The Natural Compound Homoharringtonine Presents Broad Antiviral Activity In Vitro and In Vivo
To complement traditional antivirals, natural compounds that act via host targets and present high barriers to resistance are of increasing interest. In the work reported here, we detected that homoharringtonine (HHT) presents effective antiviral activity. HHT completely inhibited infections of vesi...
Saved in:
Published in | Viruses Vol. 10; no. 11; p. 601 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
01.11.2018
MDPI |
Subjects | |
Online Access | Get full text |
ISSN | 1999-4915 1999-4915 |
DOI | 10.3390/v10110601 |
Cover
Loading…
Abstract | To complement traditional antivirals, natural compounds that act via host targets and present high barriers to resistance are of increasing interest. In the work reported here, we detected that homoharringtonine (HHT) presents effective antiviral activity. HHT completely inhibited infections of vesicular stomatitis virus (VSV), Newcastle disease virus (NDV), and porcine epidemic diarrhea virus (PEDV) at concentrations of 50, 100, and 500 nM in cell cultures, respectively. Treatment with HHT at doses of 0.05 or 0.2 mg/kg significantly reduced viral load and relieved severe symptoms in PEDV- or NDV-infected animals. HHT treatment, however, moderately inhibited avian influenza virus (AIV) infection, suggesting its potent antiviral action is restricted to a number of classes of RNA viruses. In this study, we also observed that HHT actively inhibited herpes simplex virus type 1 (HSV-1) replication with a 50% inhibitory concentration (IC50) of 139 nM; the treatment with HHT at 1000 nM led to reductions of three orders of magnitude. Moreover, HHT antagonized the phosphorylation level of endogenous and exogenous eukaryotic initiation factor 4E (p-eIF4E), which might regulate the selective translation of specific messenger RNA (mRNA). HHT provides a starting point for further progress toward the clinical development of broad-spectrum antivirals. |
---|---|
AbstractList | To complement traditional antivirals, natural compounds that act via host targets and present high barriers to resistance are of increasing interest. In the work reported here, we detected that homoharringtonine (HHT) presents effective antiviral activity. HHT completely inhibited infections of vesicular stomatitis virus (VSV), Newcastle disease virus (NDV), and porcine epidemic diarrhea virus (PEDV) at concentrations of 50, 100, and 500 nM in cell cultures, respectively. Treatment with HHT at doses of 0.05 or 0.2 mg/kg significantly reduced viral load and relieved severe symptoms in PEDV- or NDV-infected animals. HHT treatment, however, moderately inhibited avian influenza virus (AIV) infection, suggesting its potent antiviral action is restricted to a number of classes of RNA viruses. In this study, we also observed that HHT actively inhibited herpes simplex virus type 1 (HSV-1) replication with a 50% inhibitory concentration (IC50) of 139 nM; the treatment with HHT at 1000 nM led to reductions of three orders of magnitude. Moreover, HHT antagonized the phosphorylation level of endogenous and exogenous eukaryotic initiation factor 4E (p-eIF4E), which might regulate the selective translation of specific messenger RNA (mRNA). HHT provides a starting point for further progress toward the clinical development of broad-spectrum antivirals. To complement traditional antivirals, natural compounds that act via host targets and present high barriers to resistance are of increasing interest. In the work reported here, we detected that homoharringtonine (HHT) presents effective antiviral activity. HHT completely inhibited infections of vesicular stomatitis virus (VSV), Newcastle disease virus (NDV), and porcine epidemic diarrhea virus (PEDV) at concentrations of 50, 100, and 500 nM in cell cultures, respectively. Treatment with HHT at doses of 0.05 or 0.2 mg/kg significantly reduced viral load and relieved severe symptoms in PEDV- or NDV-infected animals. HHT treatment, however, moderately inhibited avian influenza virus (AIV) infection, suggesting its potent antiviral action is restricted to a number of classes of RNA viruses. In this study, we also observed that HHT actively inhibited herpes simplex virus type 1 (HSV-1) replication with a 50% inhibitory concentration (IC ) of 139 nM; the treatment with HHT at 1000 nM led to reductions of three orders of magnitude. Moreover, HHT antagonized the phosphorylation level of endogenous and exogenous eukaryotic initiation factor 4E (p-eIF4E), which might regulate the selective translation of specific messenger RNA (mRNA). HHT provides a starting point for further progress toward the clinical development of broad-spectrum antivirals. To complement traditional antivirals, natural compounds that act via host targets and present high barriers to resistance are of increasing interest. In the work reported here, we detected that homoharringtonine (HHT) presents effective antiviral activity. HHT completely inhibited infections of vesicular stomatitis virus (VSV), Newcastle disease virus (NDV), and porcine epidemic diarrhea virus (PEDV) at concentrations of 50, 100, and 500 nM in cell cultures, respectively. Treatment with HHT at doses of 0.05 or 0.2 mg/kg significantly reduced viral load and relieved severe symptoms in PEDV- or NDV-infected animals. HHT treatment, however, moderately inhibited avian influenza virus (AIV) infection, suggesting its potent antiviral action is restricted to a number of classes of RNA viruses. In this study, we also observed that HHT actively inhibited herpes simplex virus type 1 (HSV-1) replication with a 50% inhibitory concentration (IC50) of 139 nM; the treatment with HHT at 1000 nM led to reductions of three orders of magnitude. Moreover, HHT antagonized the phosphorylation level of endogenous and exogenous eukaryotic initiation factor 4E (p-eIF4E), which might regulate the selective translation of specific messenger RNA (mRNA). HHT provides a starting point for further progress toward the clinical development of broad-spectrum antivirals.To complement traditional antivirals, natural compounds that act via host targets and present high barriers to resistance are of increasing interest. In the work reported here, we detected that homoharringtonine (HHT) presents effective antiviral activity. HHT completely inhibited infections of vesicular stomatitis virus (VSV), Newcastle disease virus (NDV), and porcine epidemic diarrhea virus (PEDV) at concentrations of 50, 100, and 500 nM in cell cultures, respectively. Treatment with HHT at doses of 0.05 or 0.2 mg/kg significantly reduced viral load and relieved severe symptoms in PEDV- or NDV-infected animals. HHT treatment, however, moderately inhibited avian influenza virus (AIV) infection, suggesting its potent antiviral action is restricted to a number of classes of RNA viruses. In this study, we also observed that HHT actively inhibited herpes simplex virus type 1 (HSV-1) replication with a 50% inhibitory concentration (IC50) of 139 nM; the treatment with HHT at 1000 nM led to reductions of three orders of magnitude. Moreover, HHT antagonized the phosphorylation level of endogenous and exogenous eukaryotic initiation factor 4E (p-eIF4E), which might regulate the selective translation of specific messenger RNA (mRNA). HHT provides a starting point for further progress toward the clinical development of broad-spectrum antivirals. To complement traditional antivirals, natural compounds that act via host targets and present high barriers to resistance are of increasing interest. In the work reported here, we detected that homoharringtonine (HHT) presents effective antiviral activity. HHT completely inhibited infections of vesicular stomatitis virus (VSV), Newcastle disease virus (NDV), and porcine epidemic diarrhea virus (PEDV) at concentrations of 50, 100, and 500 nM in cell cultures, respectively. Treatment with HHT at doses of 0.05 or 0.2 mg/kg significantly reduced viral load and relieved severe symptoms in PEDV- or NDV-infected animals. HHT treatment, however, moderately inhibited avian influenza virus (AIV) infection, suggesting its potent antiviral action is restricted to a number of classes of RNA viruses. In this study, we also observed that HHT actively inhibited herpes simplex virus type 1 (HSV-1) replication with a 50% inhibitory concentration (IC 50 ) of 139 nM; the treatment with HHT at 1000 nM led to reductions of three orders of magnitude. Moreover, HHT antagonized the phosphorylation level of endogenous and exogenous eukaryotic initiation factor 4E (p-eIF4E), which might regulate the selective translation of specific messenger RNA (mRNA). HHT provides a starting point for further progress toward the clinical development of broad-spectrum antivirals. |
Author | Li, Cui-Cui Meng, Wen Wang, Xiao-Jia Hu, Yan-Xin Zhou, Lei Dong, Hui-Jun Wang, Zhao-Hua |
AuthorAffiliation | Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; donghuijun105@163.com (H.-J.D.); zhaohuaw26@163.com (Z.-H.W.); mengwen422fei@163.com (W.M.); piqiubang@163.com (C.-C.L.); huyx@cau.edu.cn (Y.-X.H.); leosj@cau.edu.cn (L.Z.) |
AuthorAffiliation_xml | – name: Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; donghuijun105@163.com (H.-J.D.); zhaohuaw26@163.com (Z.-H.W.); mengwen422fei@163.com (W.M.); piqiubang@163.com (C.-C.L.); huyx@cau.edu.cn (Y.-X.H.); leosj@cau.edu.cn (L.Z.) |
Author_xml | – sequence: 1 givenname: Hui-Jun surname: Dong fullname: Dong, Hui-Jun – sequence: 2 givenname: Zhao-Hua surname: Wang fullname: Wang, Zhao-Hua – sequence: 3 givenname: Wen surname: Meng fullname: Meng, Wen – sequence: 4 givenname: Cui-Cui surname: Li fullname: Li, Cui-Cui – sequence: 5 givenname: Yan-Xin surname: Hu fullname: Hu, Yan-Xin – sequence: 6 givenname: Lei orcidid: 0000-0002-8837-3965 surname: Zhou fullname: Zhou, Lei – sequence: 7 givenname: Xiao-Jia surname: Wang fullname: Wang, Xiao-Jia |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30388805$$D View this record in MEDLINE/PubMed |
BookMark | eNplkktvEzEQgC1URB9w4A8gS1zgEOrHrh8XpBABjVQBh8INWV7bmzjatVPbG6n_Hqdpq7acPLa_-TRjzyk4CjE4AN5i9IlSic53GGGMGMIvwAmWUs4aidujR_ExOM15gxBjEvFX4JgiKoRA7Qn4e7V28IcuU9IDXMRxG6dg4UUc41qn5MOqxOCDg7-Syy6UDL-kqC2ch-J3fp8zN_uo3MBlgH98SRHqKrjd7OJr8LLXQ3Zv7tYz8Pvb16vFxezy5_flYn45Mw2TZdZL1BDe0sY4Q4nkDGnCuBOdFkQwaXnDCRcG80rZRhiHKee2J23jemsxomdgefDaqDdqm_yo042K2qvbg5hWSqfizeCUqQZiuGNG0EZI2xHXy751NeJ919nq-nxwbadudNbUrmufT6RPb4Jfq1XcKUYYI5xVwYc7QYrXk8tFjT4bNww6uDhlRTCRLa0NtRV9_wzdxCmF-lSKtIJIgnGDK_XucUUPpdz_YgXOD4BJMefkemV80cXHfYF-UBip_ZyohzmpGR-fZdxL_2f_AUv9vEc |
CitedBy_id | crossref_primary_10_5897_JPP2021_0603 crossref_primary_10_1016_j_bmc_2020_115757 crossref_primary_10_3389_fonc_2025_1522273 crossref_primary_10_1016_j_jnlest_2021_100095 crossref_primary_10_1007_s11095_020_02930_9 crossref_primary_10_1016_j_antiviral_2020_104786 crossref_primary_10_3390_molecules26206290 crossref_primary_10_1080_01652176_2024_2421299 crossref_primary_10_1016_j_bbrc_2022_04_067 crossref_primary_10_3389_fvets_2024_1421668 crossref_primary_10_3390_cancers15153980 crossref_primary_10_1039_D3RA08928B crossref_primary_10_1074_jbc_RA119_011132 crossref_primary_10_3390_v15051100 crossref_primary_10_1016_j_bsheal_2024_09_001 crossref_primary_10_1007_s12250_020_00316_0 crossref_primary_10_2174_2210315512666220613101120 crossref_primary_10_1016_j_heliyon_2020_e05646 crossref_primary_10_2174_1389557521666210805113231 crossref_primary_10_3390_v11100964 crossref_primary_10_1186_s12985_020_01342_w crossref_primary_10_1177_1179548420964140 crossref_primary_10_1016_j_phrs_2021_105535 crossref_primary_10_3389_fphar_2020_01013 crossref_primary_10_3390_v13050828 crossref_primary_10_1007_s13659_022_00366_9 crossref_primary_10_1016_j_apsb_2021_06_016 crossref_primary_10_1007_s43450_020_00104_7 crossref_primary_10_1155_2022_3441357 crossref_primary_10_1055_a_1581_3707 crossref_primary_10_1111_cbdd_13812 crossref_primary_10_1021_acs_jmedchem_0c01746 crossref_primary_10_1186_s40001_024_01856_x crossref_primary_10_1002_jmv_25494 crossref_primary_10_3892_ijmm_2019_4247 crossref_primary_10_4062_biomolther_2021_134 crossref_primary_10_1093_nsr_nwaa066 crossref_primary_10_37349_eds_2023_00024 crossref_primary_10_3389_fmicb_2021_722748 crossref_primary_10_1016_S1875_5364_21_60032_8 crossref_primary_10_1016_j_ejmcr_2022_100079 crossref_primary_10_3389_fphar_2021_758159 crossref_primary_10_3892_ijmm_2020_4608 crossref_primary_10_3390_v12060642 crossref_primary_10_3390_v12040476 crossref_primary_10_1016_j_jddst_2021_102634 crossref_primary_10_3390_molecules25235496 crossref_primary_10_3389_fphar_2022_879733 crossref_primary_10_1002_slct_202103301 crossref_primary_10_3390_v14122724 crossref_primary_10_2174_1389557521666211007114935 crossref_primary_10_1186_s12906_022_03584_3 crossref_primary_10_1128_jvi_01948_23 crossref_primary_10_3390_molecules25184082 crossref_primary_10_1016_j_jphs_2023_02_004 crossref_primary_10_1016_j_intimp_2020_107228 crossref_primary_10_1016_j_phytol_2022_12_003 crossref_primary_10_3390_v14102217 crossref_primary_10_1016_j_nexres_2025_100140 crossref_primary_10_1038_s41467_021_24156_y crossref_primary_10_1016_j_virol_2024_110166 crossref_primary_10_1051_bioconf_202516303002 crossref_primary_10_1093_nsr_nwaa257 crossref_primary_10_7759_cureus_35958 |
Cites_doi | 10.1016/j.jviromet.2015.03.002 10.1128/AAC.01467-12 10.1016/j.antiviral.2016.11.011 10.1002/chem.201503527 10.1128/mBio.00737-13 10.1002/bies.10362 10.1128/AAC.12.2.298 10.1128/JVI.76.20.10177-10187.2002 10.1016/j.antiviral.2016.02.005 10.1101/gad.1185304 10.1016/j.antiviral.2015.10.016 10.1101/cshperspect.a012351 10.1128/JVI.76.12.5937-5948.2002 10.1016/j.bbrc.2008.07.163 10.1038/nrd4505 10.1007/PL00000726 10.1158/0008-5472.CAN-07-5635 10.1007/s11262-012-0713-1 10.1111/j.1432-1033.1977.tb11256.x 10.1042/BJ20131530 10.1074/jbc.M114.602649 10.1089/hyb.2007.0521 10.1007/s11262-008-0309-y 10.1128/mBio.02150-16 10.1517/14656566.2.8.1317 10.1128/AAC.29.6.1010 10.18632/oncotarget.3615 10.1128/jvi.27.3.648-658.1978 10.1039/C4NP00006D 10.1101/gad.1604407 10.1083/jcb.200607020 10.3390/v7020739 10.1186/1743-422X-9-129 10.1016/j.ejmech.2017.04.070 10.1073/pnas.1008908107 10.1016/j.antiviral.2017.03.004 10.1038/srep36226 10.1016/j.antiviral.2008.10.002 10.1007/s11901-013-0187-1 10.1073/pnas.1005320107 10.1073/pnas.0406927102 10.1038/onc.2017.233 10.1055/s-2007-967184 10.1038/sj.leu.2404287 10.2174/0929867323666160210124930 10.1038/leu.2009.52 10.1182/blood-2016-02-698704 10.1038/leu.2011.55 10.1074/jbc.M501156200 10.1016/j.ejmech.2018.05.059 10.1016/j.vaccine.2015.10.099 10.1371/journal.pone.0011265 10.1038/ni.2291 10.1146/annurev.cellbio.14.1.399 10.1007/s11262-014-1137-x 10.1093/infdis/jiy372 10.1016/j.antiviral.2014.11.010 10.1073/pnas.111145798 10.3389/fmicb.2015.00517 10.1073/pnas.1111942108 10.1128/JVI.01105-07 10.1084/jem.20110846 10.1371/journal.pone.0000242 |
ContentType | Journal Article |
Copyright | 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2018 by the authors. 2018 |
Copyright_xml | – notice: 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2018 by the authors. 2018 |
DBID | AAYXX CITATION NPM 3V. 7U9 7X7 7XB 88E 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU COVID DWQXO FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/v10110601 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection (subscription) ProQuest Central Natural Science Collection ProQuest One Community College Coronavirus Research Database ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni) Medical Database Biological Science Database ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection AIDS and Cancer Research Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database PubMed CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central (New) url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1999-4915 |
ExternalDocumentID | oai_doaj_org_article_c7d42c7e6c83489db2ef9f5e9db7fbbd PMC6266276 30388805 10_3390_v10110601 |
Genre | Journal Article |
GeographicLocations | United States--US China |
GeographicLocations_xml | – name: China – name: United States--US |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 31772739, 31572515 – fundername: The National Key R & D Program of China grantid: 2017YFD0502200 |
GroupedDBID | --- 2WC 53G 5VS 7X7 88E 8FE 8FH 8FI 8FJ A8Z AADQD AAFWJ AAHBH AAYXX ABDBF ABUWG ACUHS ADRAZ AFKRA AFPKN AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BBNVY BENPR BHPHI BPHCQ BVXVI CCPQU CITATION DIK E3Z EBD ESX FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IPNFZ KQ8 LK8 M1P M48 M7P MODMG M~E O5R O5S OK1 PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RIG RPM TR2 TUS UKHRP NPM PJZUB PPXIY PQGLB 3V. 7U9 7XB 8FK AZQEC COVID DWQXO GNUQQ H94 K9. PKEHL PQEST PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c469t-f90427534cec329760a267e8ba82869d747278c17427d48ce1377df254efdd103 |
IEDL.DBID | M48 |
ISSN | 1999-4915 |
IngestDate | Wed Aug 27 01:22:26 EDT 2025 Thu Aug 21 17:56:30 EDT 2025 Mon Jul 21 10:58:14 EDT 2025 Fri Jul 25 11:54:50 EDT 2025 Mon Jul 21 05:58:32 EDT 2025 Tue Jul 01 02:47:59 EDT 2025 Thu Apr 24 23:00:27 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | viral replication eIF4E HHT RNA virus DNA virus |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c469t-f90427534cec329760a267e8ba82869d747278c17427d48ce1377df254efdd103 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-8837-3965 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/v10110601 |
PMID | 30388805 |
PQID | 2582921141 |
PQPubID | 2032319 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_c7d42c7e6c83489db2ef9f5e9db7fbbd pubmedcentral_primary_oai_pubmedcentral_nih_gov_6266276 proquest_miscellaneous_2129532785 proquest_journals_2582921141 pubmed_primary_30388805 crossref_citationtrail_10_3390_v10110601 crossref_primary_10_3390_v10110601 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-11-01 |
PublicationDateYYYYMMDD | 2018-11-01 |
PublicationDate_xml | – month: 11 year: 2018 text: 2018-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Viruses |
PublicationTitleAlternate | Viruses |
PublicationYear | 2018 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Biedenkopf (ref_12) 2017; 137 Allan (ref_22) 2011; 25 Herdy (ref_65) 2012; 13 Zhou (ref_27) 2018; 15 Gu (ref_26) 2015; 6 Fresno (ref_17) 1977; 72 Choi (ref_43) 2009; 81 Kosciuczuk (ref_25) 2016; 128 Pestova (ref_5) 2000; 57 Toltzis (ref_36) 1986; 29 Snell (ref_6) 2001; 2 Panda (ref_57) 2014; 462 Sangeeta (ref_60) 2002; 76 Kentsis (ref_8) 2004; 101 Wang (ref_30) 2016; 34 Pan (ref_10) 2014; 31 Culjkovic (ref_23) 2006; 175 ref_20 Cao (ref_53) 2015; 114 Wendel (ref_54) 2007; 21 Montero (ref_58) 2015; 7 Tan (ref_9) 2008; 375 Burgui (ref_62) 2007; 81 Wang (ref_31) 2011; 108 Graff (ref_21) 2008; 68 Song (ref_41) 2012; 44 Yau (ref_13) 1978; 27 Sun (ref_29) 2015; 218 Larsen (ref_15) 2015; 21 Wang (ref_33) 2015; 50 Tonelli (ref_48) 2017; 135 Wang (ref_28) 2016; 6 Preiss (ref_4) 2003; 25 Roth (ref_66) 2017; 8 Walsh (ref_61) 2004; 18 Pestova (ref_3) 2001; 98 Yuan (ref_39) 2012; 9 Klysik (ref_45) 2018; 25 Bose (ref_46) 2017; 36 Royall (ref_59) 2015; 290 Yue (ref_40) 2009; 38 Bhat (ref_24) 2015; 14 Francesconi (ref_49) 2018; 155 Li (ref_34) 2017; 142 Schatz (ref_11) 2011; 208 Baaske (ref_37) 1977; 12 Walsh (ref_2) 2013; 5 Gray (ref_1) 1998; 14 Chen (ref_19) 2009; 23 Kaur (ref_38) 2013; 57 Agyemang (ref_44) 2018; 218 Connor (ref_63) 2002; 76 Connor (ref_35) 2005; 280 Carocci (ref_16) 2016; 128 Pajak (ref_14) 2007; 10 Zhou (ref_64) 2015; 124 Hay (ref_56) 2010; 107 Chen (ref_32) 2008; 27 Zhu (ref_51) 2015; 6 Huang (ref_42) 2013; 4 Gerold (ref_50) 2013; 12 Romero (ref_52) 2007; 73 Jin (ref_18) 2006; 20 Tonelli (ref_47) 2016; 23 ref_7 Furic (ref_55) 2010; 107 18245460 - Cancer Res. 2008 Feb 1;68(3):631-4 24894874 - Biochem J. 2014 Sep 1;462(2):291-302 11130464 - Cell Mol Life Sci. 2000 Apr;57(4):651-74 11416183 - Proc Natl Acad Sci U S A. 2001 Jun 19;98(13):7029-36 17458779 - Planta Med. 2007 Jun;73(6):552-8 29334312 - Leuk Lymphoma. 2018 Jan 15;:1-13 12239292 - J Virol. 2002 Oct;76(20):10177-87 20582319 - PLoS One. 2010 Jun 22;5(6):e11265 27824081 - Sci Rep. 2016 Nov 08;6:36226 26529075 - Vaccine. 2016 Feb 17;34(8):1126-32 23209131 - Cold Spring Harb Perspect Biol. 2013 Jan 01;5(1):a012351 212587 - J Virol. 1978 Sep;27(3):648-58 26577990 - Chemistry. 2015 Dec 21;21(52):19159-67 28745319 - Oncogene. 2017 Nov 16;36(46):6359-6373 20679199 - Proc Natl Acad Sci U S A. 2010 Aug 10;107(32):14134-9 24788392 - Nat Prod Rep. 2014 Jul;31(7):924-39 28477572 - Eur J Med Chem. 2017 Jul 28;135:467-478 17311107 - PLoS One. 2007 Feb 21;2(2):e242 319998 - Eur J Biochem. 1977 Jan;72(2):323-30 3015012 - Antimicrob Agents Chemother. 1986 Jun;29(6):1010-6 25384536 - Virus Genes. 2015 Feb;50(1):152-5 18055695 - Genes Dev. 2007 Dec 15;21(24):3232-7 15075293 - Genes Dev. 2004 Mar 15;18(6):660-72 27307295 - Blood. 2016 Jul 21;128(3):410-4 30020484 - J Infect Dis. 2018 Oct 20;218(11):1691-1699 22544393 - Nat Immunol. 2012 Apr 29;13(6):543-550 15601771 - Proc Natl Acad Sci U S A. 2004 Dec 28;101(52):18105-10 12021326 - J Virol. 2002 Jun;76(12):5937-48 26861005 - Curr Med Chem. 2016;23(18):1802-17 21859846 - J Exp Med. 2011 Aug 29;208(9):1799-807 17882939 - Pol J Vet Sci. 2007;10(2):127-30 21468038 - Leukemia. 2011 Jun;25(6):985-94 29521211 - Curr Med Chem. 2018 Mar 08;:null 25690796 - Viruses. 2015 Feb 16;7(2):739-50 900926 - Antimicrob Agents Chemother. 1977 Aug;12(2):298-300 28074025 - MBio. 2017 Jan 10;8(1) 18294075 - Hybridoma (Larchmt). 2008 Feb;27(1):36-42 25915158 - Oncotarget. 2015 Jun 20;6(17):15111-21 19082701 - Virus Genes. 2009 Feb;38(1):143-8 15705563 - J Biol Chem. 2005 Apr 8;280(14):13512-9 26526587 - Antiviral Res. 2015 Dec;124:11-9 25783682 - J Virol Methods. 2015 Jun 15;218:27-39 27864075 - Antiviral Res. 2017 Jan;137:76-81 25743081 - Nat Rev Drug Discov. 2015 Apr;14(4):261-78 29886325 - Eur J Med Chem. 2018 Jul 15;155:229-243 18706892 - Biochem Biophys Res Commun. 2008 Oct 24;375(3):341-5 20679238 - Proc Natl Acad Sci U S A. 2010 Aug 10;107(32):13975-6 26872864 - Antiviral Res. 2016 Apr;128:57-62 21844356 - Proc Natl Acad Sci U S A. 2011 Aug 30;108(35):14632-6 11585000 - Expert Opin Pharmacother. 2001 Aug;2(8):1317-24 26052325 - Front Microbiol. 2015 May 22;6:517 14635255 - Bioessays. 2003 Dec;25(12):1201-11 25451075 - Antiviral Res. 2015 Feb;114:1-10 17855553 - J Virol. 2007 Nov;81(22):12427-38 28286234 - Antiviral Res. 2017 Jun;142:1-11 22748128 - Virol J. 2012 Jul 02;9:129 25561727 - J Biol Chem. 2015 Feb 20;290(8):4748-58 9891789 - Annu Rev Cell Dev Biol. 1998;14:399-458 23275491 - Antimicrob Agents Chemother. 2013 Jan;57(1):155-67 22270324 - Virus Genes. 2012 Apr;44(2):167-75 18992773 - Antiviral Res. 2009 Jan;81(1):77-81 16791270 - Leukemia. 2006 Aug;20(8):1361-7 19322212 - Leukemia. 2009 Aug;23(8):1446-54 24129257 - MBio. 2013 Oct 15;4(5):e00737-13 17074885 - J Cell Biol. 2006 Nov 6;175(3):415-26 |
References_xml | – volume: 218 start-page: 27 year: 2015 ident: ref_29 article-title: Analysis of protein expression changes of the Vero E6 cells infected with classic PEDV strain CV777 by using quantitative proteomic technique publication-title: J. Virol. Methods doi: 10.1016/j.jviromet.2015.03.002 – volume: 57 start-page: 155 year: 2013 ident: ref_38 article-title: Inhibition of chikungunya virus replication by harringtonine, a novel antiviral that suppresses viral protein expression publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.01467-12 – volume: 137 start-page: 76 year: 2017 ident: ref_12 article-title: The natural compound silvestrol is a potent inhibitor of Ebola virus replication publication-title: Antivir. Res. doi: 10.1016/j.antiviral.2016.11.011 – volume: 21 start-page: 19159 year: 2015 ident: ref_15 article-title: Synthesis and Biological Evaluation of Lactimidomycin and Its Analogues publication-title: Chemistry doi: 10.1002/chem.201503527 – volume: 15 start-page: 1 year: 2018 ident: ref_27 article-title: Targeting of phospho-eIF4E by homoharringtonine eradicates a distinct subset of human acute myeloid leukemia publication-title: Leuk Lymphoma – volume: 4 start-page: e00737 year: 2013 ident: ref_42 article-title: Origin, evolution, and genotyping of emergent porcine epidemic diarrhea virus strains in the United States publication-title: mBio doi: 10.1128/mBio.00737-13 – volume: 25 start-page: 1201 year: 2003 ident: ref_4 article-title: Starting the protein synthesis machine: Eukaryotic translation initiation publication-title: Bioessays doi: 10.1002/bies.10362 – volume: 12 start-page: 298 year: 1977 ident: ref_37 article-title: Cytotoxicity and cell cycle specificity of homoharringtonine publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.12.2.298 – volume: 76 start-page: 10177 year: 2002 ident: ref_63 article-title: Vesicular stomatitis virus infection alters the eIF4F translation initiation complex and causes dephosphorylation of the eIF4E binding protein 4E-BP1 publication-title: J. Virol. doi: 10.1128/JVI.76.20.10177-10187.2002 – volume: 128 start-page: 57 year: 2016 ident: ref_16 article-title: Lactimidomycin is a broad-spectrum inhibitor of dengue and other RNA viruses publication-title: Antivir. Res. doi: 10.1016/j.antiviral.2016.02.005 – volume: 18 start-page: 660 year: 2004 ident: ref_61 article-title: Phosphorylation of eIF4E by Mnk-1 enhances HSV-1 translation and replication in quiescent cells publication-title: Genes Dev. doi: 10.1101/gad.1185304 – volume: 124 start-page: 11 year: 2015 ident: ref_64 article-title: Requirement of the eukaryotic translation initiation factor 4F complex in hepatitis E virus replication publication-title: Antivir. Res. doi: 10.1016/j.antiviral.2015.10.016 – volume: 5 start-page: a012351 year: 2013 ident: ref_2 article-title: Tinkering with translation: Protein synthesis in virus-infected cells publication-title: Cold Spring Harb. Perspect. Biol. doi: 10.1101/cshperspect.a012351 – volume: 76 start-page: 5937 year: 2002 ident: ref_60 article-title: Murine coronavirus replication-induced p38 mitogen-activated protein kinase activation promotes interleukin-6 production and virus replication in cultured cells publication-title: J. Virol. doi: 10.1128/JVI.76.12.5937-5948.2002 – volume: 375 start-page: 341 year: 2008 ident: ref_9 article-title: Ribavirin targets eIF4E dependent Akt survival signaling publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2008.07.163 – volume: 14 start-page: 261 year: 2015 ident: ref_24 article-title: Targeting the translation machinery in cancer publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd4505 – volume: 57 start-page: 651 year: 2000 ident: ref_5 article-title: The structure and function of initiation factors in eukaryotic protein synthesis publication-title: Cell. Mol. Life Sci. doi: 10.1007/PL00000726 – volume: 68 start-page: 631 year: 2008 ident: ref_21 article-title: Targeting the eukaryotic translation initiation factor 4E for cancer therapy publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-07-5635 – volume: 44 start-page: 167 year: 2012 ident: ref_41 article-title: Porcine epidemic diarrhoea virus: A comprehensive review of molecular epidemiology, diagnosis, and vaccines publication-title: Virus Genes doi: 10.1007/s11262-012-0713-1 – volume: 72 start-page: 323 year: 1977 ident: ref_17 article-title: Inhibition of translation in eukaryotic systems by harringtonine publication-title: Eur. J. Biochem. doi: 10.1111/j.1432-1033.1977.tb11256.x – volume: 462 start-page: 291 year: 2014 ident: ref_57 article-title: A unique phosphorylationdependent eIF4E assembly on 40S ribosomes co-ordinated by hepatitis C virus protein NS5A that activates internal ribosome entry site translation publication-title: Biochem. J. doi: 10.1042/BJ20131530 – volume: 290 start-page: 4748 year: 2015 ident: ref_59 article-title: Murine norovirus 1 (MNV1) replication induces translational control of the host by regulating eIF4E activity during infection publication-title: J. Biol. Chem. doi: 10.1074/jbc.M114.602649 – volume: 27 start-page: 36 year: 2008 ident: ref_32 article-title: Preparation of monoclonal antibodies against pseudorabies virus glycoprotein gC by adenovirus immunization alone or as a boost following DNA priming publication-title: Hybridoma (Larchmt) doi: 10.1089/hyb.2007.0521 – volume: 38 start-page: 143 year: 2009 ident: ref_40 article-title: Short hairpin RNA targeting NP mRNA inhibiting Newcastle disease virus production and other viral structural mRNA transcription publication-title: Virus Genes doi: 10.1007/s11262-008-0309-y – volume: 8 start-page: e02150-16 year: 2017 ident: ref_66 article-title: Flavivirus Infection Uncouples Translation Suppression from Cellular Stress Responses publication-title: mBio doi: 10.1128/mBio.02150-16 – volume: 2 start-page: 1317 year: 2001 ident: ref_6 article-title: Ribavirin-current status of a broad spectrum antiviral agent publication-title: Expert Opin. Pharmacother. doi: 10.1517/14656566.2.8.1317 – volume: 29 start-page: 1010 year: 1986 ident: ref_36 article-title: Effect of ribavirin on macromolecular synthesis in vesicular stomatitis virus-infected cells publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.29.6.1010 – volume: 6 start-page: 15111 year: 2015 ident: ref_26 article-title: Small-molecule induction of phospho-eIF4E sumoylation and degradation via targeting its phosphorylated serine 209 residue publication-title: Oncotarget doi: 10.18632/oncotarget.3615 – volume: 27 start-page: 648 year: 1978 ident: ref_13 article-title: Specificity of interferon action in protein synthesis publication-title: J. Virol. doi: 10.1128/jvi.27.3.648-658.1978 – volume: 31 start-page: 924 year: 2014 ident: ref_10 article-title: Rocaglamide, silvestrol and structurally related bioactive compounds from Aglaia species publication-title: Nat. Prod. Rep. doi: 10.1039/C4NP00006D – volume: 21 start-page: 3232 year: 2007 ident: ref_54 article-title: Dissecting eIF4E action in tumorigenesis publication-title: Genes Dev. doi: 10.1101/gad.1604407 – volume: 175 start-page: 415 year: 2006 ident: ref_23 article-title: eIF4E is a central node of an RNA regulon that governs cellular proliferation publication-title: J. Cell Biol. doi: 10.1083/jcb.200607020 – volume: 7 start-page: 739 year: 2015 ident: ref_58 article-title: eIF4E as a control target for viruses publication-title: Viruses doi: 10.3390/v7020739 – volume: 9 start-page: 129 year: 2012 ident: ref_39 article-title: Genetic and biological characterizations of a Newcastle disease virus from swine in China publication-title: Virol. J. doi: 10.1186/1743-422X-9-129 – volume: 135 start-page: 467 year: 2017 ident: ref_48 article-title: Host dihydrofolate reductase (DHFR)-directed cycloguanil analogues endowed with activity against influenza virus and respiratory syncytial virus publication-title: Eur. J. Med. Chem. doi: 10.1016/j.ejmech.2017.04.070 – volume: 107 start-page: 13975 year: 2010 ident: ref_56 article-title: Mnk earmarks eIF4E for cancer therapy publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1008908107 – volume: 142 start-page: 1 year: 2017 ident: ref_34 article-title: Cellular protein GLTSCR2: A valuable target for the development of broad-spectrum antivirals publication-title: Antivir. Res. doi: 10.1016/j.antiviral.2017.03.004 – volume: 6 start-page: 36226 year: 2016 ident: ref_28 article-title: The nucleolar protein GLTSCR2 is required for efficient viral replication publication-title: Sci. Rep. doi: 10.1038/srep36226 – volume: 81 start-page: 77 year: 2009 ident: ref_43 article-title: Antiviral activity of quercetin 7-rhamnoside against porcine epidemic diarrhea virus publication-title: Antivir. Res. doi: 10.1016/j.antiviral.2008.10.002 – volume: 12 start-page: 200 year: 2013 ident: ref_50 article-title: Opportunities and risks of host-targeting antiviral strategies for hepatitis C publication-title: Curr. Hepat. Rep. doi: 10.1007/s11901-013-0187-1 – volume: 107 start-page: 14134 year: 2010 ident: ref_55 article-title: eIF4E phosphorylation promotes tumorigenesis and is associated with prostate cancer progression publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1005320107 – volume: 101 start-page: 18105 year: 2004 ident: ref_8 article-title: Ribavirin suppresses eIF4E-mediated oncogenic transformation by physical mimicry of the 7-methyl guanosine mRNA cap publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0406927102 – volume: 10 start-page: 127 year: 2007 ident: ref_14 article-title: Antiapoptotic proteins as targets for bioactive compounds publication-title: Pol. J. Vet. Sci. – volume: 36 start-page: 6359 year: 2017 ident: ref_46 article-title: The androgen receptor is a negative regulator of eIF4E phosphorylation at S209: Implications for the use of mTOR inhibitors in advanced prostate cancer publication-title: Oncogene doi: 10.1038/onc.2017.233 – volume: 73 start-page: 552 year: 2007 ident: ref_52 article-title: Effect of cantharidin, cephalotaxine and homoharringtonine on “in vitro” models of hepatitis B virus (HBV) and bovine viral diarrhoea virus (BVDV) replication publication-title: Planta Med. doi: 10.1055/s-2007-967184 – volume: 20 start-page: 1361 year: 2006 ident: ref_18 article-title: Homoharringtonine in combination with cytarabine and aclarubicin resulted in high complete remission rate after the first induction therapy in patients with de novo acute myeloid leukemia publication-title: Leukemia doi: 10.1038/sj.leu.2404287 – volume: 25 start-page: 1 year: 2018 ident: ref_45 article-title: Acyclovir in the Treatment of Herpes Viruses—A Review publication-title: Curr. Med. Chem. – volume: 23 start-page: 1802 year: 2016 ident: ref_47 article-title: Fight against H1N1 Influenza A Virus: Recent Insights towards the Development of Druggable Compounds publication-title: Curr. Med. Chem. doi: 10.2174/0929867323666160210124930 – volume: 23 start-page: 1446 year: 2009 ident: ref_19 article-title: Inhibitory effects of omacetaxine on leukemic stem cells and BCR-ABL-induced chronic myeloid leukemia and acute lymphoblastic leukemia in mice publication-title: Leukemia doi: 10.1038/leu.2009.52 – volume: 128 start-page: 410 year: 2016 ident: ref_25 article-title: Merestinib blocks Mnk kinase activity in acute myeloid leukemia progenitors and exhibits antileukemic effects in vitro and in vivo publication-title: Blood doi: 10.1182/blood-2016-02-698704 – volume: 25 start-page: 985 year: 2011 ident: ref_22 article-title: Omacetaxine may have a role in chronic myeloid leukaemia eradication through downregulation of Mcl-1 and induction of apoptosis in stem/progenitor cells publication-title: Leukemia doi: 10.1038/leu.2011.55 – volume: 280 start-page: 13512 year: 2005 ident: ref_35 article-title: Inhibition of host translation during vesicular stomatitis virus infection publication-title: J. Biol. Chem. doi: 10.1074/jbc.M501156200 – volume: 155 start-page: 229 year: 2018 ident: ref_49 article-title: Synthesis, biological evaluation and molecular modeling of novel azaspiro dihydrotriazines as influenza virus inhibitors targeting the host factor dihydrofolate reductase (DHFR) publication-title: Eur. J. Med. Chem. doi: 10.1016/j.ejmech.2018.05.059 – volume: 34 start-page: 1126 year: 2016 ident: ref_30 article-title: Non-thermal plasma for inactivated-vaccine preparation publication-title: Vaccine doi: 10.1016/j.vaccine.2015.10.099 – ident: ref_7 doi: 10.1371/journal.pone.0011265 – volume: 13 start-page: 543 year: 2012 ident: ref_65 article-title: Translational control of the activation of transcription factor NF-κB and production of type I interferon by phosphorylation of the translation factor eIF4E publication-title: Nat. Immunol. doi: 10.1038/ni.2291 – volume: 14 start-page: 399 year: 1998 ident: ref_1 article-title: Control of translation initiation in animals publication-title: Annu. Rev. Cell Dev. Biol. doi: 10.1146/annurev.cellbio.14.1.399 – volume: 50 start-page: 152 year: 2015 ident: ref_33 article-title: Development of a reverse genetics system based on RNA polymerase II for Newcastle disease virus genotype VII publication-title: Virus Genes doi: 10.1007/s11262-014-1137-x – volume: 218 start-page: 1691 year: 2018 ident: ref_44 article-title: Herpes simplex virus shedding rate: Surrogate outcome for genital herpes recurrence frequency and lesion rates, and phase 2 clinical trials end point for evaluating efficacy of antivirals publication-title: J. Infect. Dis. doi: 10.1093/infdis/jiy372 – volume: 114 start-page: 1 year: 2015 ident: ref_53 article-title: A screen of the NIH clinical collection small molecule library identifies potential anti-coronavirus drugs publication-title: Antivir. Res. doi: 10.1016/j.antiviral.2014.11.010 – volume: 98 start-page: 7029 year: 2001 ident: ref_3 article-title: Molecular mechanisms of translation initiation in eukaryotes publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.111145798 – volume: 6 start-page: 517 year: 2015 ident: ref_51 article-title: Broad-spectrum antiviral agents publication-title: Front. Microbiol. doi: 10.3389/fmicb.2015.00517 – volume: 108 start-page: 14632 year: 2011 ident: ref_31 article-title: US3 protein kinase of HSV-1 cycles between the cytoplasm and nucleus and interacts with programmed cell death protein 4 (PDCD4) to block apoptosis publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1111942108 – volume: 81 start-page: 12427 year: 2007 ident: ref_62 article-title: Influenza virus mRNA translation revisited: Is the eIF4E cap-binding factor required for viral mRNA translation? publication-title: J. Virol. doi: 10.1128/JVI.01105-07 – volume: 208 start-page: 1799 year: 2011 ident: ref_11 article-title: Targeting cap-dependent translation blocks converging survival signals by AKT and PIM kinases in lymphoma publication-title: J. Exp. Med. doi: 10.1084/jem.20110846 – ident: ref_20 doi: 10.1371/journal.pone.0000242 – reference: 319998 - Eur J Biochem. 1977 Jan;72(2):323-30 – reference: 24788392 - Nat Prod Rep. 2014 Jul;31(7):924-39 – reference: 12021326 - J Virol. 2002 Jun;76(12):5937-48 – reference: 21844356 - Proc Natl Acad Sci U S A. 2011 Aug 30;108(35):14632-6 – reference: 29886325 - Eur J Med Chem. 2018 Jul 15;155:229-243 – reference: 26529075 - Vaccine. 2016 Feb 17;34(8):1126-32 – reference: 17882939 - Pol J Vet Sci. 2007;10(2):127-30 – reference: 28477572 - Eur J Med Chem. 2017 Jul 28;135:467-478 – reference: 15075293 - Genes Dev. 2004 Mar 15;18(6):660-72 – reference: 28286234 - Antiviral Res. 2017 Jun;142:1-11 – reference: 28745319 - Oncogene. 2017 Nov 16;36(46):6359-6373 – reference: 22270324 - Virus Genes. 2012 Apr;44(2):167-75 – reference: 20679238 - Proc Natl Acad Sci U S A. 2010 Aug 10;107(32):13975-6 – reference: 29334312 - Leuk Lymphoma. 2018 Jan 15;:1-13 – reference: 25783682 - J Virol Methods. 2015 Jun 15;218:27-39 – reference: 18992773 - Antiviral Res. 2009 Jan;81(1):77-81 – reference: 26052325 - Front Microbiol. 2015 May 22;6:517 – reference: 26872864 - Antiviral Res. 2016 Apr;128:57-62 – reference: 17074885 - J Cell Biol. 2006 Nov 6;175(3):415-26 – reference: 27864075 - Antiviral Res. 2017 Jan;137:76-81 – reference: 25451075 - Antiviral Res. 2015 Feb;114:1-10 – reference: 21468038 - Leukemia. 2011 Jun;25(6):985-94 – reference: 15601771 - Proc Natl Acad Sci U S A. 2004 Dec 28;101(52):18105-10 – reference: 22544393 - Nat Immunol. 2012 Apr 29;13(6):543-550 – reference: 24894874 - Biochem J. 2014 Sep 1;462(2):291-302 – reference: 18294075 - Hybridoma (Larchmt). 2008 Feb;27(1):36-42 – reference: 30020484 - J Infect Dis. 2018 Oct 20;218(11):1691-1699 – reference: 9891789 - Annu Rev Cell Dev Biol. 1998;14:399-458 – reference: 21859846 - J Exp Med. 2011 Aug 29;208(9):1799-807 – reference: 19082701 - Virus Genes. 2009 Feb;38(1):143-8 – reference: 18055695 - Genes Dev. 2007 Dec 15;21(24):3232-7 – reference: 11416183 - Proc Natl Acad Sci U S A. 2001 Jun 19;98(13):7029-36 – reference: 26526587 - Antiviral Res. 2015 Dec;124:11-9 – reference: 22748128 - Virol J. 2012 Jul 02;9:129 – reference: 20582319 - PLoS One. 2010 Jun 22;5(6):e11265 – reference: 25690796 - Viruses. 2015 Feb 16;7(2):739-50 – reference: 17855553 - J Virol. 2007 Nov;81(22):12427-38 – reference: 11585000 - Expert Opin Pharmacother. 2001 Aug;2(8):1317-24 – reference: 19322212 - Leukemia. 2009 Aug;23(8):1446-54 – reference: 25915158 - Oncotarget. 2015 Jun 20;6(17):15111-21 – reference: 27307295 - Blood. 2016 Jul 21;128(3):410-4 – reference: 20679199 - Proc Natl Acad Sci U S A. 2010 Aug 10;107(32):14134-9 – reference: 29521211 - Curr Med Chem. 2018 Mar 08;:null – reference: 16791270 - Leukemia. 2006 Aug;20(8):1361-7 – reference: 12239292 - J Virol. 2002 Oct;76(20):10177-87 – reference: 24129257 - MBio. 2013 Oct 15;4(5):e00737-13 – reference: 18706892 - Biochem Biophys Res Commun. 2008 Oct 24;375(3):341-5 – reference: 25743081 - Nat Rev Drug Discov. 2015 Apr;14(4):261-78 – reference: 18245460 - Cancer Res. 2008 Feb 1;68(3):631-4 – reference: 25384536 - Virus Genes. 2015 Feb;50(1):152-5 – reference: 17311107 - PLoS One. 2007 Feb 21;2(2):e242 – reference: 23275491 - Antimicrob Agents Chemother. 2013 Jan;57(1):155-67 – reference: 3015012 - Antimicrob Agents Chemother. 1986 Jun;29(6):1010-6 – reference: 17458779 - Planta Med. 2007 Jun;73(6):552-8 – reference: 11130464 - Cell Mol Life Sci. 2000 Apr;57(4):651-74 – reference: 15705563 - J Biol Chem. 2005 Apr 8;280(14):13512-9 – reference: 25561727 - J Biol Chem. 2015 Feb 20;290(8):4748-58 – reference: 27824081 - Sci Rep. 2016 Nov 08;6:36226 – reference: 28074025 - MBio. 2017 Jan 10;8(1): – reference: 212587 - J Virol. 1978 Sep;27(3):648-58 – reference: 14635255 - Bioessays. 2003 Dec;25(12):1201-11 – reference: 900926 - Antimicrob Agents Chemother. 1977 Aug;12(2):298-300 – reference: 26577990 - Chemistry. 2015 Dec 21;21(52):19159-67 – reference: 26861005 - Curr Med Chem. 2016;23(18):1802-17 – reference: 23209131 - Cold Spring Harb Perspect Biol. 2013 Jan 01;5(1):a012351 |
SSID | ssj0066907 |
Score | 2.4338906 |
Snippet | To complement traditional antivirals, natural compounds that act via host targets and present high barriers to resistance are of increasing interest. In the... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 601 |
SubjectTerms | Antiviral activity Antiviral agents Antiviral drugs Avian flu Cell cycle Dengue fever Diarrhea DNA virus eIF4E Genomes Herpes simplex Herpes viruses HHT Infections Initiation factor eIF-4E Kinases Leukemia mRNA Newcastle disease Phosphorylation Polyclonal antibodies Proteins RNA virus RNA viruses Stomatitis Transmissible gastroenteritis Viral infections viral replication |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA6yIHgR364vonjwUrabtE16XEVZBcWDK3uRkuaBgrayVsF_70zTLbuy4MVb26RtOpk087WZ7yPk1Gok6TJhEBkjMCVHB7k2-BmO65RL5focE5xv75LhKLoZx-MZqS9cE-bpgb3helqYiGlhEy15JFOTM-tSF1vYEi7PDb59Yc6bgin_Dk4Q83keIQ6gvvfVx2kuaZRfprNPTdK_KLL8vUByZsa5WiOrTahIB76J62TJFhtk2YtHfm-SJ-hheqdq3gyKwxoFkuiwfCuf1WTiF8ZDCEnvfYLRBwXErQwdFKgXgecMtFeOoNcFfXypJiVVcIF656vcIqOry4eLYdCIJQRg7bQKXIqqGTGPtNWcQZARKpYIK3OFieKpAdjAhNQAQBhYVGqLVIPGAT60zph-yLdJpygLu0uoTqSQuRNGSxtZiwQuzgAMUSKMLRzrkrOpETPdMImjoMVrBogC7Z219u6Sk7bqu6fPWFTpHHuirYCM1_UB8IOs8YPsLz_okoNpP2bNMPzIWCxZChA3gnsct8UwgPCviCps-Ql1IOKJOdgm7pId3-1tSzhy5cgQSsScQ8w1db6keHmuSboBKCZMJHv_8Wz7ZAXiNOlTIA9Ip5p82kOIhar8qHb7H5P5Cww priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7BVkhcKt4ECjKIA5eoWTuJnRPaolYLEqsKUdQLihw_aCVI2uy2Ev-emdgJLKq4JbETWTN-zOd4vg_gjTNE0mWzNLdWUkqOSRtjaRtOmEoo7eeCEpw_rcrlSf7xtDiNG27reKxynBOHidp2hvbI93mheIVoJZ-_u7hMSTWK_q5GCY3bsINTsCpmsHNwuDr-PM7FJWG_wCckENzvX89puSujAsy4Cg1k_TdFmP8elPxr5Tm6B7sxZGSL4OP7cMu1D-BOEJH89RC-oafZSg_8GYyGNwklsWX3szvTfR8OyGMoyY5DotGaIfLWli1a0o2gdxYmKEiwDy37er7pO6bxA8PNdfcITo4Ov7xfplE0IUWrV5vUV6SeUYjcOCM4BhuZ5qV0qtGUMF5ZhA9cKoNAhEubK-OIctB6xInOWzvPxGOYtV3rngIzpZKq8dIa5XLniMjFW4QjWmaFw2cJvB2NWJvIKE7CFj9qRBZk73qydwKvp6oXgUbjpkoH5ImpAjFfDw-6_nsdB1JtsNXcSFcaJXJV2YY7X_nC4ZX0TWMT2Bv9WMfhuK7_dJ4EXk3FOJDo74huXXeFdTDyKQTapkjgSXD71BJBnDkqwxK51SG2mrpd0p6fDWTdCBhLLstn_2_Wc7iLkZgKSY57MNv0V-4FRjub5mXs0r8BA8YBtQ priority: 102 providerName: ProQuest |
Title | The Natural Compound Homoharringtonine Presents Broad Antiviral Activity In Vitro and In Vivo |
URI | https://www.ncbi.nlm.nih.gov/pubmed/30388805 https://www.proquest.com/docview/2582921141 https://www.proquest.com/docview/2129532785 https://pubmed.ncbi.nlm.nih.gov/PMC6266276 https://doaj.org/article/c7d42c7e6c83489db2ef9f5e9db7fbbd |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fa9RAEB5qi-CL-Nuz9VjFB1-iuU2yu3kocpXWU-hRxJN7kbDZH7ZQE5tei_3vO5PNBSOHLyHJTpJlZpedL8l8H8AbZ4iky8ZRaq2kkhwTlcbSa7jE5InSfpJQgfPxXMwW6ZdlttyCtcZm58DLjdCO9KQWzfm7Pxc3H3DC7xPiRMj-_npCi5igKq4dXJAEDe7jtP-YIAgABlKhoflgKWoZ-zelmf_-LfnX8nP0AO53eSObhkA_hC1XPYK7QUny5jH8wHCzuW5JNBjNcVJLYrP6V32qmyb8JY_5JDsJ1UaXDOG3tmxakXgEXTM1QUaCfa7Y97NVUzONN2gPrusnsDg6_PZxFnXKCRG6Pl9FPicJjSxJjTMJx4wj1lxIp0pNVeO5RQzBpTKIRri0qTKOeAetR7DovLWTOHkK21VduefAjFBSlV5ao1zqHLG5eIuYRMs4c3huBG_XTixMRytO6hbnBcIL8nfR-3sEr3vT34FLY5PRAUWiNyD66_ZE3fwsutlUGOw1N9IJo5JU5bbkzuc-c7gnfVnaEeyt41ish1TBM8VzxLspPuNV34yziT6R6MrVV2iD6U-WoG-yETwLYe97khBxjoqxRQ4GxKCrw5bq7LRl7EbUKLgUL_7frV24h-mYCpWOe7C9aq7cS0x5VuUY7silHMPOweH85Ou4fXGA20_Lybgd6reD6AYg |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fT9RAEJ4gxOiL8bdV0NVo4ktDb7ftbh8MORRyJ3AhBgwvpLa7WyDBFnsHhn-Kv5GZbls9Q3zjre1um8nszO7Mduf7AN5bTSBdJvBDYySV5Gg_14a24YROhMqKgaAC551JPNoPvx5EBwtw1dXC0LHKbk5sJmpTadojX-WR4glmK-Fg7eyXT6xR9He1o9BwZrFlL39jyjb9NP6C4_uB882Nvc8jv2UV8FGsZOYXCdFLRCLUVguOq3GQ8VhalWdUUZ0YjK-5VBojdS5NqLQlTD5TYCJlC2MGgcDv3oElDDMS9KKl9Y3J7rdu7o8p13T4RUIkwerFgJbXuGWc6Va9hhzgpoj234OZf610mw_hQRuisqGzqUewYMvHcNeRVl4-gUO0LDbJGrwORtMJETOxUfWzOs7q2h3Ix9CV7brCpinDTD8zbFgSTwW9M9SOsYKNS_b9ZFZXLMMPNDcX1VPYvxV1PoPFsirtC2A6VlLlhTRa2dBaAo4pDKY_mQwii888-NgpMdUtgjkRaZymmMmQvtNe3x6867ueOdiOmzqt00j0HQhpu3lQ1Udp67ipRqm5ljbWSoQqMTm3RVJEFq9kkefGg-VuHNPW_afpH2P14G3fjI5Lf2Oy0lbn2AcjrUigbiIPnrth7yURhNGjAmyRcwYxJ-p8S3ly3ICDY4Iacxm__L9Yb-DeaG9nO90eT7ZewX2MApUrsFyGxVl9blcw0prlr1vzZvDjtj3qGiK0PNA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED6NTiBeEL8JDDAIJF6ipnYSOw8IdWxVy6CqEEN7mUJiO2wSJCPthvav8ddxFyeBoom3vSWxE53OZ9-d4_s-gBdWE0iXCfzQGEklOdrPtaFtOKETobJiJKjA-cM8nu6H7w6igw341dXC0LHKbk1sFmpTadojH_JI8QSzlXA0LNpjEYudyZuTHz4xSNGf1o5Ow5nInj3_ienb8vVsB8f6JeeT3U9vp37LMOCjiMnKLxKimohEqK0WHD1zkPFYWpVnVF2dGIy1uVQao3YuTai0JXw-U2BSZQtjRoHA716BTYleUQ1gc3t3vvjY-YGY8k6HZSREEgzPRuRq45Z9pvOADVHARdHtv4c0__J6k5twow1X2djZ1y3YsOVtuOoILM_vwCFaGZtnDXYHo6WFSJrYtPpeHWV17Q7nYxjLFq7Iackw688MG5fEWUHvjLVjr2Czkn0-XtUVy_ADzc1ZdRf2L0Wd92BQVqV9AEzHSqq8kEYrG1pLIDKFwVQok0Fk8ZkHrzolprpFMydSjW8pZjWk77TXtwfP-64nDsLjok7bNBJ9B0Ldbh5U9de0ncSpRqm5ljbWSoQqMTm3RVJEFq9kkefGg61uHNN2KVimfwzXg2d9M05i-jOTlbY6xT4YdUUCdRN5cN8Ney-JILweFWCLXDOINVHXW8rjowYoHJPVmMv44f_FegrXcCal72fzvUdwHQNC5Wott2Cwqk_tYwy6VvmT1roZfLnsCfUbofBA_A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Natural+Compound+Homoharringtonine+Presents+Broad+Antiviral+Activity+In+Vitro+and+In+Vivo&rft.jtitle=Viruses&rft.au=Hui-Jun%2C+Dong&rft.au=Zhao-Hua%2C+Wang&rft.au=Meng%2C+Wen&rft.au=Cui-Cui%2C+Li&rft.date=2018-11-01&rft.pub=MDPI+AG&rft.eissn=1999-4915&rft.volume=10&rft.issue=11&rft.spage=601&rft_id=info:doi/10.3390%2Fv10110601&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1999-4915&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1999-4915&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1999-4915&client=summon |