Quantifying hot carrier and thermal contributions in plasmonic photocatalysis
Photocatalysis based on optically active, "plasmonic" metal nanoparticles has emerged as a promising approach to facilitate light-driven chemical conversions under far milder conditions than thermal catalysis. However, an understanding of the relation between thermal and electronic excitat...
Saved in:
Published in | Science (American Association for the Advancement of Science) Vol. 362; no. 6410; pp. 69 - 72 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
The American Association for the Advancement of Science
05.10.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Photocatalysis based on optically active, "plasmonic" metal nanoparticles has emerged as a promising approach to facilitate light-driven chemical conversions under far milder conditions than thermal catalysis. However, an understanding of the relation between thermal and electronic excitations has been lacking. We report the substantial light-induced reduction of the thermal activation barrier for ammonia decomposition on a plasmonic photocatalyst. We introduce the concept of a light-dependent activation barrier to account for the effect of light illumination on electronic and thermal excitations in a single unified picture. This framework provides insight into the specific role of hot carriers in plasmon-mediated photochemistry, which is critically important for designing energy-efficient plasmonic photocatalysts. |
---|---|
AbstractList | Photocatalysis based on optically active, "plasmonic" metal nanoparticles has emerged as a promising approach to facilitate light-driven chemical conversions under far milder conditions than thermal catalysis. However, an understanding of the relation between thermal and electronic excitations has been lacking. We report the substantial light-induced reduction of the thermal activation barrier for ammonia decomposition on a plasmonic photocatalyst. We introduce the concept of a light-dependent activation barrier to account for the effect of light illumination on electronic and thermal excitations in a single unified picture. This framework provides insight into the specific role of hot carriers in plasmon-mediated photochemistry, which is critically important for designing energy-efficient plasmonic photocatalysts. Plasmonic catalysts can generate hot charge carriers that can activate reactants and, in turn, reduce the overall barrier to a reaction. Zhou et al. studied the decomposition of ammonia to hydrogen on a copper alloy nanostructure that absorbed light and generated electrons that activated nitrogen atoms on ruthenium surface atoms (see the Perspective by Cortés). By measuring reaction rates at different wavelengths, light intensities, and catalyst surface temperatures, the light-induced reduction of the apparent activation barrier was quantified. Science , this issue p. 69 ; see also p. 28 A Ru-Cu alloy plasmonic photocatalyst substantially reduced the thermal activation barrier for ammonia decomposition. Photocatalysis based on optically active, “plasmonic” metal nanoparticles has emerged as a promising approach to facilitate light-driven chemical conversions under far milder conditions than thermal catalysis. However, an understanding of the relation between thermal and electronic excitations has been lacking. We report the substantial light-induced reduction of the thermal activation barrier for ammonia decomposition on a plasmonic photocatalyst. We introduce the concept of a light-dependent activation barrier to account for the effect of light illumination on electronic and thermal excitations in a single unified picture. This framework provides insight into the specific role of hot carriers in plasmon-mediated photochemistry, which is critically important for designing energy-efficient plasmonic photocatalysts. Hot carriers reducing thermal barriersPlasmonic catalysts can generate hot charge carriers that can activate reactants and, in turn, reduce the overall barrier to a reaction. Zhou et al. studied the decomposition of ammonia to hydrogen on a copper alloy nanostructure that absorbed light and generated electrons that activated nitrogen atoms on ruthenium surface atoms (see the Perspective by Cortés). By measuring reaction rates at different wavelengths, light intensities, and catalyst surface temperatures, the light-induced reduction of the apparent activation barrier was quantified.Science, this issue p. 69; see also p. 28Photocatalysis based on optically active, “plasmonic” metal nanoparticles has emerged as a promising approach to facilitate light-driven chemical conversions under far milder conditions than thermal catalysis. However, an understanding of the relation between thermal and electronic excitations has been lacking. We report the substantial light-induced reduction of the thermal activation barrier for ammonia decomposition on a plasmonic photocatalyst. We introduce the concept of a light-dependent activation barrier to account for the effect of light illumination on electronic and thermal excitations in a single unified picture. This framework provides insight into the specific role of hot carriers in plasmon-mediated photochemistry, which is critically important for designing energy-efficient plasmonic photocatalysts. |
Author | Christopher, Phillip Carter, Emily A Dong, Liangliang Nordlander, Peter Robatjazi, Hossein Zhang, Chao Zhao, Hangqi Zhou, Linan Halas, Naomi J Henderson, Luke Swearer, Dayne F |
Author_xml | – sequence: 1 givenname: Linan orcidid: 0000-0002-2989-1535 surname: Zhou fullname: Zhou, Linan organization: Department of Chemistry, Rice University, Houston, TX 77005, USA – sequence: 2 givenname: Dayne F orcidid: 0000-0003-0274-4815 surname: Swearer fullname: Swearer, Dayne F organization: Department of Chemistry, Rice University, Houston, TX 77005, USA – sequence: 3 givenname: Chao orcidid: 0000-0001-5619-341X surname: Zhang fullname: Zhang, Chao organization: Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA – sequence: 4 givenname: Hossein orcidid: 0000-0002-5101-263X surname: Robatjazi fullname: Robatjazi, Hossein organization: Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA – sequence: 5 givenname: Hangqi orcidid: 0000-0002-9422-3875 surname: Zhao fullname: Zhao, Hangqi organization: Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA – sequence: 6 givenname: Luke orcidid: 0000-0003-3114-531X surname: Henderson fullname: Henderson, Luke organization: Department of Chemistry, Rice University, Houston, TX 77005, USA – sequence: 7 givenname: Liangliang orcidid: 0000-0003-3848-1439 surname: Dong fullname: Dong, Liangliang organization: Department of Chemistry, Rice University, Houston, TX 77005, USA – sequence: 8 givenname: Phillip surname: Christopher fullname: Christopher, Phillip organization: Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, CA, 93106-5080, USA – sequence: 9 givenname: Emily A orcidid: 0000-0001-7330-7554 surname: Carter fullname: Carter, Emily A organization: School of Engineering and Applied Science, Princeton University, Princeton, NJ 08544-5263, USA – sequence: 10 givenname: Peter orcidid: 0000-0002-1633-2937 surname: Nordlander fullname: Nordlander, Peter email: nordland@rice.edu, halas@rice.edu organization: Department of Physics and Astronomy, Rice University, Houston, TX 77005, USA – sequence: 11 givenname: Naomi J orcidid: 0000-0002-8461-8494 surname: Halas fullname: Halas, Naomi J email: nordland@rice.edu, halas@rice.edu organization: Department of Physics and Astronomy, Rice University, Houston, TX 77005, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30287657$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkDtPwzAURi1URB8wsyFLLCyhfiS2M6KKl1SEkGCOHNuhrhK72M7Qf09KAwPTle4936erMwcT550B4BKjW4wJW0ZljVPmVsrESsZPwAyjsshKgugEzBCiLBOIF1Mwj3GL0HAr6RmYUkQEZwWfgZe3Xrpkm711n3DjE1QyBGsClE7DtDGhky1U3qVg6z5Z7yK0Du5aGTvvrIK7IeOVTLLdRxvPwWkj22guxrkAHw_376unbP36-Ly6W2cqZ2XKGqUM1cgoQRgvMaOk1pqYXHLEhwWSucAFK5paC4SZZhoJJWnJGBG65pTSBbg59u6C_-pNTFVnozJtK53xfawIxkzkPC8P6PU_dOv74Ibvfqg8R4yLgVoeKRV8jME01S7YToZ9hVF1MF2NpqvR9JC4Gnv7ujP6j_9VS78Bvuh-Cg |
CitedBy_id | crossref_primary_10_1016_j_apcatb_2021_120519 crossref_primary_10_1016_j_nanoen_2018_12_071 crossref_primary_10_1021_acs_jpcc_0c08831 crossref_primary_10_1039_D2CP05359D crossref_primary_10_1016_j_apcatb_2019_04_035 crossref_primary_10_1021_acs_nanolett_0c03911 crossref_primary_10_1177_0003702821992771 crossref_primary_10_1039_D0SC02914A crossref_primary_10_1039_C9NR09882H crossref_primary_10_1039_D3CP05624D crossref_primary_10_1021_acsnano_0c06185 crossref_primary_10_1021_acs_jpcc_9b01738 crossref_primary_10_1039_D3NA00808H crossref_primary_10_1002_smll_201902864 crossref_primary_10_1021_acs_nanolett_3c02537 crossref_primary_10_1039_D3SC00081H crossref_primary_10_1364_PRJ_390343 crossref_primary_10_3390_app13158711 crossref_primary_10_1021_acs_nanolett_3c01328 crossref_primary_10_1126_sciadv_aaw2205 crossref_primary_10_1038_s43586_023_00195_1 crossref_primary_10_1021_acs_energyfuels_1c04405 crossref_primary_10_1016_j_apsusc_2021_149586 crossref_primary_10_1021_acsanm_4c01756 crossref_primary_10_1039_C9NR06372B crossref_primary_10_3390_photonics9080553 crossref_primary_10_1016_j_materresbull_2019_01_028 crossref_primary_10_1039_C9CC05228C crossref_primary_10_1039_D2SE01455F crossref_primary_10_1039_C9CC01935A crossref_primary_10_1021_acs_jpcc_9b11652 crossref_primary_10_1021_acs_nanolett_9b03588 crossref_primary_10_1002_adma_202108104 crossref_primary_10_1021_acsenergylett_1c02241 crossref_primary_10_1021_acs_jpcc_9b08143 crossref_primary_10_1039_D0NR03897K crossref_primary_10_1021_acsami_2c00221 crossref_primary_10_1002_adsu_202200045 crossref_primary_10_1002_cctc_202300919 crossref_primary_10_1002_ange_202219340 crossref_primary_10_1021_acsphotonics_2c01897 crossref_primary_10_1016_j_mattod_2023_06_017 crossref_primary_10_1021_acscatal_1c00478 crossref_primary_10_1016_j_solmat_2019_109967 crossref_primary_10_1021_acs_nanolett_1c03215 crossref_primary_10_1093_nsr_nwaa151 crossref_primary_10_1021_acsami_3c16462 crossref_primary_10_1021_jacs_9b06804 crossref_primary_10_1021_acsanm_3c05495 crossref_primary_10_1021_acssuschemeng_0c02276 crossref_primary_10_1038_s41377_020_00345_0 crossref_primary_10_1021_acsnano_1c01046 crossref_primary_10_1016_j_jare_2024_02_004 crossref_primary_10_1021_acscatal_1c02420 crossref_primary_10_1039_D0TB00351D crossref_primary_10_3390_app9102093 crossref_primary_10_1039_D2QI00004K crossref_primary_10_1146_annurev_physchem_061020_053501 crossref_primary_10_1515_nanoph_2019_0396 crossref_primary_10_1002_chem_202001187 crossref_primary_10_1021_acsenergylett_0c01978 crossref_primary_10_1021_acs_nanolett_3c04979 crossref_primary_10_1021_acs_nanolett_3c00013 crossref_primary_10_1007_s12274_021_4021_8 crossref_primary_10_1002_advs_202302568 crossref_primary_10_1016_j_ijhydene_2021_06_142 crossref_primary_10_1039_D3CS00462G crossref_primary_10_1002_anie_202001152 crossref_primary_10_1021_acsnano_1c03218 crossref_primary_10_1021_acsnano_9b05523 crossref_primary_10_1016_j_cej_2020_126477 crossref_primary_10_1021_acsenergylett_1c02387 crossref_primary_10_1021_acsnano_8b09470 crossref_primary_10_1002_adma_202007623 crossref_primary_10_1093_micmic_ozad067_957 crossref_primary_10_1111_jace_16334 crossref_primary_10_1002_adfm_201808696 crossref_primary_10_1073_pnas_2311728120 crossref_primary_10_1021_acs_inorgchem_9b00329 crossref_primary_10_3390_ma16155241 crossref_primary_10_1002_anie_202405459 crossref_primary_10_1039_D3SC02167J crossref_primary_10_1002_anie_202317740 crossref_primary_10_1002_adma_202313057 crossref_primary_10_1002_anie_202314352 crossref_primary_10_1002_cssc_202301775 crossref_primary_10_1002_er_7047 crossref_primary_10_1002_adfm_202008244 crossref_primary_10_1002_aenm_202304362 crossref_primary_10_1038_s41929_023_01045_9 crossref_primary_10_1039_D0CP04206D crossref_primary_10_1021_acs_jpcc_3c05178 crossref_primary_10_1103_PhysRevLett_129_086801 crossref_primary_10_1016_j_jcis_2024_06_203 crossref_primary_10_1021_acs_nanolett_3c04862 crossref_primary_10_1016_j_apcatb_2021_120551 crossref_primary_10_1021_acs_accounts_9b00153 crossref_primary_10_1515_nanoph_2023_0793 crossref_primary_10_1039_D0CS00025F crossref_primary_10_1039_D2CP00765G crossref_primary_10_1063_5_0058737 crossref_primary_10_1002_adfm_202100342 crossref_primary_10_1021_acsnanoscienceau_1c00031 crossref_primary_10_1021_acsanm_4c00630 crossref_primary_10_1021_acsphotonics_3c01013 crossref_primary_10_1038_d41586_023_00239_2 crossref_primary_10_1016_j_colsurfa_2022_128829 crossref_primary_10_1021_acscatal_1c03811 crossref_primary_10_1021_acs_chemrev_3c00902 crossref_primary_10_1021_acscatal_9b00384 crossref_primary_10_1021_acsnano_0c09776 crossref_primary_10_1002_adma_202206700 crossref_primary_10_1021_acscatal_9b00390 crossref_primary_10_1021_jacs_1c05753 crossref_primary_10_1038_s41563_020_0737_1 crossref_primary_10_1002_ange_202216398 crossref_primary_10_1002_cptc_202100289 crossref_primary_10_1016_j_chempr_2019_09_014 crossref_primary_10_1021_jasms_0c00480 crossref_primary_10_1016_j_cattod_2021_02_004 crossref_primary_10_1021_acsnano_2c10707 crossref_primary_10_1016_j_cej_2022_135308 crossref_primary_10_1016_j_apcatb_2021_120440 crossref_primary_10_1039_D1NR06203D crossref_primary_10_1021_acsenergylett_3c01543 crossref_primary_10_1039_C9EE04192C crossref_primary_10_1039_C9SC04498A crossref_primary_10_1021_acs_nanolett_0c00434 crossref_primary_10_1021_acs_nanolett_9b01121 crossref_primary_10_1021_jacs_9b02518 crossref_primary_10_1016_j_optcom_2024_130492 crossref_primary_10_1021_acs_nanolett_8b05179 crossref_primary_10_1039_D3NA00498H crossref_primary_10_1021_jacs_2c08561 crossref_primary_10_1021_jacs_0c05031 crossref_primary_10_1126_science_aaw9545 crossref_primary_10_1021_acs_nanolett_8b05053 crossref_primary_10_1039_C9GC01010F crossref_primary_10_1039_C9SC03360B crossref_primary_10_1557_mrs_2019_290 crossref_primary_10_1002_solr_201900076 crossref_primary_10_3390_nano12071156 crossref_primary_10_1073_pnas_1904337116 crossref_primary_10_1021_acsnano_9b04224 crossref_primary_10_1021_acsmaterialslett_0c00479 crossref_primary_10_1002_ange_202001152 crossref_primary_10_1021_acsenergylett_2c01755 crossref_primary_10_1002_adma_202000086 crossref_primary_10_1039_D1CC03779J crossref_primary_10_1002_adom_202101128 crossref_primary_10_1021_acs_jpcc_1c07177 crossref_primary_10_1021_acsnano_0c08101 crossref_primary_10_1039_D3TC01526B crossref_primary_10_1002_smll_202401131 crossref_primary_10_1039_D0TA09059J crossref_primary_10_1016_j_apsusc_2020_147934 crossref_primary_10_1021_acsabm_1c01147 crossref_primary_10_1021_acs_accounts_9b00224 crossref_primary_10_1039_D3CC04278B crossref_primary_10_1021_acsnano_0c01704 crossref_primary_10_1002_cctc_202100699 crossref_primary_10_1016_j_matt_2020_03_019 crossref_primary_10_1002_chem_202201432 crossref_primary_10_1142_S1793604720500393 crossref_primary_10_1021_acsami_3c17101 crossref_primary_10_1007_s40843_022_2372_3 crossref_primary_10_1039_D1SC00064K crossref_primary_10_1039_C9CC06170C crossref_primary_10_1016_j_apcatb_2021_120341 crossref_primary_10_1016_j_ijhydene_2023_10_044 crossref_primary_10_1021_acssuschemeng_3c04328 crossref_primary_10_1021_jacs_3c02681 crossref_primary_10_1016_j_nanoen_2020_105585 crossref_primary_10_1021_acs_jpcc_9b07576 crossref_primary_10_1007_s10853_023_08391_w crossref_primary_10_1021_acsnano_1c02347 crossref_primary_10_1039_D1CY02113C crossref_primary_10_1002_cssc_202001290 crossref_primary_10_1016_j_joule_2022_06_019 crossref_primary_10_1016_j_mtphys_2020_100294 crossref_primary_10_1021_acs_jpcc_0c07755 crossref_primary_10_1021_acs_jpcc_2c07837 crossref_primary_10_1038_s41467_022_30291_x crossref_primary_10_1080_23746149_2019_1619480 crossref_primary_10_1080_23746149_2020_1749884 crossref_primary_10_1073_pnas_2321852121 crossref_primary_10_3390_ma12233858 crossref_primary_10_1021_acsami_1c21607 crossref_primary_10_7498_aps_68_20190305 crossref_primary_10_1021_acsnano_0c07123 crossref_primary_10_1021_acs_nanolett_1c04692 crossref_primary_10_1002_adfm_202101103 crossref_primary_10_1021_acsami_0c04987 crossref_primary_10_1021_acs_molpharmaceut_9b00433 crossref_primary_10_1021_acs_accounts_9b00234 crossref_primary_10_1021_jacs_3c12470 crossref_primary_10_1021_acsanm_2c03953 crossref_primary_10_1021_acs_nanolett_3c01037 crossref_primary_10_1021_acscatal_0c05354 crossref_primary_10_1016_j_apcatb_2021_120598 crossref_primary_10_1021_acs_nanolett_3c04420 crossref_primary_10_1021_acs_accounts_9b00230 crossref_primary_10_1038_s41929_022_00786_3 crossref_primary_10_1021_acs_analchem_1c05323 crossref_primary_10_1021_acsnano_1c00452 crossref_primary_10_1039_D4GC00560K crossref_primary_10_1016_j_joule_2023_03_014 crossref_primary_10_1002_ange_202012306 crossref_primary_10_1016_j_cej_2021_131139 crossref_primary_10_1002_cphc_202200136 crossref_primary_10_1002_aenm_201902935 crossref_primary_10_1021_acsnano_2c10470 crossref_primary_10_1038_s41929_023_01053_9 crossref_primary_10_1039_D1GC00409C crossref_primary_10_1073_pnas_2212075120 crossref_primary_10_1039_D0NR06039A crossref_primary_10_1021_acsnano_3c00758 crossref_primary_10_1364_OE_481639 crossref_primary_10_1021_acsanm_1c02742 crossref_primary_10_1016_j_apsusc_2021_149865 crossref_primary_10_1021_jacs_1c01514 crossref_primary_10_1039_D4NH00046C crossref_primary_10_1073_pnas_2003362117 crossref_primary_10_1016_j_apcatb_2022_122262 crossref_primary_10_1021_acs_energyfuels_2c01507 crossref_primary_10_1016_j_scib_2023_10_006 crossref_primary_10_1021_acsnano_0c03629 crossref_primary_10_1016_j_nanoen_2022_107989 crossref_primary_10_1073_pnas_2217035120 crossref_primary_10_1021_acsnano_9b04938 crossref_primary_10_1021_acsphotonics_0c01065 crossref_primary_10_1126_science_aav1133 crossref_primary_10_1021_acs_nanolett_3c03585 crossref_primary_10_1021_acsnano_9b03722 crossref_primary_10_1134_S0021364019140091 crossref_primary_10_1021_acs_chemmater_1c04042 crossref_primary_10_1021_acs_nanolett_3c00195 crossref_primary_10_1515_nanoph_2019_0423 crossref_primary_10_1039_D0NR08314C crossref_primary_10_1016_j_scitotenv_2021_146496 crossref_primary_10_1038_s41467_021_24856_5 crossref_primary_10_1002_smll_202207234 crossref_primary_10_1002_smll_201905197 crossref_primary_10_1146_annurev_physchem_090519_045502 crossref_primary_10_1016_j_cej_2020_124558 crossref_primary_10_1021_jacs_1c11547 crossref_primary_10_1039_D2TC01413K crossref_primary_10_1016_j_xcrp_2020_100300 crossref_primary_10_1021_acsphotonics_2c00048 crossref_primary_10_1016_j_nantod_2019_05_001 crossref_primary_10_1021_acsnano_9b04702 crossref_primary_10_1021_acsami_9b10917 crossref_primary_10_1016_j_apmt_2018_12_007 crossref_primary_10_1002_smsc_202300048 crossref_primary_10_1016_j_apcatb_2023_123520 crossref_primary_10_1016_j_ijhydene_2022_10_233 crossref_primary_10_1021_acs_jpcc_1c09717 crossref_primary_10_1021_acs_jpcc_9b10395 crossref_primary_10_1021_acs_nanolett_8b04950 crossref_primary_10_1063_5_0021197 crossref_primary_10_1021_acs_analchem_2c02643 crossref_primary_10_1021_jacs_1c10447 crossref_primary_10_1021_acscatal_1c01851 crossref_primary_10_1002_ange_202001863 crossref_primary_10_1021_acs_jpclett_2c00709 crossref_primary_10_1063_5_0097713 crossref_primary_10_1021_acs_jpcc_2c03150 crossref_primary_10_1021_acsnano_3c06047 crossref_primary_10_1038_s43246_024_00510_7 crossref_primary_10_1515_nanoph_2022_0071 crossref_primary_10_1007_s10562_021_03669_7 crossref_primary_10_1002_ange_202405459 crossref_primary_10_1515_nanoph_2022_0073 crossref_primary_10_2139_ssrn_3273392 crossref_primary_10_1038_s41467_019_14150_w crossref_primary_10_1016_j_ensm_2021_08_004 crossref_primary_10_1016_j_nanoen_2022_107521 crossref_primary_10_1021_acs_analchem_8b05653 crossref_primary_10_1007_s12274_019_2599_x crossref_primary_10_3390_catal11010018 crossref_primary_10_1016_j_nanoen_2021_106357 crossref_primary_10_1021_acsami_4c02425 crossref_primary_10_1063_1674_0068_cjcp2211160 crossref_primary_10_1002_anie_202011805 crossref_primary_10_1021_acsami_1c06540 crossref_primary_10_1002_anie_202311911 crossref_primary_10_1021_acsami_9b20843 crossref_primary_10_1063_5_0087808 crossref_primary_10_1515_nanoph_2023_0710 crossref_primary_10_1016_j_trechm_2021_08_006 crossref_primary_10_1515_nanoph_2019_0447 crossref_primary_10_1016_j_jallcom_2022_167945 crossref_primary_10_1002_ange_202314352 crossref_primary_10_1103_PhysRevApplied_14_034045 crossref_primary_10_1002_ange_202317740 crossref_primary_10_1016_j_surfin_2023_102725 crossref_primary_10_1021_acsanm_9b00538 crossref_primary_10_1021_acsnano_2c12314 crossref_primary_10_1039_D3NA00835E crossref_primary_10_3390_nano12081329 crossref_primary_10_1016_j_apcatb_2022_121263 crossref_primary_10_1021_acsaem_3c01929 crossref_primary_10_1021_acs_jpcc_3c07754 crossref_primary_10_1002_adom_202301496 crossref_primary_10_1039_D0NR00295J crossref_primary_10_1126_sciadv_abf0962 crossref_primary_10_1146_annurev_physchem_062422_014911 crossref_primary_10_2139_ssrn_3995392 crossref_primary_10_1021_acs_nanolett_8b04706 crossref_primary_10_1016_j_cej_2022_136907 crossref_primary_10_1039_D1NR07822D crossref_primary_10_1088_1361_6528_abe827 crossref_primary_10_1002_adom_202200463 crossref_primary_10_1021_acsenergylett_1c00392 crossref_primary_10_1021_acs_jpca_2c02354 crossref_primary_10_1021_acs_jpcc_1c05175 crossref_primary_10_1021_acsnano_4c03913 crossref_primary_10_1016_j_cej_2024_150374 crossref_primary_10_1021_acs_jpcc_0c10957 crossref_primary_10_1021_acs_jpcc_3c03188 crossref_primary_10_1016_j_reactfunctpolym_2021_104983 crossref_primary_10_1021_acsami_1c03454 crossref_primary_10_1016_j_saa_2021_120803 crossref_primary_10_1021_acs_nanolett_1c00932 crossref_primary_10_1016_j_jece_2020_104912 crossref_primary_10_1038_s41467_020_16833_1 crossref_primary_10_1039_C9CP02100K crossref_primary_10_1016_j_nanoen_2021_106333 crossref_primary_10_1007_s41918_022_00132_y crossref_primary_10_1039_D1CC06014G crossref_primary_10_1021_acs_jpcc_9b08181 crossref_primary_10_1016_j_cocis_2019_01_014 crossref_primary_10_1063_5_0024392 crossref_primary_10_1126_science_abd2847 crossref_primary_10_1002_anie_202016346 crossref_primary_10_1016_j_mtcomm_2022_104503 crossref_primary_10_1038_s41929_020_0466_5 crossref_primary_10_1063_1_5095669 crossref_primary_10_1021_acsnano_0c00673 crossref_primary_10_1088_1361_6463_ac2cac crossref_primary_10_1063_5_0174141 crossref_primary_10_1007_s42452_020_2648_9 crossref_primary_10_1016_j_cej_2021_132028 crossref_primary_10_1002_anie_202215201 crossref_primary_10_1021_acs_chemrev_2c00897 crossref_primary_10_1039_C9SC06480J crossref_primary_10_1021_acs_jpcc_9b08179 crossref_primary_10_3390_catal12070747 crossref_primary_10_1016_j_cej_2023_141491 crossref_primary_10_1016_j_electacta_2021_137820 crossref_primary_10_1021_acsenergylett_1c02591 crossref_primary_10_1039_C9NR02130B crossref_primary_10_1016_j_trechm_2024_05_006 crossref_primary_10_1063_5_0094890 crossref_primary_10_1002_adfm_202100768 crossref_primary_10_1021_acsenergylett_2c00142 crossref_primary_10_1016_j_isci_2022_103737 crossref_primary_10_1021_jacs_0c02523 crossref_primary_10_1038_s41563_020_00851_x crossref_primary_10_1002_adfm_202305198 crossref_primary_10_1007_s12274_019_2457_x crossref_primary_10_1021_acs_chemrev_9b00187 crossref_primary_10_1021_acsnano_2c10205 crossref_primary_10_1021_acscatal_3c00937 crossref_primary_10_1063_1_5124911 crossref_primary_10_1002_cjoc_202000682 crossref_primary_10_1021_acs_iecr_9b02850 crossref_primary_10_1039_C9SC05947D crossref_primary_10_1021_acsami_0c18508 crossref_primary_10_1021_acs_jpcc_0c07479 crossref_primary_10_1021_acsami_9b16286 crossref_primary_10_1002_cctc_201901112 crossref_primary_10_1021_acsenergylett_0c02110 crossref_primary_10_1039_C8CS00864G crossref_primary_10_1063_1_5139291 crossref_primary_10_1039_D3RE00059A crossref_primary_10_1063_4_0000120 crossref_primary_10_3389_fchem_2021_742794 crossref_primary_10_1039_D3CP01415K crossref_primary_10_1515_pac_2021_0205 crossref_primary_10_1002_adma_202100325 crossref_primary_10_1021_acsnano_3c11418 crossref_primary_10_1002_ange_202001531 crossref_primary_10_1016_j_ijhydene_2019_08_126 crossref_primary_10_1021_acs_nanolett_2c03188 crossref_primary_10_1021_acs_analchem_1c03666 crossref_primary_10_1039_D0SC06470J crossref_primary_10_1039_D4CP00950A crossref_primary_10_1039_D1NR04009J crossref_primary_10_1063_5_0163354 crossref_primary_10_1007_s11164_021_04512_9 crossref_primary_10_1016_j_apcatb_2022_121222 crossref_primary_10_1039_C9RA10804A crossref_primary_10_1016_j_bios_2019_111577 crossref_primary_10_1016_j_mtchem_2022_101250 crossref_primary_10_1021_jacs_9b00700 crossref_primary_10_1002_ange_202311911 crossref_primary_10_1021_acs_langmuir_8b04313 crossref_primary_10_1063_5_0028208 crossref_primary_10_1038_s41560_019_0517_9 crossref_primary_10_1007_s10562_021_03554_3 crossref_primary_10_1038_s41467_023_38982_9 crossref_primary_10_1002_wcms_1665 crossref_primary_10_1039_D3EN00123G crossref_primary_10_1016_j_resconrec_2022_106645 crossref_primary_10_1021_acsami_2c03183 crossref_primary_10_1021_acsnano_2c00035 crossref_primary_10_1021_acs_nanolett_2c02327 crossref_primary_10_1039_D2CP04072G crossref_primary_10_1021_acsenergylett_9b01857 crossref_primary_10_1002_adma_202404738 crossref_primary_10_1103_PhysRevLett_124_163901 crossref_primary_10_1021_acsenergylett_9b01617 crossref_primary_10_1002_adma_202005900 crossref_primary_10_1063_5_0005334 crossref_primary_10_1016_j_apcatb_2020_118965 crossref_primary_10_1021_acs_inorgchem_3c03677 crossref_primary_10_1021_acs_chemrev_1c00473 crossref_primary_10_1038_s41467_024_48842_9 crossref_primary_10_1039_D3SC05847F crossref_primary_10_1021_acs_jpcc_0c08381 crossref_primary_10_1016_j_cej_2020_124719 crossref_primary_10_1016_j_joule_2019_03_003 crossref_primary_10_1002_cptc_202300025 crossref_primary_10_1021_acsenergylett_9b00990 crossref_primary_10_1021_acsphotonics_0c00945 crossref_primary_10_1021_acs_accounts_0c00378 crossref_primary_10_1021_acsnano_9b02924 crossref_primary_10_1002_anie_202001863 crossref_primary_10_1039_D3CP05450K crossref_primary_10_1021_acs_nanolett_0c01050 crossref_primary_10_1039_D3EY00191A crossref_primary_10_1002_ange_201901926 crossref_primary_10_1002_cey2_127 crossref_primary_10_1093_jmicro_dfab050 crossref_primary_10_1021_acs_nanolett_1c00503 crossref_primary_10_1038_s41467_024_44954_4 crossref_primary_10_1021_jacs_3c06688 crossref_primary_10_1039_D2CP05705K crossref_primary_10_1021_acsami_9b15780 crossref_primary_10_1021_acssuschemeng_1c03692 crossref_primary_10_1002_advs_202100362 crossref_primary_10_1021_acsami_0c09684 crossref_primary_10_1016_j_jcat_2020_01_006 crossref_primary_10_2139_ssrn_4135080 crossref_primary_10_1007_s10854_022_08671_2 crossref_primary_10_1021_acs_nanolett_0c02121 crossref_primary_10_1063_5_0134993 crossref_primary_10_1007_s11581_019_03329_2 crossref_primary_10_1021_acsphotonics_9b00367 crossref_primary_10_1016_j_apcatb_2022_121792 crossref_primary_10_1016_j_jechem_2021_08_036 crossref_primary_10_1039_D3NA00523B crossref_primary_10_1016_j_optcom_2023_129962 crossref_primary_10_1021_acs_jpclett_9b00822 crossref_primary_10_1021_acs_accounts_2c00001 crossref_primary_10_1021_acs_jpcc_1c07803 crossref_primary_10_1021_acs_jpclett_3c03120 crossref_primary_10_1126_sciadv_abp9285 crossref_primary_10_1073_pnas_1902194116 crossref_primary_10_1016_j_surfrep_2021_100532 crossref_primary_10_1002_anie_202216562 crossref_primary_10_1016_j_saa_2024_124523 crossref_primary_10_1016_j_saa_2023_123137 crossref_primary_10_1021_jacs_3c07647 crossref_primary_10_1038_s41570_022_00368_8 crossref_primary_10_1021_acsenergylett_1c00645 crossref_primary_10_1021_acsphotonics_1c00113 crossref_primary_10_1021_acs_chemmater_9b03575 crossref_primary_10_1021_acs_chemrev_4c00165 crossref_primary_10_1021_acsnano_0c03004 crossref_primary_10_1039_D3NR00745F crossref_primary_10_1002_lpor_202000330 crossref_primary_10_1021_acs_jpclett_0c01006 crossref_primary_10_1021_acs_jpcc_0c00757 crossref_primary_10_1557_s43577_021_00151_y crossref_primary_10_1021_acs_jpclett_3c01051 crossref_primary_10_1016_j_apcatb_2022_121302 crossref_primary_10_1039_D2NR03887K crossref_primary_10_1002_lpor_202100017 crossref_primary_10_3390_catal12020126 crossref_primary_10_1021_acs_jpclett_1c04242 crossref_primary_10_1021_acs_jpclett_9b00848 crossref_primary_10_2139_ssrn_4092243 crossref_primary_10_1007_s11433_023_2183_5 crossref_primary_10_1007_s11468_023_02034_1 crossref_primary_10_1021_acsnano_2c08191 crossref_primary_10_1364_OME_444859 crossref_primary_10_1002_ange_201907443 crossref_primary_10_1016_j_solmat_2024_112728 crossref_primary_10_1021_acs_jpclett_0c02530 crossref_primary_10_1364_OME_422707 crossref_primary_10_1021_acs_nanolett_2c01035 crossref_primary_10_1021_acs_jpcc_0c01436 crossref_primary_10_1021_acs_accounts_3c00196 crossref_primary_10_1063_10_0013776 crossref_primary_10_1116_1_5130721 crossref_primary_10_35848_1347_4065_ab8433 crossref_primary_10_1002_adma_202008145 crossref_primary_10_1002_ange_202304452 crossref_primary_10_1038_s41467_019_10771_3 crossref_primary_10_3390_nano10122377 crossref_primary_10_1002_smll_202308823 crossref_primary_10_1021_acs_nanolett_9b00940 crossref_primary_10_1021_acsphotonics_3c00951 crossref_primary_10_1126_science_abn5636 crossref_primary_10_1021_acscatal_2c01793 crossref_primary_10_1002_andp_202000557 crossref_primary_10_1016_j_snb_2019_127330 crossref_primary_10_1021_acscatal_3c02076 crossref_primary_10_1021_acs_chemmater_3c00369 crossref_primary_10_1016_j_isci_2020_101107 crossref_primary_10_1021_acs_jpclett_0c02640 crossref_primary_10_1038_s41377_021_00609_3 crossref_primary_10_7498_aps_72_20222467 crossref_primary_10_1002_wcms_1577 crossref_primary_10_1002_anie_202001701 crossref_primary_10_1039_D3CY00018D crossref_primary_10_1002_smll_201901286 crossref_primary_10_1021_jacs_8b13062 crossref_primary_10_1021_acs_jpclett_2c00239 crossref_primary_10_1016_j_jclepro_2024_141849 crossref_primary_10_1016_j_nanoen_2021_106189 crossref_primary_10_1016_j_snb_2024_135422 crossref_primary_10_1038_s41893_021_00841_0 crossref_primary_10_1063_5_0083239 crossref_primary_10_1021_jacs_0c13342 crossref_primary_10_1007_s40820_020_0375_9 crossref_primary_10_1021_acs_nanolett_9b05255 crossref_primary_10_1039_C9CC04888J crossref_primary_10_1021_acsphotonics_1c00167 crossref_primary_10_1021_jacs_1c10526 crossref_primary_10_1021_acsnano_1c08431 crossref_primary_10_1021_acscatal_0c03617 crossref_primary_10_1021_acscatal_0c04826 crossref_primary_10_1016_j_apcata_2024_119620 crossref_primary_10_1021_acs_nanolett_3c00735 crossref_primary_10_1002_ange_202001701 crossref_primary_10_1039_D1GC01953H crossref_primary_10_1021_acscatal_0c01204 crossref_primary_10_3390_molecules24122324 crossref_primary_10_1039_C9NR10041E crossref_primary_10_1039_D1CC01339D crossref_primary_10_1039_D0TC05558A crossref_primary_10_1038_s41467_020_18016_4 crossref_primary_10_1117_1_JNP_14_046011 crossref_primary_10_1021_acs_analchem_9b04754 crossref_primary_10_1021_acs_jpcc_3c04436 crossref_primary_10_1021_acscatal_0c00343 crossref_primary_10_1063_5_0123892 crossref_primary_10_1063_1_5141765 crossref_primary_10_1021_acs_jpcc_3c04680 crossref_primary_10_1002_chem_202104623 crossref_primary_10_1021_acs_chemmater_9b04100 crossref_primary_10_1021_acs_jpcc_9b01007 crossref_primary_10_1007_s12274_023_5620_3 crossref_primary_10_1103_PhysRevB_105_235431 crossref_primary_10_1021_acsami_0c15192 crossref_primary_10_1016_j_matt_2022_09_029 crossref_primary_10_1515_nanoph_2023_0149 crossref_primary_10_1016_j_scib_2023_02_007 crossref_primary_10_1021_acs_jpcc_0c01367 crossref_primary_10_1039_D1CS00782C crossref_primary_10_1039_D3TA02889E crossref_primary_10_1002_adom_202300824 crossref_primary_10_1002_ange_202016346 crossref_primary_10_1364_OSAC_376809 crossref_primary_10_1007_s10311_023_01608_z crossref_primary_10_1039_D2RA04132D crossref_primary_10_1002_cjoc_202400177 crossref_primary_10_1021_acsami_8b14858 crossref_primary_10_1021_acsnano_3c07833 crossref_primary_10_1002_advs_202103926 crossref_primary_10_1016_j_apsusc_2021_152100 crossref_primary_10_1016_j_apcatb_2022_121734 crossref_primary_10_1073_pnas_2305932120 crossref_primary_10_1021_acsanm_0c01569 crossref_primary_10_1016_j_cej_2019_122484 crossref_primary_10_1039_C9FD00001A crossref_primary_10_1021_acs_chemrev_3c00159 crossref_primary_10_1021_acs_nanolett_0c04837 crossref_primary_10_1088_1361_6528_abd128 crossref_primary_10_1149_1945_7111_ac5c97 crossref_primary_10_1016_j_jclepro_2023_136054 crossref_primary_10_1039_D4NR00474D crossref_primary_10_1039_D1TA09151D crossref_primary_10_1021_acs_jpclett_0c02286 crossref_primary_10_1088_1361_6463_ad3d6c crossref_primary_10_1016_j_apcatb_2021_120808 crossref_primary_10_1021_acs_chemmater_2c01426 crossref_primary_10_1016_j_electacta_2019_01_172 crossref_primary_10_1021_acsenergylett_9b01688 crossref_primary_10_1021_acscatal_9b05401 crossref_primary_10_1021_acsphotonics_1c01938 crossref_primary_10_1021_jacs_3c14586 crossref_primary_10_1039_D0NR01875A crossref_primary_10_1038_s41570_022_00448_9 crossref_primary_10_1021_acsabm_1c01197 crossref_primary_10_1016_j_cej_2022_139833 crossref_primary_10_1021_acsphotonics_9b01393 crossref_primary_10_1021_acsanm_0c01334 crossref_primary_10_1016_j_apcatb_2023_123085 crossref_primary_10_1021_jacs_2c04202 crossref_primary_10_1002_adom_201801590 crossref_primary_10_1002_anie_202304452 crossref_primary_10_1002_smll_202101638 crossref_primary_10_1021_acs_chemrev_2c00078 crossref_primary_10_1021_jacs_1c12069 crossref_primary_10_1016_j_carbon_2020_01_058 crossref_primary_10_1021_acsami_2c09789 crossref_primary_10_1007_s40843_019_1285_8 crossref_primary_10_1002_nano_202200010 crossref_primary_10_1016_j_cej_2021_130863 crossref_primary_10_1016_j_joule_2018_12_024 crossref_primary_10_1038_s41467_023_38235_9 crossref_primary_10_1039_D0TA03114C crossref_primary_10_1126_science_abb3457 crossref_primary_10_1016_j_ijhydene_2022_09_224 crossref_primary_10_1016_j_chempr_2019_07_021 crossref_primary_10_1016_j_physrep_2022_07_002 crossref_primary_10_1002_aenm_202200186 crossref_primary_10_1021_acsami_4c00709 crossref_primary_10_1016_S1872_2067_19_63393_0 crossref_primary_10_1016_j_apsusc_2022_155555 crossref_primary_10_1021_acs_nanolett_2c00203 crossref_primary_10_1002_anie_201907443 crossref_primary_10_1021_acs_jpclett_2c03894 crossref_primary_10_1039_D0SC03335A crossref_primary_10_1021_acs_jpcc_8b12054 crossref_primary_10_1021_acs_iecr_3c04648 crossref_primary_10_1016_j_surfin_2023_103137 crossref_primary_10_1021_acsnano_0c05383 crossref_primary_10_1021_acsami_2c08685 crossref_primary_10_1021_acs_nanolett_0c01308 crossref_primary_10_1007_s10853_020_05033_3 crossref_primary_10_1021_acs_nanolett_0c02992 crossref_primary_10_1039_D0CP00368A crossref_primary_10_1002_smll_201903674 crossref_primary_10_1021_acs_jpcc_4c01873 crossref_primary_10_1021_acsnano_0c08773 crossref_primary_10_1038_s41551_020_00634_4 crossref_primary_10_1126_science_aaw9367 crossref_primary_10_1021_acs_nanolett_0c00213 crossref_primary_10_7498_aps_68_20190345 crossref_primary_10_7498_aps_68_20190476 crossref_primary_10_1038_s41467_022_32721_2 crossref_primary_10_1002_adfm_202302265 crossref_primary_10_1021_acs_accounts_1c00309 crossref_primary_10_1021_acs_nanolett_2c00791 crossref_primary_10_1126_sciadv_abm9303 crossref_primary_10_1002_ange_202216562 crossref_primary_10_1016_j_snb_2020_129220 crossref_primary_10_1073_pnas_1908296116 crossref_primary_10_1021_jacs_1c04315 crossref_primary_10_1039_D2TC00491G crossref_primary_10_1002_adfm_202304208 crossref_primary_10_1002_anie_202216398 crossref_primary_10_1021_acs_jpcc_2c03961 crossref_primary_10_1002_ange_202011805 crossref_primary_10_1021_acsami_0c04941 crossref_primary_10_1021_acscatal_3c02525 crossref_primary_10_1021_acsnano_9b05030 crossref_primary_10_1063_5_0053320 crossref_primary_10_1021_acs_jpcc_0c04672 crossref_primary_10_1063_5_0078621 crossref_primary_10_3390_nanoenergyadv4010002 crossref_primary_10_1039_D0NR06293F crossref_primary_10_1063_5_0098110 crossref_primary_10_1063_5_0013945 crossref_primary_10_1088_1361_6463_ac918f crossref_primary_10_1039_D0SC04651E crossref_primary_10_1021_acsanm_3c00026 crossref_primary_10_1039_D1TA00386K crossref_primary_10_1021_acsenergylett_0c00989 crossref_primary_10_1016_j_apmt_2021_101238 crossref_primary_10_1039_D1ME00016K crossref_primary_10_1002_adma_202313366 crossref_primary_10_1063_5_0023623 crossref_primary_10_1002_adfm_201908239 crossref_primary_10_1002_solr_201900242 crossref_primary_10_1134_S0021364019160069 crossref_primary_10_1016_j_joule_2023_12_013 crossref_primary_10_1016_j_nanoen_2021_105801 crossref_primary_10_1021_acsphotonics_2c00506 crossref_primary_10_1002_anie_202001531 crossref_primary_10_1021_acs_accounts_9b00280 crossref_primary_10_1021_acscatal_4c00024 crossref_primary_10_1039_D0SC05898J crossref_primary_10_1126_sciadv_aax0939 crossref_primary_10_1364_OE_419614 crossref_primary_10_1002_eem2_12416 crossref_primary_10_1021_acs_accounts_9b00287 crossref_primary_10_1002_anie_202012306 crossref_primary_10_1002_smll_202309983 crossref_primary_10_1038_s41929_022_00768_5 crossref_primary_10_1073_pnas_2022109118 crossref_primary_10_1016_j_cej_2022_136482 crossref_primary_10_1021_acs_jpclett_0c03694 crossref_primary_10_1016_j_cclet_2021_07_059 crossref_primary_10_1016_j_fuel_2022_127035 crossref_primary_10_1007_s12274_020_2694_z crossref_primary_10_1016_j_cclet_2022_108049 crossref_primary_10_1039_C8FD00147B crossref_primary_10_1021_acs_inorgchem_0c01325 crossref_primary_10_1016_j_envres_2021_111259 crossref_primary_10_1016_j_isci_2020_101982 crossref_primary_10_1039_D1CY01454D crossref_primary_10_1016_j_ijhydene_2023_01_357 crossref_primary_10_1063_1_5098386 crossref_primary_10_1364_OL_441709 crossref_primary_10_1021_acsami_3c10325 crossref_primary_10_1016_j_apcatb_2023_123166 crossref_primary_10_1038_s41427_020_00259_8 crossref_primary_10_1063_5_0032763 crossref_primary_10_1002_cctc_202000795 crossref_primary_10_1002_anie_202219340 crossref_primary_10_1021_acs_jpcc_3c03639 crossref_primary_10_1002_solr_202100611 crossref_primary_10_1021_acsnano_1c07983 crossref_primary_10_1038_s41563_020_00858_4 crossref_primary_10_1016_j_jmst_2022_08_030 crossref_primary_10_1021_acs_jpcc_3c00006 crossref_primary_10_1016_j_apcatb_2020_119226 crossref_primary_10_1002_ange_202215201 crossref_primary_10_1002_solr_202000094 crossref_primary_10_1038_s41467_019_13820_z crossref_primary_10_1002_anie_201901926 crossref_primary_10_1021_acs_nanolett_1c03503 crossref_primary_10_1063_10_0022560 crossref_primary_10_1016_j_apsusc_2019_06_109 crossref_primary_10_1038_s44160_023_00387_3 crossref_primary_10_1016_j_cej_2024_148963 crossref_primary_10_1038_s41929_022_00767_6 crossref_primary_10_1002_adma_202305402 crossref_primary_10_1021_acsphotonics_3c00893 crossref_primary_10_1039_C9NA00729F crossref_primary_10_1016_j_apcatb_2019_118299 crossref_primary_10_1021_acsnano_3c03118 crossref_primary_10_1021_acs_jpcc_4c00226 crossref_primary_10_1021_acsnano_4c04562 crossref_primary_10_3390_chemosensors11030196 crossref_primary_10_1073_pnas_1905311116 crossref_primary_10_1038_s41467_022_34738_z crossref_primary_10_1016_j_jtice_2021_03_011 crossref_primary_10_1002_smll_202004557 crossref_primary_10_1039_D3CC01512B crossref_primary_10_7498_aps_68_20190276 crossref_primary_10_1021_acsnano_4c06858 crossref_primary_10_1021_acscatal_0c02244 crossref_primary_10_1021_acs_nanolett_1c02784 crossref_primary_10_1016_j_apcatb_2020_119352 crossref_primary_10_1016_j_apcatb_2020_119473 crossref_primary_10_1021_acscatal_0c03336 crossref_primary_10_1021_acsnano_3c07601 crossref_primary_10_1021_jacs_0c04491 crossref_primary_10_1039_D0CS00357C crossref_primary_10_1021_jacs_9b13909 crossref_primary_10_1002_smll_202305369 |
Cites_doi | 10.1007/s11244-016-0653-4 10.1016/0021-9517(80)90403-0 10.1021/j100304a034 10.1016/j.chemphys.2004.08.005 10.1038/s41467-017-00055-z 10.1021/acsphotonics.7b00881 10.1002/1521-4125(200011)23:11<956::AID-CEAT956>3.0.CO;2-L 10.1038/ncomms14542 10.1021/acsnano.6b06510 10.1021/acs.jpcc.7b12080 10.1073/pnas.1609769113 10.1039/C2EE02865D 10.1021/acs.nanolett.6b01373 10.1016/j.progsurf.2004.09.001 10.1039/f19848001595 10.1021/acscentsci.7b00122 10.1021/ie900144x 10.1103/PhysRevLett.61.1321 10.1016/j.applthermaleng.2011.06.022 10.1038/s41557-018-0003-1 10.1093/acprof:oso/9780198705093.001.0001 10.1016/j.cattod.2014.07.050 10.1021/acscatal.7b00115 10.1021/acs.chemrev.7b00430 10.1039/c3cp50442e 10.1021/acs.nanolett.7b04776 10.1021/nl070648a 10.1021/ja01645a057 10.1021/cr050161r 10.1006/jcat.1997.1877 10.1080/01614948509342359 10.1103/PhysRevB.84.035415 10.1016/j.ijhydene.2010.12.022 10.1142/2340-part1 10.1016/j.susc.2008.10.059 10.1063/1.1310662 10.1038/ncomms8797 10.1021/acsnano.5b06623 10.1021/acsnano.8b00352 10.1038/nmat3454 10.1021/acsami.7b13043 10.1021/acs.nanolett.6b03582 |
ContentType | Journal Article |
Copyright | Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works |
Copyright_xml | – notice: Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. – notice: Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works |
DBID | NPM AAYXX CITATION 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 |
DOI | 10.1126/science.aat6967 |
DatabaseName | PubMed CrossRef Aluminium Industry Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Solid State and Superconductivity Abstracts Virology and AIDS Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | PubMed CrossRef Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Electronics & Communications Abstracts Ceramic Abstracts Ecology Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Entomology Abstracts Animal Behavior Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef Materials Research Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Biology |
EISSN | 1095-9203 |
EndPage | 72 |
ExternalDocumentID | 10_1126_science_aat6967 30287657 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --Z -DZ -ET -~X .-4 ..I .55 .DC 08G 0B8 0R~ 0WA 123 18M 2FS 2KS 2WC 34G 36B 39C 3R3 53G 5RE 66. 6OB 6TJ 7X2 7~K 85S 8F7 AABCJ AACGO AAIKC AAMNW AANCE AAWTO ABBHK ABCQX ABDBF ABDEX ABEFU ABIVO ABOCM ABPLY ABPPZ ABQIJ ABTLG ABWJO ABXSQ ABZEH ACBEA ACBEC ACGFO ACGFS ACGOD ACIWK ACMJI ACNCT ACPRK ACQOY ADACV ADDRP ADMHC ADUKH AEGBM AENEX AEUPB AEXZC AFFDN AFFNX AFHKK AFQFN AFRAH AFRQD AGFXO AGNAY AGSOS AHMBA AIDAL AIDUJ AJGZS ALIPV ALMA_UNASSIGNED_HOLDINGS ASPBG AVWKF B-7 BKF BLC C45 C51 CS3 DB2 DCCCD DU5 EBS EJD EMOBN ESX F5P FA8 FEDTE GX1 HZ~ I.T IAO IEA IGG IGS IH2 IHR INH INR IOF IOV IPO IPSME IPY ISE JAAYA JBMMH JCF JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST K-O KCC L7B LSO LU7 M0P MQT MVM N9A NEJ NHB NPM O9- OCB OFXIZ OGEVE OK1 OMK OVD P-O P2P PQQKQ PZZ QS- RHF RHI RXW SA0 SC5 SJN TAE TEORI TN5 TWZ UBW UCV UHB UIG UKR UMD UNMZH UQL USG VQA VVN WH7 WI4 X7M XJF XZL Y6R YCJ YK4 YKV YNT YOJ YR2 YRY YSQ YV5 YWH YYP YYQ YZZ ZCA ZE2 ZKG ~02 ~G0 ~KM ~ZZ AAYXX CITATION 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 |
ID | FETCH-LOGICAL-c469t-fcce3d0ec826791632bdd2e4a7076790a481565fbd8016d6d08ca396628db7333 |
ISSN | 0036-8075 |
IngestDate | Wed Dec 04 07:01:59 EST 2024 Thu Oct 10 20:26:25 EDT 2024 Fri Dec 06 05:48:19 EST 2024 Wed Oct 16 00:49:15 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6410 |
Language | English |
License | Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c469t-fcce3d0ec826791632bdd2e4a7076790a481565fbd8016d6d08ca396628db7333 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-1633-2937 0000-0001-5619-341X 0000-0002-9422-3875 0000-0003-3114-531X 0000-0003-0274-4815 0000-0001-7330-7554 0000-0002-8461-8494 0000-0002-5101-263X 0000-0002-2989-1535 0000-0003-3848-1439 |
OpenAccessLink | https://science.sciencemag.org/content/sci/362/6410/69.full.pdf |
PMID | 30287657 |
PQID | 2116440678 |
PQPubID | 1256 |
PageCount | 4 |
ParticipantIDs | proquest_miscellaneous_2116847493 proquest_journals_2116440678 crossref_primary_10_1126_science_aat6967 pubmed_primary_30287657 |
PublicationCentury | 2000 |
PublicationDate | 2018-10-05 |
PublicationDateYYYYMMDD | 2018-10-05 |
PublicationDate_xml | – month: 10 year: 2018 text: 2018-10-05 day: 05 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Science (American Association for the Advancement of Science) |
PublicationTitleAlternate | Science |
PublicationYear | 2018 |
Publisher | The American Association for the Advancement of Science |
Publisher_xml | – name: The American Association for the Advancement of Science |
References | 30287648 - Science. 2018 Oct 5;362(6410):28-29 e_1_3_2_26_2 e_1_3_2_27_2 e_1_3_2_28_2 e_1_3_2_29_2 e_1_3_2_41_2 e_1_3_2_40_2 e_1_3_2_20_2 e_1_3_2_43_2 e_1_3_2_21_2 e_1_3_2_42_2 e_1_3_2_22_2 e_1_3_2_45_2 e_1_3_2_23_2 e_1_3_2_44_2 e_1_3_2_24_2 e_1_3_2_25_2 e_1_3_2_9_2 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_16_2 e_1_3_2_37_2 e_1_3_2_7_2 e_1_3_2_17_2 e_1_3_2_6_2 e_1_3_2_18_2 e_1_3_2_39_2 e_1_3_2_19_2 e_1_3_2_30_2 e_1_3_2_32_2 e_1_3_2_10_2 e_1_3_2_31_2 e_1_3_2_5_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_4_2 e_1_3_2_12_2 e_1_3_2_33_2 e_1_3_2_3_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_2_2 e_1_3_2_14_2 e_1_3_2_35_2 |
References_xml | – ident: e_1_3_2_14_2 doi: 10.1007/s11244-016-0653-4 – ident: e_1_3_2_12_2 doi: 10.1016/0021-9517(80)90403-0 – ident: e_1_3_2_27_2 doi: 10.1021/j100304a034 – ident: e_1_3_2_19_2 doi: 10.1016/j.chemphys.2004.08.005 – ident: e_1_3_2_18_2 doi: 10.1038/s41467-017-00055-z – ident: e_1_3_2_32_2 doi: 10.1021/acsphotonics.7b00881 – ident: e_1_3_2_38_2 doi: 10.1002/1521-4125(200011)23:11<956::AID-CEAT956>3.0.CO;2-L – ident: e_1_3_2_9_2 doi: 10.1038/ncomms14542 – ident: e_1_3_2_20_2 doi: 10.1021/acsnano.6b06510 – ident: e_1_3_2_8_2 doi: 10.1021/acs.jpcc.7b12080 – ident: e_1_3_2_5_2 doi: 10.1073/pnas.1609769113 – ident: e_1_3_2_42_2 – ident: e_1_3_2_15_2 doi: 10.1039/C2EE02865D – ident: e_1_3_2_11_2 doi: 10.1021/acs.nanolett.6b01373 – ident: e_1_3_2_26_2 doi: 10.1016/j.progsurf.2004.09.001 – ident: e_1_3_2_28_2 doi: 10.1039/f19848001595 – ident: e_1_3_2_23_2 doi: 10.1021/acscentsci.7b00122 – ident: e_1_3_2_30_2 doi: 10.1021/ie900144x – ident: e_1_3_2_36_2 doi: 10.1103/PhysRevLett.61.1321 – ident: e_1_3_2_24_2 doi: 10.1016/j.applthermaleng.2011.06.022 – ident: e_1_3_2_33_2 doi: 10.1038/s41557-018-0003-1 – ident: e_1_3_2_43_2 doi: 10.1093/acprof:oso/9780198705093.001.0001 – ident: e_1_3_2_17_2 doi: 10.1016/j.cattod.2014.07.050 – ident: e_1_3_2_31_2 doi: 10.1021/acscatal.7b00115 – ident: e_1_3_2_41_2 – ident: e_1_3_2_2_2 doi: 10.1021/acs.chemrev.7b00430 – ident: e_1_3_2_40_2 doi: 10.1039/c3cp50442e – ident: e_1_3_2_7_2 doi: 10.1021/acs.nanolett.7b04776 – ident: e_1_3_2_22_2 doi: 10.1021/nl070648a – ident: e_1_3_2_16_2 doi: 10.1021/ja01645a057 – ident: e_1_3_2_35_2 doi: 10.1021/cr050161r – ident: e_1_3_2_13_2 doi: 10.1006/jcat.1997.1877 – ident: e_1_3_2_39_2 doi: 10.1080/01614948509342359 – ident: e_1_3_2_44_2 doi: 10.1103/PhysRevB.84.035415 – ident: e_1_3_2_25_2 doi: 10.1016/j.ijhydene.2010.12.022 – ident: e_1_3_2_34_2 doi: 10.1142/2340-part1 – ident: e_1_3_2_29_2 doi: 10.1016/j.susc.2008.10.059 – ident: e_1_3_2_45_2 doi: 10.1063/1.1310662 – ident: e_1_3_2_3_2 doi: 10.1038/ncomms8797 – ident: e_1_3_2_21_2 doi: 10.1021/acsnano.5b06623 – ident: e_1_3_2_37_2 doi: 10.1021/acsnano.8b00352 – ident: e_1_3_2_6_2 doi: 10.1038/nmat3454 – ident: e_1_3_2_10_2 doi: 10.1021/acsami.7b13043 – ident: e_1_3_2_4_2 doi: 10.1021/acs.nanolett.6b03582 |
SSID | ssj0009593 |
Score | 2.7393975 |
Snippet | Photocatalysis based on optically active, "plasmonic" metal nanoparticles has emerged as a promising approach to facilitate light-driven chemical conversions... Plasmonic catalysts can generate hot charge carriers that can activate reactants and, in turn, reduce the overall barrier to a reaction. Zhou et al. studied... Hot carriers reducing thermal barriersPlasmonic catalysts can generate hot charge carriers that can activate reactants and, in turn, reduce the overall barrier... |
SourceID | proquest crossref pubmed |
SourceType | Aggregation Database Index Database |
StartPage | 69 |
SubjectTerms | Activation Ammonia Catalysis Catalysts Copper base alloys Current carriers Decomposition Decomposition reactions Energy efficiency Light Light effects Luminous intensity Nanoparticles Nitrogen atoms Optical activity Organic chemistry Photocatalysis Photocatalysts Photochemistry Reduction Ruthenium Surface temperature Wavelengths |
Title | Quantifying hot carrier and thermal contributions in plasmonic photocatalysis |
URI | https://www.ncbi.nlm.nih.gov/pubmed/30287657 https://www.proquest.com/docview/2116440678 https://search.proquest.com/docview/2116847493 |
Volume | 362 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9UwFA_XieDLcPPr6pQIPsyHXtqkTXofx3QOYYK4wcWXkjQpV9F2uJax_UX-mZ40p725zgvTl3JJb9LS88v5SE7Oj5DXibTcWKUjbksWpZW1kVLGRnMjwXixsmLGnUY--SiOz9IPi2wxmfwKspa6Vs_K67-eK_kfqUIbyNWdkv0HyY6DQgP8BvnCFSQM11vJ-FOnXK5Pf1Jp2bSuzHRPQIdZkaBzv_tcdCS18jnj4C__6HlvzqFP06_fuLIkoZs6zHhwP8ctnUCQY27igc8gGBIKsFuwuvBl2XQY-q9g-PlyZNF-q67Ayz2a3Vi_PlyqZrUZpFX7TV17gm2w6hbLheNqReJLx2ahBsYCyN7-eKUbO75IFvNQK3PBAviJFJNfvZr17C5osD31z01TEJBX2plSrZh74o_1ott_GMMxRbEPjpgocIACB7hD7rqSi46l4f0i2VjeGYtIBcezhjdY9382BDW9c3P6gGxjVEIPPMR2yMTWu-Se5ym92iU7KNgLuo9lyt88JCcB-iggiSL6KKCPIvroGvro15qO6KPr6HtEzo7enR4eR0jOEZWpmLdRVZYwy2NbQnwqIcbgTBvDbKpkLKEhVn0doqzSBnwgYYSJ81JxCK5ZbrTknD8mW3VT26eECqUh6k8qVVmRylLlHPpbrnmmcnhYPiX7wycrzn0NlmKDeKZkb_ikBU7Ui4IlCXj9zi2bklfjbVCjbm9M1bbp_H_AUUvnfEqeeFGMz-Lgg0uRyWe3f4_n5P4K_Xtkq_3Z2Rfgvbb6ZQ-c38fVods |
link.rule.ids | 314,780,784,27924,27925 |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantifying+hot+carrier+and+thermal+contributions+in+plasmonic+photocatalysis&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Zhou%2C+Linan&rft.au=Swearer%2C+Dayne+F.&rft.au=Zhang%2C+Chao&rft.au=Robatjazi%2C+Hossein&rft.date=2018-10-05&rft.issn=0036-8075&rft.eissn=1095-9203&rft.volume=362&rft.issue=6410&rft.spage=69&rft.epage=72&rft_id=info:doi/10.1126%2Fscience.aat6967&rft.externalDBID=n%2Fa&rft.externalDocID=10_1126_science_aat6967 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon |