3):611-9
23933379 - Osteoarthritis Cartilage. 2013 Nov;21(11):1627-37
25900045 - Stem Cell Res Ther. 2015 Apr 23;6:84
21821280 - Biomaterials. 2011 Nov;32(32):8150-60
7512992 - J Clin Invest. 1994 Apr;93(4):1722-32
16105658 - Biochem Biophys Res Commun. 2005 Sep 30;335(3):793-8
15521064 - J Cell Physiol. 2005 May;203(2):398-409
7418319 - Clin Orthop Relat Res. 1980 Sep;(151):294-307
19229034 - Science. 2009 Feb 20;323(5917):1050-3
10865845 - Ann N Y Acad Sci. 2000 May;902:249-62; discussion 262-4
3091074 - Biochim Biophys Acta. 1986 Sep 4;883(2):173-7
Chan (2021122705121417400_R10) 2015; 160
Murata (2021122705121417400_R11) 2008; 16
Kapoor (2021122705121417400_R46) 2011; 7
Ashton (2021122705121417400_R5) 1980
Boyette (2021122705121417400_R37) 2014; 3
Jacobsen (2021122705121417400_R9) 2008; 23
Kaigler (2021122705121417400_R35) 2003; 9
Leijten (2021122705121417400_R40) 2014; 111
Kendall (2021122705121417400_R12) 1996; 226
Pufe (2021122705121417400_R34) 2004; 23
Maes (2021122705121417400_R36) 2004; 113
Dell’Accio (2021122705121417400_R50) 2001; 44
Ghanaati (2021122705121417400_R30) 2011; 32
Pelttari (2021122705121417400_R2) 2008; 39
Carmeliet (2021122705121417400_R7) 2000; 902
Ousema (2021122705121417400_R47) 2012; 33
Yin (2021122705121417400_R33) 2001; 222
Sabatino (2021122705121417400_R16) 2015; 9
Hollander (2021122705121417400_R26) 1994; 93
Bénazet (2021122705121417400_R32) 2009; 323
Centola (2021122705121417400_R28) 2013; 19
Schneevoigt (2021122705121417400_R31) 2016
Boilard (2021122705121417400_R45) 2010; 327
Scotti (2021122705121417400_R3) 2010; 107
Ebos (2021122705121417400_R13) 2004; 2
Niida (2021122705121417400_R49) 2005; 102
Zhu (2021122705121417400_R44) 2013; 21
Horn (2021122705121417400_R18) 2008; 10
Zychlinski (2021122705121417400_R52) 2008; 16
Johnstone (2021122705121417400_R1) 1998; 238
Gerber (2021122705121417400_R8) 1999; 5
Montini (2021122705121417400_R51) 2009; 119
Barbero (2021122705121417400_R24) 2003; 48
Kuhnert (2021122705121417400_R21) 2008; 105
Pattappa (2021122705121417400_R38) 2011; 226
Ferrara (2021122705121417400_R6) 2001; 106
Helmrich (2021122705121417400_R23) 2012; 18
Kanichai (2021122705121417400_R17) 2008; 216
Kubo (2021122705121417400_R15) 2009; 60
Carlevaro (2021122705121417400_R4) 2000; 113
Bianchi (2021122705121417400_R19) 2003; 287
Aldridge (2021122705121417400_R48) 2005; 335
Unger (2021122705121417400_R29) 2002; 64
Matsumoto (2021122705121417400_R14) 2009; 60
Farndale (2021122705121417400_R27) 1986; 883
Misteli (2021122705121417400_R22) 2010; 28
Moretti (2021122705121417400_R25) 2005; 11
Tonnarelli (2021122705121417400_R53) 2014; 108
Das (2021122705121417400_R42) 2015; 198
Karamboulas (2021122705121417400_R43) 2010; 123
Robins (2021122705121417400_R41) 2005; 37
Solchaga (2021122705121417400_R20) 2005; 203
Bornes (2021122705121417400_R39) 2015; 6
References_xml – volume: 60
  start-page: 1390
  year: 2009
  end-page: 1405
  article-title: Cartilage repair in a rat model of osteoarthritis through intraarticular transplantation of muscle-derived stem cells expressing bone morphogenetic protein 4 and soluble Flt-1
  publication-title: Arthritis Rheum
– volume: 23
  start-page: 267
  year: 2004
  end-page: 276
  article-title: Endostatin/collagen XVIII--an inhibitor of angiogenesis--is expressed in cartilage and fibrocartilage
  publication-title: Matrix Biol
– volume: 238
  start-page: 265
  year: 1998
  end-page: 272
  article-title: In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells
  publication-title: Exp Cell Res
– volume: 11
  start-page: 1421
  year: 2005
  end-page: 1428
  article-title: Effects of in vitro preculture on in vivo development of human engineered cartilage in an ectopic model
  publication-title: Tissue Eng
– volume: 226
  start-page: 2562
  year: 2011
  end-page: 2570
  article-title: The metabolism of human mesenchymal stem cells during proliferation and differentiation
  publication-title: J Cell Physiol
– volume: 113
  start-page: 188
  year: 2004
  end-page: 199
  article-title: Soluble VEGF isoforms are essential for establishing epiphyseal vascularization and regulating chondrocyte development and survival
  publication-title: J Clin Invest
– volume: 105
  start-page: 10185
  year: 2008
  end-page: 10190
  article-title: Soluble receptor-mediated selective inhibition of VEGFR and PDGFRbeta signaling during physiologic and tumor angiogenesis
  publication-title: Proc Natl Acad Sci USA
– volume: 323
  start-page: 1050
  year: 2009
  end-page: 1053
  article-title: A self-regulatory system of interlinked signaling feedback loops controls mouse limb patterning
  publication-title: Science
– volume: 3
  start-page: 241
  year: 2014
  end-page: 254
  article-title: Human bone marrow-derived mesenchymal stem cells display enhanced clonogenicity but impaired differentiation with hypoxic preconditioning
  publication-title: Stem Cells Translational Medicine
– volume: 19
  start-page: 1960
  year: 2013
  end-page: 1971
  article-title: Scaffold-based delivery of a clinically relevant anti-angiogenic drug promotes the formation of in vivo stable cartilage
  publication-title: Tissue Eng Part A
– start-page: 294
  issue: 151
  year: 1980
  end-page: 307
  article-title: Formation of bone and cartilage by marrow stromal cells in diffusion chambers in vivo
  publication-title: Clin Orthop Relat Res
– volume: 123
  start-page: 2068
  year: 2010
  end-page: 2076
  article-title: Regulation of BMP-dependent chondrogenesis in early limb mesenchyme by TGFbeta signals
  publication-title: J Cell Sci
– volume: 5
  start-page: 623
  year: 1999
  end-page: 628
  article-title: VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation
  publication-title: Nat Med
– volume: 2
  start-page: 315
  year: 2004
  end-page: 326
  article-title: A naturally occurring soluble form of vascular endothelial growth factor receptor 2 detected in mouse and human plasma
  publication-title: Mol Cancer Res
– volume: 9
  start-page: 1394
  year: 2015
  end-page: 1403
  article-title: Cartilage graft engineering by co-culturing primary human articular chondrocytes with human bone marrow stromal cells
  publication-title: J Tissue Eng Regen Med
– volume: 37
  start-page: 313
  year: 2005
  end-page: 322
  article-title: Hypoxia induces chondrocyte-specific gene expression in mesenchymal cells in association with transcriptional activation of Sox9
  publication-title: Bone
– volume: 21
  start-page: 1627
  year: 2013
  end-page: 1637
  article-title: Basic science and clinical application of platelet-rich plasma for cartilage defects and osteoarthritis: a review
  publication-title: Osteoarthritis Cartilage
– volume: 102
  start-page: 14016
  year: 2005
  end-page: 14021
  article-title: VEGF receptor 1 signaling is essential for osteoclast development and bone marrow formation in colony-stimulating factor 1-deficient mice
  publication-title: Proc Natl Acad Sci USA
– volume: 7
  start-page: 33
  year: 2011
  end-page: 42
  article-title: Role of proinflammatory cytokines in the pathophysiology of osteoarthritis
  publication-title: Nat Rev Rheumatol
– volume: 287
  start-page: 98
  year: 2003
  end-page: 105
  article-title: Ex vivo enrichment of mesenchymal cell progenitors by fibroblast growth factor 2
  publication-title: Exp Cell Res
– volume: 160
  start-page: 285
  year: 2015
  end-page: 298
  article-title: Identification and specification of the mouse skeletal stem cell
  publication-title: Cell
– volume: 883
  start-page: 173
  year: 1986
  end-page: 177
  article-title: Improved quantitation and discrimination of sulphated glycosaminoglycans by use of dimethylmethylene blue
  publication-title: Biochim Biophys Acta
– volume: 6
  start-page: 84
  year: 2015
  article-title: Hypoxic culture of bone marrow-derived mesenchymal stromal stem cells differentially enhances in vitro chondrogenesis within cell-seeded collagen and hyaluronic acid porous scaffolds
  publication-title: Stem Cell Res Ther
– volume: 327
  start-page: 580
  year: 2010
  end-page: 583
  article-title: Platelets amplify inflammation in arthritis via collagen-dependent microparticle production
  publication-title: Science
– volume: 113
  start-page: 59
  year: 2000
  end-page: 69
  article-title: Vascular endothelial growth factor (VEGF) in cartilage neovascularization and chondrocyte differentiation: Auto-paracrine role during endochondral bone formation
  publication-title: J Cell Sci
– volume: 48
  start-page: 1315
  year: 2003
  end-page: 1325
  article-title: Plasticity of clonal populations of dedifferentiated adult human articular chondrocytes
  publication-title: Arthritis Rheum
– volume: 39
  start-page: S58
  year: 2008
  end-page: S65
  article-title: The use of mesenchymal stem cells for chondrogenesis
  publication-title: Injury
– volume: 93
  start-page: 1722
  year: 1994
  end-page: 1732
  article-title: Increased damage to type II collagen in osteoarthritic articular cartilage detected by a new immunoassay
  publication-title: J Clin Invest
– volume: 216
  start-page: 708
  year: 2008
  end-page: 715
  article-title: Hypoxia promotes chondrogenesis in rat mesenchymal stem cells: A role for AKT and hypoxia-inducible factor (HIF)-1α
  publication-title: J Cell Physiol
– volume: 23
  start-page: 596
  year: 2008
  end-page: 609
  article-title: Bone formation during distraction osteogenesis is dependent on both VEGFR1 and VEGFR2 signaling
  publication-title: J Bone Miner Res
– volume: 9
  start-page: 95
  year: 2003
  end-page: 103
  article-title: Role of vascular endothelial growth factor in bone marrow stromal cell modulation of endothelial cells
  publication-title: Tissue Eng
– volume: 33
  start-page: 8967
  year: 2012
  end-page: 8974
  article-title: The inhibition by interleukin 1 of MSC chondrogenesis and the development of biomechanical properties in biomimetic 3D woven PCL scaffolds
  publication-title: Biomaterials
– volume: 16
  start-page: 279
  year: 2008
  end-page: 286
  article-title: The potential role of vascular endothelial growth factor (VEGF) in cartilage: How the angiogenic factor could be involved in the pathogenesis of osteoarthritis?
  publication-title: Osteoarthritis Cartilage
– volume: 108
  start-page: 319
  year: 2014
  end-page: 338
  article-title: Re-engineering development to instruct tissue regeneration
  publication-title: Curr Top Dev Biol
– volume: 106
  start-page: 148
  year: 2001
  end-page: 156
  article-title: The role of vascular endothelial growth factor in angiogenesis
  publication-title: Acta Haematol
– volume: 226
  start-page: 324
  year: 1996
  end-page: 328
  article-title: Identification of a natural soluble form of the vascular endothelial growth factor receptor, FLT-1, and its heterodimerization with KDR
  publication-title: Biochem Biophys Res Commun
– volume: 44
  start-page: 1608
  year: 2001
  end-page: 1619
  article-title: Molecular markers predictive of the capacity of expanded human articular chondrocytes to form stable cartilage in vivo
  publication-title: Arthritis Rheum
– volume: 119
  start-page: 964
  year: 2009
  end-page: 975
  article-title: The genotoxic potential of retroviral vectors is strongly modulated by vector design and integration site selection in a mouse model of HSC gene therapy
  publication-title: J Clin Invest
– volume: 222
  start-page: 522
  year: 2001
  end-page: 533
  article-title: Vascular regression is required for mesenchymal condensation and chondrogenesis in the developing limb
  publication-title: Dev Dyn
– volume: 203
  start-page: 398
  year: 2005
  end-page: 409
  article-title: FGF-2 enhances the mitotic and chondrogenic potentials of human adult bone marrow-derived mesenchymal stem cells
  publication-title: J Cell Physiol
– volume: 60
  start-page: 155
  year: 2009
  end-page: 165
  article-title: Blocking vascular endothelial growth factor with soluble Flt-1 improves the chondrogenic potential of mouse skeletal muscle-derived stem cells
  publication-title: Arthritis Rheum
– volume: 16
  start-page: 718
  year: 2008
  end-page: 725
  article-title: Physiological promoters reduce the genotoxic risk of integrating gene vectors
  publication-title: Mol Ther
– volume: 902
  start-page: 249
  year: 2000
  end-page: 262; discussion 262–264
  article-title: Molecular basis of angiogenesis. Role of VEGF and VE-cadherin
  publication-title: Ann N Y Acad Sci
– volume: 32
  start-page: 8150
  year: 2011
  end-page: 8160
  article-title: Scaffold vascularization in vivo driven by primary human osteoblasts in concert with host inflammatory cells
  publication-title: Biomaterials
– volume: 18
  start-page: 283
  year: 2012
  end-page: 292
  article-title: Generation of human adult mesenchymal stromal/stem cells expressing defined xenogenic vascular endothelial growth factor levels by optimized transduction and flow cytometry purification
  publication-title: Tissue Eng Part C Methods
– year: 2016
  article-title: In vitro expression of the extracellular matrix components aggrecan, collagen types I and II by articular cartilage-derived chondrocytes
  publication-title: Anat Histol Embryol
– volume: 107
  start-page: 7251
  year: 2010
  end-page: 7256
  article-title: Recapitulation of endochondral bone formation using human adult mesenchymal stem cells as a paradigm for developmental engineering
  publication-title: Proc Natl Acad Sci USA
– volume: 28
  start-page: 611
  year: 2010
  end-page: 619
  article-title: High-throughput flow cytometry purification of transduced progenitors expressing defined levels of vascular endothelial growth factor induces controlled angiogenesis in vivo
  publication-title: Stem Cells
– volume: 64
  start-page: 384
  year: 2002
  end-page: 397
  article-title: In vitro expression of the endothelial phenotype: Comparative study of primary isolated cells and cell lines, including the novel cell line HPMEC-ST1.6R
  publication-title: Microvasc Res
– volume: 10
  start-page: 676
  year: 2008
  end-page: 685
  article-title: Isolation of human mesenchymal stromal cells is more efficient by red blood cell lysis
  publication-title: Cytotherapy
– volume: 198
  start-page: 1
  year: 2015
  end-page: 10
  article-title: TGF-β2 is involved in the preservation of the chondrocyte phenotype under hypoxic conditions
  publication-title: Ann Anat
– volume: 335
  start-page: 793
  year: 2005
  end-page: 798
  article-title: Vascular endothelial growth factor receptors in osteoclast differentiation and function
  publication-title: Biochem Biophys Res Commun
– volume: 111
  start-page: 13954
  year: 2014
  end-page: 13959
  article-title: Metabolic programming of mesenchymal stromal cells by oxygen tension directs chondrogenic cell fate
  publication-title: Proc Natl Acad Sci USA
– volume: 902
  start-page: 249
  year: 2000
  ident: 2021122705121417400_R7
  article-title: Molecular basis of angiogenesis. Role of VEGF and VE-cadherin
  publication-title: Ann N Y Acad Sci
  doi: 10.1111/j.1749-6632.2000.tb06320.x
  contributor:
    fullname: Carmeliet
– volume: 119
  start-page: 964
  year: 2009
  ident: 2021122705121417400_R51
  article-title: The genotoxic potential of retroviral vectors is strongly modulated by vector design and integration site selection in a mouse model of HSC gene therapy
  publication-title: J Clin Invest
  doi: 10.1172/JCI37630
  contributor:
    fullname: Montini
– volume: 106
  start-page: 148
  year: 2001
  ident: 2021122705121417400_R6
  article-title: The role of vascular endothelial growth factor in angiogenesis
  publication-title: Acta Haematol
  doi: 10.1159/000046610
  contributor:
    fullname: Ferrara
– volume: 9
  start-page: 95
  year: 2003
  ident: 2021122705121417400_R35
  article-title: Role of vascular endothelial growth factor in bone marrow stromal cell modulation of endothelial cells
  publication-title: Tissue Eng
  doi: 10.1089/107632703762687573
  contributor:
    fullname: Kaigler
– volume: 108
  start-page: 319
  year: 2014
  ident: 2021122705121417400_R53
  article-title: Re-engineering development to instruct tissue regeneration
  publication-title: Curr Top Dev Biol
  doi: 10.1016/B978-0-12-391498-9.00005-X
  contributor:
    fullname: Tonnarelli
– volume: 323
  start-page: 1050
  year: 2009
  ident: 2021122705121417400_R32
  article-title: A self-regulatory system of interlinked signaling feedback loops controls mouse limb patterning
  publication-title: Science
  doi: 10.1126/science.1168755
  contributor:
    fullname: Bénazet
– volume: 226
  start-page: 2562
  year: 2011
  ident: 2021122705121417400_R38
  article-title: The metabolism of human mesenchymal stem cells during proliferation and differentiation
  publication-title: J Cell Physiol
  doi: 10.1002/jcp.22605
  contributor:
    fullname: Pattappa
– volume: 102
  start-page: 14016
  year: 2005
  ident: 2021122705121417400_R49
  article-title: VEGF receptor 1 signaling is essential for osteoclast development and bone marrow formation in colony-stimulating factor 1-deficient mice
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0503544102
  contributor:
    fullname: Niida
– volume: 113
  start-page: 59
  year: 2000
  ident: 2021122705121417400_R4
  article-title: Vascular endothelial growth factor (VEGF) in cartilage neovascularization and chondrocyte differentiation: Auto-paracrine role during endochondral bone formation
  publication-title: J Cell Sci
  doi: 10.1242/jcs.113.1.59
  contributor:
    fullname: Carlevaro
– volume: 107
  start-page: 7251
  year: 2010
  ident: 2021122705121417400_R3
  article-title: Recapitulation of endochondral bone formation using human adult mesenchymal stem cells as a paradigm for developmental engineering
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1000302107
  contributor:
    fullname: Scotti
– volume: 23
  start-page: 596
  year: 2008
  ident: 2021122705121417400_R9
  article-title: Bone formation during distraction osteogenesis is dependent on both VEGFR1 and VEGFR2 signaling
  publication-title: J Bone Miner Res
  doi: 10.1359/jbmr.080103
  contributor:
    fullname: Jacobsen
– volume: 93
  start-page: 1722
  year: 1994
  ident: 2021122705121417400_R26
  article-title: Increased damage to type II collagen in osteoarthritic articular cartilage detected by a new immunoassay
  publication-title: J Clin Invest
  doi: 10.1172/JCI117156
  contributor:
    fullname: Hollander
– volume: 60
  start-page: 155
  year: 2009
  ident: 2021122705121417400_R15
  article-title: Blocking vascular endothelial growth factor with soluble Flt-1 improves the chondrogenic potential of mouse skeletal muscle-derived stem cells
  publication-title: Arthritis Rheum
  doi: 10.1002/art.24153
  contributor:
    fullname: Kubo
– volume: 6
  start-page: 84
  year: 2015
  ident: 2021122705121417400_R39
  article-title: Hypoxic culture of bone marrow-derived mesenchymal stromal stem cells differentially enhances in vitro chondrogenesis within cell-seeded collagen and hyaluronic acid porous scaffolds
  publication-title: Stem Cell Res Ther
  doi: 10.1186/s13287-015-0075-4
  contributor:
    fullname: Bornes
– volume: 226
  start-page: 324
  year: 1996
  ident: 2021122705121417400_R12
  article-title: Identification of a natural soluble form of the vascular endothelial growth factor receptor, FLT-1, and its heterodimerization with KDR
  publication-title: Biochem Biophys Res Commun
  doi: 10.1006/bbrc.1996.1355
  contributor:
    fullname: Kendall
– volume: 203
  start-page: 398
  year: 2005
  ident: 2021122705121417400_R20
  article-title: FGF-2 enhances the mitotic and chondrogenic potentials of human adult bone marrow-derived mesenchymal stem cells
  publication-title: J Cell Physiol
  doi: 10.1002/jcp.20238
  contributor:
    fullname: Solchaga
– volume: 123
  start-page: 2068
  year: 2010
  ident: 2021122705121417400_R43
  article-title: Regulation of BMP-dependent chondrogenesis in early limb mesenchyme by TGFbeta signals
  publication-title: J Cell Sci
  doi: 10.1242/jcs.062901
  contributor:
    fullname: Karamboulas
– volume: 18
  start-page: 283
  year: 2012
  ident: 2021122705121417400_R23
  article-title: Generation of human adult mesenchymal stromal/stem cells expressing defined xenogenic vascular endothelial growth factor levels by optimized transduction and flow cytometry purification
  publication-title: Tissue Eng Part C Methods
  doi: 10.1089/ten.tec.2011.0413
  contributor:
    fullname: Helmrich
– volume: 39
  start-page: S58
  year: 2008
  ident: 2021122705121417400_R2
  article-title: The use of mesenchymal stem cells for chondrogenesis
  publication-title: Injury
  doi: 10.1016/j.injury.2008.01.038
  contributor:
    fullname: Pelttari
– volume: 28
  start-page: 611
  year: 2010
  ident: 2021122705121417400_R22
  article-title: High-throughput flow cytometry purification of transduced progenitors expressing defined levels of vascular endothelial growth factor induces controlled angiogenesis in vivo
  publication-title: Stem Cells
  doi: 10.1002/stem.291
  contributor:
    fullname: Misteli
– volume: 2
  start-page: 315
  year: 2004
  ident: 2021122705121417400_R13
  article-title: A naturally occurring soluble form of vascular endothelial growth factor receptor 2 detected in mouse and human plasma
  publication-title: Mol Cancer Res
  doi: 10.1158/1541-7786.315.2.6
  contributor:
    fullname: Ebos
– volume: 33
  start-page: 8967
  year: 2012
  ident: 2021122705121417400_R47
  article-title: The inhibition by interleukin 1 of MSC chondrogenesis and the development of biomechanical properties in biomimetic 3D woven PCL scaffolds
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2012.08.045
  contributor:
    fullname: Ousema
– volume: 287
  start-page: 98
  year: 2003
  ident: 2021122705121417400_R19
  article-title: Ex vivo enrichment of mesenchymal cell progenitors by fibroblast growth factor 2
  publication-title: Exp Cell Res
  doi: 10.1016/S0014-4827(03)00138-1
  contributor:
    fullname: Bianchi
– volume: 16
  start-page: 279
  year: 2008
  ident: 2021122705121417400_R11
  article-title: The potential role of vascular endothelial growth factor (VEGF) in cartilage: How the angiogenic factor could be involved in the pathogenesis of osteoarthritis?
  publication-title: Osteoarthritis Cartilage
  doi: 10.1016/j.joca.2007.09.003
  contributor:
    fullname: Murata
– volume: 3
  start-page: 241
  year: 2014
  ident: 2021122705121417400_R37
  article-title: Human bone marrow-derived mesenchymal stem cells display enhanced clonogenicity but impaired differentiation with hypoxic preconditioning
  publication-title: Stem Cells Translational Medicine
  doi: 10.5966/sctm.2013-0079
  contributor:
    fullname: Boyette
– volume: 216
  start-page: 708
  year: 2008
  ident: 2021122705121417400_R17
  article-title: Hypoxia promotes chondrogenesis in rat mesenchymal stem cells: A role for AKT and hypoxia-inducible factor (HIF)-1α
  publication-title: J Cell Physiol
  doi: 10.1002/jcp.21446
  contributor:
    fullname: Kanichai
– volume: 7
  start-page: 33
  year: 2011
  ident: 2021122705121417400_R46
  article-title: Role of proinflammatory cytokines in the pathophysiology of osteoarthritis
  publication-title: Nat Rev Rheumatol
  doi: 10.1038/nrrheum.2010.196
  contributor:
    fullname: Kapoor
– year: 2016
  ident: 2021122705121417400_R31
  article-title: In vitro expression of the extracellular matrix components aggrecan, collagen types I and II by articular cartilage-derived chondrocytes
  publication-title: Anat Histol Embryol
  contributor:
    fullname: Schneevoigt
– volume: 11
  start-page: 1421
  year: 2005
  ident: 2021122705121417400_R25
  article-title: Effects of in vitro preculture on in vivo development of human engineered cartilage in an ectopic model
  publication-title: Tissue Eng
  doi: 10.1089/ten.2005.11.1421
  contributor:
    fullname: Moretti
– volume: 9
  start-page: 1394
  year: 2015
  ident: 2021122705121417400_R16
  article-title: Cartilage graft engineering by co-culturing primary human articular chondrocytes with human bone marrow stromal cells
  publication-title: J Tissue Eng Regen Med
  doi: 10.1002/term.1661
  contributor:
    fullname: Sabatino
– volume: 883
  start-page: 173
  year: 1986
  ident: 2021122705121417400_R27
  article-title: Improved quantitation and discrimination of sulphated glycosaminoglycans by use of dimethylmethylene blue
  publication-title: Biochim Biophys Acta
  doi: 10.1016/0304-4165(86)90306-5
  contributor:
    fullname: Farndale
– volume: 222
  start-page: 522
  year: 2001
  ident: 2021122705121417400_R33
  article-title: Vascular regression is required for mesenchymal condensation and chondrogenesis in the developing limb
  publication-title: Dev Dyn
  doi: 10.1002/dvdy.1212
  contributor:
    fullname: Yin
– volume: 238
  start-page: 265
  year: 1998
  ident: 2021122705121417400_R1
  article-title: In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells
  publication-title: Exp Cell Res
  doi: 10.1006/excr.1997.3858
  contributor:
    fullname: Johnstone
– volume: 48
  start-page: 1315
  year: 2003
  ident: 2021122705121417400_R24
  article-title: Plasticity of clonal populations of dedifferentiated adult human articular chondrocytes
  publication-title: Arthritis Rheum
  doi: 10.1002/art.10950
  contributor:
    fullname: Barbero
– volume: 37
  start-page: 313
  year: 2005
  ident: 2021122705121417400_R41
  article-title: Hypoxia induces chondrocyte-specific gene expression in mesenchymal cells in association with transcriptional activation of Sox9
  publication-title: Bone
  doi: 10.1016/j.bone.2005.04.040
  contributor:
    fullname: Robins
– volume: 160
  start-page: 285
  year: 2015
  ident: 2021122705121417400_R10
  article-title: Identification and specification of the mouse skeletal stem cell
  publication-title: Cell
  doi: 10.1016/j.cell.2014.12.002
  contributor:
    fullname: Chan
– volume: 10
  start-page: 676
  year: 2008
  ident: 2021122705121417400_R18
  article-title: Isolation of human mesenchymal stromal cells is more efficient by red blood cell lysis
  publication-title: Cytotherapy
  doi: 10.1080/14653240802398845
  contributor:
    fullname: Horn
– volume: 60
  start-page: 1390
  year: 2009
  ident: 2021122705121417400_R14
  article-title: Cartilage repair in a rat model of osteoarthritis through intraarticular transplantation of muscle-derived stem cells expressing bone morphogenetic protein 4 and soluble Flt-1
  publication-title: Arthritis Rheum
  doi: 10.1002/art.24443
  contributor:
    fullname: Matsumoto
– volume: 21
  start-page: 1627
  year: 2013
  ident: 2021122705121417400_R44
  article-title: Basic science and clinical application of platelet-rich plasma for cartilage defects and osteoarthritis: a review
  publication-title: Osteoarthritis Cartilage
  doi: 10.1016/j.joca.2013.07.017
  contributor:
    fullname: Zhu
– volume: 198
  start-page: 1
  year: 2015
  ident: 2021122705121417400_R42
  article-title: TGF-β2 is involved in the preservation of the chondrocyte phenotype under hypoxic conditions
  publication-title: Ann Anat
  doi: 10.1016/j.aanat.2014.11.003
  contributor:
    fullname: Das
– volume: 5
  start-page: 623
  year: 1999
  ident: 2021122705121417400_R8
  article-title: VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation
  publication-title: Nat Med
  doi: 10.1038/9467
  contributor:
    fullname: Gerber
– start-page: 294
  issue: 151
  year: 1980
  ident: 2021122705121417400_R5
  article-title: Formation of bone and cartilage by marrow stromal cells in diffusion chambers in vivo
  publication-title: Clin Orthop Relat Res
  contributor:
    fullname: Ashton
– volume: 105
  start-page: 10185
  year: 2008
  ident: 2021122705121417400_R21
  article-title: Soluble receptor-mediated selective inhibition of VEGFR and PDGFRbeta signaling during physiologic and tumor angiogenesis
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0803194105
  contributor:
    fullname: Kuhnert
– volume: 111
  start-page: 13954
  year: 2014
  ident: 2021122705121417400_R40
  article-title: Metabolic programming of mesenchymal stromal cells by oxygen tension directs chondrogenic cell fate
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1410977111
  contributor:
    fullname: Leijten
– volume: 44
  start-page: 1608
  year: 2001
  ident: 2021122705121417400_R50
  article-title: Molecular markers predictive of the capacity of expanded human articular chondrocytes to form stable cartilage in vivo
  publication-title: Arthritis Rheum
  doi: 10.1002/1529-0131(200107)44:7<1608::AID-ART284>3.0.CO;2-T
  contributor:
    fullname: Dell’Accio
– volume: 19
  start-page: 1960
  year: 2013
  ident: 2021122705121417400_R28
  article-title: Scaffold-based delivery of a clinically relevant anti-angiogenic drug promotes the formation of in vivo stable cartilage
  publication-title: Tissue Eng Part A
  doi: 10.1089/ten.tea.2012.0455
  contributor:
    fullname: Centola
– volume: 64
  start-page: 384
  year: 2002
  ident: 2021122705121417400_R29
  article-title: In vitro expression of the endothelial phenotype: Comparative study of primary isolated cells and cell lines, including the novel cell line HPMEC-ST1.6R
  publication-title: Microvasc Res
  doi: 10.1006/mvre.2002.2434
  contributor:
    fullname: Unger
– volume: 113
  start-page: 188
  year: 2004
  ident: 2021122705121417400_R36
  article-title: Soluble VEGF isoforms are essential for establishing epiphyseal vascularization and regulating chondrocyte development and survival
  publication-title: J Clin Invest
  doi: 10.1172/JCI200419383
  contributor:
    fullname: Maes
– volume: 327
  start-page: 580
  year: 2010
  ident: 2021122705121417400_R45
  article-title: Platelets amplify inflammation in arthritis via collagen-dependent microparticle production
  publication-title: Science
  doi: 10.1126/science.1181928
  contributor:
    fullname: Boilard
– volume: 335
  start-page: 793
  year: 2005
  ident: 2021122705121417400_R48
  article-title: Vascular endothelial growth factor receptors in osteoclast differentiation and function
  publication-title: Biochem Biophys Res Commun
  doi: 10.1016/j.bbrc.2005.07.145
  contributor:
    fullname: Aldridge
– volume: 16
  start-page: 718
  year: 2008
  ident: 2021122705121417400_R52
  article-title: Physiological promoters reduce the genotoxic risk of integrating gene vectors
  publication-title: Mol Ther
  doi: 10.1038/mt.2008.5
  contributor:
    fullname: Zychlinski
– volume: 32
  start-page: 8150
  year: 2011
  ident: 2021122705121417400_R30
  article-title: Scaffold vascularization in vivo driven by primary human osteoblasts in concert with host inflammatory cells
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2011.07.041
  contributor:
    fullname: Ghanaati
– volume: 23
  start-page: 267
  year: 2004
  ident: 2021122705121417400_R34
  article-title: Endostatin/collagen XVIII--an inhibitor of angiogenesis--is expressed in cartilage and fibrocartilage
  publication-title: Matrix Biol
  doi: 10.1016/j.matbio.2004.06.003
  contributor:
    fullname: Pufe
SSID ssj0000696920
Score 2.329845
Snippet This study assessed whether simple inhibition of angiogenesis by vascular endothelial growth factor (VEGF) blockade is sufficient to direct in vivo...
: Chondrogenic differentiation of bone marrow-derived mesenchymal stromal/stem cells (MSCs) can be induced by presenting morphogenetic factors or soluble...
Abstract Chondrogenic differentiation of bone marrow-derived mesenchymal stromal/stem cells (MSCs) can be induced by presenting morphogenetic factors or...
SourceID pubmedcentral
proquest
crossref
pubmed
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 1730
SubjectTerms Adult
Angiogenesis
Bone marrow
Bone Marrow Cells - cytology
Bone Marrow Cells - drug effects
Bone Marrow Cells - metabolism
Cartilage
Cell Differentiation - drug effects
Cell Proliferation - drug effects
Chondrogenesis
Chondrogenesis - drug effects
Data analysis
Endothelial Cells - cytology
Endothelial Cells - drug effects
Endothelial Cells - metabolism
Enzymes
Female
Humans
Hypertrophy
Hypoxia
Laboratory animals
Male
Mesenchymal Stromal Cells - cytology
Mesenchymal Stromal Cells - drug effects
Mesenchymal Stromal Cells - metabolism
Mesenchymal stromal/stem cells
Mesenchyme
Neovascularization, Physiologic - drug effects
Osteoprogenitor cells
Oxygen - pharmacology
Phenotypes
Progenitor cells
Signal Transduction - drug effects
Stem cell transplantation
Stem cells
Tissue Engineering and Regenerative Medicine
Transduction, Genetic
Transforming Growth Factor beta - metabolism
Vascular endothelial growth factor
Vascular Endothelial Growth Factor A - metabolism
Vascular endothelial growth factor blockade
Vascular Endothelial Growth Factor Receptor-2 - metabolism
Young Adult
SummonAdditionalLinks – databaseName: AUTh Library subscriptions: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9NAEF6V9sIFgXi5FLRISJxW8a73YZ9QkyYEpFYVaaveLGcfSaRgh8ZU6q_oX-6M7QSiSnD2el8zu_PN7DwI-TTVNmRpUMwlsWUy-JQVhREskzJYm6RetQ6yZ3p8Kb9fq-s9Mt7EwqBb5eZObC5qV1m0kfcEaAZap4kUvWKKVgBb976sfjGsH4XvrF0xjSfkQHCJD7YH_eHZ-Y-tvSXWmc6aLI0g5AwDGCPbHI4Kuu2tbY1h6VyxOBF8V0Y9Ap6P_Sf_xrWNYBo9J886REmPWxZ4QfZ8-ZLcT1ZVCbjPg2JPv5X0anFb0cG8wvQEM7zeFmtaBdqvSk9PmzyM7AR48dY7eorxSHZ-9xM6PW9aw6G_oQO_XK7p9I72QfyhfZ1edU6sdFg6jONaAivTr9BVPaejpowPnSxmCPTL2StyORpeDMasq73ArDRxzCxHA6E2BehrRmcu5VYBVOMq-DgLjjsVnHCgGwKCsEVmdZyGxAblQuGs5kXymuyXsIa3hPoQDBcGoIezEngm02kQhUhkKoXRhYjI581u56s2xUYOqgnSJUe65EiXHOkSkaMNMfLuqK3zP4wRkY_bz3BI8OWj3ecclSgjsNpaRN60tNsOBWo5TF7B32aHqtsGmIB790u5mDeJuBWHoaWMiGzo_5_Z55PBRSIwfIyDHpjEh_9ezTvyFBu3rjNHZL---e3fAwCqpx863n4A-s8GsA
  priority: 102
  providerName: ProQuest
– databaseName: Wiley-Blackwell Open Access Collection
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbhMxELZQuXBBoBYIlMqVkDhZrL3-22MbGgpSUaW0VW_Wxj9JpLBbNaFSb30EeEWehBlvumrUAxLHlddjr2fG_mbWM0PIh4n2qbJJsVAWnskULatrI1glZfK-tFF1F2S_6-Nz-e1SXT6I4u_yQ_QON9SMvF-jgteTXIVEAULPZQlXGEnOFStKjCR_CtjGolwLedp7WQpd6SrnZoSjzTAAL7LL3IhEPm2S2DyZHsHNx7cmH6LZfByNXpDnaxxJDzrGvyRPYrNNfo-v2gbQXgRznn5t6MX8pqXDWYtJCaa4qc2XtE30sG0iPcnZF__c_foMMngTAz3BOCQ_u_0BZE_z-6Ds13QYF4slndzSQzj20K9OL9aXV-lREzB-awEiTL8AsdWMjnL5HjqeTxHgN9Mdcj46Ohses3XNBealKQrmOToGtanBTjO6CpZ7BRCNqxSLKgUeVAoigE0IyMHXldeFTaVPKqQ6eM3r8hXZauAr3hAaUzJcGIAcwUuQlUrbJGpRSiuF0bUYkI_36-2uutQaDkwS5IxDzjjkjEPODMjuPTvcWsWWToCpqLUtJRDa75tBOfCPR7fSDo0nI7DK2oC87rjXDwXmOExeQW-zwdf-BUy8vdnSzGc5AbfiMLSUAyKzBPxj9m48PCsFho1xsP_K4u3_dXtHnuFTd5Vml2ytrn_G9wCIVpO9LPN_AQzTB5k
  priority: 102
  providerName: Wiley-Blackwell
Title Spontaneous In Vivo Chondrogenesis of Bone Marrow‐Derived Mesenchymal Progenitor Cells by Blocking Vascular Endothelial Growth Factor Signaling
URI https://onlinelibrary.wiley.com/doi/abs/10.5966%2Fsctm.2015-0321
https://www.ncbi.nlm.nih.gov/pubmed/27460852
https://www.proquest.com/docview/2289668342/abstract/
https://search.proquest.com/docview/1826724417
https://pubmed.ncbi.nlm.nih.gov/PMC5189644
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pa9swFBZNd9llbOyXuy5oMNhJja2f9nHxknWDlLC0JTfjSFZiSOzQZIX-FfuX9yTboaGHwS6-yEi2vie_75Pfe0Lo80Jqm8RWEMNCTbgtYpLnipKEc6s1iwvRBMheycsb_nMu5idIdLkwPmhfL8qLar25qMqVj63cbvSgixMbTCepiOIE_Pigh3qKsUcSvfn8JjLx5RjBmykCfIU3xRoFMPvBTu9d_nkkSMioOyYGVJkE2kGP_dITsvk0ZvIxl_XOaPwSvWhZJP7aPO0rdFJUr9Gf2baugOsVIObxjwrflvc1Tle1K0mwdJ-0codri4d1VeCJr71IvoH93RcGT1wOkl49bKDTqb8bFvodTov1eocXD3gILs_tqePbNnAVjyrjcrfWYL74O3S1X-GxP7oHz8qlI_fV8g26GY-u00vSnrdANFdhSHTkNgWlykGjKZmYONIC6FkkbBEm1kRGWEMN6EFgDTpPNMybZdoKY3OjZZSzt-i0gnd4j3BhrYqoArphNAc7SWRsaU4ZjzlVMqcB-tLNdrZtympkIEccRJmDKHMQZQ6iAJ13YGTt8tplFGSilDHj0NGnQzMsDPe3o5nnzAknRd0JawF612B3GKoDPUDqCNXDDa7o9nEL2KIvvt3aXoC4x_8fT5_N0mtGXcpYBNqPhWf_PeAH9Nz100TSnKPT_d3v4iPwof2ij3qUT-Gq5qqPng1HV9Nffb-30Pcr4y_kyA7S
link.rule.ids 230,315,733,786,790,870,891,11589,12083,21416,27957,27958,31754,31755,33779,33780,43345,43840,46087,46511,50849,50958,53827,53829,74102,74659
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9NAEF5BOcAFgXgZCiwSEqdV7X3ap4qGhhSaCilplZvl7COJlNqhTiv1V_CXmbGdQFQJzvv2N7v7zXh2hpCPU21DlgbFnIgtk8GnrCgMZ5mUwVqRetU6yJ7pwbn8NlGTzuBWd26VmzOxOahdZdFGfsBBM9A6FZIfrn4yzBqFf1e7FBr3yQMphESXPjMxWxtLrDOdNZEZ4WIzDKiLbOM2KujqoLZrfIqeKBYLnuzeS3fI5l2fyb-5bHMZ9Z-Qxx2LpJ9b2J-Se758Rn6NVlUJXM-DMk9PSnqxuKlob15hSIIZHmmLmlaBHlWlp8Mm9iL7AvJ34x0d4hskO7-9hE5_NLVho1_Rnl8uazq9pUdw5aFNnV50jqv0uHT4dmsJ4ku_QlfrOe03qXvoaDFDcl_OnpPz_vG4N2BdvgVmpYljZhM0CmpTgI5mdObSxCqgZ4kKPs6CS5wKjjvQB4E12CKzOk6DsEG5UDirk0K8IHslrOEVoT4Ek3ADdMNZCXKS6TTwgguZSm50wSPyafO181UbViMHdQRxyRGXHHHJEZeI7G_AyLvtVed_hCEiH7bFsDHwb0f7nXNUnAzHDGsRedlitx0KVHGYvILWZgfVbQUMur1bUi7mTfBtlcDQUkZENvj_Z_b5qDcWHJ-MJaD7ifj1v1fznjwcjIen-enJ2fc35BE2bF1n9sne-uravwUCtJ6-a6T8N5A5BH0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LbxMxELagSIgLAvFaWsBISJysrL1-7J4QTRtaoFWltFVu1saPJFLYDU1aqb-Cv8zM7iYQVYKz356x55vxeIaQD2PtYpFHxXyWOiZjyFlZGsEKKaNzWR5U6yB7qo8u5NeRGnX-T8vOrXJ9JzYXta8d2sh7AjQDrfNMil7s3CLODgafFj8ZZpDCl9YuncZ98gCkZIrZDMzIbOwtqS500URpBCFnGMAY2cZwVNBtb-lW-C2dK5Zmgm_LqDvA867_5N-4thFMgyfkcYco6eeWBZ6Se6F6Rn4NF3UFuC-AYk-PK3o5u6lpf1pjeIIJXm-zJa0j3a-rQE-aOIzsAHjxJnh6gv-R3PT2B3R61tSGQ39F-2E-X9LxLd0H8Yf2dXrZObHSw8rjP645sDL9Al2tpnTQpPGhw9kEgX41eU4uBofn_SPW5V5gTpo0ZY6jgVCbEvQ1owufc6cAqnEVQ1pEz72KXnjQDQFBuLJwOs1j5qLysfRO8zJ7QXYqWMMrQkOMhgsD0MM7CTxT6DyKUmQyl8LoUiTk43q37aINsWFBNUG6WKSLRbpYpEtC9tbEsN1RW9o_jJGQ95tiOCT48tHus0UlygjMtpaQly3tNkOBWg6TV9DabFF1UwEDcG-XVLNpE4hbcRhayoTIhv7_mb0d9s8zgd_HOOiBWfr636t5Rx4Cg9vvx6ffdskjbNd60eyRndXVdXgDWGg1ftsw-W-ppgip
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spontaneous+In+Vivo+Chondrogenesis+of+Bone+Marrow-Derived+Mesenchymal+Progenitor+Cells+by+Blocking+Vascular+Endothelial+Growth+Factor+Signaling&rft.jtitle=Stem+cells+translational+medicine&rft.au=Marsano%2C+Anna&rft.au=Medeiros+da+Cunha%2C+Carolina+M.&rft.au=Ghanaati%2C+Shahram&rft.au=Gueven%2C+Sinan&rft.date=2016-12-01&rft.issn=2157-6564&rft.eissn=2157-6580&rft.volume=5&rft.issue=12&rft.spage=1730&rft.epage=1738&rft_id=info:doi/10.5966%2Fsctm.2015-0321&rft.externalDBID=n%2Fa&rft.externalDocID=10_5966_sctm_2015_0321
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2157-6564&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2157-6564&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2157-6564&client=summon