Quantifying hot carrier and thermal contributions in plasmonic photocatalysis

Photocatalysis based on optically active, "plasmonic" metal nanoparticles has emerged as a promising approach to facilitate light-driven chemical conversions under far milder conditions than thermal catalysis. However, an understanding of the relation between thermal and electronic excitat...

Full description

Saved in:
Bibliographic Details
Published inScience (American Association for the Advancement of Science) Vol. 362; no. 6410; pp. 69 - 72
Main Authors Zhou, Linan, Swearer, Dayne F, Zhang, Chao, Robatjazi, Hossein, Zhao, Hangqi, Henderson, Luke, Dong, Liangliang, Christopher, Phillip, Carter, Emily A, Nordlander, Peter, Halas, Naomi J
Format Journal Article
LanguageEnglish
Published United States The American Association for the Advancement of Science 05.10.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Photocatalysis based on optically active, "plasmonic" metal nanoparticles has emerged as a promising approach to facilitate light-driven chemical conversions under far milder conditions than thermal catalysis. However, an understanding of the relation between thermal and electronic excitations has been lacking. We report the substantial light-induced reduction of the thermal activation barrier for ammonia decomposition on a plasmonic photocatalyst. We introduce the concept of a light-dependent activation barrier to account for the effect of light illumination on electronic and thermal excitations in a single unified picture. This framework provides insight into the specific role of hot carriers in plasmon-mediated photochemistry, which is critically important for designing energy-efficient plasmonic photocatalysts.
AbstractList Photocatalysis based on optically active, "plasmonic" metal nanoparticles has emerged as a promising approach to facilitate light-driven chemical conversions under far milder conditions than thermal catalysis. However, an understanding of the relation between thermal and electronic excitations has been lacking. We report the substantial light-induced reduction of the thermal activation barrier for ammonia decomposition on a plasmonic photocatalyst. We introduce the concept of a light-dependent activation barrier to account for the effect of light illumination on electronic and thermal excitations in a single unified picture. This framework provides insight into the specific role of hot carriers in plasmon-mediated photochemistry, which is critically important for designing energy-efficient plasmonic photocatalysts.
Plasmonic catalysts can generate hot charge carriers that can activate reactants and, in turn, reduce the overall barrier to a reaction. Zhou et al. studied the decomposition of ammonia to hydrogen on a copper alloy nanostructure that absorbed light and generated electrons that activated nitrogen atoms on ruthenium surface atoms (see the Perspective by Cortés). By measuring reaction rates at different wavelengths, light intensities, and catalyst surface temperatures, the light-induced reduction of the apparent activation barrier was quantified. Science , this issue p. 69 ; see also p. 28 A Ru-Cu alloy plasmonic photocatalyst substantially reduced the thermal activation barrier for ammonia decomposition. Photocatalysis based on optically active, “plasmonic” metal nanoparticles has emerged as a promising approach to facilitate light-driven chemical conversions under far milder conditions than thermal catalysis. However, an understanding of the relation between thermal and electronic excitations has been lacking. We report the substantial light-induced reduction of the thermal activation barrier for ammonia decomposition on a plasmonic photocatalyst. We introduce the concept of a light-dependent activation barrier to account for the effect of light illumination on electronic and thermal excitations in a single unified picture. This framework provides insight into the specific role of hot carriers in plasmon-mediated photochemistry, which is critically important for designing energy-efficient plasmonic photocatalysts.
Hot carriers reducing thermal barriersPlasmonic catalysts can generate hot charge carriers that can activate reactants and, in turn, reduce the overall barrier to a reaction. Zhou et al. studied the decomposition of ammonia to hydrogen on a copper alloy nanostructure that absorbed light and generated electrons that activated nitrogen atoms on ruthenium surface atoms (see the Perspective by Cortés). By measuring reaction rates at different wavelengths, light intensities, and catalyst surface temperatures, the light-induced reduction of the apparent activation barrier was quantified.Science, this issue p. 69; see also p. 28Photocatalysis based on optically active, “plasmonic” metal nanoparticles has emerged as a promising approach to facilitate light-driven chemical conversions under far milder conditions than thermal catalysis. However, an understanding of the relation between thermal and electronic excitations has been lacking. We report the substantial light-induced reduction of the thermal activation barrier for ammonia decomposition on a plasmonic photocatalyst. We introduce the concept of a light-dependent activation barrier to account for the effect of light illumination on electronic and thermal excitations in a single unified picture. This framework provides insight into the specific role of hot carriers in plasmon-mediated photochemistry, which is critically important for designing energy-efficient plasmonic photocatalysts.
Author Christopher, Phillip
Carter, Emily A
Dong, Liangliang
Nordlander, Peter
Robatjazi, Hossein
Zhang, Chao
Zhao, Hangqi
Zhou, Linan
Halas, Naomi J
Henderson, Luke
Swearer, Dayne F
Author_xml – sequence: 1
  givenname: Linan
  orcidid: 0000-0002-2989-1535
  surname: Zhou
  fullname: Zhou, Linan
  organization: Department of Chemistry, Rice University, Houston, TX 77005, USA
– sequence: 2
  givenname: Dayne F
  orcidid: 0000-0003-0274-4815
  surname: Swearer
  fullname: Swearer, Dayne F
  organization: Department of Chemistry, Rice University, Houston, TX 77005, USA
– sequence: 3
  givenname: Chao
  orcidid: 0000-0001-5619-341X
  surname: Zhang
  fullname: Zhang, Chao
  organization: Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA
– sequence: 4
  givenname: Hossein
  orcidid: 0000-0002-5101-263X
  surname: Robatjazi
  fullname: Robatjazi, Hossein
  organization: Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA
– sequence: 5
  givenname: Hangqi
  orcidid: 0000-0002-9422-3875
  surname: Zhao
  fullname: Zhao, Hangqi
  organization: Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA
– sequence: 6
  givenname: Luke
  orcidid: 0000-0003-3114-531X
  surname: Henderson
  fullname: Henderson, Luke
  organization: Department of Chemistry, Rice University, Houston, TX 77005, USA
– sequence: 7
  givenname: Liangliang
  orcidid: 0000-0003-3848-1439
  surname: Dong
  fullname: Dong, Liangliang
  organization: Department of Chemistry, Rice University, Houston, TX 77005, USA
– sequence: 8
  givenname: Phillip
  surname: Christopher
  fullname: Christopher, Phillip
  organization: Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, CA, 93106-5080, USA
– sequence: 9
  givenname: Emily A
  orcidid: 0000-0001-7330-7554
  surname: Carter
  fullname: Carter, Emily A
  organization: School of Engineering and Applied Science, Princeton University, Princeton, NJ 08544-5263, USA
– sequence: 10
  givenname: Peter
  orcidid: 0000-0002-1633-2937
  surname: Nordlander
  fullname: Nordlander, Peter
  email: nordland@rice.edu, halas@rice.edu
  organization: Department of Physics and Astronomy, Rice University, Houston, TX 77005, USA
– sequence: 11
  givenname: Naomi J
  orcidid: 0000-0002-8461-8494
  surname: Halas
  fullname: Halas, Naomi J
  email: nordland@rice.edu, halas@rice.edu
  organization: Department of Physics and Astronomy, Rice University, Houston, TX 77005, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30287657$$D View this record in MEDLINE/PubMed
BookMark eNpdkDtPwzAURi1URB8wsyFLLCyhfiS2M6KKl1SEkGCOHNuhrhK72M7Qf09KAwPTle4936erMwcT550B4BKjW4wJW0ZljVPmVsrESsZPwAyjsshKgugEzBCiLBOIF1Mwj3GL0HAr6RmYUkQEZwWfgZe3Xrpkm711n3DjE1QyBGsClE7DtDGhky1U3qVg6z5Z7yK0Du5aGTvvrIK7IeOVTLLdRxvPwWkj22guxrkAHw_376unbP36-Ly6W2cqZ2XKGqUM1cgoQRgvMaOk1pqYXHLEhwWSucAFK5paC4SZZhoJJWnJGBG65pTSBbg59u6C_-pNTFVnozJtK53xfawIxkzkPC8P6PU_dOv74Ibvfqg8R4yLgVoeKRV8jME01S7YToZ9hVF1MF2NpqvR9JC4Gnv7ujP6j_9VS78Bvuh-Cg
CitedBy_id crossref_primary_10_1016_j_apcatb_2021_120519
crossref_primary_10_1016_j_nanoen_2018_12_071
crossref_primary_10_1021_acs_jpcc_0c08831
crossref_primary_10_1039_D2CP05359D
crossref_primary_10_1016_j_apcatb_2019_04_035
crossref_primary_10_1021_acs_nanolett_0c03911
crossref_primary_10_1177_0003702821992771
crossref_primary_10_1039_D0SC02914A
crossref_primary_10_1039_C9NR09882H
crossref_primary_10_1039_D3CP05624D
crossref_primary_10_1021_acsnano_0c06185
crossref_primary_10_1021_acs_jpcc_9b01738
crossref_primary_10_1039_D3NA00808H
crossref_primary_10_1002_smll_201902864
crossref_primary_10_1021_acs_nanolett_3c02537
crossref_primary_10_1039_D3SC00081H
crossref_primary_10_1364_PRJ_390343
crossref_primary_10_3390_app13158711
crossref_primary_10_1021_acs_nanolett_3c01328
crossref_primary_10_1126_sciadv_aaw2205
crossref_primary_10_1038_s43586_023_00195_1
crossref_primary_10_1021_acs_energyfuels_1c04405
crossref_primary_10_1016_j_apsusc_2021_149586
crossref_primary_10_1021_acsanm_4c01756
crossref_primary_10_1039_C9NR06372B
crossref_primary_10_3390_photonics9080553
crossref_primary_10_1016_j_materresbull_2019_01_028
crossref_primary_10_1039_C9CC05228C
crossref_primary_10_1039_D2SE01455F
crossref_primary_10_1039_C9CC01935A
crossref_primary_10_1021_acs_jpcc_9b11652
crossref_primary_10_1021_acs_nanolett_9b03588
crossref_primary_10_1002_adma_202108104
crossref_primary_10_1021_acsenergylett_1c02241
crossref_primary_10_1021_acs_jpcc_9b08143
crossref_primary_10_1039_D0NR03897K
crossref_primary_10_1021_acsami_2c00221
crossref_primary_10_1002_adsu_202200045
crossref_primary_10_1002_cctc_202300919
crossref_primary_10_1002_ange_202219340
crossref_primary_10_1021_acsphotonics_2c01897
crossref_primary_10_1016_j_mattod_2023_06_017
crossref_primary_10_1021_acscatal_1c00478
crossref_primary_10_1016_j_solmat_2019_109967
crossref_primary_10_1021_acs_nanolett_1c03215
crossref_primary_10_1093_nsr_nwaa151
crossref_primary_10_1021_acsami_3c16462
crossref_primary_10_1021_jacs_9b06804
crossref_primary_10_1021_acsanm_3c05495
crossref_primary_10_1021_acssuschemeng_0c02276
crossref_primary_10_1038_s41377_020_00345_0
crossref_primary_10_1021_acsnano_1c01046
crossref_primary_10_1016_j_jare_2024_02_004
crossref_primary_10_1021_acscatal_1c02420
crossref_primary_10_1039_D0TB00351D
crossref_primary_10_3390_app9102093
crossref_primary_10_1039_D2QI00004K
crossref_primary_10_1146_annurev_physchem_061020_053501
crossref_primary_10_1515_nanoph_2019_0396
crossref_primary_10_1002_chem_202001187
crossref_primary_10_1021_acsenergylett_0c01978
crossref_primary_10_1021_acs_nanolett_3c04979
crossref_primary_10_1021_acs_nanolett_3c00013
crossref_primary_10_1007_s12274_021_4021_8
crossref_primary_10_1002_advs_202302568
crossref_primary_10_1016_j_ijhydene_2021_06_142
crossref_primary_10_1039_D3CS00462G
crossref_primary_10_1002_anie_202001152
crossref_primary_10_1021_acsnano_1c03218
crossref_primary_10_1021_acsnano_9b05523
crossref_primary_10_1016_j_cej_2020_126477
crossref_primary_10_1021_acsenergylett_1c02387
crossref_primary_10_1021_acsnano_8b09470
crossref_primary_10_1002_adma_202007623
crossref_primary_10_1093_micmic_ozad067_957
crossref_primary_10_1111_jace_16334
crossref_primary_10_1002_adfm_201808696
crossref_primary_10_1073_pnas_2311728120
crossref_primary_10_1021_acs_inorgchem_9b00329
crossref_primary_10_3390_ma16155241
crossref_primary_10_1002_anie_202405459
crossref_primary_10_1039_D3SC02167J
crossref_primary_10_1002_anie_202317740
crossref_primary_10_1002_adma_202313057
crossref_primary_10_1002_anie_202314352
crossref_primary_10_1002_cssc_202301775
crossref_primary_10_1002_er_7047
crossref_primary_10_1002_adfm_202008244
crossref_primary_10_1002_aenm_202304362
crossref_primary_10_1038_s41929_023_01045_9
crossref_primary_10_1039_D0CP04206D
crossref_primary_10_1021_acs_jpcc_3c05178
crossref_primary_10_1103_PhysRevLett_129_086801
crossref_primary_10_1016_j_jcis_2024_06_203
crossref_primary_10_1021_acs_nanolett_3c04862
crossref_primary_10_1016_j_apcatb_2021_120551
crossref_primary_10_1021_acs_accounts_9b00153
crossref_primary_10_1515_nanoph_2023_0793
crossref_primary_10_1039_D0CS00025F
crossref_primary_10_1039_D2CP00765G
crossref_primary_10_1063_5_0058737
crossref_primary_10_1002_adfm_202100342
crossref_primary_10_1021_acsnanoscienceau_1c00031
crossref_primary_10_1021_acsanm_4c00630
crossref_primary_10_1021_acsphotonics_3c01013
crossref_primary_10_1038_d41586_023_00239_2
crossref_primary_10_1016_j_colsurfa_2022_128829
crossref_primary_10_1021_acscatal_1c03811
crossref_primary_10_1021_acs_chemrev_3c00902
crossref_primary_10_1021_acscatal_9b00384
crossref_primary_10_1021_acsnano_0c09776
crossref_primary_10_1002_adma_202206700
crossref_primary_10_1021_acscatal_9b00390
crossref_primary_10_1021_jacs_1c05753
crossref_primary_10_1038_s41563_020_0737_1
crossref_primary_10_1002_ange_202216398
crossref_primary_10_1002_cptc_202100289
crossref_primary_10_1016_j_chempr_2019_09_014
crossref_primary_10_1021_jasms_0c00480
crossref_primary_10_1016_j_cattod_2021_02_004
crossref_primary_10_1021_acsnano_2c10707
crossref_primary_10_1016_j_cej_2022_135308
crossref_primary_10_1016_j_apcatb_2021_120440
crossref_primary_10_1039_D1NR06203D
crossref_primary_10_1021_acsenergylett_3c01543
crossref_primary_10_1039_C9EE04192C
crossref_primary_10_1039_C9SC04498A
crossref_primary_10_1021_acs_nanolett_0c00434
crossref_primary_10_1021_acs_nanolett_9b01121
crossref_primary_10_1021_jacs_9b02518
crossref_primary_10_1016_j_optcom_2024_130492
crossref_primary_10_1021_acs_nanolett_8b05179
crossref_primary_10_1039_D3NA00498H
crossref_primary_10_1021_jacs_2c08561
crossref_primary_10_1021_jacs_0c05031
crossref_primary_10_1126_science_aaw9545
crossref_primary_10_1021_acs_nanolett_8b05053
crossref_primary_10_1039_C9GC01010F
crossref_primary_10_1039_C9SC03360B
crossref_primary_10_1557_mrs_2019_290
crossref_primary_10_1002_solr_201900076
crossref_primary_10_3390_nano12071156
crossref_primary_10_1073_pnas_1904337116
crossref_primary_10_1021_acsnano_9b04224
crossref_primary_10_1021_acsmaterialslett_0c00479
crossref_primary_10_1002_ange_202001152
crossref_primary_10_1021_acsenergylett_2c01755
crossref_primary_10_1002_adma_202000086
crossref_primary_10_1039_D1CC03779J
crossref_primary_10_1002_adom_202101128
crossref_primary_10_1021_acs_jpcc_1c07177
crossref_primary_10_1021_acsnano_0c08101
crossref_primary_10_1039_D3TC01526B
crossref_primary_10_1002_smll_202401131
crossref_primary_10_1039_D0TA09059J
crossref_primary_10_1016_j_apsusc_2020_147934
crossref_primary_10_1021_acsabm_1c01147
crossref_primary_10_1021_acs_accounts_9b00224
crossref_primary_10_1039_D3CC04278B
crossref_primary_10_1021_acsnano_0c01704
crossref_primary_10_1002_cctc_202100699
crossref_primary_10_1016_j_matt_2020_03_019
crossref_primary_10_1002_chem_202201432
crossref_primary_10_1142_S1793604720500393
crossref_primary_10_1021_acsami_3c17101
crossref_primary_10_1007_s40843_022_2372_3
crossref_primary_10_1039_D1SC00064K
crossref_primary_10_1039_C9CC06170C
crossref_primary_10_1016_j_apcatb_2021_120341
crossref_primary_10_1016_j_ijhydene_2023_10_044
crossref_primary_10_1021_acssuschemeng_3c04328
crossref_primary_10_1021_jacs_3c02681
crossref_primary_10_1016_j_nanoen_2020_105585
crossref_primary_10_1021_acs_jpcc_9b07576
crossref_primary_10_1007_s10853_023_08391_w
crossref_primary_10_1021_acsnano_1c02347
crossref_primary_10_1039_D1CY02113C
crossref_primary_10_1002_cssc_202001290
crossref_primary_10_1016_j_joule_2022_06_019
crossref_primary_10_1016_j_mtphys_2020_100294
crossref_primary_10_1021_acs_jpcc_0c07755
crossref_primary_10_1021_acs_jpcc_2c07837
crossref_primary_10_1038_s41467_022_30291_x
crossref_primary_10_1080_23746149_2019_1619480
crossref_primary_10_1080_23746149_2020_1749884
crossref_primary_10_1073_pnas_2321852121
crossref_primary_10_3390_ma12233858
crossref_primary_10_1021_acsami_1c21607
crossref_primary_10_7498_aps_68_20190305
crossref_primary_10_1021_acsnano_0c07123
crossref_primary_10_1021_acs_nanolett_1c04692
crossref_primary_10_1002_adfm_202101103
crossref_primary_10_1021_acsami_0c04987
crossref_primary_10_1021_acs_molpharmaceut_9b00433
crossref_primary_10_1021_acs_accounts_9b00234
crossref_primary_10_1021_jacs_3c12470
crossref_primary_10_1021_acsanm_2c03953
crossref_primary_10_1021_acs_nanolett_3c01037
crossref_primary_10_1021_acscatal_0c05354
crossref_primary_10_1016_j_apcatb_2021_120598
crossref_primary_10_1021_acs_nanolett_3c04420
crossref_primary_10_1021_acs_accounts_9b00230
crossref_primary_10_1038_s41929_022_00786_3
crossref_primary_10_1021_acs_analchem_1c05323
crossref_primary_10_1021_acsnano_1c00452
crossref_primary_10_1039_D4GC00560K
crossref_primary_10_1016_j_joule_2023_03_014
crossref_primary_10_1002_ange_202012306
crossref_primary_10_1016_j_cej_2021_131139
crossref_primary_10_1002_cphc_202200136
crossref_primary_10_1002_aenm_201902935
crossref_primary_10_1021_acsnano_2c10470
crossref_primary_10_1038_s41929_023_01053_9
crossref_primary_10_1039_D1GC00409C
crossref_primary_10_1073_pnas_2212075120
crossref_primary_10_1039_D0NR06039A
crossref_primary_10_1021_acsnano_3c00758
crossref_primary_10_1364_OE_481639
crossref_primary_10_1021_acsanm_1c02742
crossref_primary_10_1016_j_apsusc_2021_149865
crossref_primary_10_1021_jacs_1c01514
crossref_primary_10_1039_D4NH00046C
crossref_primary_10_1073_pnas_2003362117
crossref_primary_10_1016_j_apcatb_2022_122262
crossref_primary_10_1021_acs_energyfuels_2c01507
crossref_primary_10_1016_j_scib_2023_10_006
crossref_primary_10_1021_acsnano_0c03629
crossref_primary_10_1016_j_nanoen_2022_107989
crossref_primary_10_1073_pnas_2217035120
crossref_primary_10_1021_acsnano_9b04938
crossref_primary_10_1021_acsphotonics_0c01065
crossref_primary_10_1126_science_aav1133
crossref_primary_10_1021_acs_nanolett_3c03585
crossref_primary_10_1021_acsnano_9b03722
crossref_primary_10_1134_S0021364019140091
crossref_primary_10_1021_acs_chemmater_1c04042
crossref_primary_10_1021_acs_nanolett_3c00195
crossref_primary_10_1515_nanoph_2019_0423
crossref_primary_10_1039_D0NR08314C
crossref_primary_10_1016_j_scitotenv_2021_146496
crossref_primary_10_1038_s41467_021_24856_5
crossref_primary_10_1002_smll_202207234
crossref_primary_10_1002_smll_201905197
crossref_primary_10_1146_annurev_physchem_090519_045502
crossref_primary_10_1016_j_cej_2020_124558
crossref_primary_10_1021_jacs_1c11547
crossref_primary_10_1039_D2TC01413K
crossref_primary_10_1016_j_xcrp_2020_100300
crossref_primary_10_1021_acsphotonics_2c00048
crossref_primary_10_1016_j_nantod_2019_05_001
crossref_primary_10_1021_acsnano_9b04702
crossref_primary_10_1021_acsami_9b10917
crossref_primary_10_1016_j_apmt_2018_12_007
crossref_primary_10_1002_smsc_202300048
crossref_primary_10_1016_j_apcatb_2023_123520
crossref_primary_10_1016_j_ijhydene_2022_10_233
crossref_primary_10_1021_acs_jpcc_1c09717
crossref_primary_10_1021_acs_jpcc_9b10395
crossref_primary_10_1021_acs_nanolett_8b04950
crossref_primary_10_1063_5_0021197
crossref_primary_10_1021_acs_analchem_2c02643
crossref_primary_10_1021_jacs_1c10447
crossref_primary_10_1021_acscatal_1c01851
crossref_primary_10_1002_ange_202001863
crossref_primary_10_1021_acs_jpclett_2c00709
crossref_primary_10_1063_5_0097713
crossref_primary_10_1021_acs_jpcc_2c03150
crossref_primary_10_1021_acsnano_3c06047
crossref_primary_10_1038_s43246_024_00510_7
crossref_primary_10_1515_nanoph_2022_0071
crossref_primary_10_1007_s10562_021_03669_7
crossref_primary_10_1002_ange_202405459
crossref_primary_10_1515_nanoph_2022_0073
crossref_primary_10_2139_ssrn_3273392
crossref_primary_10_1038_s41467_019_14150_w
crossref_primary_10_1016_j_ensm_2021_08_004
crossref_primary_10_1016_j_nanoen_2022_107521
crossref_primary_10_1021_acs_analchem_8b05653
crossref_primary_10_1007_s12274_019_2599_x
crossref_primary_10_3390_catal11010018
crossref_primary_10_1016_j_nanoen_2021_106357
crossref_primary_10_1021_acsami_4c02425
crossref_primary_10_1063_1674_0068_cjcp2211160
crossref_primary_10_1002_anie_202011805
crossref_primary_10_1021_acsami_1c06540
crossref_primary_10_1002_anie_202311911
crossref_primary_10_1021_acsami_9b20843
crossref_primary_10_1063_5_0087808
crossref_primary_10_1515_nanoph_2023_0710
crossref_primary_10_1016_j_trechm_2021_08_006
crossref_primary_10_1515_nanoph_2019_0447
crossref_primary_10_1016_j_jallcom_2022_167945
crossref_primary_10_1002_ange_202314352
crossref_primary_10_1103_PhysRevApplied_14_034045
crossref_primary_10_1002_ange_202317740
crossref_primary_10_1016_j_surfin_2023_102725
crossref_primary_10_1021_acsanm_9b00538
crossref_primary_10_1021_acsnano_2c12314
crossref_primary_10_1039_D3NA00835E
crossref_primary_10_3390_nano12081329
crossref_primary_10_1016_j_apcatb_2022_121263
crossref_primary_10_1021_acsaem_3c01929
crossref_primary_10_1021_acs_jpcc_3c07754
crossref_primary_10_1002_adom_202301496
crossref_primary_10_1039_D0NR00295J
crossref_primary_10_1126_sciadv_abf0962
crossref_primary_10_1146_annurev_physchem_062422_014911
crossref_primary_10_2139_ssrn_3995392
crossref_primary_10_1021_acs_nanolett_8b04706
crossref_primary_10_1016_j_cej_2022_136907
crossref_primary_10_1039_D1NR07822D
crossref_primary_10_1088_1361_6528_abe827
crossref_primary_10_1002_adom_202200463
crossref_primary_10_1021_acsenergylett_1c00392
crossref_primary_10_1021_acs_jpca_2c02354
crossref_primary_10_1021_acs_jpcc_1c05175
crossref_primary_10_1021_acsnano_4c03913
crossref_primary_10_1016_j_cej_2024_150374
crossref_primary_10_1021_acs_jpcc_0c10957
crossref_primary_10_1021_acs_jpcc_3c03188
crossref_primary_10_1016_j_reactfunctpolym_2021_104983
crossref_primary_10_1021_acsami_1c03454
crossref_primary_10_1016_j_saa_2021_120803
crossref_primary_10_1021_acs_nanolett_1c00932
crossref_primary_10_1016_j_jece_2020_104912
crossref_primary_10_1038_s41467_020_16833_1
crossref_primary_10_1039_C9CP02100K
crossref_primary_10_1016_j_nanoen_2021_106333
crossref_primary_10_1007_s41918_022_00132_y
crossref_primary_10_1039_D1CC06014G
crossref_primary_10_1021_acs_jpcc_9b08181
crossref_primary_10_1016_j_cocis_2019_01_014
crossref_primary_10_1063_5_0024392
crossref_primary_10_1126_science_abd2847
crossref_primary_10_1002_anie_202016346
crossref_primary_10_1016_j_mtcomm_2022_104503
crossref_primary_10_1038_s41929_020_0466_5
crossref_primary_10_1063_1_5095669
crossref_primary_10_1021_acsnano_0c00673
crossref_primary_10_1088_1361_6463_ac2cac
crossref_primary_10_1063_5_0174141
crossref_primary_10_1007_s42452_020_2648_9
crossref_primary_10_1016_j_cej_2021_132028
crossref_primary_10_1002_anie_202215201
crossref_primary_10_1021_acs_chemrev_2c00897
crossref_primary_10_1039_C9SC06480J
crossref_primary_10_1021_acs_jpcc_9b08179
crossref_primary_10_3390_catal12070747
crossref_primary_10_1016_j_cej_2023_141491
crossref_primary_10_1016_j_electacta_2021_137820
crossref_primary_10_1021_acsenergylett_1c02591
crossref_primary_10_1039_C9NR02130B
crossref_primary_10_1016_j_trechm_2024_05_006
crossref_primary_10_1063_5_0094890
crossref_primary_10_1002_adfm_202100768
crossref_primary_10_1021_acsenergylett_2c00142
crossref_primary_10_1016_j_isci_2022_103737
crossref_primary_10_1021_jacs_0c02523
crossref_primary_10_1038_s41563_020_00851_x
crossref_primary_10_1002_adfm_202305198
crossref_primary_10_1007_s12274_019_2457_x
crossref_primary_10_1021_acs_chemrev_9b00187
crossref_primary_10_1021_acsnano_2c10205
crossref_primary_10_1021_acscatal_3c00937
crossref_primary_10_1063_1_5124911
crossref_primary_10_1002_cjoc_202000682
crossref_primary_10_1021_acs_iecr_9b02850
crossref_primary_10_1039_C9SC05947D
crossref_primary_10_1021_acsami_0c18508
crossref_primary_10_1021_acs_jpcc_0c07479
crossref_primary_10_1021_acsami_9b16286
crossref_primary_10_1002_cctc_201901112
crossref_primary_10_1021_acsenergylett_0c02110
crossref_primary_10_1039_C8CS00864G
crossref_primary_10_1063_1_5139291
crossref_primary_10_1039_D3RE00059A
crossref_primary_10_1063_4_0000120
crossref_primary_10_3389_fchem_2021_742794
crossref_primary_10_1039_D3CP01415K
crossref_primary_10_1515_pac_2021_0205
crossref_primary_10_1002_adma_202100325
crossref_primary_10_1021_acsnano_3c11418
crossref_primary_10_1002_ange_202001531
crossref_primary_10_1016_j_ijhydene_2019_08_126
crossref_primary_10_1021_acs_nanolett_2c03188
crossref_primary_10_1021_acs_analchem_1c03666
crossref_primary_10_1039_D0SC06470J
crossref_primary_10_1039_D4CP00950A
crossref_primary_10_1039_D1NR04009J
crossref_primary_10_1063_5_0163354
crossref_primary_10_1007_s11164_021_04512_9
crossref_primary_10_1016_j_apcatb_2022_121222
crossref_primary_10_1039_C9RA10804A
crossref_primary_10_1016_j_bios_2019_111577
crossref_primary_10_1016_j_mtchem_2022_101250
crossref_primary_10_1021_jacs_9b00700
crossref_primary_10_1002_ange_202311911
crossref_primary_10_1021_acs_langmuir_8b04313
crossref_primary_10_1063_5_0028208
crossref_primary_10_1038_s41560_019_0517_9
crossref_primary_10_1007_s10562_021_03554_3
crossref_primary_10_1038_s41467_023_38982_9
crossref_primary_10_1002_wcms_1665
crossref_primary_10_1039_D3EN00123G
crossref_primary_10_1016_j_resconrec_2022_106645
crossref_primary_10_1021_acsami_2c03183
crossref_primary_10_1021_acsnano_2c00035
crossref_primary_10_1021_acs_nanolett_2c02327
crossref_primary_10_1039_D2CP04072G
crossref_primary_10_1021_acsenergylett_9b01857
crossref_primary_10_1002_adma_202404738
crossref_primary_10_1103_PhysRevLett_124_163901
crossref_primary_10_1021_acsenergylett_9b01617
crossref_primary_10_1002_adma_202005900
crossref_primary_10_1063_5_0005334
crossref_primary_10_1016_j_apcatb_2020_118965
crossref_primary_10_1021_acs_inorgchem_3c03677
crossref_primary_10_1021_acs_chemrev_1c00473
crossref_primary_10_1038_s41467_024_48842_9
crossref_primary_10_1039_D3SC05847F
crossref_primary_10_1021_acs_jpcc_0c08381
crossref_primary_10_1016_j_cej_2020_124719
crossref_primary_10_1016_j_joule_2019_03_003
crossref_primary_10_1002_cptc_202300025
crossref_primary_10_1021_acsenergylett_9b00990
crossref_primary_10_1021_acsphotonics_0c00945
crossref_primary_10_1021_acs_accounts_0c00378
crossref_primary_10_1021_acsnano_9b02924
crossref_primary_10_1002_anie_202001863
crossref_primary_10_1039_D3CP05450K
crossref_primary_10_1021_acs_nanolett_0c01050
crossref_primary_10_1039_D3EY00191A
crossref_primary_10_1002_ange_201901926
crossref_primary_10_1002_cey2_127
crossref_primary_10_1093_jmicro_dfab050
crossref_primary_10_1021_acs_nanolett_1c00503
crossref_primary_10_1038_s41467_024_44954_4
crossref_primary_10_1021_jacs_3c06688
crossref_primary_10_1039_D2CP05705K
crossref_primary_10_1021_acsami_9b15780
crossref_primary_10_1021_acssuschemeng_1c03692
crossref_primary_10_1002_advs_202100362
crossref_primary_10_1021_acsami_0c09684
crossref_primary_10_1016_j_jcat_2020_01_006
crossref_primary_10_2139_ssrn_4135080
crossref_primary_10_1007_s10854_022_08671_2
crossref_primary_10_1021_acs_nanolett_0c02121
crossref_primary_10_1063_5_0134993
crossref_primary_10_1007_s11581_019_03329_2
crossref_primary_10_1021_acsphotonics_9b00367
crossref_primary_10_1016_j_apcatb_2022_121792
crossref_primary_10_1016_j_jechem_2021_08_036
crossref_primary_10_1039_D3NA00523B
crossref_primary_10_1016_j_optcom_2023_129962
crossref_primary_10_1021_acs_jpclett_9b00822
crossref_primary_10_1021_acs_accounts_2c00001
crossref_primary_10_1021_acs_jpcc_1c07803
crossref_primary_10_1021_acs_jpclett_3c03120
crossref_primary_10_1126_sciadv_abp9285
crossref_primary_10_1073_pnas_1902194116
crossref_primary_10_1016_j_surfrep_2021_100532
crossref_primary_10_1002_anie_202216562
crossref_primary_10_1016_j_saa_2024_124523
crossref_primary_10_1016_j_saa_2023_123137
crossref_primary_10_1021_jacs_3c07647
crossref_primary_10_1038_s41570_022_00368_8
crossref_primary_10_1021_acsenergylett_1c00645
crossref_primary_10_1021_acsphotonics_1c00113
crossref_primary_10_1021_acs_chemmater_9b03575
crossref_primary_10_1021_acs_chemrev_4c00165
crossref_primary_10_1021_acsnano_0c03004
crossref_primary_10_1039_D3NR00745F
crossref_primary_10_1002_lpor_202000330
crossref_primary_10_1021_acs_jpclett_0c01006
crossref_primary_10_1021_acs_jpcc_0c00757
crossref_primary_10_1557_s43577_021_00151_y
crossref_primary_10_1021_acs_jpclett_3c01051
crossref_primary_10_1016_j_apcatb_2022_121302
crossref_primary_10_1039_D2NR03887K
crossref_primary_10_1002_lpor_202100017
crossref_primary_10_3390_catal12020126
crossref_primary_10_1021_acs_jpclett_1c04242
crossref_primary_10_1021_acs_jpclett_9b00848
crossref_primary_10_2139_ssrn_4092243
crossref_primary_10_1007_s11433_023_2183_5
crossref_primary_10_1007_s11468_023_02034_1
crossref_primary_10_1021_acsnano_2c08191
crossref_primary_10_1364_OME_444859
crossref_primary_10_1002_ange_201907443
crossref_primary_10_1016_j_solmat_2024_112728
crossref_primary_10_1021_acs_jpclett_0c02530
crossref_primary_10_1364_OME_422707
crossref_primary_10_1021_acs_nanolett_2c01035
crossref_primary_10_1021_acs_jpcc_0c01436
crossref_primary_10_1021_acs_accounts_3c00196
crossref_primary_10_1063_10_0013776
crossref_primary_10_1116_1_5130721
crossref_primary_10_35848_1347_4065_ab8433
crossref_primary_10_1002_adma_202008145
crossref_primary_10_1002_ange_202304452
crossref_primary_10_1038_s41467_019_10771_3
crossref_primary_10_3390_nano10122377
crossref_primary_10_1002_smll_202308823
crossref_primary_10_1021_acs_nanolett_9b00940
crossref_primary_10_1021_acsphotonics_3c00951
crossref_primary_10_1126_science_abn5636
crossref_primary_10_1021_acscatal_2c01793
crossref_primary_10_1002_andp_202000557
crossref_primary_10_1016_j_snb_2019_127330
crossref_primary_10_1021_acscatal_3c02076
crossref_primary_10_1021_acs_chemmater_3c00369
crossref_primary_10_1016_j_isci_2020_101107
crossref_primary_10_1021_acs_jpclett_0c02640
crossref_primary_10_1038_s41377_021_00609_3
crossref_primary_10_7498_aps_72_20222467
crossref_primary_10_1002_wcms_1577
crossref_primary_10_1002_anie_202001701
crossref_primary_10_1039_D3CY00018D
crossref_primary_10_1002_smll_201901286
crossref_primary_10_1021_jacs_8b13062
crossref_primary_10_1021_acs_jpclett_2c00239
crossref_primary_10_1016_j_jclepro_2024_141849
crossref_primary_10_1016_j_nanoen_2021_106189
crossref_primary_10_1016_j_snb_2024_135422
crossref_primary_10_1038_s41893_021_00841_0
crossref_primary_10_1063_5_0083239
crossref_primary_10_1021_jacs_0c13342
crossref_primary_10_1007_s40820_020_0375_9
crossref_primary_10_1021_acs_nanolett_9b05255
crossref_primary_10_1039_C9CC04888J
crossref_primary_10_1021_acsphotonics_1c00167
crossref_primary_10_1021_jacs_1c10526
crossref_primary_10_1021_acsnano_1c08431
crossref_primary_10_1021_acscatal_0c03617
crossref_primary_10_1021_acscatal_0c04826
crossref_primary_10_1016_j_apcata_2024_119620
crossref_primary_10_1021_acs_nanolett_3c00735
crossref_primary_10_1002_ange_202001701
crossref_primary_10_1039_D1GC01953H
crossref_primary_10_1021_acscatal_0c01204
crossref_primary_10_3390_molecules24122324
crossref_primary_10_1039_C9NR10041E
crossref_primary_10_1039_D1CC01339D
crossref_primary_10_1039_D0TC05558A
crossref_primary_10_1038_s41467_020_18016_4
crossref_primary_10_1117_1_JNP_14_046011
crossref_primary_10_1021_acs_analchem_9b04754
crossref_primary_10_1021_acs_jpcc_3c04436
crossref_primary_10_1021_acscatal_0c00343
crossref_primary_10_1063_5_0123892
crossref_primary_10_1063_1_5141765
crossref_primary_10_1021_acs_jpcc_3c04680
crossref_primary_10_1002_chem_202104623
crossref_primary_10_1021_acs_chemmater_9b04100
crossref_primary_10_1021_acs_jpcc_9b01007
crossref_primary_10_1007_s12274_023_5620_3
crossref_primary_10_1103_PhysRevB_105_235431
crossref_primary_10_1021_acsami_0c15192
crossref_primary_10_1016_j_matt_2022_09_029
crossref_primary_10_1515_nanoph_2023_0149
crossref_primary_10_1016_j_scib_2023_02_007
crossref_primary_10_1021_acs_jpcc_0c01367
crossref_primary_10_1039_D1CS00782C
crossref_primary_10_1039_D3TA02889E
crossref_primary_10_1002_adom_202300824
crossref_primary_10_1002_ange_202016346
crossref_primary_10_1364_OSAC_376809
crossref_primary_10_1007_s10311_023_01608_z
crossref_primary_10_1039_D2RA04132D
crossref_primary_10_1002_cjoc_202400177
crossref_primary_10_1021_acsami_8b14858
crossref_primary_10_1021_acsnano_3c07833
crossref_primary_10_1002_advs_202103926
crossref_primary_10_1016_j_apsusc_2021_152100
crossref_primary_10_1016_j_apcatb_2022_121734
crossref_primary_10_1073_pnas_2305932120
crossref_primary_10_1021_acsanm_0c01569
crossref_primary_10_1016_j_cej_2019_122484
crossref_primary_10_1039_C9FD00001A
crossref_primary_10_1021_acs_chemrev_3c00159
crossref_primary_10_1021_acs_nanolett_0c04837
crossref_primary_10_1088_1361_6528_abd128
crossref_primary_10_1149_1945_7111_ac5c97
crossref_primary_10_1016_j_jclepro_2023_136054
crossref_primary_10_1039_D4NR00474D
crossref_primary_10_1039_D1TA09151D
crossref_primary_10_1021_acs_jpclett_0c02286
crossref_primary_10_1088_1361_6463_ad3d6c
crossref_primary_10_1016_j_apcatb_2021_120808
crossref_primary_10_1021_acs_chemmater_2c01426
crossref_primary_10_1016_j_electacta_2019_01_172
crossref_primary_10_1021_acsenergylett_9b01688
crossref_primary_10_1021_acscatal_9b05401
crossref_primary_10_1021_acsphotonics_1c01938
crossref_primary_10_1021_jacs_3c14586
crossref_primary_10_1039_D0NR01875A
crossref_primary_10_1038_s41570_022_00448_9
crossref_primary_10_1021_acsabm_1c01197
crossref_primary_10_1016_j_cej_2022_139833
crossref_primary_10_1021_acsphotonics_9b01393
crossref_primary_10_1021_acsanm_0c01334
crossref_primary_10_1016_j_apcatb_2023_123085
crossref_primary_10_1021_jacs_2c04202
crossref_primary_10_1002_adom_201801590
crossref_primary_10_1002_anie_202304452
crossref_primary_10_1002_smll_202101638
crossref_primary_10_1021_acs_chemrev_2c00078
crossref_primary_10_1021_jacs_1c12069
crossref_primary_10_1016_j_carbon_2020_01_058
crossref_primary_10_1021_acsami_2c09789
crossref_primary_10_1007_s40843_019_1285_8
crossref_primary_10_1002_nano_202200010
crossref_primary_10_1016_j_cej_2021_130863
crossref_primary_10_1016_j_joule_2018_12_024
crossref_primary_10_1038_s41467_023_38235_9
crossref_primary_10_1039_D0TA03114C
crossref_primary_10_1126_science_abb3457
crossref_primary_10_1016_j_ijhydene_2022_09_224
crossref_primary_10_1016_j_chempr_2019_07_021
crossref_primary_10_1016_j_physrep_2022_07_002
crossref_primary_10_1002_aenm_202200186
crossref_primary_10_1021_acsami_4c00709
crossref_primary_10_1016_S1872_2067_19_63393_0
crossref_primary_10_1016_j_apsusc_2022_155555
crossref_primary_10_1021_acs_nanolett_2c00203
crossref_primary_10_1002_anie_201907443
crossref_primary_10_1021_acs_jpclett_2c03894
crossref_primary_10_1039_D0SC03335A
crossref_primary_10_1021_acs_jpcc_8b12054
crossref_primary_10_1021_acs_iecr_3c04648
crossref_primary_10_1016_j_surfin_2023_103137
crossref_primary_10_1021_acsnano_0c05383
crossref_primary_10_1021_acsami_2c08685
crossref_primary_10_1021_acs_nanolett_0c01308
crossref_primary_10_1007_s10853_020_05033_3
crossref_primary_10_1021_acs_nanolett_0c02992
crossref_primary_10_1039_D0CP00368A
crossref_primary_10_1002_smll_201903674
crossref_primary_10_1021_acs_jpcc_4c01873
crossref_primary_10_1021_acsnano_0c08773
crossref_primary_10_1038_s41551_020_00634_4
crossref_primary_10_1126_science_aaw9367
crossref_primary_10_1021_acs_nanolett_0c00213
crossref_primary_10_7498_aps_68_20190345
crossref_primary_10_7498_aps_68_20190476
crossref_primary_10_1038_s41467_022_32721_2
crossref_primary_10_1002_adfm_202302265
crossref_primary_10_1021_acs_accounts_1c00309
crossref_primary_10_1021_acs_nanolett_2c00791
crossref_primary_10_1126_sciadv_abm9303
crossref_primary_10_1002_ange_202216562
crossref_primary_10_1016_j_snb_2020_129220
crossref_primary_10_1073_pnas_1908296116
crossref_primary_10_1021_jacs_1c04315
crossref_primary_10_1039_D2TC00491G
crossref_primary_10_1002_adfm_202304208
crossref_primary_10_1002_anie_202216398
crossref_primary_10_1021_acs_jpcc_2c03961
crossref_primary_10_1002_ange_202011805
crossref_primary_10_1021_acsami_0c04941
crossref_primary_10_1021_acscatal_3c02525
crossref_primary_10_1021_acsnano_9b05030
crossref_primary_10_1063_5_0053320
crossref_primary_10_1021_acs_jpcc_0c04672
crossref_primary_10_1063_5_0078621
crossref_primary_10_3390_nanoenergyadv4010002
crossref_primary_10_1039_D0NR06293F
crossref_primary_10_1063_5_0098110
crossref_primary_10_1063_5_0013945
crossref_primary_10_1088_1361_6463_ac918f
crossref_primary_10_1039_D0SC04651E
crossref_primary_10_1021_acsanm_3c00026
crossref_primary_10_1039_D1TA00386K
crossref_primary_10_1021_acsenergylett_0c00989
crossref_primary_10_1016_j_apmt_2021_101238
crossref_primary_10_1039_D1ME00016K
crossref_primary_10_1002_adma_202313366
crossref_primary_10_1063_5_0023623
crossref_primary_10_1002_adfm_201908239
crossref_primary_10_1002_solr_201900242
crossref_primary_10_1134_S0021364019160069
crossref_primary_10_1016_j_joule_2023_12_013
crossref_primary_10_1016_j_nanoen_2021_105801
crossref_primary_10_1021_acsphotonics_2c00506
crossref_primary_10_1002_anie_202001531
crossref_primary_10_1021_acs_accounts_9b00280
crossref_primary_10_1021_acscatal_4c00024
crossref_primary_10_1039_D0SC05898J
crossref_primary_10_1126_sciadv_aax0939
crossref_primary_10_1364_OE_419614
crossref_primary_10_1002_eem2_12416
crossref_primary_10_1021_acs_accounts_9b00287
crossref_primary_10_1002_anie_202012306
crossref_primary_10_1002_smll_202309983
crossref_primary_10_1038_s41929_022_00768_5
crossref_primary_10_1073_pnas_2022109118
crossref_primary_10_1016_j_cej_2022_136482
crossref_primary_10_1021_acs_jpclett_0c03694
crossref_primary_10_1016_j_cclet_2021_07_059
crossref_primary_10_1016_j_fuel_2022_127035
crossref_primary_10_1007_s12274_020_2694_z
crossref_primary_10_1016_j_cclet_2022_108049
crossref_primary_10_1039_C8FD00147B
crossref_primary_10_1021_acs_inorgchem_0c01325
crossref_primary_10_1016_j_envres_2021_111259
crossref_primary_10_1016_j_isci_2020_101982
crossref_primary_10_1039_D1CY01454D
crossref_primary_10_1016_j_ijhydene_2023_01_357
crossref_primary_10_1063_1_5098386
crossref_primary_10_1364_OL_441709
crossref_primary_10_1021_acsami_3c10325
crossref_primary_10_1016_j_apcatb_2023_123166
crossref_primary_10_1038_s41427_020_00259_8
crossref_primary_10_1063_5_0032763
crossref_primary_10_1002_cctc_202000795
crossref_primary_10_1002_anie_202219340
crossref_primary_10_1021_acs_jpcc_3c03639
crossref_primary_10_1002_solr_202100611
crossref_primary_10_1021_acsnano_1c07983
crossref_primary_10_1038_s41563_020_00858_4
crossref_primary_10_1016_j_jmst_2022_08_030
crossref_primary_10_1021_acs_jpcc_3c00006
crossref_primary_10_1016_j_apcatb_2020_119226
crossref_primary_10_1002_ange_202215201
crossref_primary_10_1002_solr_202000094
crossref_primary_10_1038_s41467_019_13820_z
crossref_primary_10_1002_anie_201901926
crossref_primary_10_1021_acs_nanolett_1c03503
crossref_primary_10_1063_10_0022560
crossref_primary_10_1016_j_apsusc_2019_06_109
crossref_primary_10_1038_s44160_023_00387_3
crossref_primary_10_1016_j_cej_2024_148963
crossref_primary_10_1038_s41929_022_00767_6
crossref_primary_10_1002_adma_202305402
crossref_primary_10_1021_acsphotonics_3c00893
crossref_primary_10_1039_C9NA00729F
crossref_primary_10_1016_j_apcatb_2019_118299
crossref_primary_10_1021_acsnano_3c03118
crossref_primary_10_1021_acs_jpcc_4c00226
crossref_primary_10_1021_acsnano_4c04562
crossref_primary_10_3390_chemosensors11030196
crossref_primary_10_1073_pnas_1905311116
crossref_primary_10_1038_s41467_022_34738_z
crossref_primary_10_1016_j_jtice_2021_03_011
crossref_primary_10_1002_smll_202004557
crossref_primary_10_1039_D3CC01512B
crossref_primary_10_7498_aps_68_20190276
crossref_primary_10_1021_acsnano_4c06858
crossref_primary_10_1021_acscatal_0c02244
crossref_primary_10_1021_acs_nanolett_1c02784
crossref_primary_10_1016_j_apcatb_2020_119352
crossref_primary_10_1016_j_apcatb_2020_119473
crossref_primary_10_1021_acscatal_0c03336
crossref_primary_10_1021_acsnano_3c07601
crossref_primary_10_1021_jacs_0c04491
crossref_primary_10_1039_D0CS00357C
crossref_primary_10_1021_jacs_9b13909
crossref_primary_10_1002_smll_202305369
Cites_doi 10.1007/s11244-016-0653-4
10.1016/0021-9517(80)90403-0
10.1021/j100304a034
10.1016/j.chemphys.2004.08.005
10.1038/s41467-017-00055-z
10.1021/acsphotonics.7b00881
10.1002/1521-4125(200011)23:11<956::AID-CEAT956>3.0.CO;2-L
10.1038/ncomms14542
10.1021/acsnano.6b06510
10.1021/acs.jpcc.7b12080
10.1073/pnas.1609769113
10.1039/C2EE02865D
10.1021/acs.nanolett.6b01373
10.1016/j.progsurf.2004.09.001
10.1039/f19848001595
10.1021/acscentsci.7b00122
10.1021/ie900144x
10.1103/PhysRevLett.61.1321
10.1016/j.applthermaleng.2011.06.022
10.1038/s41557-018-0003-1
10.1093/acprof:oso/9780198705093.001.0001
10.1016/j.cattod.2014.07.050
10.1021/acscatal.7b00115
10.1021/acs.chemrev.7b00430
10.1039/c3cp50442e
10.1021/acs.nanolett.7b04776
10.1021/nl070648a
10.1021/ja01645a057
10.1021/cr050161r
10.1006/jcat.1997.1877
10.1080/01614948509342359
10.1103/PhysRevB.84.035415
10.1016/j.ijhydene.2010.12.022
10.1142/2340-part1
10.1016/j.susc.2008.10.059
10.1063/1.1310662
10.1038/ncomms8797
10.1021/acsnano.5b06623
10.1021/acsnano.8b00352
10.1038/nmat3454
10.1021/acsami.7b13043
10.1021/acs.nanolett.6b03582
ContentType Journal Article
Copyright Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works
Copyright_xml – notice: Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
– notice: Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works
DBID NPM
AAYXX
CITATION
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
DOI 10.1126/science.aat6967
DatabaseName PubMed
CrossRef
Aluminium Industry Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Solid State and Superconductivity Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Ecology Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Entomology Abstracts
Animal Behavior Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList PubMed
CrossRef
Materials Research Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Biology
EISSN 1095-9203
EndPage 72
ExternalDocumentID 10_1126_science_aat6967
30287657
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--Z
-DZ
-ET
-~X
.-4
..I
.55
.DC
08G
0B8
0R~
0WA
123
18M
2FS
2KS
2WC
34G
36B
39C
3R3
53G
5RE
66.
6OB
6TJ
7X2
7~K
85S
8F7
AABCJ
AACGO
AAIKC
AAMNW
AANCE
AAWTO
ABBHK
ABCQX
ABDBF
ABDEX
ABEFU
ABIVO
ABOCM
ABPLY
ABPPZ
ABQIJ
ABTLG
ABWJO
ABXSQ
ABZEH
ACBEA
ACBEC
ACGFO
ACGFS
ACGOD
ACIWK
ACMJI
ACNCT
ACPRK
ACQOY
ADACV
ADDRP
ADMHC
ADUKH
AEGBM
AENEX
AEUPB
AEXZC
AFFDN
AFFNX
AFHKK
AFQFN
AFRAH
AFRQD
AGFXO
AGNAY
AGSOS
AHMBA
AIDAL
AIDUJ
AJGZS
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ASPBG
AVWKF
B-7
BKF
BLC
C45
C51
CS3
DB2
DCCCD
DU5
EBS
EJD
EMOBN
ESX
F5P
FA8
FEDTE
GX1
HZ~
I.T
IAO
IEA
IGG
IGS
IH2
IHR
INH
INR
IOF
IOV
IPO
IPSME
IPY
ISE
JAAYA
JBMMH
JCF
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
K-O
KCC
L7B
LSO
LU7
M0P
MQT
MVM
N9A
NEJ
NHB
NPM
O9-
OCB
OFXIZ
OGEVE
OK1
OMK
OVD
P-O
P2P
PQQKQ
PZZ
QS-
RHF
RHI
RXW
SA0
SC5
SJN
TAE
TEORI
TN5
TWZ
UBW
UCV
UHB
UIG
UKR
UMD
UNMZH
UQL
USG
VQA
VVN
WH7
WI4
X7M
XJF
XZL
Y6R
YCJ
YK4
YKV
YNT
YOJ
YR2
YRY
YSQ
YV5
YWH
YYP
YYQ
YZZ
ZCA
ZE2
ZKG
~02
~G0
~KM
~ZZ
AAYXX
CITATION
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
ID FETCH-LOGICAL-c469t-fcce3d0ec826791632bdd2e4a7076790a481565fbd8016d6d08ca396628db7333
ISSN 0036-8075
IngestDate Wed Dec 04 07:01:59 EST 2024
Thu Oct 10 20:26:25 EDT 2024
Fri Dec 06 05:48:19 EST 2024
Wed Oct 16 00:49:15 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6410
Language English
License Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c469t-fcce3d0ec826791632bdd2e4a7076790a481565fbd8016d6d08ca396628db7333
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-1633-2937
0000-0001-5619-341X
0000-0002-9422-3875
0000-0003-3114-531X
0000-0003-0274-4815
0000-0001-7330-7554
0000-0002-8461-8494
0000-0002-5101-263X
0000-0002-2989-1535
0000-0003-3848-1439
OpenAccessLink https://science.sciencemag.org/content/sci/362/6410/69.full.pdf
PMID 30287657
PQID 2116440678
PQPubID 1256
PageCount 4
ParticipantIDs proquest_miscellaneous_2116847493
proquest_journals_2116440678
crossref_primary_10_1126_science_aat6967
pubmed_primary_30287657
PublicationCentury 2000
PublicationDate 2018-10-05
PublicationDateYYYYMMDD 2018-10-05
PublicationDate_xml – month: 10
  year: 2018
  text: 2018-10-05
  day: 05
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Science (American Association for the Advancement of Science)
PublicationTitleAlternate Science
PublicationYear 2018
Publisher The American Association for the Advancement of Science
Publisher_xml – name: The American Association for the Advancement of Science
References 30287648 - Science. 2018 Oct 5;362(6410):28-29
e_1_3_2_26_2
e_1_3_2_27_2
e_1_3_2_28_2
e_1_3_2_29_2
e_1_3_2_41_2
e_1_3_2_40_2
e_1_3_2_20_2
e_1_3_2_43_2
e_1_3_2_21_2
e_1_3_2_42_2
e_1_3_2_22_2
e_1_3_2_45_2
e_1_3_2_23_2
e_1_3_2_44_2
e_1_3_2_24_2
e_1_3_2_25_2
e_1_3_2_9_2
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_16_2
e_1_3_2_37_2
e_1_3_2_7_2
e_1_3_2_17_2
e_1_3_2_6_2
e_1_3_2_18_2
e_1_3_2_39_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_32_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_5_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_4_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_3_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_2_2
e_1_3_2_14_2
e_1_3_2_35_2
References_xml – ident: e_1_3_2_14_2
  doi: 10.1007/s11244-016-0653-4
– ident: e_1_3_2_12_2
  doi: 10.1016/0021-9517(80)90403-0
– ident: e_1_3_2_27_2
  doi: 10.1021/j100304a034
– ident: e_1_3_2_19_2
  doi: 10.1016/j.chemphys.2004.08.005
– ident: e_1_3_2_18_2
  doi: 10.1038/s41467-017-00055-z
– ident: e_1_3_2_32_2
  doi: 10.1021/acsphotonics.7b00881
– ident: e_1_3_2_38_2
  doi: 10.1002/1521-4125(200011)23:11<956::AID-CEAT956>3.0.CO;2-L
– ident: e_1_3_2_9_2
  doi: 10.1038/ncomms14542
– ident: e_1_3_2_20_2
  doi: 10.1021/acsnano.6b06510
– ident: e_1_3_2_8_2
  doi: 10.1021/acs.jpcc.7b12080
– ident: e_1_3_2_5_2
  doi: 10.1073/pnas.1609769113
– ident: e_1_3_2_42_2
– ident: e_1_3_2_15_2
  doi: 10.1039/C2EE02865D
– ident: e_1_3_2_11_2
  doi: 10.1021/acs.nanolett.6b01373
– ident: e_1_3_2_26_2
  doi: 10.1016/j.progsurf.2004.09.001
– ident: e_1_3_2_28_2
  doi: 10.1039/f19848001595
– ident: e_1_3_2_23_2
  doi: 10.1021/acscentsci.7b00122
– ident: e_1_3_2_30_2
  doi: 10.1021/ie900144x
– ident: e_1_3_2_36_2
  doi: 10.1103/PhysRevLett.61.1321
– ident: e_1_3_2_24_2
  doi: 10.1016/j.applthermaleng.2011.06.022
– ident: e_1_3_2_33_2
  doi: 10.1038/s41557-018-0003-1
– ident: e_1_3_2_43_2
  doi: 10.1093/acprof:oso/9780198705093.001.0001
– ident: e_1_3_2_17_2
  doi: 10.1016/j.cattod.2014.07.050
– ident: e_1_3_2_31_2
  doi: 10.1021/acscatal.7b00115
– ident: e_1_3_2_41_2
– ident: e_1_3_2_2_2
  doi: 10.1021/acs.chemrev.7b00430
– ident: e_1_3_2_40_2
  doi: 10.1039/c3cp50442e
– ident: e_1_3_2_7_2
  doi: 10.1021/acs.nanolett.7b04776
– ident: e_1_3_2_22_2
  doi: 10.1021/nl070648a
– ident: e_1_3_2_16_2
  doi: 10.1021/ja01645a057
– ident: e_1_3_2_35_2
  doi: 10.1021/cr050161r
– ident: e_1_3_2_13_2
  doi: 10.1006/jcat.1997.1877
– ident: e_1_3_2_39_2
  doi: 10.1080/01614948509342359
– ident: e_1_3_2_44_2
  doi: 10.1103/PhysRevB.84.035415
– ident: e_1_3_2_25_2
  doi: 10.1016/j.ijhydene.2010.12.022
– ident: e_1_3_2_34_2
  doi: 10.1142/2340-part1
– ident: e_1_3_2_29_2
  doi: 10.1016/j.susc.2008.10.059
– ident: e_1_3_2_45_2
  doi: 10.1063/1.1310662
– ident: e_1_3_2_3_2
  doi: 10.1038/ncomms8797
– ident: e_1_3_2_21_2
  doi: 10.1021/acsnano.5b06623
– ident: e_1_3_2_37_2
  doi: 10.1021/acsnano.8b00352
– ident: e_1_3_2_6_2
  doi: 10.1038/nmat3454
– ident: e_1_3_2_10_2
  doi: 10.1021/acsami.7b13043
– ident: e_1_3_2_4_2
  doi: 10.1021/acs.nanolett.6b03582
SSID ssj0009593
Score 2.7393975
Snippet Photocatalysis based on optically active, "plasmonic" metal nanoparticles has emerged as a promising approach to facilitate light-driven chemical conversions...
Plasmonic catalysts can generate hot charge carriers that can activate reactants and, in turn, reduce the overall barrier to a reaction. Zhou et al. studied...
Hot carriers reducing thermal barriersPlasmonic catalysts can generate hot charge carriers that can activate reactants and, in turn, reduce the overall barrier...
SourceID proquest
crossref
pubmed
SourceType Aggregation Database
Index Database
StartPage 69
SubjectTerms Activation
Ammonia
Catalysis
Catalysts
Copper base alloys
Current carriers
Decomposition
Decomposition reactions
Energy efficiency
Light
Light effects
Luminous intensity
Nanoparticles
Nitrogen atoms
Optical activity
Organic chemistry
Photocatalysis
Photocatalysts
Photochemistry
Reduction
Ruthenium
Surface temperature
Wavelengths
Title Quantifying hot carrier and thermal contributions in plasmonic photocatalysis
URI https://www.ncbi.nlm.nih.gov/pubmed/30287657
https://www.proquest.com/docview/2116440678
https://search.proquest.com/docview/2116847493
Volume 362
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9UwFA_XieDLcPPr6pQIPsyHXtqkTXofx3QOYYK4wcWXkjQpV9F2uJax_UX-mZ40p725zgvTl3JJb9LS88v5SE7Oj5DXibTcWKUjbksWpZW1kVLGRnMjwXixsmLGnUY--SiOz9IPi2wxmfwKspa6Vs_K67-eK_kfqUIbyNWdkv0HyY6DQgP8BvnCFSQM11vJ-FOnXK5Pf1Jp2bSuzHRPQIdZkaBzv_tcdCS18jnj4C__6HlvzqFP06_fuLIkoZs6zHhwP8ctnUCQY27igc8gGBIKsFuwuvBl2XQY-q9g-PlyZNF-q67Ayz2a3Vi_PlyqZrUZpFX7TV17gm2w6hbLheNqReJLx2ahBsYCyN7-eKUbO75IFvNQK3PBAviJFJNfvZr17C5osD31z01TEJBX2plSrZh74o_1ott_GMMxRbEPjpgocIACB7hD7rqSi46l4f0i2VjeGYtIBcezhjdY9382BDW9c3P6gGxjVEIPPMR2yMTWu-Se5ym92iU7KNgLuo9lyt88JCcB-iggiSL6KKCPIvroGvro15qO6KPr6HtEzo7enR4eR0jOEZWpmLdRVZYwy2NbQnwqIcbgTBvDbKpkLKEhVn0doqzSBnwgYYSJ81JxCK5ZbrTknD8mW3VT26eECqUh6k8qVVmRylLlHPpbrnmmcnhYPiX7wycrzn0NlmKDeKZkb_ikBU7Ui4IlCXj9zi2bklfjbVCjbm9M1bbp_H_AUUvnfEqeeFGMz-Lgg0uRyWe3f4_n5P4K_Xtkq_3Z2Rfgvbb6ZQ-c38fVods
link.rule.ids 314,780,784,27924,27925
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantifying+hot+carrier+and+thermal+contributions+in+plasmonic+photocatalysis&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Zhou%2C+Linan&rft.au=Swearer%2C+Dayne+F.&rft.au=Zhang%2C+Chao&rft.au=Robatjazi%2C+Hossein&rft.date=2018-10-05&rft.issn=0036-8075&rft.eissn=1095-9203&rft.volume=362&rft.issue=6410&rft.spage=69&rft.epage=72&rft_id=info:doi/10.1126%2Fscience.aat6967&rft.externalDBID=n%2Fa&rft.externalDocID=10_1126_science_aat6967
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon