Multimodal correlative imaging and modelling of phosphorus uptake from soil by hyphae of mycorrhizal fungi

Summary Phosphorus (P) is essential for plant growth. Arbuscular mycorrhizal fungi (AMF) aid its uptake by acquiring P from sources distant from roots in return for carbon. Little is known about how AMF colonise soil pore‐space, and models of AMF‐enhanced P‐uptake are poorly validated. We used synch...

Full description

Saved in:
Bibliographic Details
Published inThe New phytologist Vol. 234; no. 2; pp. 688 - 703
Main Authors Keyes, Sam, Veelen, Arjen, McKay Fletcher, Dan, Scotson, Callum, Koebernick, Nico, Petroselli, Chiara, Williams, Katherine, Ruiz, Siul, Cooper, Laura, Mayon, Robbie, Duncan, Simon, Dumont, Marc, Jakobsen, Iver, Oldroyd, Giles, Tkacz, Andrzej, Poole, Philip, Mosselmans, Fred, Borca, Camelia, Huthwelker, Thomas, Jones, David L., Roose, Tiina
Format Journal Article
LanguageEnglish
Published England Wiley Subscription Services, Inc 01.04.2022
Wiley
John Wiley and Sons Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Summary Phosphorus (P) is essential for plant growth. Arbuscular mycorrhizal fungi (AMF) aid its uptake by acquiring P from sources distant from roots in return for carbon. Little is known about how AMF colonise soil pore‐space, and models of AMF‐enhanced P‐uptake are poorly validated. We used synchrotron X‐ray computed tomography to visualize mycorrhizas in soil and synchrotron X‐ray fluorescence/X‐ray absorption near edge structure (XRF/XANES) elemental mapping for P, sulphur (S) and aluminium (Al) in combination with modelling. We found that AMF inoculation had a suppressive effect on colonisation by other soil fungi and identified differences in structure and growth rate between hyphae of AMF and nonmycorrhizal fungi. Our results showed that AMF co‐locate with areas of high P and low Al, and preferentially associate with organic‐type P species over Al‐rich inorganic P. We discovered that AMF avoid Al‐rich areas as a source of P. Sulphur‐rich regions were found to be correlated with higher hyphal density and an increased organic‐associated P‐pool, whilst oxidized S‐species were found close to AMF hyphae. Increased S oxidation close to AMF suggested the observed changes were microbiome‐related. Our experimentally‐validated model led to an estimate of P‐uptake by AMF hyphae that is an order of magnitude lower than rates previously estimated – a result with significant implications for the modelling of plant–soil–AMF interactions.
AbstractList Phosphorus (P) is essential for plant growth. Arbuscular mycorrhizal fungi (AMF) aid its uptake by acquiring P from sources distant from roots in return for carbon. Little is known about how AMF colonise soil pore‐space, and models of AMF‐enhanced P‐uptake are poorly validated. We used synchrotron X‐ray computed tomography to visualize mycorrhizas in soil and synchrotron X‐ray fluorescence/X‐ray absorption near edge structure (XRF/XANES) elemental mapping for P, sulphur (S) and aluminium (Al) in combination with modelling. We found that AMF inoculation had a suppressive effect on colonisation by other soil fungi and identified differences in structure and growth rate between hyphae of AMF and nonmycorrhizal fungi. Our results showed that AMF co‐locate with areas of high P and low Al, and preferentially associate with organic‐type P species over Al‐rich inorganic P. We discovered that AMF avoid Al‐rich areas as a source of P. Sulphur‐rich regions were found to be correlated with higher hyphal density and an increased organic‐associated P‐pool, whilst oxidized S‐species were found close to AMF hyphae. Increased S oxidation close to AMF suggested the observed changes were microbiome‐related. Our experimentally‐validated model led to an estimate of P‐uptake by AMF hyphae that is an order of magnitude lower than rates previously estimated – a result with significant implications for the modelling of plant–soil–AMF interactions.
Summary Phosphorus (P) is essential for plant growth. Arbuscular mycorrhizal fungi (AMF) aid its uptake by acquiring P from sources distant from roots in return for carbon. Little is known about how AMF colonise soil pore‐space, and models of AMF‐enhanced P‐uptake are poorly validated. We used synchrotron X‐ray computed tomography to visualize mycorrhizas in soil and synchrotron X‐ray fluorescence/X‐ray absorption near edge structure (XRF/XANES) elemental mapping for P, sulphur (S) and aluminium (Al) in combination with modelling. We found that AMF inoculation had a suppressive effect on colonisation by other soil fungi and identified differences in structure and growth rate between hyphae of AMF and nonmycorrhizal fungi. Our results showed that AMF co‐locate with areas of high P and low Al, and preferentially associate with organic‐type P species over Al‐rich inorganic P. We discovered that AMF avoid Al‐rich areas as a source of P. Sulphur‐rich regions were found to be correlated with higher hyphal density and an increased organic‐associated P‐pool, whilst oxidized S‐species were found close to AMF hyphae. Increased S oxidation close to AMF suggested the observed changes were microbiome‐related. Our experimentally‐validated model led to an estimate of P‐uptake by AMF hyphae that is an order of magnitude lower than rates previously estimated – a result with significant implications for the modelling of plant–soil–AMF interactions.
Phosphorus (P) is essential for plant growth. Arbuscular mycorrhizal fungi (AMF) aid its uptake by acquiring P from sources distant from roots in return for carbon. Little is known about how AMF colonise soil pore‐space, and models of AMF‐enhanced P‐uptake are poorly validated.We used synchrotron X‐ray computed tomography to visualize mycorrhizas in soil and synchrotron X‐ray fluorescence/X‐ray absorption near edge structure (XRF/XANES) elemental mapping for P, sulphur (S) and aluminium (Al) in combination with modelling.We found that AMF inoculation had a suppressive effect on colonisation by other soil fungi and identified differences in structure and growth rate between hyphae of AMF and nonmycorrhizal fungi. Our results showed that AMF co‐locate with areas of high P and low Al, and preferentially associate with organic‐type P species over Al‐rich inorganic P.We discovered that AMF avoid Al‐rich areas as a source of P. Sulphur‐rich regions were found to be correlated with higher hyphal density and an increased organic‐associated P‐pool, whilst oxidized S‐species were found close to AMF hyphae. Increased S oxidation close to AMF suggested the observed changes were microbiome‐related. Our experimentally‐validated model led to an estimate of P‐uptake by AMF hyphae that is an order of magnitude lower than rates previously estimated – a result with significant implications for the modelling of plant–soil–AMF interactions.
Author Dumont, Marc
Duncan, Simon
Jakobsen, Iver
Veelen, Arjen
Borca, Camelia
Scotson, Callum
Cooper, Laura
Mosselmans, Fred
Koebernick, Nico
McKay Fletcher, Dan
Mayon, Robbie
Petroselli, Chiara
Oldroyd, Giles
Roose, Tiina
Ruiz, Siul
Poole, Philip
Huthwelker, Thomas
Jones, David L.
Tkacz, Andrzej
Keyes, Sam
Williams, Katherine
AuthorAffiliation 1 Bioengineering Sciences Research Group Department of Mechanical Engineering School of Engineering Faculty of Engineering and Physical Sciences University of Southampton Southampton SO17 1BJ UK
2 Material Science and Technology Division Los Alamos National Laboratory Los Alamos NM 87545 USA
10 School of Natural Sciences Bangor University Bangor LL57 2DG UK
6 Crop Science Centre University of Cambridge 93 Lawrence Weaver Road Cambridge CB3 0LE UK
5 Department of Plant and Environmental Sciences University of Copenhagen Thorvaldsensvej 40 Frederiksberg DK‐1871 Denmark
9 Swiss Light Source PSI Forschungsstrasse 111 Villigen 5232 Switzerland
3 Stanford Synchrotron Radiation Lightsource SLAC National Accelerator Laboratory Menlo Park CA 94025 USA
4 School of Biological Sciences University of Southampton Southampton SO17 1BJ UK
8 Diamond Light Source Diamond House, Harwell Science & Innovation Campus Didcot OX11 0DE UK
7 Department of Plant Sciences University of Oxford South Parks Road Oxford OX1 3
AuthorAffiliation_xml – name: 10 School of Natural Sciences Bangor University Bangor LL57 2DG UK
– name: 8 Diamond Light Source Diamond House, Harwell Science & Innovation Campus Didcot OX11 0DE UK
– name: 2 Material Science and Technology Division Los Alamos National Laboratory Los Alamos NM 87545 USA
– name: 3 Stanford Synchrotron Radiation Lightsource SLAC National Accelerator Laboratory Menlo Park CA 94025 USA
– name: 6 Crop Science Centre University of Cambridge 93 Lawrence Weaver Road Cambridge CB3 0LE UK
– name: 1 Bioengineering Sciences Research Group Department of Mechanical Engineering School of Engineering Faculty of Engineering and Physical Sciences University of Southampton Southampton SO17 1BJ UK
– name: 9 Swiss Light Source PSI Forschungsstrasse 111 Villigen 5232 Switzerland
– name: 4 School of Biological Sciences University of Southampton Southampton SO17 1BJ UK
– name: 11 5673 SoilsWest, Food Futures Institute Murdoch University 90 South Street Murdoch WA 6150 Australia
– name: 7 Department of Plant Sciences University of Oxford South Parks Road Oxford OX1 3RB UK
– name: 5 Department of Plant and Environmental Sciences University of Copenhagen Thorvaldsensvej 40 Frederiksberg DK‐1871 Denmark
Author_xml – sequence: 1
  givenname: Sam
  surname: Keyes
  fullname: Keyes, Sam
  organization: University of Southampton
– sequence: 2
  givenname: Arjen
  surname: Veelen
  fullname: Veelen, Arjen
  organization: SLAC National Accelerator Laboratory
– sequence: 3
  givenname: Dan
  orcidid: 0000-0001-6569-2931
  surname: McKay Fletcher
  fullname: McKay Fletcher, Dan
  organization: University of Southampton
– sequence: 4
  givenname: Callum
  surname: Scotson
  fullname: Scotson, Callum
  organization: University of Southampton
– sequence: 5
  givenname: Nico
  surname: Koebernick
  fullname: Koebernick, Nico
  organization: University of Southampton
– sequence: 6
  givenname: Chiara
  surname: Petroselli
  fullname: Petroselli, Chiara
  organization: University of Southampton
– sequence: 7
  givenname: Katherine
  surname: Williams
  fullname: Williams, Katherine
  organization: University of Southampton
– sequence: 8
  givenname: Siul
  surname: Ruiz
  fullname: Ruiz, Siul
  organization: University of Southampton
– sequence: 9
  givenname: Laura
  surname: Cooper
  fullname: Cooper, Laura
  organization: University of Southampton
– sequence: 10
  givenname: Robbie
  surname: Mayon
  fullname: Mayon, Robbie
  organization: University of Southampton
– sequence: 11
  givenname: Simon
  surname: Duncan
  fullname: Duncan, Simon
  organization: University of Southampton
– sequence: 12
  givenname: Marc
  surname: Dumont
  fullname: Dumont, Marc
  organization: University of Southampton
– sequence: 13
  givenname: Iver
  surname: Jakobsen
  fullname: Jakobsen, Iver
  organization: University of Copenhagen
– sequence: 14
  givenname: Giles
  surname: Oldroyd
  fullname: Oldroyd, Giles
  organization: University of Cambridge
– sequence: 15
  givenname: Andrzej
  surname: Tkacz
  fullname: Tkacz, Andrzej
  organization: University of Oxford
– sequence: 16
  givenname: Philip
  surname: Poole
  fullname: Poole, Philip
  organization: University of Oxford
– sequence: 17
  givenname: Fred
  surname: Mosselmans
  fullname: Mosselmans, Fred
  organization: Diamond Light Source
– sequence: 18
  givenname: Camelia
  surname: Borca
  fullname: Borca, Camelia
  organization: PSI
– sequence: 19
  givenname: Thomas
  surname: Huthwelker
  fullname: Huthwelker, Thomas
  organization: PSI
– sequence: 20
  givenname: David L.
  surname: Jones
  fullname: Jones, David L.
  organization: Murdoch University
– sequence: 21
  givenname: Tiina
  orcidid: 0000-0001-8744-2060
  surname: Roose
  fullname: Roose, Tiina
  email: t.roose@soton.ac.uk
  organization: University of Southampton
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35043984$$D View this record in MEDLINE/PubMed
https://www.osti.gov/servlets/purl/1856234$$D View this record in Osti.gov
BookMark eNp1kU1rFTEUhoNU7G114R-QoBtdTJuvyU02ghS1Qv1YKLgLmUxyJ9eZZJrMVMZfb65TiwoGQgjn4T3vOe8JOAoxWAAeY3SGyzkPY3eGt1Kge2CDGZeVwHR7BDYIEVFxxr8eg5Oc9wghWXPyABzTGjEqBduA_fu5n_wQW91DE1OyvZ78jYV-0DsfdlCHFpaq7fvDLzo4djGXm-YM53HS3yx0KQ4wR9_DZoHdMnbaHsBhOeh1_kdRdnPY-YfgvtN9to9u31Pw5c3rzxeX1dXHt-8uXl1Vhm0RqjgxTspGcE05slZo7ph2uOa0OKaNc1JLUrecYFo3bSOwQKhtNDWYIkkIp6fg5ao7zs1gW2PDlHSvxlRmSouK2qu_K8F3ahdvlKRoi5gsAk9XgZgnr7LxkzWdiSFYMyksygopK9Dz2y4pXs82T2rw2ZQ96WDjnBUpBgmThOKCPvsH3cc5hbKDQjFUPEuMCvVipUyKOSfr7hxjpA4xqxKz-hVzYZ_8OeId-TvXApyvwHff2-X_SurDp8tV8icfULS9
CitedBy_id crossref_primary_10_1111_nph_18772
crossref_primary_10_3923_ajps_2023_414_422
crossref_primary_10_1094_MPMI_10_22_0208_FI
crossref_primary_10_3390_ma16031027
crossref_primary_10_1016_j_indcrop_2023_117151
crossref_primary_10_3390_f15030527
crossref_primary_10_1016_j_still_2022_105574
crossref_primary_10_1093_jmicro_dfad026
crossref_primary_10_1021_acs_est_2c07340
crossref_primary_10_3389_fenvs_2023_1216630
crossref_primary_10_3389_fenvs_2022_1052175
crossref_primary_10_3390_su16020634
crossref_primary_10_1007_s11242_023_01993_7
crossref_primary_10_1016_j_rhisph_2023_100669
crossref_primary_10_1016_j_soilbio_2023_109253
crossref_primary_10_3390_agronomy12112860
Cites_doi 10.1371/journal.pone.0087624
10.1111/j.1469-8137.1985.tb03653.x
10.1111/j.1469-8137.1992.tb01800.x
10.1111/j.1469-8137.2006.01771.x
10.1016/j.soilbio.2008.05.002
10.1038/nmeth.3869
10.1016/S0037-0738(99)00073-1
10.1016/j.cub.2017.10.046
10.1016/j.soilbio.2003.08.012
10.1007/s11104-010-0571-3
10.1080/00275514.1991.12026030
10.1111/ejss.12019
10.1098/rsif.2017.0560
10.1007/s00253-015-6913-6
10.1104/pp.108.129866
10.1007/s00572-005-0014-9
10.1038/s41396‐021‐01112‐8
10.1016/0038-0717(84)90089-0
10.1139/b91-012
10.1093/jxb/erv544
10.1016/0022-5193(82)90146-1
10.1111/j.1469-8137.2009.03003.x
10.1016/j.fbr.2012.01.001
10.1111/j.1365-294X.2012.05534.x
10.1016/j.tplants.2018.08.008
10.1046/j.1469-8137.2003.00737.x
10.1093/bioinformatics/bts252
10.1021/es102180a
10.1073/pnas.1000080107
10.1111/j.1469-8137.1992.tb01077.x
10.1016/B978-0-12-800259-9.00002-0
10.1098/rsif.2007.1250
10.1023/A:1026290508166
10.1016/j.rhisph.2019.100152
10.1016/S0006-3495(00)76483-6
10.2136/vzj2008.0147
10.1111/j.1365-3040.2005.01310.x
10.1016/j.cub.2020.02.087
10.3389/fpls.2014.00723
10.1038/nmeth.2019
10.1007/s11538-010-9617-1
10.1007/s11104-009-9991-3
10.1016/j.soilbio.2006.10.007
10.1016/S0022-2836(05)80360-2
10.1046/j.1365-2818.2002.01010.x
10.1007/s00216-014-7726-7
10.1104/pp.120.3.637
10.1111/j.1469-8137.1984.tb03609.x
10.1046/j.0028-646x.2001.00216.x
10.1023/A:1020972100496
10.1016/j.apsoil.2021.104012
10.1016/j.soilbio.2006.04.033
10.1007/s11104-008-9749-3
10.1111/nph.16242
10.1023/A:1002125005497
10.1023/A:1022932414788
10.1104/pp.111.175232
10.1016/0038-0717(95)00046-H
10.1038/scientificamerican0609-54
10.1111/nph.15516
10.1128/aem.63.9.3531-3538.1997
10.1016/j.fbr.2012.02.002
10.1093/jxb/erh176
10.1016/j.sab.2006.12.002
10.1104/pp.103.024380
10.1016/j.bone.2010.08.023
10.1111/j.1469-8137.2004.01145.x
10.1111/nph.14705
10.1002/jpln.200900037
10.1111/j.1469-8137.1993.tb03907.x
10.1111/j.1469-8137.2009.02835.x
10.1080/00103628309367359
10.1007/s003740000253
ContentType Journal Article
Copyright 2022 The Authors © 2022 New Phytologist Foundation
2022 The Authors New Phytologist © 2022 New Phytologist Foundation.
2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 The Authors © 2022 New Phytologist Foundation
– notice: 2022 The Authors New Phytologist © 2022 New Phytologist Foundation.
– notice: 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
CorporateAuthor Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
SLAC National Accelerator Lab., Menlo Park, CA (United States)
CorporateAuthor_xml – name: SLAC National Accelerator Lab., Menlo Park, CA (United States)
– name: Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
DBID 24P
WIN
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QO
7SN
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7X8
OIOZB
OTOTI
5PM
DOI 10.1111/nph.17980
DatabaseName Open Access: Wiley-Blackwell Open Access Journals
Wiley Online Library
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Biotechnology Research Abstracts
Ecology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
OSTI.GOV - Hybrid
OSTI.GOV
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList

Aquatic Science & Fisheries Abstracts (ASFA) Professional

MEDLINE
CrossRef
Database_xml – sequence: 1
  dbid: 24P
  name: Open Access: Wiley-Blackwell Open Access Journals
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1469-8137
EndPage 703
ExternalDocumentID 1856234
10_1111_nph_17980
35043984
NPH17980
Genre article
Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Biotechnology and Biological Sciences Research Council
  funderid: BB/L02620/1; BB/L502625/1; BB/P004180/1; BB/N013387/1; BB/R017859/1
– fundername: U.S. Department of Energy through the LANL/LDRD Program
– fundername: EPSRC
  funderid: EP/M020355/1
– fundername: NERC
  funderid: NE/L00237/1
– fundername: H2020 European Research Council
  funderid: 646809‐DIMR
– fundername: G. T. Seaborg Institute
– fundername: Biotechnology and Biological Sciences Research Council
  grantid: BB/R017859/1
– fundername: Biotechnology and Biological Sciences Research Council
  grantid: BB/L02620/1
– fundername: Biotechnology and Biological Sciences Research Council
  grantid: BB/L502625/1
– fundername: Biotechnology and Biological Sciences Research Council
  grantid: BB/N013387/1
– fundername: Biotechnology and Biological Sciences Research Council
  grantid: BB/P004180/1
– fundername: NERC
  grantid: NE/L00237/1
– fundername: ;
  grantid: 646809‐DIMR
– fundername: ;
  grantid: EP/M020355/1
– fundername: ;
  grantid: BB/L02620/1; BB/L502625/1; BB/P004180/1; BB/N013387/1; BB/R017859/1
GroupedDBID ---
-~X
.3N
.GA
.Y3
05W
0R~
10A
123
1OC
24P
29N
2WC
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
79B
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHKG
AAISJ
AAKGQ
AANLZ
AAONW
AASGY
AASVR
AAXRX
AAZKR
ABBHK
ABCQN
ABCUV
ABEFU
ABEML
ABLJU
ABPLY
ABPVW
ABTLG
ABXSQ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACNCT
ACPOU
ACQPF
ACSCC
ACSTJ
ACXBN
ACXQS
ADACV
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADULT
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUPB
AEUQT
AEUYR
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFZJQ
AGUYK
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
AQVQM
AS~
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
CBGCD
COF
CS3
CUYZI
D-E
D-F
DCZOG
DEVKO
DIK
DOOOF
DPXWK
DR2
DRFUL
DRSTM
E3Z
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FIJ
G-S
G.N
GODZA
GTFYD
H.T
H.X
HF~
HGD
HGLYW
HQ2
HTVGU
HZI
HZ~
IHE
IPNFZ
IPSME
IX1
J0M
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSODD
JST
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LPU
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NEJ
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
RCA
RIG
ROL
RX1
SA0
SUPJJ
TN5
TR2
UB1
W8V
W99
WBKPD
WHG
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XOL
YNT
YQT
YXE
ZCG
ZZTAW
~02
~IA
~KM
~WT
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QO
7SN
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7X8
AAPBV
ABHUG
ABPTK
ABWRO
ACXME
ADAWD
ADDAD
AFVGU
AGJLS
LW7
OIOZB
OTOTI
UMP
5PM
ID FETCH-LOGICAL-c4700-62cf99b86a360ee8a6f4af15633983bff9a925d62135bdb81800dba3c13092263
IEDL.DBID DR2
ISSN 0028-646X
IngestDate Tue Sep 17 21:19:16 EDT 2024
Thu May 18 22:34:48 EDT 2023
Fri Aug 16 21:42:07 EDT 2024
Fri Sep 13 08:22:12 EDT 2024
Fri Aug 23 04:11:56 EDT 2024
Sat Sep 28 08:22:21 EDT 2024
Sat Aug 24 00:56:34 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords mycorrhizas
X-ray fluorescence
X-ray computed tomography
synchrotron
plant phosphorus uptake
rhizosphere modelling
Language English
License Attribution
2022 The Authors New Phytologist © 2022 New Phytologist Foundation.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4700-62cf99b86a360ee8a6f4af15633983bff9a925d62135bdb81800dba3c13092263
Notes These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
LA-UR-21-22547
Engineering and Physical Sciences Research Council (EPSRC)
USDOE Office of Science (SC), Basic Energy Sciences (BES)
AC02-76SF00515; NE/L00237/1; 646809-DIMR; EP/M020355/1; BB/L02620/1; BB/L502625/1; BB/P004180/1; BB/N013387/1; BB/R017859/1; 89233218CNA000001
European Research Council (ERC)
NERC
USDOE National Nuclear Security Administration (NNSA)
ORCID 0000-0001-8744-2060
0000-0001-6569-2931
0000000187442060
0000000165692931
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.17980
PMID 35043984
PQID 2640226910
PQPubID 2026848
PageCount 703
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9307049
osti_scitechconnect_1856234
proquest_miscellaneous_2621249231
proquest_journals_2640226910
crossref_primary_10_1111_nph_17980
pubmed_primary_35043984
wiley_primary_10_1111_nph_17980_NPH17980
PublicationCentury 2000
PublicationDate April 2022
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: April 2022
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Lancaster
– name: United States
– name: Hoboken
PublicationTitle The New phytologist
PublicationTitleAlternate New Phytol
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Wiley
John Wiley and Sons Inc
Publisher_xml – name: Wiley Subscription Services, Inc
– name: Wiley
– name: John Wiley and Sons Inc
References 2007; 39
2004; 164
2008a; 5
2021; 167
2006; 38
1982; 98
2013; 64
1999; 120
1999; 42
2002; 60
2006; 171
1999; 128
1993; 125
2008b; 312
2003; 158
2005; 28
2011; 156
1983; 14
1984; 97
1990; 215
2014; 5
2014; 406
2005; 141
1995; 27
1984; 16
1991; 83
2011; 73
1992a; 120
2012; 28
2007; 62
2012; 26
1985; 99
2014; 9
2012; 21
2015; 6
2011; 339
1992b; 120
2010
2017; 27
1997; 63
2015; 99
2003; 35
2020; 225
2009; 172
2018; 23
2003; 256
2014; 89
2019; 221
2003; 133
2016; 13
2017; 216
2009b; 184
2003; 251
2015; 67
2004; 55
2001; 151
2011; 108
2010; 47
1991; 69
2020; 30
2017; 14
2021
2000; 79
2000; 32
2017; 10
2009a; 321
2019
2002; 206
2009; 8
2009; 300
2009; 183
2016
2011; 45
2013
2008; 40
2005; 16
2009; 149
2012; 9
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
Leake J (e_1_2_7_47_1) 2016
e_1_2_7_73_1
Kolde R (e_1_2_7_44_1) 2019
e_1_2_7_50_1
e_1_2_7_71_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_77_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_75_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_79_1
e_1_2_7_39_1
Lanzirotti A (e_1_2_7_46_1) 2010
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_80_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_67_1
Oksanen J (e_1_2_7_53_1) 2013
Schnepf A (e_1_2_7_63_1) 2005; 141
e_1_2_7_48_1
e_1_2_7_69_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_72_1
e_1_2_7_51_1
e_1_2_7_70_1
e_1_2_7_30_1
e_1_2_7_76_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_74_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_78_1
e_1_2_7_38_1
Berruti A (e_1_2_7_7_1) 2015; 6
References_xml – volume: 120
  start-page: 637
  year: 1999
  article-title: Sulfate transport and assimilation in plants
  publication-title: Plant Physiology
– volume: 120
  start-page: 509
  year: 1992b
  end-page: 516
  article-title: External hyphae of vesicular arbuscular mycorrhizal fungi associated with L. 2. Hyphal transport of P‐32 over defined distances
  publication-title: New Phytologist
– volume: 312
  start-page: 85
  year: 2008b
  end-page: 99
  article-title: Impact of growth and uptake patterns of arbuscular mycorrhizal fungi on plant phosphorus uptake – a modelling study
  publication-title: Plant and Soil
– year: 2021
  article-title: Organic nitrogen utilisation by an arbuscular mycorrhizal fungus is mediated by specific soil bacteria and a protist
  publication-title: ISME Journal
– volume: 89
  start-page: 47
  year: 2014
  end-page: 99
  article-title: Interactions between adbuscular mycorrhizal fungi and organic material substrates
  publication-title: Advances in Applied Microbiology
– volume: 149
  start-page: 549
  year: 2009
  end-page: 560
  article-title: Sulfur transfer through an arbuscular mycorrhiza
  publication-title: Plant Physiology
– volume: 216
  start-page: 124
  year: 2017
  end-page: 135
  article-title: High‐resolution synchrotron imaging shows that root hairs influence rhizosphere soil structure formation
  publication-title: New Phytologist
– volume: 14
  start-page: 239
  year: 1983
  end-page: 248
  article-title: A novel digestion technique for multi‐element plant analysis
  publication-title: Communications in Soil Science and Plant Analysis
– volume: 16
  start-page: 61
  year: 2005
  end-page: 66
  article-title: dominates arbuscular mycorrhizal communities in a heavy textured agricultural soil
  publication-title: Mycorrhiza
– volume: 164
  start-page: 175
  year: 2004
  end-page: 181
  article-title: Patterns of below‐ground plant interconnections established by means of arbuscular mycorrhizal networks
  publication-title: New Phytologist
– volume: 125
  start-page: 587
  year: 1993
  end-page: 593
  article-title: Differential hyphal morphogenesis in arbuscular mycorrhizal fungi during pre‐infection stages
  publication-title: New Phytologist
– volume: 6
  start-page: 1559
  year: 2015
  article-title: Arbuscular mycorrhizal fungi as natural biofertilizers: let's benefit from past successes
  publication-title: Frontiers in Microbiology
– volume: 339
  start-page: 231
  year: 2011
  end-page: 245
  article-title: Traits related to differences in function among three arbuscular mycorrhizal fungi
  publication-title: Plant and Soil
– volume: 35
  start-page: 1651
  year: 2003
  end-page: 1661
  article-title: Immobilized‐S, microbial biomass‐S and soil arylsulfatase activity in the rhizosphere soil of rape and barley as affected by labile substrate C and N additions
  publication-title: Soil Biology & Biochemistry
– volume: 40
  start-page: 2260
  year: 2008
  end-page: 2265
  article-title: Colonisation by arbuscular mycorrhizal and fine endophytic fungi in four woodland grasses – variation in relation to pH and aluminium
  publication-title: Soil Biology & Biochemistry
– volume: 79
  start-page: 2382
  year: 2000
  end-page: 2390
  article-title: Mapping the growth of fungal hyphae: orthogonal cell wall expansion during tip growth and the role of turgor
  publication-title: Biophysical Journal
– volume: 158
  start-page: 325
  year: 2003
  end-page: 335
  article-title: Noncircadian oscillations in amino acid transport have complementary profiles in assimilatory and foraging hyphae of
  publication-title: New Phytologist
– volume: 73
  start-page: 2175
  year: 2011
  end-page: 2200
  article-title: Modelling nutrient uptake by individual hyphae of arbuscular mycorrhizal fungi: temporal and spatial scales for an experimental design
  publication-title: Bulletin of Mathematical Biology
– volume: 99
  start-page: 245
  year: 1985
  end-page: 255
  article-title: Formation of external hyphae in soil by four species of vesicular‐arbuscular mycorrhizal fungi
  publication-title: New Phytologist
– volume: 5
  start-page: 773
  year: 2008a
  end-page: 784
  article-title: Growth model for arbuscular mycorrhizal fungi
  publication-title: Journal of the Royal Society Interface
– volume: 221
  start-page: 1878
  year: 2019
  end-page: 1889
  article-title: Imaging microstructure of the barley rhizosphere: particle packing and root hair influences
  publication-title: New Phytologist
– volume: 38
  start-page: 2803
  year: 2006
  end-page: 2815
  article-title: Biodegradation of estrone and 17 beta‐estradiol in grassland soils amended with animal wastes
  publication-title: Soil Biology & Biochemistry
– volume: 39
  start-page: 877
  year: 2007
  end-page: 890
  article-title: Sulfur K‐edge XANES spectroscopy reveals differences in sulfur speciation of bulk soils, humic acid, fulvic acid, and particle size separates
  publication-title: Soil Biology and Biochemistry
– volume: 28
  start-page: 1823
  year: 2012
  end-page: 1829
  article-title: SINA: accurate high‐throughput multiple sequence alignment of ribosomal RNA genes
  publication-title: Bioinformatics
– volume: 251
  start-page: 105
  year: 2003
  end-page: 114
  article-title: Beyond the rhizosphere: growth and function of adbuscular mycorrhizal external hyphae in sands of varying pore sizes
  publication-title: Plant and Soil
– volume: 27
  start-page: R1141
  year: 2017
  end-page: R1155
  article-title: Where is all the phosphorus?
  publication-title: Current Biology
– volume: 98
  start-page: 679
  year: 1982
  end-page: 701
  article-title: The propagation of fungal colonies – a model for tissue‐growth
  publication-title: Journal of Theoretical Biology
– volume: 27
  start-page: 1145
  year: 1995
  end-page: 1151
  article-title: P depletion and activity of phosphatases in the rhizosphere of mycorrhizal and non‐mycorrhizal cucumber ( L.)
  publication-title: Soil Biology & Biochemistry
– volume: 26
  start-page: 39
  year: 2012
  end-page: 60
  article-title: Mycorrhizal networks: mechanisms, ecology and modelling
  publication-title: Fungal Biology Reviews
– volume: 60
  start-page: 235
  year: 2002
  end-page: 316
  article-title: The biogeochemistry of sulfur at Hubbard Brook
  publication-title: Biogeochemistry
– volume: 183
  start-page: 212
  year: 2009
  end-page: 223
  article-title: DNA‐based species level detection of Glomeromycota: one PCR primer set for all arbuscular mycorrhizal fungi
  publication-title: New Phytologist
– volume: 171
  start-page: 669
  year: 2006
  end-page: 682
  article-title: Modelling the contribution of arbuscular mycorrhizal fungi to plant phosphate uptake
  publication-title: New Phytologist
– volume: 300
  start-page: 54
  year: 2009
  end-page: 59
  article-title: Phosphorus: a looming crisis
  publication-title: Scientific American
– volume: 21
  start-page: 2341
  year: 2012
  end-page: 2353
  article-title: Community assembly, species richness and nestedness of arbuscular mycorrhizal fungi in agricultural soils
  publication-title: Molecular Ecology
– year: 2019
– volume: 206
  start-page: 33
  year: 2002
  end-page: 40
  article-title: Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object
  publication-title: Journal of Microscopy
– volume: 108
  start-page: 4516
  year: 2011
  end-page: 4522
  article-title: Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 8
  start-page: 805
  year: 2009
  end-page: 809
  article-title: When roots lose contact
  publication-title: Vadose Zone Journal
– volume: 55
  start-page: 1939
  year: 2004
  end-page: 1945
  article-title: The role of soil microbes in plant sulphur nutrition
  publication-title: Journal of Experimental Botany
– volume: 67
  start-page: 1059
  year: 2015
  end-page: 1070
  article-title: Image based modeling of nutrient movement in and around the rhizosphere
  publication-title: Journal of Experimental Botany
– volume: 321
  start-page: 189
  year: 2009a
  end-page: 212
  article-title: The rhizosphere zoo: an overview of plant‐associated communities of microorganisms, including phages, bacteria, archaea, and fungi, and of some of their structuring factors
  publication-title: Plant and Soil
– volume: 9
  start-page: 676
  year: 2012
  end-page: 682
  article-title: F : an open‐source platform for biological‐image analysis
  publication-title: Nature Methods
– volume: 26
  start-page: 30
  year: 2012
  end-page: 38
  article-title: Modelling hyphal networks
  publication-title: Fungal Biology Reviews
– volume: 62
  start-page: 63
  year: 2007
  end-page: 68
  article-title: A multiplatform code for the analysis of energy‐dispersive X‐ray fluorescence spectra
  publication-title: Spectrochimica Acta Part B
– volume: 99
  start-page: 10225
  year: 2015
  end-page: 10235
  article-title: The role of mycorrhizal symbiosis in aluminum and phosphorus interactions in relation to aluminum tolerance in soybean
  publication-title: Applied Microbiology and Biotechnology
– volume: 184
  start-page: 449
  year: 2009b
  end-page: 456
  article-title: 454 Pyrosequencing analyses of forest soils reveal an unexpectedly high fungal diversity
  publication-title: New Phytologist
– volume: 16
  start-page: 669
  year: 1984
  end-page: 671
  article-title: Inorganic sulfur nutrition of the vesicular arbuscular mycorrhizal fungus
  publication-title: Soil Biology & Biochemistry
– volume: 64
  start-page: 298
  year: 2013
  end-page: 307
  article-title: A robust approach for determination of the macro‐porous volume fraction of soils with X‐ray computed tomography and an image processing protocol
  publication-title: European Journal of Soil Science
– volume: 9
  year: 2014
  article-title: Characterization of the 18S rRNA gene for designing universal eukaryote specific primers
  publication-title: PLoS ONE
– volume: 406
  start-page: 2809
  year: 2014
  end-page: 2816
  article-title: X‐ray microfluorescence (muXRF) imaging of cell wall mutants reveals biochemical changes due to gene deletions
  publication-title: Analytical and Bioanalytical Chemistry
– volume: 172
  start-page: 326
  year: 2009
  end-page: 335
  article-title: Sulfur in soils
  publication-title: Journal of Plant Nutrition and Soil Science
– volume: 97
  start-page: 437
  year: 1984
  end-page: 446
  article-title: The effect of phosphorus on the formation of hyphae in soil by the vesicular‐arbuscular mycorrhizal fungus,
  publication-title: New Phytologist
– volume: 167
  year: 2021
  article-title: Symbiotic soil fungi suppress N O emissions but facilitate nitrogen remobilization to grains in sandy but not clay soils under organic amendments
  publication-title: Applied Soil Ecology
– volume: 23
  start-page: 975
  year: 2018
  end-page: 984
  article-title: Growing research networks on mycorrhizae for mutual benefit
  publication-title: Trends in Plant Science
– volume: 128
  start-page: 171
  year: 1999
  end-page: 178
  article-title: Preparation of polished thin sections from poorly consolidated regolith and sediment materials
  publication-title: Sedimentary Geology
– volume: 10
  year: 2017
  article-title: A multi image based approach for plant fertilizer interaction
  publication-title: Rhizosphere
– volume: 45
  start-page: 2878
  year: 2011
  end-page: 2886
  article-title: Sulfur speciation in soil by S K‐edge XANES spectroscopy: comparison of spectral deconvolution and linear combination fitting
  publication-title: Environmental Science & Technology
– year: 2016
– volume: 151
  start-page: 717
  year: 2001
  end-page: 724
  article-title: The occurrence of anastomosis formation and nuclear exchange in intact arbuscular mycorrhizal networks
  publication-title: New Phytologist
– volume: 30
  start-page: 1801
  year: 2020
  end-page: 1808
  article-title: Aphid herbivory drives asymmetry in carbon for nutrient exchange between plants and an arbuscular mycorrhizal fungus
  publication-title: Current Biology
– volume: 32
  start-page: 310
  year: 2000
  end-page: 317
  article-title: Critical sulphur concentration and sulphur requirement of microbial biomass in a glucose and cellulose‐amended regosol
  publication-title: Biology and Fertility of Soils
– volume: 156
  start-page: 997
  year: 2011
  end-page: 1005
  article-title: Phosphorus dynamics: from soil to plant
  publication-title: Plant Physiology
– volume: 215
  start-page: 403
  year: 1990
  end-page: 410
  article-title: Basic local alignment search tool
  publication-title: Journal of Molecular Biology
– volume: 83
  start-page: 409
  year: 1991
  end-page: 418
  article-title: The spread of VA mycorrhizal fungal hyphae in the soil: inoculum types and external hyphal architecture
  publication-title: Mycologia
– volume: 13
  start-page: 581
  year: 2016
  end-page: 583
  article-title: D 2: high‐resolution sample inference from Illumina amplicon data
  publication-title: Nature Methods
– volume: 141
  start-page: S222
  year: 2005
  article-title: Modelling the rhizosphere
  publication-title: Comparative Biochemistry and Physiology – Part A: Molecular & Integrative Physiology
– volume: 47
  start-page: 1076
  year: 2010
  end-page: 1079
  article-title: B J: free and extensible bone image analysis in I J
  publication-title: Bone
– volume: 42
  start-page: 289
  year: 1999
  end-page: 296
  article-title: Response of three arbuscular mycorrhizal fungi to simulated acid rain and aluminium stress
  publication-title: Biologia Plantarum
– volume: 120
  start-page: 371
  year: 1992a
  end-page: 380
  article-title: External hyphae of vasicular‐arbuscular mycorrhizal fungi associated with L. 1. Spread of hyphae and phosphorus inflow into roots
  publication-title: New Phytologist
– volume: 256
  start-page: 67
  year: 2003
  end-page: 83
  article-title: The role of root exudates and allelochemicals in the rhizosphere
  publication-title: Plant and Soil
– volume: 69
  start-page: 87
  year: 1991
  end-page: 94
  article-title: A method for measuring hyphal nutrient and water‐uptake in mycorrhizal plants
  publication-title: Canadian Journal of Botany
– start-page: 27
  year: 2010
  end-page: 72
– volume: 133
  start-page: 16
  year: 2003
  end-page: 20
  article-title: Mycorrhizal fungi can dominate phosphate supply to plants irrespective of growth responses
  publication-title: Plant Physiology
– volume: 14
  start-page: 20170560.
  year: 2017
  article-title: Measurement of micro‐scale soil deformation around roots using four‐dimensional synchrotron tomography and image correlation
  publication-title: Journal of the Royal Society Interface
– volume: 28
  start-page: 642
  year: 2005
  end-page: 650
  article-title: Functional diversity in arbuscular mycorrhizas: exploitation of soil patches with different phosphate enrichment differs among fungal species
  publication-title: Plant, Cell & Environment
– volume: 63
  start-page: 3531
  year: 1997
  end-page: 3538
  article-title: Phosphorus effects on the mycelium and storage structures of an arbuscular mycorrhizal fungus as studies in the soil and roots by analysis of fatty acid signatures
  publication-title: Applied and Environmental Microbiology
– volume: 5
  start-page: 1
  year: 2014
  end-page: 7
  article-title: The role of bacteria and mycorrhiza in plant sulfur supply
  publication-title: Frontiers in Plant Science
– volume: 225
  start-page: 1476
  year: 2020
  end-page: 1490
  article-title: Root‐induced soil deformation influences Fe, S and P: rhizosphere chemistry investigated using synchrotron XRF and XANES
  publication-title: New Phytologist
– year: 2013
– ident: e_1_2_7_33_1
  doi: 10.1371/journal.pone.0087624
– ident: e_1_2_7_2_1
  doi: 10.1111/j.1469-8137.1985.tb03653.x
– ident: e_1_2_7_37_1
  doi: 10.1111/j.1469-8137.1992.tb01800.x
– ident: e_1_2_7_65_1
  doi: 10.1111/j.1469-8137.2006.01771.x
– ident: e_1_2_7_31_1
  doi: 10.1016/j.soilbio.2008.05.002
– ident: e_1_2_7_12_1
  doi: 10.1038/nmeth.3869
– start-page: 27
  volume-title: Developments in soil science
  year: 2010
  ident: e_1_2_7_46_1
  contributor:
    fullname: Lanzirotti A
– ident: e_1_2_7_13_1
  doi: 10.1016/S0037-0738(99)00073-1
– ident: e_1_2_7_32_1
  doi: 10.1016/j.cub.2017.10.046
– ident: e_1_2_7_77_1
  doi: 10.1016/j.soilbio.2003.08.012
– ident: e_1_2_7_72_1
  doi: 10.1007/s11104-010-0571-3
– ident: e_1_2_7_25_1
  doi: 10.1080/00275514.1991.12026030
– ident: e_1_2_7_40_1
  doi: 10.1111/ejss.12019
– ident: e_1_2_7_41_1
  doi: 10.1098/rsif.2017.0560
– ident: e_1_2_7_80_1
  doi: 10.1007/s00253-015-6913-6
– ident: e_1_2_7_4_1
  doi: 10.1104/pp.108.129866
– ident: e_1_2_7_50_1
  doi: 10.1007/s00572-005-0014-9
– ident: e_1_2_7_60_1
  doi: 10.1038/s41396‐021‐01112‐8
– ident: e_1_2_7_34_1
  doi: 10.1016/0038-0717(84)90089-0
– volume: 6
  start-page: 1559
  year: 2015
  ident: e_1_2_7_7_1
  article-title: Arbuscular mycorrhizal fungi as natural biofertilizers: let's benefit from past successes
  publication-title: Frontiers in Microbiology
  contributor:
    fullname: Berruti A
– ident: e_1_2_7_23_1
  doi: 10.1139/b91-012
– ident: e_1_2_7_19_1
  doi: 10.1093/jxb/erv544
– ident: e_1_2_7_22_1
  doi: 10.1016/0022-5193(82)90146-1
– ident: e_1_2_7_11_1
  doi: 10.1111/j.1469-8137.2009.03003.x
– ident: e_1_2_7_69_1
  doi: 10.1016/j.fbr.2012.01.001
– volume: 141
  start-page: S222
  year: 2005
  ident: e_1_2_7_63_1
  article-title: Modelling the rhizosphere
  publication-title: Comparative Biochemistry and Physiology – Part A: Molecular & Integrative Physiology
  contributor:
    fullname: Schnepf A
– ident: e_1_2_7_76_1
  doi: 10.1111/j.1365-294X.2012.05534.x
– ident: e_1_2_7_24_1
  doi: 10.1016/j.tplants.2018.08.008
– ident: e_1_2_7_73_1
  doi: 10.1046/j.1469-8137.2003.00737.x
– ident: e_1_2_7_58_1
  doi: 10.1093/bioinformatics/bts252
– ident: e_1_2_7_56_1
  doi: 10.1021/es102180a
– volume-title: pheatmap: Pretty Heatmaps.
  year: 2019
  ident: e_1_2_7_44_1
  contributor:
    fullname: Kolde R
– ident: e_1_2_7_14_1
  doi: 10.1073/pnas.1000080107
– ident: e_1_2_7_36_1
  doi: 10.1111/j.1469-8137.1992.tb01077.x
– ident: e_1_2_7_35_1
  doi: 10.1016/B978-0-12-800259-9.00002-0
– ident: e_1_2_7_66_1
  doi: 10.1098/rsif.2007.1250
– ident: e_1_2_7_8_1
  doi: 10.1023/A:1026290508166
– ident: e_1_2_7_51_1
  doi: 10.1016/j.rhisph.2019.100152
– ident: e_1_2_7_6_1
  doi: 10.1016/S0006-3495(00)76483-6
– ident: e_1_2_7_15_1
  doi: 10.2136/vzj2008.0147
– ident: e_1_2_7_16_1
  doi: 10.1111/j.1365-3040.2005.01310.x
– ident: e_1_2_7_17_1
  doi: 10.1016/j.cub.2020.02.087
– ident: e_1_2_7_26_1
  doi: 10.3389/fpls.2014.00723
– ident: e_1_2_7_62_1
  doi: 10.1038/nmeth.2019
– ident: e_1_2_7_64_1
  doi: 10.1007/s11538-010-9617-1
– ident: e_1_2_7_10_1
  doi: 10.1007/s11104-009-9991-3
– ident: e_1_2_7_57_1
  doi: 10.1016/j.soilbio.2006.10.007
– ident: e_1_2_7_5_1
  doi: 10.1016/S0022-2836(05)80360-2
– volume-title: MycoRhizaSoil
  year: 2016
  ident: e_1_2_7_47_1
  contributor:
    fullname: Leake J
– ident: e_1_2_7_55_1
  doi: 10.1046/j.1365-2818.2002.01010.x
– ident: e_1_2_7_59_1
  doi: 10.1007/s00216-014-7726-7
– ident: e_1_2_7_48_1
  doi: 10.1104/pp.120.3.637
– ident: e_1_2_7_3_1
  doi: 10.1111/j.1469-8137.1984.tb03609.x
– ident: e_1_2_7_28_1
  doi: 10.1046/j.0028-646x.2001.00216.x
– ident: e_1_2_7_27_1
  doi: 10.1023/A:1020972100496
– ident: e_1_2_7_79_1
  doi: 10.1016/j.apsoil.2021.104012
– ident: e_1_2_7_49_1
  doi: 10.1016/j.soilbio.2006.04.033
– ident: e_1_2_7_67_1
  doi: 10.1007/s11104-008-9749-3
– ident: e_1_2_7_75_1
  doi: 10.1111/nph.16242
– ident: e_1_2_7_78_1
  doi: 10.1023/A:1002125005497
– ident: e_1_2_7_21_1
  doi: 10.1023/A:1022932414788
– ident: e_1_2_7_68_1
  doi: 10.1104/pp.111.175232
– ident: e_1_2_7_38_1
  doi: 10.1016/0038-0717(95)00046-H
– ident: e_1_2_7_74_1
  doi: 10.1038/scientificamerican0609-54
– ident: e_1_2_7_42_1
  doi: 10.1111/nph.15516
– volume-title: vegan: community ecology package. R package v.2.0–10
  year: 2013
  ident: e_1_2_7_53_1
  contributor:
    fullname: Oksanen J
– ident: e_1_2_7_54_1
  doi: 10.1128/aem.63.9.3531-3538.1997
– ident: e_1_2_7_9_1
  doi: 10.1016/j.fbr.2012.02.002
– ident: e_1_2_7_39_1
  doi: 10.1093/jxb/erh176
– ident: e_1_2_7_71_1
  doi: 10.1016/j.sab.2006.12.002
– ident: e_1_2_7_70_1
  doi: 10.1104/pp.103.024380
– ident: e_1_2_7_20_1
  doi: 10.1016/j.bone.2010.08.023
– ident: e_1_2_7_30_1
  doi: 10.1111/j.1469-8137.2004.01145.x
– ident: e_1_2_7_43_1
  doi: 10.1111/nph.14705
– ident: e_1_2_7_61_1
  doi: 10.1002/jpln.200900037
– ident: e_1_2_7_29_1
  doi: 10.1111/j.1469-8137.1993.tb03907.x
– ident: e_1_2_7_45_1
  doi: 10.1111/j.1469-8137.2009.02835.x
– ident: e_1_2_7_52_1
  doi: 10.1080/00103628309367359
– ident: e_1_2_7_18_1
  doi: 10.1007/s003740000253
SSID ssj0009562
Score 2.5060506
Snippet Summary Phosphorus (P) is essential for plant growth. Arbuscular mycorrhizal fungi (AMF) aid its uptake by acquiring P from sources distant from roots in...
Phosphorus (P) is essential for plant growth. Arbuscular mycorrhizal fungi (AMF) aid its uptake by acquiring P from sources distant from roots in return for...
SourceID pubmedcentral
osti
proquest
crossref
pubmed
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 688
SubjectTerms Aluminium
Aluminum
Arbuscular mycorrhizas
ASTRONOMY AND ASTROPHYSICS
Colonization
Computed tomography
Fluorescence
Fungi
Growth rate
Hyphae
Inoculation
Microbiomes
Modelling
Mycorrhizae
mycorrhizas
Oxidation
Phosphorus
Plant growth
plant phosphorus uptake
Plant Roots - microbiology
rhizosphere modelling
Soil
Soil - chemistry
Soil Microbiology
Soil microorganisms
Soils
Sulfur
Sulphur
synchrotron
Synchrotrons
Tomography
Uptake
X‐ray computed tomography
X‐ray fluorescence
Title Multimodal correlative imaging and modelling of phosphorus uptake from soil by hyphae of mycorrhizal fungi
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.17980
https://www.ncbi.nlm.nih.gov/pubmed/35043984
https://www.proquest.com/docview/2640226910/abstract/
https://search.proquest.com/docview/2621249231
https://www.osti.gov/servlets/purl/1856234
https://pubmed.ncbi.nlm.nih.gov/PMC9307049
Volume 234
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb5wwEB6lqx566ftBk0Zu1UMvrIgxXqye-oq2rRpFVSPtoRIyxgSaLKAsHDa_vjNmQbt9SFUPICQPFrZnmM8w8w3ASykDPUvzzLez3PrCcuGjlkS-Qd3S2ijBXY2lLydyfiY-LaLFHrwecmF6fojxgxtZhntfk4HrdLVl5FVTTIlti_brRKRHgOgr3yLclXxgYJZCLjasQhTFM96544smNdrUn3Dm7-GS2zDW-aHjO_B9GEEffnIx7dp0aq5_IXf8zyHehdsbfMre9Ap1D_ZsdR9uvq0RQ64fwA-Xr7usMxQxVNfj0vGGs3Lpih0xXWXM1dahJHdW56wp6hUeV92KdU2rLyyjfBa2qstLlq5ZsW4KbUlwuab-ivIae0Zfe14-hLPjD9_ezf1NtQbfiFmAe1BucqXSWOpQBtbGWuZC57g9DEMVh2meK614lEl-FEZpllKOeZClOjToRRWCwPARTKq6sk-AiUwc2SDIdRBxoZWJjc0sutEslqGOY-nBi2HdkqYn5UiGzQzOWeLmzIN9WtEEkQTR4RqKGzJtgvgEEZ_w4GBY6GRjtasEwSFCGokIyoPnYzPaG_1E0ZWtO5LhVK8bYbEHj3u9GJ8hJDo4FWPnsx2NGQWIy3u3pSoLx-mt6N0rlAevnEL8fVjJyencXTz9d9F9uMUpa8MFHB3ApL3q7DPEUm16CDe4OMXz-4-fD50B_QSChh4l
link.rule.ids 230,315,786,790,891,1382,11589,27957,27958,46087,46329,46511,46753
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj5RAEK5sRhO9-H7grtoaD16YsE3TQyde1LgZdXdizG4yF0OappFxd4DswGH211vVDGTGR2I8kJBQdGi6ivqqqfoK4JWUgZ6keebbSW59YbnwUUsi36BuaW2U4K7H0slMTs_Ep3k034M3fS1Mxw8xbLiRZbjvNRk4bUhvWXlZF2Oi28KA_Rqae-QCqq98i3JX8p6DWQo53_AKUR7PcOuONxpVaFV_Qpq_J0xuA1nniY5uw7d-Dl0Cyvm4bdKxufqF3vF_J3kHbm0gKnvb6dRd2LPlPbj-rkIYub4PP1zJ7rLKUMRQa48LRx3OFkvX74jpMmOuvQ7VubMqZ3VRrfC4bFesrRt9bhmVtLBVtbhg6ZoV67rQlgSXaxqvWFzhyOhuvy8ewNnRh9P3U3_TsME3YhJgGMpNrlQaSx3KwNpYy1zoHCPEMFRxmOa50opHmeSHYZRmKZWZB1mqQ4OOVCEODB_CqKxK-xiYyMShDYJcBxEXWpnY2MyiJ81iGeo4lh687BcuqTtejqSPZ_CdJe6debBPS5ogmCBGXEOpQ6ZJEKIg6BMeHPQrnWwMd5UgPkRUIxFEefBiuIwmR_9RdGmrlmQ4texGZOzBo04xhmcIiRFOxTj4ZEdlBgGi8969Ui4KR-ut6PMrlAevnUb8fVrJ7MvUnTz5d9HncGN6enKcHH-cfd6Hm5yKOFz-0QGMmsvWPkVo1aTPnAX9BN6_IHc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Li9swEBZLWkovfT-8u23V0kMvDl5ZVix6arsN6SsspQs5FIwsybV3N7bZ2Ifsr--MHJukDyg9GAwaC0ua0XyyZ74h5KUQgZqkmfHtJLM-t4z7oCWRr0G3lNKSM1dj6ctczE75x0W02COv-1yYjh9i-OCGluH2azTw2mRbRl7W-RjZtuC8fo2LkKFKH39lW4y7gvUUzIKLxYZWCMN4hkd3nNGoAqP6E9D8PV5yG8c6RzS9Tb73Q-jiT87HbZOO9dUv7I7_OcY75NYGoNI3nUbdJXu2vEeuv60ARK7vkzOXsLusDIhoLOxx4YjDabF01Y6oKg11xXUwy51WGa3zagXXZbuibd2oc0sxoYWuquKCpmuar-tcWRRcrrG_vLiCnsHZ_igekNPp-2_vZv6mXIOv-SSAQyjTmZRpLFQoAmtjJTKuMjgfhqGMwzTLpJIsMoIdhVFqUkwyD0yqQg1uVAIKDB-SUVmV9jGh3PAjGwSZCiLGldSxtsaCHzWxCFUcC4-86NctqTtWjqQ_zcCcJW7OPHKAK5oAlEA-XI2BQ7pJAKAA5OMeOewXOtmY7SoBdAiYRgCE8sjzoRkMDv-iqNJWLcowLNgNuNgjjzq9GN4hRD44GUPnkx2NGQSQzHu3pSxyR-otcfPl0iOvnEL8fVjJ_GTmbvb_XfQZuXFyPE0-f5h_OiA3GWZwuOCjQzJqLlv7BHBVkz519vMTcIEfJg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multimodal+correlative+imaging+and+modelling+of+phosphorus+uptake+from+soil+by+hyphae+of+mycorrhizal+fungi&rft.jtitle=The+New+phytologist&rft.au=Keyes%2C+Sam&rft.au=van+Veelen%2C+Arjen&rft.au=McKay+Fletcher%2C+Dan&rft.au=Scotson%2C+Callum&rft.date=2022-04-01&rft.pub=John+Wiley+and+Sons+Inc&rft.issn=0028-646X&rft.eissn=1469-8137&rft.volume=234&rft.issue=2&rft.spage=688&rft.epage=703&rft_id=info:doi/10.1111%2Fnph.17980&rft_id=info%3Apmid%2F35043984&rft.externalDBID=PMC9307049
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon