High-Precision Fiber Noise Detection and Comparison over a 260 km Field Fiber Link

In this paper, we present a high-precision optical frequency noise detection and comparison technique using a two-way transfer method over a 260 km field fiber link. This method allows for the comparison of optical frequencies between remote optical references without the need for data transfer thro...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 24; no. 11; p. 3483
Main Authors Zang, Qi, Zhang, Xiang, Wang, Dan, Zhou, Qian, Fan, Le, Zhang, Yucan, Yuan, Ru, Gao, Jing, Jiao, Dongdong, Xu, Guanjun, Liu, Tao, Dong, Ruifang, Zhang, Shougang
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 28.05.2024
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, we present a high-precision optical frequency noise detection and comparison technique using a two-way transfer method over a 260 km field fiber link. This method allows for the comparison of optical frequencies between remote optical references without the need for data transfer through communication. We extend a previously established two-way comparison technique to obtain all data at the local site. Two optical carrier signals are injected into the bidirectional fiber from both ends, and one carrier is reflected back from the remote end. This enables the phase comparison of the two carrier signals at a single site without the need to transmit experimental data. The common-mode frequency noise induced by the bidirectional fiber link is detected and effectively suppressed without the need for sophisticated active fiber noise control. Our demonstration system, which uses a 260 km field fiber link and a common laser source, achieves a fractional instability of 2.5×10−17 at 1 s averaging time and scales down to 3.5×10−21 at 8000 s. This scheme offers the distinct advantage of completing the comparison at a single site, eliminating the need for remote data transfer via communication. This method is expected to enhance reliability for high-precision frequency comparisons between remote optical clocks and advanced atomic clocks.
AbstractList In this paper, we present a high-precision optical frequency noise detection and comparison technique using a two-way transfer method over a 260 km field fiber link. This method allows for the comparison of optical frequencies between remote optical references without the need for data transfer through communication. We extend a previously established two-way comparison technique to obtain all data at the local site. Two optical carrier signals are injected into the bidirectional fiber from both ends, and one carrier is reflected back from the remote end. This enables the phase comparison of the two carrier signals at a single site without the need to transmit experimental data. The common-mode frequency noise induced by the bidirectional fiber link is detected and effectively suppressed without the need for sophisticated active fiber noise control. Our demonstration system, which uses a 260 km field fiber link and a common laser source, achieves a fractional instability of 2.5 × 10 − 17 at 1 s averaging time and scales down to 3.5 × 10 − 21 at 8000 s. This scheme offers the distinct advantage of completing the comparison at a single site, eliminating the need for remote data transfer via communication. This method is expected to enhance reliability for high-precision frequency comparisons between remote optical clocks and advanced atomic clocks.
In this paper, we present a high-precision optical frequency noise detection and comparison technique using a two-way transfer method over a 260 km field fiber link. This method allows for the comparison of optical frequencies between remote optical references without the need for data transfer through communication. We extend a previously established two-way comparison technique to obtain all data at the local site. Two optical carrier signals are injected into the bidirectional fiber from both ends, and one carrier is reflected back from the remote end. This enables the phase comparison of the two carrier signals at a single site without the need to transmit experimental data. The common-mode frequency noise induced by the bidirectional fiber link is detected and effectively suppressed without the need for sophisticated active fiber noise control. Our demonstration system, which uses a 260 km field fiber link and a common laser source, achieves a fractional instability of 2.5×10−17 at 1 s averaging time and scales down to 3.5×10−21 at 8000 s. This scheme offers the distinct advantage of completing the comparison at a single site, eliminating the need for remote data transfer via communication. This method is expected to enhance reliability for high-precision frequency comparisons between remote optical clocks and advanced atomic clocks.
In this paper, we present a high-precision optical frequency noise detection and comparison technique using a two-way transfer method over a 260 km field fiber link. This method allows for the comparison of optical frequencies between remote optical references without the need for data transfer through communication. We extend a previously established two-way comparison technique to obtain all data at the local site. Two optical carrier signals are injected into the bidirectional fiber from both ends, and one carrier is reflected back from the remote end. This enables the phase comparison of the two carrier signals at a single site without the need to transmit experimental data. The common-mode frequency noise induced by the bidirectional fiber link is detected and effectively suppressed without the need for sophisticated active fiber noise control. Our demonstration system, which uses a 260 km field fiber link and a common laser source, achieves a fractional instability of 2.5×10[sup.−17] at 1 s averaging time and scales down to 3.5×10[sup.−21] at 8000 s. This scheme offers the distinct advantage of completing the comparison at a single site, eliminating the need for remote data transfer via communication. This method is expected to enhance reliability for high-precision frequency comparisons between remote optical clocks and advanced atomic clocks.
In this paper, we present a high-precision optical frequency noise detection and comparison technique using a two-way transfer method over a 260 km field fiber link. This method allows for the comparison of optical frequencies between remote optical references without the need for data transfer through communication. We extend a previously established two-way comparison technique to obtain all data at the local site. Two optical carrier signals are injected into the bidirectional fiber from both ends, and one carrier is reflected back from the remote end. This enables the phase comparison of the two carrier signals at a single site without the need to transmit experimental data. The common-mode frequency noise induced by the bidirectional fiber link is detected and effectively suppressed without the need for sophisticated active fiber noise control. Our demonstration system, which uses a 260 km field fiber link and a common laser source, achieves a fractional instability of 2.5×10-17 at 1 s averaging time and scales down to 3.5×10-21 at 8000 s. This scheme offers the distinct advantage of completing the comparison at a single site, eliminating the need for remote data transfer via communication. This method is expected to enhance reliability for high-precision frequency comparisons between remote optical clocks and advanced atomic clocks.
In this paper, we present a high-precision optical frequency noise detection and comparison technique using a two-way transfer method over a 260 km field fiber link. This method allows for the comparison of optical frequencies between remote optical references without the need for data transfer through communication. We extend a previously established two-way comparison technique to obtain all data at the local site. Two optical carrier signals are injected into the bidirectional fiber from both ends, and one carrier is reflected back from the remote end. This enables the phase comparison of the two carrier signals at a single site without the need to transmit experimental data. The common-mode frequency noise induced by the bidirectional fiber link is detected and effectively suppressed without the need for sophisticated active fiber noise control. Our demonstration system, which uses a 260 km field fiber link and a common laser source, achieves a fractional instability of 2.5×10-17 at 1 s averaging time and scales down to 3.5×10-21 at 8000 s. This scheme offers the distinct advantage of completing the comparison at a single site, eliminating the need for remote data transfer via communication. This method is expected to enhance reliability for high-precision frequency comparisons between remote optical clocks and advanced atomic clocks.In this paper, we present a high-precision optical frequency noise detection and comparison technique using a two-way transfer method over a 260 km field fiber link. This method allows for the comparison of optical frequencies between remote optical references without the need for data transfer through communication. We extend a previously established two-way comparison technique to obtain all data at the local site. Two optical carrier signals are injected into the bidirectional fiber from both ends, and one carrier is reflected back from the remote end. This enables the phase comparison of the two carrier signals at a single site without the need to transmit experimental data. The common-mode frequency noise induced by the bidirectional fiber link is detected and effectively suppressed without the need for sophisticated active fiber noise control. Our demonstration system, which uses a 260 km field fiber link and a common laser source, achieves a fractional instability of 2.5×10-17 at 1 s averaging time and scales down to 3.5×10-21 at 8000 s. This scheme offers the distinct advantage of completing the comparison at a single site, eliminating the need for remote data transfer via communication. This method is expected to enhance reliability for high-precision frequency comparisons between remote optical clocks and advanced atomic clocks.
Audience Academic
Author Wang, Dan
Dong, Ruifang
Yuan, Ru
Zhang, Xiang
Zhang, Yucan
Zhang, Shougang
Zhou, Qian
Xu, Guanjun
Zang, Qi
Gao, Jing
Jiao, Dongdong
Fan, Le
Liu, Tao
AuthorAffiliation 2 Key Laboratory of Time Reference and Applications, Chinese Academy of Sciences, 3 Shuyuandong Road, Xi’an 710600, China
1 National Time Service Center, Chinese Academy of Sciences, 3 Shuyuandong Road, Xi’an 710600, China; zangqi@ntsc.ac.cn (Q.Z.); zhangxiang@ntsc.ac.cn (X.Z.); wangdan@ntsc.ac.cn (D.W.); zhouqian@ntsc.ac.cn (Q.Z.); fanle@ntsc.ac.cn (L.F.); zhangyucan@ntsc.ac.cn (Y.Z.); yuanru@ntsc.ac.cn (R.Y.); gaojing@ntsc.ac.cn (J.G.); jandan19@sina.com (D.J.); xuguanjun@ntsc.ac.cn (G.X.); taoliu@ntsc.ac.cn (T.L.); szhang@ntsc.ac.cn (S.Z.)
3 University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
AuthorAffiliation_xml – name: 2 Key Laboratory of Time Reference and Applications, Chinese Academy of Sciences, 3 Shuyuandong Road, Xi’an 710600, China
– name: 1 National Time Service Center, Chinese Academy of Sciences, 3 Shuyuandong Road, Xi’an 710600, China; zangqi@ntsc.ac.cn (Q.Z.); zhangxiang@ntsc.ac.cn (X.Z.); wangdan@ntsc.ac.cn (D.W.); zhouqian@ntsc.ac.cn (Q.Z.); fanle@ntsc.ac.cn (L.F.); zhangyucan@ntsc.ac.cn (Y.Z.); yuanru@ntsc.ac.cn (R.Y.); gaojing@ntsc.ac.cn (J.G.); jandan19@sina.com (D.J.); xuguanjun@ntsc.ac.cn (G.X.); taoliu@ntsc.ac.cn (T.L.); szhang@ntsc.ac.cn (S.Z.)
– name: 3 University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
Author_xml – sequence: 1
  givenname: Qi
  orcidid: 0000-0003-4973-4825
  surname: Zang
  fullname: Zang, Qi
– sequence: 2
  givenname: Xiang
  surname: Zhang
  fullname: Zhang, Xiang
– sequence: 3
  givenname: Dan
  surname: Wang
  fullname: Wang, Dan
– sequence: 4
  givenname: Qian
  surname: Zhou
  fullname: Zhou, Qian
– sequence: 5
  givenname: Le
  orcidid: 0000-0002-8993-041X
  surname: Fan
  fullname: Fan, Le
– sequence: 6
  givenname: Yucan
  surname: Zhang
  fullname: Zhang, Yucan
– sequence: 7
  givenname: Ru
  surname: Yuan
  fullname: Yuan, Ru
– sequence: 8
  givenname: Jing
  orcidid: 0000-0002-7338-6843
  surname: Gao
  fullname: Gao, Jing
– sequence: 9
  givenname: Dongdong
  surname: Jiao
  fullname: Jiao, Dongdong
– sequence: 10
  givenname: Guanjun
  orcidid: 0000-0003-1108-0459
  surname: Xu
  fullname: Xu, Guanjun
– sequence: 11
  givenname: Tao
  surname: Liu
  fullname: Liu, Tao
– sequence: 12
  givenname: Ruifang
  orcidid: 0000-0001-6706-8980
  surname: Dong
  fullname: Dong, Ruifang
– sequence: 13
  givenname: Shougang
  surname: Zhang
  fullname: Zhang, Shougang
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38894273$$D View this record in MEDLINE/PubMed
BookMark eNpdkktvEzEQxy1URB9w4AuglbjQQ4pfu7ZPqAotrRQBQnC2_BinTnfXqb2pxLfHISFqkQ9jj3_znxl7TtHRmEZA6C3BF4wp_LFQTgjjkr1AJ4RTPpOU4qMn-2N0WsoKY8oYk6_QMZNScSrYCfpxE5d3s-8ZXCwxjc11tJCbrykWaD7DBG7aes3om3ka1ibHUo_psTKmoR1u7ocaAr3fBy7ieP8avQymL_Bmb8_Qr-urn_Ob2eLbl9v55WLmeKemWZACbC1QSuy4tJ3AwVrbktZ41poAIbDgGHRAQDgbMO84E0QZ2inqhbLsDN3udH0yK73OcTD5t04m6r-OlJfa5Cm6HrSTLXjAHa2GS17TydA5Aq0NvlXYV61PO631xg7gHYxTNv0z0ec3Y7zTy_SoCSGi1syqwoe9Qk4PGyiTHmJx0PdmhLQpmmGBJaaYqoq-_w9dpU0e61tVqhOcKSW31MWOWpraQRxDqoldXR6G6OoAhFj9l0IJhRntRA1497SHQ_H_PrsC5zvA5VRKhnBACNbbQdKHQWJ_ADOTt8Q
Cites_doi 10.1038/s41467-021-27884-3
10.1109/TUFFC.2012.2503
10.1016/j.infrared.2022.104511
10.1109/EFTF-IFC.2013.6702284
10.1088/1742-6596/723/1/012059
10.3390/photonics8080325
10.1103/PhysRevA.90.061802
10.1364/OL.39.001177
10.1126/science.1192720
10.1016/j.optlastec.2022.108738
10.1364/OE.19.016498
10.7498/aps.64.190601
10.1088/1674-1056/ab7b4f
10.1103/PhysRevLett.104.070802
10.1364/OE.23.033927
10.1007/s10686-008-9126-5
10.1103/PhysRevLett.111.110801
10.1109/EFTF.2018.8409051
10.1103/PhysRevLett.108.090801
10.1109/ICOCN.2019.8934273
10.1007/s00340-017-6736-5
10.1364/OL.404866
10.1364/OL.32.003056
10.1364/JOSAB.25.001284
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2024 by the authors. 2024
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2024 by the authors. 2024
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s24113483
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

CrossRef
Publicly Available Content Database

PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_c85ede0625ed48448b8f6c1e5bfd590d
PMC11175153
A797903267
38894273
10_3390_s24113483
Genre Journal Article
GrantInformation_xml – fundername: Planned project of Xi’an Bureau of science and technology, China
  grantid: E019XK104
– fundername: National Natural Science Foundation of China
  grantid: 12103059
– fundername: The Strategic Priority Research Program of the Chinese Academy of Sciences
  grantid: XDB21000000
– fundername: The Open Project Fund of State Key Laboratory of Transient Optics and Photonics, Chinese Academy of Sciences
  grantid: SKLST202011
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
NPM
PJZUB
PPXIY
PMFND
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c469t-f87eb424880c48b670fbbb515ad35afeff3fc3e6e1e7cbf04643719a2692d79b3
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 01:15:58 EDT 2025
Thu Aug 21 18:33:13 EDT 2025
Fri Jul 11 00:05:22 EDT 2025
Fri Jul 25 06:49:17 EDT 2025
Tue Jun 10 21:02:32 EDT 2025
Mon Jul 21 05:49:49 EDT 2025
Tue Jul 01 03:51:01 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords fiber noise sensing
optical frequency transfer
frequency comparison
field fiber link
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c469t-f87eb424880c48b670fbbb515ad35afeff3fc3e6e1e7cbf04643719a2692d79b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4973-4825
0000-0002-7338-6843
0000-0003-1108-0459
0000-0001-6706-8980
0000-0002-8993-041X
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s24113483
PMID 38894273
PQID 3067439989
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_c85ede0625ed48448b8f6c1e5bfd590d
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11175153
proquest_miscellaneous_3070802029
proquest_journals_3067439989
gale_infotracacademiconefile_A797903267
pubmed_primary_38894273
crossref_primary_10_3390_s24113483
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240528
PublicationDateYYYYMMDD 2024-05-28
PublicationDate_xml – month: 5
  year: 2024
  text: 20240528
  day: 28
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2024
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Fujieda (ref_1) 2011; 19
Williams (ref_26) 2008; 25
ref_13
Lee (ref_21) 2017; 123
ref_18
Deng (ref_16) 2020; 29
Chou (ref_2) 2010; 329
Bercy (ref_20) 2014; 90
Chou (ref_6) 2010; 104
Xu (ref_22) 2020; 45
Zhang (ref_17) 2023; 157
Calosso (ref_19) 2014; 39
Stellmer (ref_9) 2016; 723
Delva (ref_5) 2013; 7
Droste (ref_11) 2014; 111
Bjerhammar (ref_4) 1985; 82
Newbury (ref_27) 2007; 32
Zang (ref_15) 2023; 128
ref_25
Chiodo (ref_12) 2015; 23
ref_24
ref_23
Fujieda (ref_10) 2012; 59
ref_3
Schioppo (ref_14) 2022; 13
Huntemann (ref_7) 2012; 108
ref_8
References_xml – volume: 13
  start-page: 212
  year: 2022
  ident: ref_14
  article-title: Comparing ultrastable lasers at 7 × 10-17 fractional frequency instability through a 2220 km optical fibre network
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-27884-3
– volume: 59
  start-page: 2625
  year: 2012
  ident: ref_10
  article-title: Carrier-phase-based two-way satellite time and frequency transfer
  publication-title: Ultrason. Ferroelectr. Freq. Control IEEE Trans.
  doi: 10.1109/TUFFC.2012.2503
– volume: 128
  start-page: 104511
  year: 2023
  ident: ref_15
  article-title: Cascaded transfer of optical frequency with a relay station over a 224 km deployed fiber link
  publication-title: Infrared Phys. Technol.
  doi: 10.1016/j.infrared.2022.104511
– ident: ref_18
  doi: 10.1109/EFTF-IFC.2013.6702284
– volume: 82
  start-page: 133
  year: 1985
  ident: ref_4
  article-title: On a relativistic geodesy
  publication-title: J. Geod.
– volume: 723
  start-page: 012059
  year: 2016
  ident: ref_9
  article-title: Towards a measurement of the nuclear clock transition in 229 Th
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/723/1/012059
– ident: ref_13
  doi: 10.3390/photonics8080325
– volume: 90
  start-page: 061802
  year: 2014
  ident: ref_20
  article-title: Two-way optical frequency comparisons at 5 × 10-21 relative stability over 100-km telecommunication network fibers
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.90.061802
– volume: 39
  start-page: 1177
  year: 2014
  ident: ref_19
  article-title: Frequency transfer via a two-way optical phase comparison on a multiplexed fiber network
  publication-title: Opt. Lett.
  doi: 10.1364/OL.39.001177
– volume: 329
  start-page: 1630
  year: 2010
  ident: ref_2
  article-title: Optical Clocks and Relativity
  publication-title: Science
  doi: 10.1126/science.1192720
– volume: 157
  start-page: 108738
  year: 2023
  ident: ref_17
  article-title: Passively stable dissemination of ultrastable optical frequency via a noisy field fiber network
  publication-title: Opt. Laser Technol.
  doi: 10.1016/j.optlastec.2022.108738
– volume: 19
  start-page: 16498
  year: 2011
  ident: ref_1
  article-title: All-optical link for direct comparison of distant optical clocks
  publication-title: Opt. Express
  doi: 10.1364/OE.19.016498
– ident: ref_25
  doi: 10.7498/aps.64.190601
– volume: 29
  start-page: 054205
  year: 2020
  ident: ref_16
  article-title: Cascaded optical frequency transfer over 500-km fiber link using regenerative amplifier
  publication-title: Chin. Phys. B
  doi: 10.1088/1674-1056/ab7b4f
– volume: 104
  start-page: 070802
  year: 2010
  ident: ref_6
  article-title: Frequency Comparison of Two High-Accuracy Al+ Optical Clocks
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.104.070802
– volume: 23
  start-page: 33927
  year: 2015
  ident: ref_12
  article-title: Cascaded optical fiber link using the internet network for remote clocks comparison
  publication-title: Opt. Express
  doi: 10.1364/OE.23.033927
– ident: ref_3
  doi: 10.1007/s10686-008-9126-5
– volume: 7
  start-page: 67
  year: 2013
  ident: ref_5
  article-title: Atomic clocks: New prospects in metrology and geodesy
  publication-title: Time Meas. Methods
– ident: ref_8
– volume: 111
  start-page: 110801
  year: 2014
  ident: ref_11
  article-title: Optical-frequency transfer over a single-span 1840 km fiber link. European Frequency and Time Forum and International Frequency Control Symposium
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.111.110801
– ident: ref_23
  doi: 10.1109/EFTF.2018.8409051
– volume: 108
  start-page: 090801
  year: 2012
  ident: ref_7
  article-title: High-Accuracy Optical Clock Based on the Octupole Transition in Yb+171
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.108.090801
– ident: ref_24
  doi: 10.1109/ICOCN.2019.8934273
– volume: 123
  start-page: 161
  year: 2017
  ident: ref_21
  article-title: Hybrid fiber links for accurate optical frequency comparison
  publication-title: Appl. Phys. B
  doi: 10.1007/s00340-017-6736-5
– volume: 45
  start-page: 6074
  year: 2020
  ident: ref_22
  article-title: Unidirectional two-way optical frequency comparison and its fundamental limitations
  publication-title: Opt. Lett.
  doi: 10.1364/OL.404866
– volume: 32
  start-page: 3056
  year: 2007
  ident: ref_27
  article-title: Coherent transfer of an optical carrier over 251 km
  publication-title: Opt. Lett.
  doi: 10.1364/OL.32.003056
– volume: 25
  start-page: 1284
  year: 2008
  ident: ref_26
  article-title: High-stability transfer of an optical frequency over long fiber-optic links
  publication-title: J. Opt. Soc. Am. B
  doi: 10.1364/JOSAB.25.001284
SSID ssj0023338
Score 2.4248364
Snippet In this paper, we present a high-precision optical frequency noise detection and comparison technique using a two-way transfer method over a 260 km field fiber...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 3483
SubjectTerms Communication
fiber noise sensing
field fiber link
Fourier transforms
frequency comparison
Lasers
optical frequency transfer
Radio frequency
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYhp-ZQ-khbp2lRQ6EnE1uSLemYpF1CISGUBnITeoxoaOMN2c3_z4ztNWt66KVXS4LxjEYzHxp9w9jnFrwCU8tSSlClMi2UIURbYqw2WVZR50SPky8u2_Nr9f2mudlq9UU1YQM98KC442gaSFBhmg5JGQQTweQ21tCEnBpbJTp9MeZtwNQItSQir4FHSCKoP15hnKqlMnIWfXqS_r-P4q1YNK-T3Ao8ixfs-Zgx8pNB0pdsB7pXbG-LR_A1-0HVGuXVw9gvhy-oDIRfLm9XwL_Cuq-26rjvEj-b2g5yqt3kniPS4L_vcAn8SeNCwqf77Hrx7efZeTk2SygjItx1mY2GoAT5Y0QltbrKIQTMVnySjc-Qs8xRQgs16Bgy3WhKXVsvWiuStkG-YbvdsoN3jFuRfTSqyUIH4i70IuYqqYa6VyUlcsGONkp09wMnhkMsQZp2k6YLdkrqnSYQjXX_AY3rRuO6fxm3YF_IOI6cDS0Q_fhmAOUk2ip3oq22FWagumCHG_u50QtXjuAQ4S1jC_ZpGkb_oUsR38HykeZoem5cCZzzdjD3JLM0xirM7wpmZhth9lPzke72V8_RXRMFKkaTg_-hhvfsGQqoqGhBmEO2u354hA-YC63Dx37bPwHf5wgo
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagXOBQ8SZQkEFInKImthPbJ1QKS4VEhRCVeov8GEMFJO3u9v8zk_WGjZC4JrbizHg889njbxh73YJTYGpZSgmqVKaF0vtgS_TVJskq6BTpcvLn0_bkTH06b87zhtsqp1Vu18RxoY5DoD3yQwptKXY29u3lVUlVo-h0NZfQuMlu1ehpKKXLLD5OgEsi_tqwCUmE9ocr9Fa1VEbOfNBI1f_vgrzjkebZkjvuZ3GX7ee4kR9tFH2P3YD-Pruzwyb4gH2lnI3yyzJXzeELSgbhp8PFCvh7WI85Vz13feTHU_FBThmc3HHEG_znb-wCv2LuSCj1ITtbfPh2fFLmkgllQJy7LpPR4JUgqwzK-FZXyXuPMYuLsnEJUpIpSGihBh18onNNqWvrRGtF1NbLR2yvH3p4wrgVyQWjmiS0JwZDJ0KqomqohlVUIhXs1VaI3eWGGaNDREGS7iZJF-wdiXdqQGTW44Nh-b3LttEF00CECpEYRGUQL3qT2lBD41NsbBUL9oaU05HJoQaCyzcHcJxEXtUdaatthXGoLtjBVn9dtsVV93fmFOzl9BqtiI5GXA_DNbXRdOm4Etjm8Ubd05ilMVZhlFcwM5sIs5-av-kvfoxM3TURoaJPefr_cT1jt_HTipIShDlge-vlNTzHWGftX4wT-g-HTf7B
  priority: 102
  providerName: ProQuest
Title High-Precision Fiber Noise Detection and Comparison over a 260 km Field Fiber Link
URI https://www.ncbi.nlm.nih.gov/pubmed/38894273
https://www.proquest.com/docview/3067439989
https://www.proquest.com/docview/3070802029
https://pubmed.ncbi.nlm.nih.gov/PMC11175153
https://doaj.org/article/c85ede0625ed48448b8f6c1e5bfd590d
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV3di9QwEB_uA-R8EL-tnksUwadqm6RN-iByd956CLcchwv7VvKph2dXd_dA_3tnut2yRX0ppUnadGbSya-Z_AbgVRmMDDoXqRBBplKXIbXWVSn6ah1F5lT0tDn5fFKeTeWnWTHbgU2OzU6Ay39CO8onNV1cv_n18_d7HPDvCHEiZH-7RC-UC6nFLuzjqaJEBueyX0zgAmHYmlRoWP0AbgmtK8mVGHillrz_70_0lo8axk9uOaTxXbjTzSTZ0Vr192AnNPfh9ha_4AO4pCiO9GLR5dFhYwoPYZP51TKwD2HVRmE1zDSenfTpCBnFdDLDEIGwb9-xSbj2XUPCrQ9hOj79fHKWdkkUUofId5VGrYKVnMapk9qWKovWWpzFGC8KE0OMIjoRypAH5WyklU6h8srwsuJeVVY8gr1m3oQnwCoejdOyiFxZ4jQ03MXMy4KyWnnJYwIvN0Ksf6y5MmrEGCT0uhd6Asck3r4C0Vu3F-aLL3U3Wmqni-BDhtgseKkRQVodS5eHwkZfVJlP4DUppyazQA040-0lwH4SnVV9pCpVZTgzVQkcbvRXb4yrJphEOExXCbzoi3Fc0WKJacL8huoo2oaccazzeK3uvs8bq0lADwxh8FLDkubqa8vdnRM1KnqZp_-96TM4wKdKilDg-hD2Voub8BwnPis7gl01U3jU448j2D8-nVxcjtqfCKPW4P8AXHQEXg
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQAHxJtAAYNAnKImthM7B4RKy7Kl7QqhVuotxPa4rYBs2d0K8af4jczkxa6QuPW6dlbeeeSbbz0Pxl7mUCkwqYylBBUrk0NsrStixGoTZOJ08FScfDDJx0fq43F2vMZ-97UwlFbZvxObF7WfOvqPfJNCW4qdTfH2_EdMU6PodrUfodGaxR78-omUbf5mdwf1-0qI0fvD7XHcTRWIHVLBRRyMBqsEGa5TxuY6CdZahPXKy6wKEIIMTkIOKWhnA139SZ0WlcgL4XVhJX7vFXZVSURyqkwffRgInkS-13YvwsVkc47omEpl5ArmNaMB_gWAJQRczc5cgrvRLXazi1P5VmtYt9ka1HfYjaXuhXfZZ8oRiT_Nuik9fETJJ3wyPZsD34FFk-NV86r2fHsYdsgpY5RXHPkN__odH4FvvnuQWPE9dnQpwrzP1utpDQ8ZL0SonFFZENpSx8RKuJB4ldHMLK9EiNiLXojleduJo0QGQ5IuB0lH7B2Jd9hAzbObD6azk7LzxdKZDDwkyPzAK4P81JqQuxQyG3xWJD5ir0k5Jbk4asBVXaUCnpOaZZVbutBFgnGvjthGr7-y8_15-ddSI_Z8WEavpauYqobpBe3RVOScCNzzoFX3cGZpTKEwqoyYWTGElR-1ulKfnTadwVNqvIoY9uj_53rGro0PD_bL_d3J3mN2HY-hKCFCmA22vphdwBOMsxb2aWPcnH25bG_6AzOWPMY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4anYTgAXEnMMAgEE9RE9uJ7QeEtnXVxqCaJibtLYtvMAHpaDsh_hq_jnPaNLRC4m2vsR055-JzvvhcAF6VoZZB5yIVIshU6jKk1jqToq3WUWRORU_JyR9H5f6JfH9anG7A72UuDIVVLs_E-UHtx47-kffJtSXfWZt-bMMijgbDdxc_UuogRTety3YaCxE5DL9-Inybvj0YIK9fcz7c-7S7n7YdBlKHsHCWRq2ClZyE2EltS5VFay2a-NqLoo4hRhGdCGXIg3I20jWgULmpeWm4V8YKfO812FSEinqwubM3Ojru4J5A9LeoZSSEyfpTtJW5kFqsWcB5o4B_zcGKPVyP1VwxfsPbcKv1Wtn2QszuwEZo7sLNlVqG9-CYIkbSo0nbs4cNKRSFjcbn08AGYTaP-GpY3Xi227U-ZBQ_ymqGaId9_Y5LwjffLiSMfB9OroScD6DXjJvwCJjhsXZaFpErS_UTa-5i5mVBHbS85DGBl0siVheLuhwV4hmidNVROoEdIm83gUppzx-MJ5-rVjMrp4vgQ4Y4MHipEa1aHUuXh8JGX5jMJ_CGmFORwiMHXN3mLeA-qXRWta2MMhl6wSqBrSX_qvYkmFZ_5TaBF90w6jBdzNRNGF_SHEUpzxnHOQ8X7O72LLQ2En3MBPSaIKx91PpIc_5lXic8pzKsaNEe_39fz-E6alL14WB0-ARu4C4kRUdwvQW92eQyPEWna2aftdLN4OyqFeoPEOZCWA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-Precision+Fiber+Noise+Detection+and+Comparison+over+a+260+km+Field+Fiber+Link&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Zang%2C+Qi&rft.au=Zhang%2C+Xiang&rft.au=Wang%2C+Dan&rft.au=Zhou%2C+Qian&rft.date=2024-05-28&rft.eissn=1424-8220&rft.volume=24&rft.issue=11&rft_id=info:doi/10.3390%2Fs24113483&rft_id=info%3Apmid%2F38894273&rft.externalDocID=38894273
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon