High-Precision Fiber Noise Detection and Comparison over a 260 km Field Fiber Link
In this paper, we present a high-precision optical frequency noise detection and comparison technique using a two-way transfer method over a 260 km field fiber link. This method allows for the comparison of optical frequencies between remote optical references without the need for data transfer thro...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 24; no. 11; p. 3483 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
28.05.2024
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper, we present a high-precision optical frequency noise detection and comparison technique using a two-way transfer method over a 260 km field fiber link. This method allows for the comparison of optical frequencies between remote optical references without the need for data transfer through communication. We extend a previously established two-way comparison technique to obtain all data at the local site. Two optical carrier signals are injected into the bidirectional fiber from both ends, and one carrier is reflected back from the remote end. This enables the phase comparison of the two carrier signals at a single site without the need to transmit experimental data. The common-mode frequency noise induced by the bidirectional fiber link is detected and effectively suppressed without the need for sophisticated active fiber noise control. Our demonstration system, which uses a 260 km field fiber link and a common laser source, achieves a fractional instability of 2.5×10−17 at 1 s averaging time and scales down to 3.5×10−21 at 8000 s. This scheme offers the distinct advantage of completing the comparison at a single site, eliminating the need for remote data transfer via communication. This method is expected to enhance reliability for high-precision frequency comparisons between remote optical clocks and advanced atomic clocks. |
---|---|
AbstractList | In this paper, we present a high-precision optical frequency noise detection and comparison technique using a two-way transfer method over a 260 km field fiber link. This method allows for the comparison of optical frequencies between remote optical references without the need for data transfer through communication. We extend a previously established two-way comparison technique to obtain all data at the local site. Two optical carrier signals are injected into the bidirectional fiber from both ends, and one carrier is reflected back from the remote end. This enables the phase comparison of the two carrier signals at a single site without the need to transmit experimental data. The common-mode frequency noise induced by the bidirectional fiber link is detected and effectively suppressed without the need for sophisticated active fiber noise control. Our demonstration system, which uses a 260 km field fiber link and a common laser source, achieves a fractional instability of
2.5
×
10
−
17
at 1 s averaging time and scales down to
3.5
×
10
−
21
at 8000 s. This scheme offers the distinct advantage of completing the comparison at a single site, eliminating the need for remote data transfer via communication. This method is expected to enhance reliability for high-precision frequency comparisons between remote optical clocks and advanced atomic clocks. In this paper, we present a high-precision optical frequency noise detection and comparison technique using a two-way transfer method over a 260 km field fiber link. This method allows for the comparison of optical frequencies between remote optical references without the need for data transfer through communication. We extend a previously established two-way comparison technique to obtain all data at the local site. Two optical carrier signals are injected into the bidirectional fiber from both ends, and one carrier is reflected back from the remote end. This enables the phase comparison of the two carrier signals at a single site without the need to transmit experimental data. The common-mode frequency noise induced by the bidirectional fiber link is detected and effectively suppressed without the need for sophisticated active fiber noise control. Our demonstration system, which uses a 260 km field fiber link and a common laser source, achieves a fractional instability of 2.5×10−17 at 1 s averaging time and scales down to 3.5×10−21 at 8000 s. This scheme offers the distinct advantage of completing the comparison at a single site, eliminating the need for remote data transfer via communication. This method is expected to enhance reliability for high-precision frequency comparisons between remote optical clocks and advanced atomic clocks. In this paper, we present a high-precision optical frequency noise detection and comparison technique using a two-way transfer method over a 260 km field fiber link. This method allows for the comparison of optical frequencies between remote optical references without the need for data transfer through communication. We extend a previously established two-way comparison technique to obtain all data at the local site. Two optical carrier signals are injected into the bidirectional fiber from both ends, and one carrier is reflected back from the remote end. This enables the phase comparison of the two carrier signals at a single site without the need to transmit experimental data. The common-mode frequency noise induced by the bidirectional fiber link is detected and effectively suppressed without the need for sophisticated active fiber noise control. Our demonstration system, which uses a 260 km field fiber link and a common laser source, achieves a fractional instability of 2.5×10[sup.−17] at 1 s averaging time and scales down to 3.5×10[sup.−21] at 8000 s. This scheme offers the distinct advantage of completing the comparison at a single site, eliminating the need for remote data transfer via communication. This method is expected to enhance reliability for high-precision frequency comparisons between remote optical clocks and advanced atomic clocks. In this paper, we present a high-precision optical frequency noise detection and comparison technique using a two-way transfer method over a 260 km field fiber link. This method allows for the comparison of optical frequencies between remote optical references without the need for data transfer through communication. We extend a previously established two-way comparison technique to obtain all data at the local site. Two optical carrier signals are injected into the bidirectional fiber from both ends, and one carrier is reflected back from the remote end. This enables the phase comparison of the two carrier signals at a single site without the need to transmit experimental data. The common-mode frequency noise induced by the bidirectional fiber link is detected and effectively suppressed without the need for sophisticated active fiber noise control. Our demonstration system, which uses a 260 km field fiber link and a common laser source, achieves a fractional instability of 2.5×10-17 at 1 s averaging time and scales down to 3.5×10-21 at 8000 s. This scheme offers the distinct advantage of completing the comparison at a single site, eliminating the need for remote data transfer via communication. This method is expected to enhance reliability for high-precision frequency comparisons between remote optical clocks and advanced atomic clocks. In this paper, we present a high-precision optical frequency noise detection and comparison technique using a two-way transfer method over a 260 km field fiber link. This method allows for the comparison of optical frequencies between remote optical references without the need for data transfer through communication. We extend a previously established two-way comparison technique to obtain all data at the local site. Two optical carrier signals are injected into the bidirectional fiber from both ends, and one carrier is reflected back from the remote end. This enables the phase comparison of the two carrier signals at a single site without the need to transmit experimental data. The common-mode frequency noise induced by the bidirectional fiber link is detected and effectively suppressed without the need for sophisticated active fiber noise control. Our demonstration system, which uses a 260 km field fiber link and a common laser source, achieves a fractional instability of 2.5×10-17 at 1 s averaging time and scales down to 3.5×10-21 at 8000 s. This scheme offers the distinct advantage of completing the comparison at a single site, eliminating the need for remote data transfer via communication. This method is expected to enhance reliability for high-precision frequency comparisons between remote optical clocks and advanced atomic clocks.In this paper, we present a high-precision optical frequency noise detection and comparison technique using a two-way transfer method over a 260 km field fiber link. This method allows for the comparison of optical frequencies between remote optical references without the need for data transfer through communication. We extend a previously established two-way comparison technique to obtain all data at the local site. Two optical carrier signals are injected into the bidirectional fiber from both ends, and one carrier is reflected back from the remote end. This enables the phase comparison of the two carrier signals at a single site without the need to transmit experimental data. The common-mode frequency noise induced by the bidirectional fiber link is detected and effectively suppressed without the need for sophisticated active fiber noise control. Our demonstration system, which uses a 260 km field fiber link and a common laser source, achieves a fractional instability of 2.5×10-17 at 1 s averaging time and scales down to 3.5×10-21 at 8000 s. This scheme offers the distinct advantage of completing the comparison at a single site, eliminating the need for remote data transfer via communication. This method is expected to enhance reliability for high-precision frequency comparisons between remote optical clocks and advanced atomic clocks. |
Audience | Academic |
Author | Wang, Dan Dong, Ruifang Yuan, Ru Zhang, Xiang Zhang, Yucan Zhang, Shougang Zhou, Qian Xu, Guanjun Zang, Qi Gao, Jing Jiao, Dongdong Fan, Le Liu, Tao |
AuthorAffiliation | 2 Key Laboratory of Time Reference and Applications, Chinese Academy of Sciences, 3 Shuyuandong Road, Xi’an 710600, China 1 National Time Service Center, Chinese Academy of Sciences, 3 Shuyuandong Road, Xi’an 710600, China; zangqi@ntsc.ac.cn (Q.Z.); zhangxiang@ntsc.ac.cn (X.Z.); wangdan@ntsc.ac.cn (D.W.); zhouqian@ntsc.ac.cn (Q.Z.); fanle@ntsc.ac.cn (L.F.); zhangyucan@ntsc.ac.cn (Y.Z.); yuanru@ntsc.ac.cn (R.Y.); gaojing@ntsc.ac.cn (J.G.); jandan19@sina.com (D.J.); xuguanjun@ntsc.ac.cn (G.X.); taoliu@ntsc.ac.cn (T.L.); szhang@ntsc.ac.cn (S.Z.) 3 University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China |
AuthorAffiliation_xml | – name: 2 Key Laboratory of Time Reference and Applications, Chinese Academy of Sciences, 3 Shuyuandong Road, Xi’an 710600, China – name: 1 National Time Service Center, Chinese Academy of Sciences, 3 Shuyuandong Road, Xi’an 710600, China; zangqi@ntsc.ac.cn (Q.Z.); zhangxiang@ntsc.ac.cn (X.Z.); wangdan@ntsc.ac.cn (D.W.); zhouqian@ntsc.ac.cn (Q.Z.); fanle@ntsc.ac.cn (L.F.); zhangyucan@ntsc.ac.cn (Y.Z.); yuanru@ntsc.ac.cn (R.Y.); gaojing@ntsc.ac.cn (J.G.); jandan19@sina.com (D.J.); xuguanjun@ntsc.ac.cn (G.X.); taoliu@ntsc.ac.cn (T.L.); szhang@ntsc.ac.cn (S.Z.) – name: 3 University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China |
Author_xml | – sequence: 1 givenname: Qi orcidid: 0000-0003-4973-4825 surname: Zang fullname: Zang, Qi – sequence: 2 givenname: Xiang surname: Zhang fullname: Zhang, Xiang – sequence: 3 givenname: Dan surname: Wang fullname: Wang, Dan – sequence: 4 givenname: Qian surname: Zhou fullname: Zhou, Qian – sequence: 5 givenname: Le orcidid: 0000-0002-8993-041X surname: Fan fullname: Fan, Le – sequence: 6 givenname: Yucan surname: Zhang fullname: Zhang, Yucan – sequence: 7 givenname: Ru surname: Yuan fullname: Yuan, Ru – sequence: 8 givenname: Jing orcidid: 0000-0002-7338-6843 surname: Gao fullname: Gao, Jing – sequence: 9 givenname: Dongdong surname: Jiao fullname: Jiao, Dongdong – sequence: 10 givenname: Guanjun orcidid: 0000-0003-1108-0459 surname: Xu fullname: Xu, Guanjun – sequence: 11 givenname: Tao surname: Liu fullname: Liu, Tao – sequence: 12 givenname: Ruifang orcidid: 0000-0001-6706-8980 surname: Dong fullname: Dong, Ruifang – sequence: 13 givenname: Shougang surname: Zhang fullname: Zhang, Shougang |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38894273$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkktvEzEQxy1URB9w4AuglbjQQ4pfu7ZPqAotrRQBQnC2_BinTnfXqb2pxLfHISFqkQ9jj3_znxl7TtHRmEZA6C3BF4wp_LFQTgjjkr1AJ4RTPpOU4qMn-2N0WsoKY8oYk6_QMZNScSrYCfpxE5d3s-8ZXCwxjc11tJCbrykWaD7DBG7aes3om3ka1ibHUo_psTKmoR1u7ocaAr3fBy7ieP8avQymL_Bmb8_Qr-urn_Ob2eLbl9v55WLmeKemWZACbC1QSuy4tJ3AwVrbktZ41poAIbDgGHRAQDgbMO84E0QZ2inqhbLsDN3udH0yK73OcTD5t04m6r-OlJfa5Cm6HrSTLXjAHa2GS17TydA5Aq0NvlXYV61PO631xg7gHYxTNv0z0ec3Y7zTy_SoCSGi1syqwoe9Qk4PGyiTHmJx0PdmhLQpmmGBJaaYqoq-_w9dpU0e61tVqhOcKSW31MWOWpraQRxDqoldXR6G6OoAhFj9l0IJhRntRA1497SHQ_H_PrsC5zvA5VRKhnBACNbbQdKHQWJ_ADOTt8Q |
Cites_doi | 10.1038/s41467-021-27884-3 10.1109/TUFFC.2012.2503 10.1016/j.infrared.2022.104511 10.1109/EFTF-IFC.2013.6702284 10.1088/1742-6596/723/1/012059 10.3390/photonics8080325 10.1103/PhysRevA.90.061802 10.1364/OL.39.001177 10.1126/science.1192720 10.1016/j.optlastec.2022.108738 10.1364/OE.19.016498 10.7498/aps.64.190601 10.1088/1674-1056/ab7b4f 10.1103/PhysRevLett.104.070802 10.1364/OE.23.033927 10.1007/s10686-008-9126-5 10.1103/PhysRevLett.111.110801 10.1109/EFTF.2018.8409051 10.1103/PhysRevLett.108.090801 10.1109/ICOCN.2019.8934273 10.1007/s00340-017-6736-5 10.1364/OL.404866 10.1364/OL.32.003056 10.1364/JOSAB.25.001284 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2024 by the authors. 2024 |
Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2024 by the authors. 2024 |
DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/s24113483 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_c85ede0625ed48448b8f6c1e5bfd590d PMC11175153 A797903267 38894273 10_3390_s24113483 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Planned project of Xi’an Bureau of science and technology, China grantid: E019XK104 – fundername: National Natural Science Foundation of China grantid: 12103059 – fundername: The Strategic Priority Research Program of the Chinese Academy of Sciences grantid: XDB21000000 – fundername: The Open Project Fund of State Key Laboratory of Transient Optics and Photonics, Chinese Academy of Sciences grantid: SKLST202011 |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M NPM PJZUB PPXIY PMFND 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c469t-f87eb424880c48b670fbbb515ad35afeff3fc3e6e1e7cbf04643719a2692d79b3 |
IEDL.DBID | M48 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:15:58 EDT 2025 Thu Aug 21 18:33:13 EDT 2025 Fri Jul 11 00:05:22 EDT 2025 Fri Jul 25 06:49:17 EDT 2025 Tue Jun 10 21:02:32 EDT 2025 Mon Jul 21 05:49:49 EDT 2025 Tue Jul 01 03:51:01 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | fiber noise sensing optical frequency transfer frequency comparison field fiber link |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c469t-f87eb424880c48b670fbbb515ad35afeff3fc3e6e1e7cbf04643719a2692d79b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-4973-4825 0000-0002-7338-6843 0000-0003-1108-0459 0000-0001-6706-8980 0000-0002-8993-041X |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s24113483 |
PMID | 38894273 |
PQID | 3067439989 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_c85ede0625ed48448b8f6c1e5bfd590d pubmedcentral_primary_oai_pubmedcentral_nih_gov_11175153 proquest_miscellaneous_3070802029 proquest_journals_3067439989 gale_infotracacademiconefile_A797903267 pubmed_primary_38894273 crossref_primary_10_3390_s24113483 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20240528 |
PublicationDateYYYYMMDD | 2024-05-28 |
PublicationDate_xml | – month: 5 year: 2024 text: 20240528 day: 28 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2024 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Fujieda (ref_1) 2011; 19 Williams (ref_26) 2008; 25 ref_13 Lee (ref_21) 2017; 123 ref_18 Deng (ref_16) 2020; 29 Chou (ref_2) 2010; 329 Bercy (ref_20) 2014; 90 Chou (ref_6) 2010; 104 Xu (ref_22) 2020; 45 Zhang (ref_17) 2023; 157 Calosso (ref_19) 2014; 39 Stellmer (ref_9) 2016; 723 Delva (ref_5) 2013; 7 Droste (ref_11) 2014; 111 Bjerhammar (ref_4) 1985; 82 Newbury (ref_27) 2007; 32 Zang (ref_15) 2023; 128 ref_25 Chiodo (ref_12) 2015; 23 ref_24 ref_23 Fujieda (ref_10) 2012; 59 ref_3 Schioppo (ref_14) 2022; 13 Huntemann (ref_7) 2012; 108 ref_8 |
References_xml | – volume: 13 start-page: 212 year: 2022 ident: ref_14 article-title: Comparing ultrastable lasers at 7 × 10-17 fractional frequency instability through a 2220 km optical fibre network publication-title: Nat. Commun. doi: 10.1038/s41467-021-27884-3 – volume: 59 start-page: 2625 year: 2012 ident: ref_10 article-title: Carrier-phase-based two-way satellite time and frequency transfer publication-title: Ultrason. Ferroelectr. Freq. Control IEEE Trans. doi: 10.1109/TUFFC.2012.2503 – volume: 128 start-page: 104511 year: 2023 ident: ref_15 article-title: Cascaded transfer of optical frequency with a relay station over a 224 km deployed fiber link publication-title: Infrared Phys. Technol. doi: 10.1016/j.infrared.2022.104511 – ident: ref_18 doi: 10.1109/EFTF-IFC.2013.6702284 – volume: 82 start-page: 133 year: 1985 ident: ref_4 article-title: On a relativistic geodesy publication-title: J. Geod. – volume: 723 start-page: 012059 year: 2016 ident: ref_9 article-title: Towards a measurement of the nuclear clock transition in 229 Th publication-title: J. Phys. Conf. Ser. doi: 10.1088/1742-6596/723/1/012059 – ident: ref_13 doi: 10.3390/photonics8080325 – volume: 90 start-page: 061802 year: 2014 ident: ref_20 article-title: Two-way optical frequency comparisons at 5 × 10-21 relative stability over 100-km telecommunication network fibers publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.90.061802 – volume: 39 start-page: 1177 year: 2014 ident: ref_19 article-title: Frequency transfer via a two-way optical phase comparison on a multiplexed fiber network publication-title: Opt. Lett. doi: 10.1364/OL.39.001177 – volume: 329 start-page: 1630 year: 2010 ident: ref_2 article-title: Optical Clocks and Relativity publication-title: Science doi: 10.1126/science.1192720 – volume: 157 start-page: 108738 year: 2023 ident: ref_17 article-title: Passively stable dissemination of ultrastable optical frequency via a noisy field fiber network publication-title: Opt. Laser Technol. doi: 10.1016/j.optlastec.2022.108738 – volume: 19 start-page: 16498 year: 2011 ident: ref_1 article-title: All-optical link for direct comparison of distant optical clocks publication-title: Opt. Express doi: 10.1364/OE.19.016498 – ident: ref_25 doi: 10.7498/aps.64.190601 – volume: 29 start-page: 054205 year: 2020 ident: ref_16 article-title: Cascaded optical frequency transfer over 500-km fiber link using regenerative amplifier publication-title: Chin. Phys. B doi: 10.1088/1674-1056/ab7b4f – volume: 104 start-page: 070802 year: 2010 ident: ref_6 article-title: Frequency Comparison of Two High-Accuracy Al+ Optical Clocks publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.104.070802 – volume: 23 start-page: 33927 year: 2015 ident: ref_12 article-title: Cascaded optical fiber link using the internet network for remote clocks comparison publication-title: Opt. Express doi: 10.1364/OE.23.033927 – ident: ref_3 doi: 10.1007/s10686-008-9126-5 – volume: 7 start-page: 67 year: 2013 ident: ref_5 article-title: Atomic clocks: New prospects in metrology and geodesy publication-title: Time Meas. Methods – ident: ref_8 – volume: 111 start-page: 110801 year: 2014 ident: ref_11 article-title: Optical-frequency transfer over a single-span 1840 km fiber link. European Frequency and Time Forum and International Frequency Control Symposium publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.111.110801 – ident: ref_23 doi: 10.1109/EFTF.2018.8409051 – volume: 108 start-page: 090801 year: 2012 ident: ref_7 article-title: High-Accuracy Optical Clock Based on the Octupole Transition in Yb+171 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.108.090801 – ident: ref_24 doi: 10.1109/ICOCN.2019.8934273 – volume: 123 start-page: 161 year: 2017 ident: ref_21 article-title: Hybrid fiber links for accurate optical frequency comparison publication-title: Appl. Phys. B doi: 10.1007/s00340-017-6736-5 – volume: 45 start-page: 6074 year: 2020 ident: ref_22 article-title: Unidirectional two-way optical frequency comparison and its fundamental limitations publication-title: Opt. Lett. doi: 10.1364/OL.404866 – volume: 32 start-page: 3056 year: 2007 ident: ref_27 article-title: Coherent transfer of an optical carrier over 251 km publication-title: Opt. Lett. doi: 10.1364/OL.32.003056 – volume: 25 start-page: 1284 year: 2008 ident: ref_26 article-title: High-stability transfer of an optical frequency over long fiber-optic links publication-title: J. Opt. Soc. Am. B doi: 10.1364/JOSAB.25.001284 |
SSID | ssj0023338 |
Score | 2.4248364 |
Snippet | In this paper, we present a high-precision optical frequency noise detection and comparison technique using a two-way transfer method over a 260 km field fiber... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | 3483 |
SubjectTerms | Communication fiber noise sensing field fiber link Fourier transforms frequency comparison Lasers optical frequency transfer Radio frequency |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYhp-ZQ-khbp2lRQ6EnE1uSLemYpF1CISGUBnITeoxoaOMN2c3_z4ztNWt66KVXS4LxjEYzHxp9w9jnFrwCU8tSSlClMi2UIURbYqw2WVZR50SPky8u2_Nr9f2mudlq9UU1YQM98KC442gaSFBhmg5JGQQTweQ21tCEnBpbJTp9MeZtwNQItSQir4FHSCKoP15hnKqlMnIWfXqS_r-P4q1YNK-T3Ao8ixfs-Zgx8pNB0pdsB7pXbG-LR_A1-0HVGuXVw9gvhy-oDIRfLm9XwL_Cuq-26rjvEj-b2g5yqt3kniPS4L_vcAn8SeNCwqf77Hrx7efZeTk2SygjItx1mY2GoAT5Y0QltbrKIQTMVnySjc-Qs8xRQgs16Bgy3WhKXVsvWiuStkG-YbvdsoN3jFuRfTSqyUIH4i70IuYqqYa6VyUlcsGONkp09wMnhkMsQZp2k6YLdkrqnSYQjXX_AY3rRuO6fxm3YF_IOI6cDS0Q_fhmAOUk2ip3oq22FWagumCHG_u50QtXjuAQ4S1jC_ZpGkb_oUsR38HykeZoem5cCZzzdjD3JLM0xirM7wpmZhth9lPzke72V8_RXRMFKkaTg_-hhvfsGQqoqGhBmEO2u354hA-YC63Dx37bPwHf5wgo priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagXOBQ8SZQkEFInKImthPbJ1QKS4VEhRCVeov8GEMFJO3u9v8zk_WGjZC4JrbizHg889njbxh73YJTYGpZSgmqVKaF0vtgS_TVJskq6BTpcvLn0_bkTH06b87zhtsqp1Vu18RxoY5DoD3yQwptKXY29u3lVUlVo-h0NZfQuMlu1ehpKKXLLD5OgEsi_tqwCUmE9ocr9Fa1VEbOfNBI1f_vgrzjkebZkjvuZ3GX7ee4kR9tFH2P3YD-Pruzwyb4gH2lnI3yyzJXzeELSgbhp8PFCvh7WI85Vz13feTHU_FBThmc3HHEG_znb-wCv2LuSCj1ITtbfPh2fFLmkgllQJy7LpPR4JUgqwzK-FZXyXuPMYuLsnEJUpIpSGihBh18onNNqWvrRGtF1NbLR2yvH3p4wrgVyQWjmiS0JwZDJ0KqomqohlVUIhXs1VaI3eWGGaNDREGS7iZJF-wdiXdqQGTW44Nh-b3LttEF00CECpEYRGUQL3qT2lBD41NsbBUL9oaU05HJoQaCyzcHcJxEXtUdaatthXGoLtjBVn9dtsVV93fmFOzl9BqtiI5GXA_DNbXRdOm4Etjm8Ubd05ilMVZhlFcwM5sIs5-av-kvfoxM3TURoaJPefr_cT1jt_HTipIShDlge-vlNTzHWGftX4wT-g-HTf7B priority: 102 providerName: ProQuest |
Title | High-Precision Fiber Noise Detection and Comparison over a 260 km Field Fiber Link |
URI | https://www.ncbi.nlm.nih.gov/pubmed/38894273 https://www.proquest.com/docview/3067439989 https://www.proquest.com/docview/3070802029 https://pubmed.ncbi.nlm.nih.gov/PMC11175153 https://doaj.org/article/c85ede0625ed48448b8f6c1e5bfd590d |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV3di9QwEB_uA-R8EL-tnksUwadqm6RN-iByd956CLcchwv7VvKph2dXd_dA_3tnut2yRX0ppUnadGbSya-Z_AbgVRmMDDoXqRBBplKXIbXWVSn6ah1F5lT0tDn5fFKeTeWnWTHbgU2OzU6Ay39CO8onNV1cv_n18_d7HPDvCHEiZH-7RC-UC6nFLuzjqaJEBueyX0zgAmHYmlRoWP0AbgmtK8mVGHillrz_70_0lo8axk9uOaTxXbjTzSTZ0Vr192AnNPfh9ha_4AO4pCiO9GLR5dFhYwoPYZP51TKwD2HVRmE1zDSenfTpCBnFdDLDEIGwb9-xSbj2XUPCrQ9hOj79fHKWdkkUUofId5VGrYKVnMapk9qWKovWWpzFGC8KE0OMIjoRypAH5WyklU6h8srwsuJeVVY8gr1m3oQnwCoejdOyiFxZ4jQ03MXMy4KyWnnJYwIvN0Ksf6y5MmrEGCT0uhd6Asck3r4C0Vu3F-aLL3U3Wmqni-BDhtgseKkRQVodS5eHwkZfVJlP4DUppyazQA040-0lwH4SnVV9pCpVZTgzVQkcbvRXb4yrJphEOExXCbzoi3Fc0WKJacL8huoo2oaccazzeK3uvs8bq0lADwxh8FLDkubqa8vdnRM1KnqZp_-96TM4wKdKilDg-hD2Voub8BwnPis7gl01U3jU448j2D8-nVxcjtqfCKPW4P8AXHQEXg |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQAHxJtAAYNAnKImthM7B4RKy7Kl7QqhVuotxPa4rYBs2d0K8af4jczkxa6QuPW6dlbeeeSbbz0Pxl7mUCkwqYylBBUrk0NsrStixGoTZOJ08FScfDDJx0fq43F2vMZ-97UwlFbZvxObF7WfOvqPfJNCW4qdTfH2_EdMU6PodrUfodGaxR78-omUbf5mdwf1-0qI0fvD7XHcTRWIHVLBRRyMBqsEGa5TxuY6CdZahPXKy6wKEIIMTkIOKWhnA139SZ0WlcgL4XVhJX7vFXZVSURyqkwffRgInkS-13YvwsVkc47omEpl5ArmNaMB_gWAJQRczc5cgrvRLXazi1P5VmtYt9ka1HfYjaXuhXfZZ8oRiT_Nuik9fETJJ3wyPZsD34FFk-NV86r2fHsYdsgpY5RXHPkN__odH4FvvnuQWPE9dnQpwrzP1utpDQ8ZL0SonFFZENpSx8RKuJB4ldHMLK9EiNiLXojleduJo0QGQ5IuB0lH7B2Jd9hAzbObD6azk7LzxdKZDDwkyPzAK4P81JqQuxQyG3xWJD5ir0k5Jbk4asBVXaUCnpOaZZVbutBFgnGvjthGr7-y8_15-ddSI_Z8WEavpauYqobpBe3RVOScCNzzoFX3cGZpTKEwqoyYWTGElR-1ulKfnTadwVNqvIoY9uj_53rGro0PD_bL_d3J3mN2HY-hKCFCmA22vphdwBOMsxb2aWPcnH25bG_6AzOWPMY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4anYTgAXEnMMAgEE9RE9uJ7QeEtnXVxqCaJibtLYtvMAHpaDsh_hq_jnPaNLRC4m2vsR055-JzvvhcAF6VoZZB5yIVIshU6jKk1jqToq3WUWRORU_JyR9H5f6JfH9anG7A72UuDIVVLs_E-UHtx47-kffJtSXfWZt-bMMijgbDdxc_UuogRTety3YaCxE5DL9-Inybvj0YIK9fcz7c-7S7n7YdBlKHsHCWRq2ClZyE2EltS5VFay2a-NqLoo4hRhGdCGXIg3I20jWgULmpeWm4V8YKfO812FSEinqwubM3Ojru4J5A9LeoZSSEyfpTtJW5kFqsWcB5o4B_zcGKPVyP1VwxfsPbcKv1Wtn2QszuwEZo7sLNlVqG9-CYIkbSo0nbs4cNKRSFjcbn08AGYTaP-GpY3Xi227U-ZBQ_ymqGaId9_Y5LwjffLiSMfB9OroScD6DXjJvwCJjhsXZaFpErS_UTa-5i5mVBHbS85DGBl0siVheLuhwV4hmidNVROoEdIm83gUppzx-MJ5-rVjMrp4vgQ4Y4MHipEa1aHUuXh8JGX5jMJ_CGmFORwiMHXN3mLeA-qXRWta2MMhl6wSqBrSX_qvYkmFZ_5TaBF90w6jBdzNRNGF_SHEUpzxnHOQ8X7O72LLQ2En3MBPSaIKx91PpIc_5lXic8pzKsaNEe_39fz-E6alL14WB0-ARu4C4kRUdwvQW92eQyPEWna2aftdLN4OyqFeoPEOZCWA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-Precision+Fiber+Noise+Detection+and+Comparison+over+a+260+km+Field+Fiber+Link&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Zang%2C+Qi&rft.au=Zhang%2C+Xiang&rft.au=Wang%2C+Dan&rft.au=Zhou%2C+Qian&rft.date=2024-05-28&rft.eissn=1424-8220&rft.volume=24&rft.issue=11&rft_id=info:doi/10.3390%2Fs24113483&rft_id=info%3Apmid%2F38894273&rft.externalDocID=38894273 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |