Single-Trial Kernel-Based Functional Connectivity for Enhanced Feature Extraction in Motor-Related Tasks

Motor learning is associated with functional brain plasticity, involving specific functional connectivity changes in the neural networks. However, the degree of learning new motor skills varies among individuals, which is mainly due to the between-subject variability in brain structure and function...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 21; no. 8; p. 2750
Main Authors García-Murillo, Daniel Guillermo, Alvarez-Meza, Andres, Castellanos-Dominguez, German
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 13.04.2021
MDPI
Subjects
Online AccessGet full text
ISSN1424-8220
1424-8220
DOI10.3390/s21082750

Cover

Loading…
Abstract Motor learning is associated with functional brain plasticity, involving specific functional connectivity changes in the neural networks. However, the degree of learning new motor skills varies among individuals, which is mainly due to the between-subject variability in brain structure and function captured by electroencephalographic (EEG) recordings. Here, we propose a kernel-based functional connectivity measure to deal with inter/intra-subject variability in motor-related tasks. To this end, from spatio-temporal-frequency patterns, we extract the functional connectivity between EEG channels through their Gaussian kernel cross-spectral distribution. Further, we optimize the spectral combination weights within a sparse-based ℓ2-norm feature selection framework matching the motor-related labels that perform the dimensionality reduction of the extracted connectivity features. From the validation results in three databases with motor imagery and motor execution tasks, we conclude that the single-trial Gaussian functional connectivity measure provides very competitive classifier performance values, being less affected by feature extraction parameters, like the sliding time window, and avoiding the use of prior linear spatial filtering. We also provide interpretability for the clustered functional connectivity patterns and hypothesize that the proposed kernel-based metric is promising for evaluating motor skills.
AbstractList Motor learning is associated with functional brain plasticity, involving specific functional connectivity changes in the neural networks. However, the degree of learning new motor skills varies among individuals, which is mainly due to the between-subject variability in brain structure and function captured by electroencephalographic (EEG) recordings. Here, we propose a kernel-based functional connectivity measure to deal with inter/intra-subject variability in motor-related tasks. To this end, from spatio-temporal-frequency patterns, we extract the functional connectivity between EEG channels through their Gaussian kernel cross-spectral distribution. Further, we optimize the spectral combination weights within a sparse-based ℓ 2 -norm feature selection framework matching the motor-related labels that perform the dimensionality reduction of the extracted connectivity features. From the validation results in three databases with motor imagery and motor execution tasks, we conclude that the single-trial Gaussian functional connectivity measure provides very competitive classifier performance values, being less affected by feature extraction parameters, like the sliding time window, and avoiding the use of prior linear spatial filtering. We also provide interpretability for the clustered functional connectivity patterns and hypothesize that the proposed kernel-based metric is promising for evaluating motor skills.
Motor learning is associated with functional brain plasticity, involving specific functional connectivity changes in the neural networks. However, the degree of learning new motor skills varies among individuals, which is mainly due to the between-subject variability in brain structure and function captured by electroencephalographic (EEG) recordings. Here, we propose a kernel-based functional connectivity measure to deal with inter/intra-subject variability in motor-related tasks. To this end, from spatio-temporal-frequency patterns, we extract the functional connectivity between EEG channels through their Gaussian kernel cross-spectral distribution. Further, we optimize the spectral combination weights within a sparse-based ℓ2-norm feature selection framework matching the motor-related labels that perform the dimensionality reduction of the extracted connectivity features. From the validation results in three databases with motor imagery and motor execution tasks, we conclude that the single-trial Gaussian functional connectivity measure provides very competitive classifier performance values, being less affected by feature extraction parameters, like the sliding time window, and avoiding the use of prior linear spatial filtering. We also provide interpretability for the clustered functional connectivity patterns and hypothesize that the proposed kernel-based metric is promising for evaluating motor skills.
Motor learning is associated with functional brain plasticity, involving specific functional connectivity changes in the neural networks. However, the degree of learning new motor skills varies among individuals, which is mainly due to the between-subject variability in brain structure and function captured by electroencephalographic (EEG) recordings. Here, we propose a kernel-based functional connectivity measure to deal with inter/intra-subject variability in motor-related tasks. To this end, from spatio-temporal-frequency patterns, we extract the functional connectivity between EEG channels through their Gaussian kernel cross-spectral distribution. Further, we optimize the spectral combination weights within a sparse-based ℓ2-norm feature selection framework matching the motor-related labels that perform the dimensionality reduction of the extracted connectivity features. From the validation results in three databases with motor imagery and motor execution tasks, we conclude that the single-trial Gaussian functional connectivity measure provides very competitive classifier performance values, being less affected by feature extraction parameters, like the sliding time window, and avoiding the use of prior linear spatial filtering. We also provide interpretability for the clustered functional connectivity patterns and hypothesize that the proposed kernel-based metric is promising for evaluating motor skills.Motor learning is associated with functional brain plasticity, involving specific functional connectivity changes in the neural networks. However, the degree of learning new motor skills varies among individuals, which is mainly due to the between-subject variability in brain structure and function captured by electroencephalographic (EEG) recordings. Here, we propose a kernel-based functional connectivity measure to deal with inter/intra-subject variability in motor-related tasks. To this end, from spatio-temporal-frequency patterns, we extract the functional connectivity between EEG channels through their Gaussian kernel cross-spectral distribution. Further, we optimize the spectral combination weights within a sparse-based ℓ2-norm feature selection framework matching the motor-related labels that perform the dimensionality reduction of the extracted connectivity features. From the validation results in three databases with motor imagery and motor execution tasks, we conclude that the single-trial Gaussian functional connectivity measure provides very competitive classifier performance values, being less affected by feature extraction parameters, like the sliding time window, and avoiding the use of prior linear spatial filtering. We also provide interpretability for the clustered functional connectivity patterns and hypothesize that the proposed kernel-based metric is promising for evaluating motor skills.
Author Alvarez-Meza, Andres
Castellanos-Dominguez, German
García-Murillo, Daniel Guillermo
AuthorAffiliation Signal Processing and Recognition Group, Universidad Nacional de Colombia, Manizales 170003, Colombia; amalvarezme@unal.edu.co (A.A.-M.); cgcastellanosd@unal.edu.co (G.C.-D.)
AuthorAffiliation_xml – name: Signal Processing and Recognition Group, Universidad Nacional de Colombia, Manizales 170003, Colombia; amalvarezme@unal.edu.co (A.A.-M.); cgcastellanosd@unal.edu.co (G.C.-D.)
Author_xml – sequence: 1
  givenname: Daniel Guillermo
  surname: García-Murillo
  fullname: García-Murillo, Daniel Guillermo
– sequence: 2
  givenname: Andres
  surname: Alvarez-Meza
  fullname: Alvarez-Meza, Andres
– sequence: 3
  givenname: German
  orcidid: 0000-0002-0138-5489
  surname: Castellanos-Dominguez
  fullname: Castellanos-Dominguez, German
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33924672$$D View this record in MEDLINE/PubMed
BookMark eNplkktv1DAUhS1URB-w4A-gSGxgEepH_NogwWgKVVshwbC27jjOjIeM3dpJRf89Tqet2rKyffzd42NfH6K9EIND6C3BnxjT-DhTghWVHL9AB6ShTa0oxXuP5vvoMOcNxpQxpl6h_VJFGyHpAVr_8mHVu3qRPPTVmUvB9fVXyK6tTsZgBx9D0WcxBFcW1364qbqYqnlYQ7AT5GAYk6vmf4cEt3jlQ3URh5jqn66HoTALyH_ya_Sygz67N3fjEfp9Ml_MvtfnP76dzr6c17YReqg7yYUUS8s74MRJoaRsuSLNEiRIwphgwDsOTJIiUy1YY5lQBeCwbCmR7Aid7nzbCBtzmfwW0o2J4M2tENPKQBq87Z3RWndYCaUBRCMo6HKKcFxihTVpLSten3del-Ny61rrQrlk_8T06U7wa7OK10ZhoRXRxeDDnUGKV6PLg9n6bF3fQ3BxzIZyWgI0RE-53z9DN3FM5fEniuOGE6Jpod49TvQQ5b6hBTjeATbFnJPrjPUDTH0pAX1vCJ5YbB6-TKn4-Kzi3vR_9h9xDr6k
CitedBy_id crossref_primary_10_3390_s23052750
crossref_primary_10_3390_s21134443
crossref_primary_10_3390_s23125574
crossref_primary_10_3390_s23031078
crossref_primary_10_1002_widm_1478
crossref_primary_10_3390_s22155771
crossref_primary_10_3390_s22041477
crossref_primary_10_3390_s23073763
crossref_primary_10_2196_66802
crossref_primary_10_1007_s00521_021_06716_x
crossref_primary_10_3390_app11156689
Cites_doi 10.1016/j.neuroscience.2016.11.023
10.1007/978-3-319-12568-8_41
10.3389/fnins.2020.00714
10.1007/s12021-020-09473-9
10.26599/BSA.2020.9050021
10.1088/1741-2552/aab2f2
10.1016/j.jneumeth.2020.108987
10.1109/SMC.2018.00094
10.1371/journal.pone.0207351
10.1093/gigascience/gix034
10.1109/ACCESS.2020.2995302
10.1109/TNSRE.2017.2757519
10.1088/1741-2552/abce70
10.1109/TCYB.2018.2841847
10.1016/j.bspc.2020.102172
10.1016/j.cogsys.2020.10.017
10.3389/fnsys.2020.591675
10.1088/2057-1976/ab5145
10.1109/TNNLS.2019.2946869
10.1155/2021/6655430
10.1016/j.neunet.2020.05.032
10.1137/18M1216134
10.1016/j.jneumeth.2020.108833
10.1080/00222895.2020.1738992
10.1016/j.neuroscience.2020.04.006
10.1080/2326263X.2020.1782124
10.1016/j.cmpb.2020.105808
10.1016/j.bspc.2021.102447
10.1109/TIM.2021.3051996
10.3389/fnbeh.2020.00077
10.1016/j.neulet.2021.135653
10.1109/NER.2019.8717039
10.1038/s41598-019-45605-1
10.1002/hbm.23730
10.1109/TSP.2017.2649483
10.1162/NECO_a_00591
10.1016/j.bspc.2020.101899
10.1007/978-3-030-54932-9_2
10.3389/fncom.2019.00087
10.2478/cjece-2020-0004
10.1002/hbm.21037
10.3389/fnins.2017.00550
10.1016/j.sigpro.2020.107942
10.1109/ACCESS.2019.2917327
10.1103/PhysRevE.96.012316
10.1109/SMC.2019.8914176
10.1016/j.ijhcs.2021.102603
10.1088/1741-2552/ab21fd
10.1109/ACCESS.2020.3018962
10.1145/3433996.3434046
10.1007/s11517-019-01989-w
10.3389/fnins.2019.01277
10.4103/1673-5374.295333
10.1016/j.neucom.2012.12.039
10.1016/j.neuroimage.2021.117806
10.3389/fnins.2020.575081
10.1186/s12984-018-0431-6
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 by the authors. 2021
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 by the authors. 2021
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s21082750
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Open Access Full Text
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
PubMed

CrossRef
Publicly Available Content Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central (NC Live)
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_999f08689aa6462a94ba6e5708091dc3
PMC8069819
33924672
10_3390_s21082750
Genre Journal Article
GrantInformation_xml – fundername: Universidad Nacional de Colombia, Sede Manizales
  grantid: Hermes - 50835
– fundername: Departamento Administrativo de Ciencia, Tecnología e Innovación (COLCIENCIAS)
  grantid: SIGP - 58950
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
NPM
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c469t-f75676bc5fa51e76877d5814ba7a713363a5f5a371d5829634c3688145abd2173
IEDL.DBID DOA
ISSN 1424-8220
IngestDate Wed Aug 27 01:29:14 EDT 2025
Thu Aug 21 18:20:55 EDT 2025
Fri Jul 11 12:33:48 EDT 2025
Fri Jul 25 20:41:44 EDT 2025
Thu Apr 03 06:58:06 EDT 2025
Thu Apr 24 23:09:47 EDT 2025
Tue Jul 01 03:56:10 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords motor imagery
Gaussian kernel
functional connectivity
motor execution
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c469t-f75676bc5fa51e76877d5814ba7a713363a5f5a371d5829634c3688145abd2173
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0138-5489
OpenAccessLink https://doaj.org/article/999f08689aa6462a94ba6e5708091dc3
PMID 33924672
PQID 2550451192
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_999f08689aa6462a94ba6e5708091dc3
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8069819
proquest_miscellaneous_2520864197
proquest_journals_2550451192
pubmed_primary_33924672
crossref_citationtrail_10_3390_s21082750
crossref_primary_10_3390_s21082750
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210413
PublicationDateYYYYMMDD 2021-04-13
PublicationDate_xml – month: 4
  year: 2021
  text: 20210413
  day: 13
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2021
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Georgiadis (ref_50) 2019; 16
Fu (ref_18) 2020; 343
Gaur (ref_53) 2021; 70
Borra (ref_46) 2020; 129
Bakhshali (ref_61) 2020; 59
Kim (ref_31) 2020; 14
Kumar (ref_57) 2019; 9
Brockmeier (ref_58) 2014; 26
ref_52
Machaen (ref_2) 2021; 66
ref_17
ref_16
Georgiadis (ref_32) 2018; 15
(ref_55) 2019; 13
Huang (ref_14) 2020; 8
Maksimenko (ref_22) 2017; 96
Saha (ref_10) 2020; 13
Wang (ref_29) 2020; 8
Shamsi (ref_48) 2021; 18
Daly (ref_20) 2021; 348
Gu (ref_26) 2020; 436
Chevallier (ref_12) 2021; 19
Rodrigues (ref_30) 2019; 57
Aliakbaryhosseinabadi (ref_8) 2021; 66
Bencivenga (ref_6) 2021; 230
Kwon (ref_15) 2019; 31
Uribe (ref_60) 2019; 5
Congedo (ref_24) 2017; 65
ref_36
Jarmolowska (ref_23) 2021; 198
ref_35
ref_34
ref_33
Bhattacharjee (ref_7) 2021; 53
ref_39
Dawwd (ref_45) 2021; 63
Lotte (ref_42) 2018; 15
Tomassini (ref_9) 2011; 32
Park (ref_19) 2017; 26
Yang (ref_5) 2021; 746
Barachant (ref_38) 2013; 112
ref_47
Xie (ref_44) 2020; 12
(ref_37) 2020; 14
ref_41
ref_40
(ref_59) 2017; 11
Matsuo (ref_4) 2021; 16
Zhang (ref_21) 2020; 6
Zhang (ref_25) 2019; 7
Ruffino (ref_1) 2017; 341
ref_49
Linderman (ref_51) 2019; 1
Vidaurre (ref_11) 2020; 14
Luo (ref_27) 2021; 2021
Cho (ref_56) 2017; 6
Pillette (ref_28) 2021; 149
Yoo (ref_3) 2020; 14
Camargo (ref_13) 2021; 182
Schirrmeister (ref_43) 2017; 38
Zhang (ref_54) 2018; 49
References_xml – volume: 341
  start-page: 61
  year: 2017
  ident: ref_1
  article-title: Neural plasticity during motor learning with motor imagery practice: Review and perspectives
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2016.11.023
– ident: ref_36
  doi: 10.1007/978-3-319-12568-8_41
– volume: 14
  start-page: 714
  year: 2020
  ident: ref_37
  article-title: Dynamic Modeling of Common Brain Neural Activity in Motor Imagery Tasks
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2020.00714
– volume: 19
  start-page: 93
  year: 2021
  ident: ref_12
  article-title: Review of Riemannian Distances and Divergences, Applied to SSVEP-based BCI
  publication-title: Neuroinformatics
  doi: 10.1007/s12021-020-09473-9
– volume: 6
  start-page: 224
  year: 2020
  ident: ref_21
  article-title: Subject inefficiency phenomenon of motor imagery brain-computer interface: Influence factors and potential solutions
  publication-title: Brain Sci. Adv.
  doi: 10.26599/BSA.2020.9050021
– volume: 15
  start-page: 031005
  year: 2018
  ident: ref_42
  article-title: A review of classification algorithms for EEG-based brain–computer interfaces: A 10 year update
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/aab2f2
– volume: 348
  start-page: 108987
  year: 2021
  ident: ref_20
  article-title: Neural component analysis: A spatial filter for electroencephalogram analysis
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2020.108987
– ident: ref_41
  doi: 10.1109/SMC.2018.00094
– ident: ref_49
  doi: 10.1371/journal.pone.0207351
– volume: 6
  start-page: gix034
  year: 2017
  ident: ref_56
  article-title: EEG datasets for motor imagery brain–computer interface
  publication-title: GigaScience
  doi: 10.1093/gigascience/gix034
– volume: 8
  start-page: 93749
  year: 2020
  ident: ref_14
  article-title: Spectrum-Weighted Tensor Discriminant Analysis for Motor Imagery-Based BCI
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2995302
– volume: 26
  start-page: 498
  year: 2017
  ident: ref_19
  article-title: Filter bank regularized common spatial pattern ensemble for small sample motor imagery classification
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2017.2757519
– volume: 18
  start-page: 016015
  year: 2021
  ident: ref_48
  article-title: Early classification of motor tasks using dynamic functional connectivity graphs from EEG
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/abce70
– volume: 49
  start-page: 3322
  year: 2018
  ident: ref_54
  article-title: Temporally constrained sparse group spatial patterns for motor imagery BCI
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2018.2841847
– volume: 63
  start-page: 102172
  year: 2021
  ident: ref_45
  article-title: Deep learning for motor imagery EEG-based classification: A review
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2020.102172
– volume: 66
  start-page: 134
  year: 2021
  ident: ref_2
  article-title: Bio-inspired cognitive model of motor learning by imitation
  publication-title: Cogn. Syst. Res.
  doi: 10.1016/j.cogsys.2020.10.017
– ident: ref_39
– volume: 14
  start-page: 591675
  year: 2020
  ident: ref_31
  article-title: Single-Trial EEG Connectivity of Default Mode Network Before and During Encoding Predicts Subsequent Memory Outcome
  publication-title: Front. Syst. Neurosci.
  doi: 10.3389/fnsys.2020.591675
– volume: 5
  start-page: 065026
  year: 2019
  ident: ref_60
  article-title: A correntropy-based classifier for motor imagery brain-computer interfaces
  publication-title: Biomed. Phys. Eng. Express
  doi: 10.1088/2057-1976/ab5145
– volume: 31
  start-page: 3839
  year: 2019
  ident: ref_15
  article-title: Subject-independent brain–computer interfaces based on deep convolutional neural networks
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2019.2946869
– volume: 2021
  start-page: 6655430
  year: 2021
  ident: ref_27
  article-title: Research on Recognition of Motor Imagination Based on Connectivity Features of Brain Functional Network
  publication-title: Neural Plast.
  doi: 10.1155/2021/6655430
– ident: ref_35
– volume: 129
  start-page: 55
  year: 2020
  ident: ref_46
  article-title: Interpretable and lightweight convolutional neural network for EEG decoding: Application to movement execution and imagination
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2020.05.032
– volume: 1
  start-page: 313
  year: 2019
  ident: ref_51
  article-title: Clustering with t-SNE, provably
  publication-title: SIAM J. Math. Data Sci.
  doi: 10.1137/18M1216134
– volume: 343
  start-page: 108833
  year: 2020
  ident: ref_18
  article-title: Improvement motor imagery EEG classification based on sparse common spatial pattern and regularized discriminant analysis
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2020.108833
– volume: 53
  start-page: 258
  year: 2021
  ident: ref_7
  article-title: The Role of Primary Motor Cortex: More Than Movement Execution
  publication-title: J. Mot. Behav.
  doi: 10.1080/00222895.2020.1738992
– volume: 436
  start-page: 93
  year: 2020
  ident: ref_26
  article-title: EEG-based classification of lower limb motor imagery with brain network analysis
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2020.04.006
– ident: ref_16
  doi: 10.1080/2326263X.2020.1782124
– volume: 198
  start-page: 105808
  year: 2021
  ident: ref_23
  article-title: Effect of power feature covariance shift on BCI spatial-filtering techniques: A comparative study
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2020.105808
– volume: 66
  start-page: 102447
  year: 2021
  ident: ref_8
  article-title: Effect of motor learning with different complexities on EEG spectral distribution and performance improvement
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2021.102447
– volume: 70
  start-page: 1
  year: 2021
  ident: ref_53
  article-title: A Sliding Window Common Spatial Pattern for Enhancing Motor Imagery Classification in EEG-BCI
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2021.3051996
– volume: 14
  start-page: 77
  year: 2020
  ident: ref_3
  article-title: Distinct Neural Correlates Underlie Inhibitory Mechanisms of Motor Inhibition and Motor Imagery Restraint
  publication-title: Front. Behav. Neurosci.
  doi: 10.3389/fnbeh.2020.00077
– volume: 746
  start-page: 135653
  year: 2021
  ident: ref_5
  article-title: Effects of neurofeedback on the activities of motor-related areas by using motor execution and imagery
  publication-title: Neurosci. Lett.
  doi: 10.1016/j.neulet.2021.135653
– ident: ref_40
  doi: 10.1109/NER.2019.8717039
– volume: 9
  start-page: 9153
  year: 2019
  ident: ref_57
  article-title: Brain wave classification using long short-term memory network based OPTICAL predictor
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-45605-1
– volume: 38
  start-page: 5391
  year: 2017
  ident: ref_43
  article-title: Deep learning with convolutional neural networks for EEG decoding and visualization
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.23730
– volume: 65
  start-page: 2211
  year: 2017
  ident: ref_24
  article-title: Fixed point algorithms for estimating power means of positive definite matrices
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2017.2649483
– volume: 26
  start-page: 1080
  year: 2014
  ident: ref_58
  article-title: Neural decoding with kernel-based metric learning
  publication-title: Neural Comput.
  doi: 10.1162/NECO_a_00591
– volume: 59
  start-page: 101899
  year: 2020
  ident: ref_61
  article-title: EEG signal classification of imagined speech based on Riemannian distance of correntropy spectral density
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2020.101899
– ident: ref_17
  doi: 10.1007/978-3-030-54932-9_2
– volume: 13
  start-page: 87
  year: 2020
  ident: ref_10
  article-title: Intra- and Inter-subject Variability in EEG-Based Sensorimotor Brain Computer Interface: A Review
  publication-title: Front. Comput. Neurosci.
  doi: 10.3389/fncom.2019.00087
– volume: 12
  start-page: 23
  year: 2020
  ident: ref_44
  article-title: A Review of Processing Methods and Classification Algorithm for EEG Signal
  publication-title: Carpathian J. Electron. Comput. Eng.
  doi: 10.2478/cjece-2020-0004
– volume: 32
  start-page: 494
  year: 2011
  ident: ref_9
  article-title: Structural and functional bases for individual differences in motor learning
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.21037
– ident: ref_34
– volume: 11
  start-page: 550
  year: 2017
  ident: ref_59
  article-title: Kernel-based relevance analysis with enhanced interpretability for detection of brain activity patterns
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2017.00550
– volume: 182
  start-page: 107942
  year: 2021
  ident: ref_13
  article-title: L1-norm unsupervised Fukunaga-Koontz transform
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2020.107942
– volume: 7
  start-page: 74490
  year: 2019
  ident: ref_25
  article-title: Using brain network features to increase the classification accuracy of MI-BCI inefficiency subject
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2917327
– volume: 96
  start-page: 012316
  year: 2017
  ident: ref_22
  article-title: Macroscopic and microscopic spectral properties of brain networks during local and global synchronization
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.96.012316
– ident: ref_52
  doi: 10.1109/SMC.2019.8914176
– volume: 149
  start-page: 102603
  year: 2021
  ident: ref_28
  article-title: Experimenters Influence on Mental-Imagery based Brain-Computer Interface User Training
  publication-title: Int. J. Hum. Comput. Stud.
  doi: 10.1016/j.ijhcs.2021.102603
– volume: 16
  start-page: 056021
  year: 2019
  ident: ref_50
  article-title: Connectivity steered graph Fourier transform for motor imagery BCI decoding
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/ab21fd
– volume: 8
  start-page: 155590
  year: 2020
  ident: ref_29
  article-title: Diverse feature blend based on filter-bank common spatial pattern and brain functional connectivity for multiple motor imagery detection
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3018962
– ident: ref_33
– ident: ref_47
  doi: 10.1145/3433996.3434046
– volume: 57
  start-page: 1709
  year: 2019
  ident: ref_30
  article-title: Space-time recurrences for functional connectivity evaluation and feature extraction in motor imagery brain-computer interfaces
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/s11517-019-01989-w
– volume: 13
  start-page: 1277
  year: 2019
  ident: ref_55
  article-title: A data-driven measure of effective connectivity based on Renyi’s α-entropy
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2019.01277
– volume: 16
  start-page: 778
  year: 2021
  ident: ref_4
  article-title: Comparison of cerebral activation between motor execution and motor imagery of self-feeding activity
  publication-title: Neural Regen. Res.
  doi: 10.4103/1673-5374.295333
– volume: 112
  start-page: 172
  year: 2013
  ident: ref_38
  article-title: Classification of covariance matrices using a Riemannian-based kernel for BCI applications
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.12.039
– volume: 230
  start-page: 117806
  year: 2021
  ident: ref_6
  article-title: Assessing the effective connectivity of premotor areas during real vs. imagined grasping: A DCM-PEB approach
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2021.117806
– volume: 14
  start-page: 1278
  year: 2020
  ident: ref_11
  article-title: Sensorimotor functional connectivity: A neurophysiological factor related to BCI performance
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2020.575081
– volume: 15
  start-page: 1
  year: 2018
  ident: ref_32
  article-title: Exploiting the heightened phase synchrony in patients with neuromuscular disease for the establishment of efficient motor imagery BCIs
  publication-title: J. Neuroeng. Rehabil.
  doi: 10.1186/s12984-018-0431-6
SSID ssj0023338
Score 2.3941014
Snippet Motor learning is associated with functional brain plasticity, involving specific functional connectivity changes in the neural networks. However, the degree...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 2750
SubjectTerms Bandwidths
Datasets
Discriminant analysis
functional connectivity
Gaussian kernel
Illiteracy
motor execution
motor imagery
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT9wwELVaemkPqIV-hNLKRRx6sdjEX8mpgmoXBKIXFolb5NizXdRVAsmuxM_vTJINbIV6ipTMRl57xvOe7bxh7NCAAYiDEcqOglBFgvNg6jCuggZMj76wjj5wvvxlzq7V-Y2-6Rfcmv5Y5XpObCfqUHlaIz9C6EtSKAhIftzdC6oaRburfQmNl-xVjJmGPDydnA6ESyL_6tSEJFL7owbpTUp65hs5qJXqfw5f_ntM8knembxl2z1g5MfdCL9jL6DcYW-eyAjusvkVXhYgpuRM_ALqEhbiBNNT4BNMW91qH2-PtPiuWARHqMrH5bzd_ucEA1c18PHDsu6-c-C3Jb-skI6L9rAc2kxd86d5z64n4-nPM9FXUBAeae9SzKw21hRez5yOAZmFtUGnsSqcdcROjXR6pp20Md5OMBaVlyZFA-2KgGRFfmBbZVXCJ8adkSHYAkbeGgVGZx7BngOZehuUzXzEvq_7NPe9vDhVuVjkSDOo-_Oh-yN2MJjedZoazxmd0MAMBiSD3d6o6t95H1U5otsZcrI0c84ok7gM_5kBbREGZ3HwMmL762HN-9hs8kdPiti34TFGFW2VuBKqFdkk-F4VZzZiHzsvGFqC7UwwveCv7YZ_bDR180l5O2-Vu9ORyRCC7f2_WZ_Z64ROzpCipNxnW8t6BV8Q-iyLr61__wWcBARE
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nj9MwEB0tywUOiG-yLMggDlwCTfyVHBBiUasVqFxopb1Fju1uV1Qpm7bS8u95TtJog3rkFMmZRI7tybyXjN8QvVNeeZ84FQs9crEoU7wHMwO_ctIjPNpSm7DBefpDnc_Ftwt5cUT7GpvdAG4OUrtQT2perz7cXP_5DIf_FBgnKPvHDWhLFnTK79BdBCQdKjhMRf8zIeWgYa2o0NB8EIoaxf5DMPPfbMlb4WfykB50uJF9aSf6ER356jHdv6Um-ISWP3FY-XgW1hT77uvKr-IzRCnHJohe7Uc_1mS22LZmBANiZeNq2WQBsIAGd7Vn45tt3W53YFcVm67ByuMmZw42M7P5tXlK88l49vU87gopxBbsdxsvtFRalVYujEw8CIbWTmaJKI02gaQqbuRCGq4TNKdwSWG5ymAgTenAWfgzOq7WlX9BzCjunC79yGolvJK5BeYznmdWO6FzG9H7_ZgWtlMZD8UuVgXYRhj-oh_-iN72pr9baY1DRmdhYnqDoIbdNKzry6JzrgIgdwFqluXGKKFSk-PJlJcaaDhPnOURne6ntdivsAJcKmjrAOFG9KY_DecKf0xM5de7YJPiviLJdUTP21XQ9wT9TBFlcLUerI9BV4dnqqtlI-CdjVQOJHbyP57tJd1LQ5pNkJ_kp3S8rXf-FXDStnzdeMFfybsSTg
  priority: 102
  providerName: Scholars Portal
Title Single-Trial Kernel-Based Functional Connectivity for Enhanced Feature Extraction in Motor-Related Tasks
URI https://www.ncbi.nlm.nih.gov/pubmed/33924672
https://www.proquest.com/docview/2550451192
https://www.proquest.com/docview/2520864197
https://pubmed.ncbi.nlm.nih.gov/PMC8069819
https://doaj.org/article/999f08689aa6462a94ba6e5708091dc3
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nj9MwEB3BcoED4pvAUhnEgUu0TfyVHClqWYG6QtCVeosc21VXVCnqh8TP5zlOoxatxIVLGjmTyJ3MdN5rJs9E75VX3mdOpUIPXSrqHL-DhUFeOelRHm2tTXjBeXqlLq_Fl7mcHy31FXrCojxwdNwFAMwCsLsojVFC5aYUtVFeaiCdMnO21fnE3oFMdVSLg3lFHSEOUn-xBbEpgpL5SfVpRfpvQ5Z_N0geVZzJI3rYQUX2MU7xMd3xzRN6cCQg-JSWP_Cx8ukshBH76jeNX6UjFCbHJihY8X8-1jaz2LhMBANIZeNm2T74ZwEA7jeejX_vNvENB3bTsOkaRDxt2-RgMzPbn9tndD0Zzz5dpt3aCakF4d2lCy2VVrWVCyMzD06htZNFBudpE3ip4kYupOE6w3COLBSWqwIG0tQONIU_p7Nm3fiXxIzizunaD61WwitZWsA843lhtRO6tAl9OPi0sp2weFjfYlWBYAT3V737E3rXm_6Kahq3GY3CjekNggB2O4CwqLqwqP4VFgmdH25r1WXltgJ9CnI6ALUJve0PI5_CQxLT-PU-2OS4rshKndCLGAX9TDDPHIUFZ-uT-DiZ6umR5mbZanYXQ1UCfL36H9_tNd3PQ2dNUJzk53S22-z9G0CjXT2gu3qusS0mnwd0bzS--vZ90GYGtlNR_AFArxA7
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VcgAOiG8WChgEEpeoSRzbyQEhCrvast1e2Ep7C47tZStWSUl2BfwpfiMz-WoXVdx6ipRMIscee95Lxm8AXksnnQus9CLlWy_KQlwHY43zygqH4dFkStMG5-mxHJ9En-divgN_ur0wlFbZrYn1Qm0LQ9_I9xH6khQKApL3Zz88qhpFf1e7EhqNW0zc759I2ap3h59wfN-E4Wg4-zj22qoCnkEquPYWSkglMyMWWgQO0bZSVsRBlGmlibFJrsVCaK4CPB2if0aGyxgNhM4sAniOz70G1zHw-pRCqObnBI8j32vUizhP_P0K6VRM-ulbMa8uDXAZnv03LfNCnBvdgdstQGUfGo-6Czsuvwe3LsgW3oflFzysnDcj52UTV-Zu5R1gOLRshGGy-brI6hQa0xSnYAiN2TBf1ukGjGDnpnRs-GtdNvsq2GnOpgXSf69OzkObma6-Vw_g5Er69iHs5kXuHgPTklurMucbJSMnRWIQXGrHY6NspBIzgLddn6amlTOnqhqrFGkNdX_ad_8AXvWmZ42Gx2VGBzQwvQHJbtcnivJb2s7iFNH0AjlgnGgtIxnqBN9MOqEQdieBNXwAe92wpu1aUKXnnjuAl_1lnMX0a0bnrtiQTYjPjYJEDeBR4wV9S7CdIYYzvFtt-cdWU7ev5KfLWik89mWCkO_J_5v1Am6MZ9Oj9OjwePIUboaUtUNqlnwPdtflxj1D2LXOnte-zuDrVU-uv2IMPt0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIiE4IN4EChgEEhdrN3FsJweEKN1Vy9IKia20t9SxHbZilZQkK-Cv8esY59Uuqrj1FMmZWI494_kmGX8D8FpYYa1vBA3l2NAwDXAfjBTaleEW3aNOpXIHnA-PxP5x-GnBF1vwpz8L49Iq-z2x2ahNod038hFCX0eFgoBklHVpEV_2pu_PflBXQcr9ae3LabQqMrO_f2L4Vr072MO1fhME08n84z7tKgxQjWFhTTPJhRSp5pnivkXkLaXhkR-mSioXvQmmeMYVkz42B6iroWYiQgGuUoNgnmG_1-C6ZOg20Zbk4jzYYxj7tUxGjMXjUYWhVeS41Df8X1Mm4DJs-2-K5gWfN70DtzuwSj602nUXtmx-D25doDC8D8uveFlZOneKTGa2zO2K7qJrNGSKLrP90kiadBrdFqogCJPJJF82qQfEQdB1acnkV122ZyzIaU4Oi7ooaZOohzJzVX2vHsDxlcztQ9jOi9w-BqIEM0amdqylCK3gsUagqSyLtDShjLUHb_s5TXRHbe4qbKwSDHHc9CfD9HvwahA9a_k8LhPadQszCDgK7qahKL8lnUUniKwzjAejWCkRikDF-GbCcokQPPaNZh7s9MuadPtClZxrsQcvh9to0e43jcptsXYyAfYb-rH04FGrBcNIcJwBujZ8Wm7ox8ZQN-_kp8uGNTwaixjh35P_D-sF3ECzSj4fHM2ews3AJfA4Yku2A9t1ubbPEIHV6fNG1QmcXLVt_QUzl0MT
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Single-Trial+Kernel-Based+Functional+Connectivity+for+Enhanced+Feature+Extraction+in+Motor-Related+Tasks&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Daniel+Guillermo+Garc%C3%ADa-Murillo&rft.au=Andres+Alvarez-Meza&rft.au=German+Castellanos-Dominguez&rft.date=2021-04-13&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=21&rft.issue=8&rft.spage=2750&rft_id=info:doi/10.3390%2Fs21082750&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_999f08689aa6462a94ba6e5708091dc3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon