Single-Trial Kernel-Based Functional Connectivity for Enhanced Feature Extraction in Motor-Related Tasks
Motor learning is associated with functional brain plasticity, involving specific functional connectivity changes in the neural networks. However, the degree of learning new motor skills varies among individuals, which is mainly due to the between-subject variability in brain structure and function...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 21; no. 8; p. 2750 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
13.04.2021
MDPI |
Subjects | |
Online Access | Get full text |
ISSN | 1424-8220 1424-8220 |
DOI | 10.3390/s21082750 |
Cover
Loading…
Abstract | Motor learning is associated with functional brain plasticity, involving specific functional connectivity changes in the neural networks. However, the degree of learning new motor skills varies among individuals, which is mainly due to the between-subject variability in brain structure and function captured by electroencephalographic (EEG) recordings. Here, we propose a kernel-based functional connectivity measure to deal with inter/intra-subject variability in motor-related tasks. To this end, from spatio-temporal-frequency patterns, we extract the functional connectivity between EEG channels through their Gaussian kernel cross-spectral distribution. Further, we optimize the spectral combination weights within a sparse-based ℓ2-norm feature selection framework matching the motor-related labels that perform the dimensionality reduction of the extracted connectivity features. From the validation results in three databases with motor imagery and motor execution tasks, we conclude that the single-trial Gaussian functional connectivity measure provides very competitive classifier performance values, being less affected by feature extraction parameters, like the sliding time window, and avoiding the use of prior linear spatial filtering. We also provide interpretability for the clustered functional connectivity patterns and hypothesize that the proposed kernel-based metric is promising for evaluating motor skills. |
---|---|
AbstractList | Motor learning is associated with functional brain plasticity, involving specific functional connectivity changes in the neural networks. However, the degree of learning new motor skills varies among individuals, which is mainly due to the between-subject variability in brain structure and function captured by electroencephalographic (EEG) recordings. Here, we propose a kernel-based functional connectivity measure to deal with inter/intra-subject variability in motor-related tasks. To this end, from spatio-temporal-frequency patterns, we extract the functional connectivity between EEG channels through their Gaussian kernel cross-spectral distribution. Further, we optimize the spectral combination weights within a sparse-based
ℓ
2
-norm feature selection framework matching the motor-related labels that perform the dimensionality reduction of the extracted connectivity features. From the validation results in three databases with motor imagery and motor execution tasks, we conclude that the single-trial Gaussian functional connectivity measure provides very competitive classifier performance values, being less affected by feature extraction parameters, like the sliding time window, and avoiding the use of prior linear spatial filtering. We also provide interpretability for the clustered functional connectivity patterns and hypothesize that the proposed kernel-based metric is promising for evaluating motor skills. Motor learning is associated with functional brain plasticity, involving specific functional connectivity changes in the neural networks. However, the degree of learning new motor skills varies among individuals, which is mainly due to the between-subject variability in brain structure and function captured by electroencephalographic (EEG) recordings. Here, we propose a kernel-based functional connectivity measure to deal with inter/intra-subject variability in motor-related tasks. To this end, from spatio-temporal-frequency patterns, we extract the functional connectivity between EEG channels through their Gaussian kernel cross-spectral distribution. Further, we optimize the spectral combination weights within a sparse-based ℓ2-norm feature selection framework matching the motor-related labels that perform the dimensionality reduction of the extracted connectivity features. From the validation results in three databases with motor imagery and motor execution tasks, we conclude that the single-trial Gaussian functional connectivity measure provides very competitive classifier performance values, being less affected by feature extraction parameters, like the sliding time window, and avoiding the use of prior linear spatial filtering. We also provide interpretability for the clustered functional connectivity patterns and hypothesize that the proposed kernel-based metric is promising for evaluating motor skills. Motor learning is associated with functional brain plasticity, involving specific functional connectivity changes in the neural networks. However, the degree of learning new motor skills varies among individuals, which is mainly due to the between-subject variability in brain structure and function captured by electroencephalographic (EEG) recordings. Here, we propose a kernel-based functional connectivity measure to deal with inter/intra-subject variability in motor-related tasks. To this end, from spatio-temporal-frequency patterns, we extract the functional connectivity between EEG channels through their Gaussian kernel cross-spectral distribution. Further, we optimize the spectral combination weights within a sparse-based ℓ2-norm feature selection framework matching the motor-related labels that perform the dimensionality reduction of the extracted connectivity features. From the validation results in three databases with motor imagery and motor execution tasks, we conclude that the single-trial Gaussian functional connectivity measure provides very competitive classifier performance values, being less affected by feature extraction parameters, like the sliding time window, and avoiding the use of prior linear spatial filtering. We also provide interpretability for the clustered functional connectivity patterns and hypothesize that the proposed kernel-based metric is promising for evaluating motor skills.Motor learning is associated with functional brain plasticity, involving specific functional connectivity changes in the neural networks. However, the degree of learning new motor skills varies among individuals, which is mainly due to the between-subject variability in brain structure and function captured by electroencephalographic (EEG) recordings. Here, we propose a kernel-based functional connectivity measure to deal with inter/intra-subject variability in motor-related tasks. To this end, from spatio-temporal-frequency patterns, we extract the functional connectivity between EEG channels through their Gaussian kernel cross-spectral distribution. Further, we optimize the spectral combination weights within a sparse-based ℓ2-norm feature selection framework matching the motor-related labels that perform the dimensionality reduction of the extracted connectivity features. From the validation results in three databases with motor imagery and motor execution tasks, we conclude that the single-trial Gaussian functional connectivity measure provides very competitive classifier performance values, being less affected by feature extraction parameters, like the sliding time window, and avoiding the use of prior linear spatial filtering. We also provide interpretability for the clustered functional connectivity patterns and hypothesize that the proposed kernel-based metric is promising for evaluating motor skills. |
Author | Alvarez-Meza, Andres Castellanos-Dominguez, German García-Murillo, Daniel Guillermo |
AuthorAffiliation | Signal Processing and Recognition Group, Universidad Nacional de Colombia, Manizales 170003, Colombia; amalvarezme@unal.edu.co (A.A.-M.); cgcastellanosd@unal.edu.co (G.C.-D.) |
AuthorAffiliation_xml | – name: Signal Processing and Recognition Group, Universidad Nacional de Colombia, Manizales 170003, Colombia; amalvarezme@unal.edu.co (A.A.-M.); cgcastellanosd@unal.edu.co (G.C.-D.) |
Author_xml | – sequence: 1 givenname: Daniel Guillermo surname: García-Murillo fullname: García-Murillo, Daniel Guillermo – sequence: 2 givenname: Andres surname: Alvarez-Meza fullname: Alvarez-Meza, Andres – sequence: 3 givenname: German orcidid: 0000-0002-0138-5489 surname: Castellanos-Dominguez fullname: Castellanos-Dominguez, German |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33924672$$D View this record in MEDLINE/PubMed |
BookMark | eNplkktv1DAUhS1URB-w4A-gSGxgEepH_NogwWgKVVshwbC27jjOjIeM3dpJRf89Tqet2rKyffzd42NfH6K9EIND6C3BnxjT-DhTghWVHL9AB6ShTa0oxXuP5vvoMOcNxpQxpl6h_VJFGyHpAVr_8mHVu3qRPPTVmUvB9fVXyK6tTsZgBx9D0WcxBFcW1364qbqYqnlYQ7AT5GAYk6vmf4cEt3jlQ3URh5jqn66HoTALyH_ya_Sygz67N3fjEfp9Ml_MvtfnP76dzr6c17YReqg7yYUUS8s74MRJoaRsuSLNEiRIwphgwDsOTJIiUy1YY5lQBeCwbCmR7Aid7nzbCBtzmfwW0o2J4M2tENPKQBq87Z3RWndYCaUBRCMo6HKKcFxihTVpLSten3del-Ny61rrQrlk_8T06U7wa7OK10ZhoRXRxeDDnUGKV6PLg9n6bF3fQ3BxzIZyWgI0RE-53z9DN3FM5fEniuOGE6Jpod49TvQQ5b6hBTjeATbFnJPrjPUDTH0pAX1vCJ5YbB6-TKn4-Kzi3vR_9h9xDr6k |
CitedBy_id | crossref_primary_10_3390_s23052750 crossref_primary_10_3390_s21134443 crossref_primary_10_3390_s23125574 crossref_primary_10_3390_s23031078 crossref_primary_10_1002_widm_1478 crossref_primary_10_3390_s22155771 crossref_primary_10_3390_s22041477 crossref_primary_10_3390_s23073763 crossref_primary_10_2196_66802 crossref_primary_10_1007_s00521_021_06716_x crossref_primary_10_3390_app11156689 |
Cites_doi | 10.1016/j.neuroscience.2016.11.023 10.1007/978-3-319-12568-8_41 10.3389/fnins.2020.00714 10.1007/s12021-020-09473-9 10.26599/BSA.2020.9050021 10.1088/1741-2552/aab2f2 10.1016/j.jneumeth.2020.108987 10.1109/SMC.2018.00094 10.1371/journal.pone.0207351 10.1093/gigascience/gix034 10.1109/ACCESS.2020.2995302 10.1109/TNSRE.2017.2757519 10.1088/1741-2552/abce70 10.1109/TCYB.2018.2841847 10.1016/j.bspc.2020.102172 10.1016/j.cogsys.2020.10.017 10.3389/fnsys.2020.591675 10.1088/2057-1976/ab5145 10.1109/TNNLS.2019.2946869 10.1155/2021/6655430 10.1016/j.neunet.2020.05.032 10.1137/18M1216134 10.1016/j.jneumeth.2020.108833 10.1080/00222895.2020.1738992 10.1016/j.neuroscience.2020.04.006 10.1080/2326263X.2020.1782124 10.1016/j.cmpb.2020.105808 10.1016/j.bspc.2021.102447 10.1109/TIM.2021.3051996 10.3389/fnbeh.2020.00077 10.1016/j.neulet.2021.135653 10.1109/NER.2019.8717039 10.1038/s41598-019-45605-1 10.1002/hbm.23730 10.1109/TSP.2017.2649483 10.1162/NECO_a_00591 10.1016/j.bspc.2020.101899 10.1007/978-3-030-54932-9_2 10.3389/fncom.2019.00087 10.2478/cjece-2020-0004 10.1002/hbm.21037 10.3389/fnins.2017.00550 10.1016/j.sigpro.2020.107942 10.1109/ACCESS.2019.2917327 10.1103/PhysRevE.96.012316 10.1109/SMC.2019.8914176 10.1016/j.ijhcs.2021.102603 10.1088/1741-2552/ab21fd 10.1109/ACCESS.2020.3018962 10.1145/3433996.3434046 10.1007/s11517-019-01989-w 10.3389/fnins.2019.01277 10.4103/1673-5374.295333 10.1016/j.neucom.2012.12.039 10.1016/j.neuroimage.2021.117806 10.3389/fnins.2020.575081 10.1186/s12984-018-0431-6 |
ContentType | Journal Article |
Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 by the authors. 2021 |
Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 by the authors. 2021 |
DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/s21082750 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Open Access Full Text |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central (NC Live) url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_999f08689aa6462a94ba6e5708091dc3 PMC8069819 33924672 10_3390_s21082750 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Universidad Nacional de Colombia, Sede Manizales grantid: Hermes - 50835 – fundername: Departamento Administrativo de Ciencia, Tecnología e Innovación (COLCIENCIAS) grantid: SIGP - 58950 |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M NPM 3V. 7XB 8FK AZQEC DWQXO K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c469t-f75676bc5fa51e76877d5814ba7a713363a5f5a371d5829634c3688145abd2173 |
IEDL.DBID | DOA |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:29:14 EDT 2025 Thu Aug 21 18:20:55 EDT 2025 Fri Jul 11 12:33:48 EDT 2025 Fri Jul 25 20:41:44 EDT 2025 Thu Apr 03 06:58:06 EDT 2025 Thu Apr 24 23:09:47 EDT 2025 Tue Jul 01 03:56:10 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | motor imagery Gaussian kernel functional connectivity motor execution |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c469t-f75676bc5fa51e76877d5814ba7a713363a5f5a371d5829634c3688145abd2173 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-0138-5489 |
OpenAccessLink | https://doaj.org/article/999f08689aa6462a94ba6e5708091dc3 |
PMID | 33924672 |
PQID | 2550451192 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_999f08689aa6462a94ba6e5708091dc3 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8069819 proquest_miscellaneous_2520864197 proquest_journals_2550451192 pubmed_primary_33924672 crossref_citationtrail_10_3390_s21082750 crossref_primary_10_3390_s21082750 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210413 |
PublicationDateYYYYMMDD | 2021-04-13 |
PublicationDate_xml | – month: 4 year: 2021 text: 20210413 day: 13 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2021 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Georgiadis (ref_50) 2019; 16 Fu (ref_18) 2020; 343 Gaur (ref_53) 2021; 70 Borra (ref_46) 2020; 129 Bakhshali (ref_61) 2020; 59 Kim (ref_31) 2020; 14 Kumar (ref_57) 2019; 9 Brockmeier (ref_58) 2014; 26 ref_52 Machaen (ref_2) 2021; 66 ref_17 ref_16 Georgiadis (ref_32) 2018; 15 (ref_55) 2019; 13 Huang (ref_14) 2020; 8 Maksimenko (ref_22) 2017; 96 Saha (ref_10) 2020; 13 Wang (ref_29) 2020; 8 Shamsi (ref_48) 2021; 18 Daly (ref_20) 2021; 348 Gu (ref_26) 2020; 436 Chevallier (ref_12) 2021; 19 Rodrigues (ref_30) 2019; 57 Aliakbaryhosseinabadi (ref_8) 2021; 66 Bencivenga (ref_6) 2021; 230 Kwon (ref_15) 2019; 31 Uribe (ref_60) 2019; 5 Congedo (ref_24) 2017; 65 ref_36 Jarmolowska (ref_23) 2021; 198 ref_35 ref_34 ref_33 Bhattacharjee (ref_7) 2021; 53 ref_39 Dawwd (ref_45) 2021; 63 Lotte (ref_42) 2018; 15 Tomassini (ref_9) 2011; 32 Park (ref_19) 2017; 26 Yang (ref_5) 2021; 746 Barachant (ref_38) 2013; 112 ref_47 Xie (ref_44) 2020; 12 (ref_37) 2020; 14 ref_41 ref_40 (ref_59) 2017; 11 Matsuo (ref_4) 2021; 16 Zhang (ref_21) 2020; 6 Zhang (ref_25) 2019; 7 Ruffino (ref_1) 2017; 341 ref_49 Linderman (ref_51) 2019; 1 Vidaurre (ref_11) 2020; 14 Luo (ref_27) 2021; 2021 Cho (ref_56) 2017; 6 Pillette (ref_28) 2021; 149 Yoo (ref_3) 2020; 14 Camargo (ref_13) 2021; 182 Schirrmeister (ref_43) 2017; 38 Zhang (ref_54) 2018; 49 |
References_xml | – volume: 341 start-page: 61 year: 2017 ident: ref_1 article-title: Neural plasticity during motor learning with motor imagery practice: Review and perspectives publication-title: Neuroscience doi: 10.1016/j.neuroscience.2016.11.023 – ident: ref_36 doi: 10.1007/978-3-319-12568-8_41 – volume: 14 start-page: 714 year: 2020 ident: ref_37 article-title: Dynamic Modeling of Common Brain Neural Activity in Motor Imagery Tasks publication-title: Front. Neurosci. doi: 10.3389/fnins.2020.00714 – volume: 19 start-page: 93 year: 2021 ident: ref_12 article-title: Review of Riemannian Distances and Divergences, Applied to SSVEP-based BCI publication-title: Neuroinformatics doi: 10.1007/s12021-020-09473-9 – volume: 6 start-page: 224 year: 2020 ident: ref_21 article-title: Subject inefficiency phenomenon of motor imagery brain-computer interface: Influence factors and potential solutions publication-title: Brain Sci. Adv. doi: 10.26599/BSA.2020.9050021 – volume: 15 start-page: 031005 year: 2018 ident: ref_42 article-title: A review of classification algorithms for EEG-based brain–computer interfaces: A 10 year update publication-title: J. Neural Eng. doi: 10.1088/1741-2552/aab2f2 – volume: 348 start-page: 108987 year: 2021 ident: ref_20 article-title: Neural component analysis: A spatial filter for electroencephalogram analysis publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2020.108987 – ident: ref_41 doi: 10.1109/SMC.2018.00094 – ident: ref_49 doi: 10.1371/journal.pone.0207351 – volume: 6 start-page: gix034 year: 2017 ident: ref_56 article-title: EEG datasets for motor imagery brain–computer interface publication-title: GigaScience doi: 10.1093/gigascience/gix034 – volume: 8 start-page: 93749 year: 2020 ident: ref_14 article-title: Spectrum-Weighted Tensor Discriminant Analysis for Motor Imagery-Based BCI publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2995302 – volume: 26 start-page: 498 year: 2017 ident: ref_19 article-title: Filter bank regularized common spatial pattern ensemble for small sample motor imagery classification publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2017.2757519 – volume: 18 start-page: 016015 year: 2021 ident: ref_48 article-title: Early classification of motor tasks using dynamic functional connectivity graphs from EEG publication-title: J. Neural Eng. doi: 10.1088/1741-2552/abce70 – volume: 49 start-page: 3322 year: 2018 ident: ref_54 article-title: Temporally constrained sparse group spatial patterns for motor imagery BCI publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2018.2841847 – volume: 63 start-page: 102172 year: 2021 ident: ref_45 article-title: Deep learning for motor imagery EEG-based classification: A review publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2020.102172 – volume: 66 start-page: 134 year: 2021 ident: ref_2 article-title: Bio-inspired cognitive model of motor learning by imitation publication-title: Cogn. Syst. Res. doi: 10.1016/j.cogsys.2020.10.017 – ident: ref_39 – volume: 14 start-page: 591675 year: 2020 ident: ref_31 article-title: Single-Trial EEG Connectivity of Default Mode Network Before and During Encoding Predicts Subsequent Memory Outcome publication-title: Front. Syst. Neurosci. doi: 10.3389/fnsys.2020.591675 – volume: 5 start-page: 065026 year: 2019 ident: ref_60 article-title: A correntropy-based classifier for motor imagery brain-computer interfaces publication-title: Biomed. Phys. Eng. Express doi: 10.1088/2057-1976/ab5145 – volume: 31 start-page: 3839 year: 2019 ident: ref_15 article-title: Subject-independent brain–computer interfaces based on deep convolutional neural networks publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2019.2946869 – volume: 2021 start-page: 6655430 year: 2021 ident: ref_27 article-title: Research on Recognition of Motor Imagination Based on Connectivity Features of Brain Functional Network publication-title: Neural Plast. doi: 10.1155/2021/6655430 – ident: ref_35 – volume: 129 start-page: 55 year: 2020 ident: ref_46 article-title: Interpretable and lightweight convolutional neural network for EEG decoding: Application to movement execution and imagination publication-title: Neural Netw. doi: 10.1016/j.neunet.2020.05.032 – volume: 1 start-page: 313 year: 2019 ident: ref_51 article-title: Clustering with t-SNE, provably publication-title: SIAM J. Math. Data Sci. doi: 10.1137/18M1216134 – volume: 343 start-page: 108833 year: 2020 ident: ref_18 article-title: Improvement motor imagery EEG classification based on sparse common spatial pattern and regularized discriminant analysis publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2020.108833 – volume: 53 start-page: 258 year: 2021 ident: ref_7 article-title: The Role of Primary Motor Cortex: More Than Movement Execution publication-title: J. Mot. Behav. doi: 10.1080/00222895.2020.1738992 – volume: 436 start-page: 93 year: 2020 ident: ref_26 article-title: EEG-based classification of lower limb motor imagery with brain network analysis publication-title: Neuroscience doi: 10.1016/j.neuroscience.2020.04.006 – ident: ref_16 doi: 10.1080/2326263X.2020.1782124 – volume: 198 start-page: 105808 year: 2021 ident: ref_23 article-title: Effect of power feature covariance shift on BCI spatial-filtering techniques: A comparative study publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2020.105808 – volume: 66 start-page: 102447 year: 2021 ident: ref_8 article-title: Effect of motor learning with different complexities on EEG spectral distribution and performance improvement publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2021.102447 – volume: 70 start-page: 1 year: 2021 ident: ref_53 article-title: A Sliding Window Common Spatial Pattern for Enhancing Motor Imagery Classification in EEG-BCI publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2021.3051996 – volume: 14 start-page: 77 year: 2020 ident: ref_3 article-title: Distinct Neural Correlates Underlie Inhibitory Mechanisms of Motor Inhibition and Motor Imagery Restraint publication-title: Front. Behav. Neurosci. doi: 10.3389/fnbeh.2020.00077 – volume: 746 start-page: 135653 year: 2021 ident: ref_5 article-title: Effects of neurofeedback on the activities of motor-related areas by using motor execution and imagery publication-title: Neurosci. Lett. doi: 10.1016/j.neulet.2021.135653 – ident: ref_40 doi: 10.1109/NER.2019.8717039 – volume: 9 start-page: 9153 year: 2019 ident: ref_57 article-title: Brain wave classification using long short-term memory network based OPTICAL predictor publication-title: Sci. Rep. doi: 10.1038/s41598-019-45605-1 – volume: 38 start-page: 5391 year: 2017 ident: ref_43 article-title: Deep learning with convolutional neural networks for EEG decoding and visualization publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.23730 – volume: 65 start-page: 2211 year: 2017 ident: ref_24 article-title: Fixed point algorithms for estimating power means of positive definite matrices publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2017.2649483 – volume: 26 start-page: 1080 year: 2014 ident: ref_58 article-title: Neural decoding with kernel-based metric learning publication-title: Neural Comput. doi: 10.1162/NECO_a_00591 – volume: 59 start-page: 101899 year: 2020 ident: ref_61 article-title: EEG signal classification of imagined speech based on Riemannian distance of correntropy spectral density publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2020.101899 – ident: ref_17 doi: 10.1007/978-3-030-54932-9_2 – volume: 13 start-page: 87 year: 2020 ident: ref_10 article-title: Intra- and Inter-subject Variability in EEG-Based Sensorimotor Brain Computer Interface: A Review publication-title: Front. Comput. Neurosci. doi: 10.3389/fncom.2019.00087 – volume: 12 start-page: 23 year: 2020 ident: ref_44 article-title: A Review of Processing Methods and Classification Algorithm for EEG Signal publication-title: Carpathian J. Electron. Comput. Eng. doi: 10.2478/cjece-2020-0004 – volume: 32 start-page: 494 year: 2011 ident: ref_9 article-title: Structural and functional bases for individual differences in motor learning publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.21037 – ident: ref_34 – volume: 11 start-page: 550 year: 2017 ident: ref_59 article-title: Kernel-based relevance analysis with enhanced interpretability for detection of brain activity patterns publication-title: Front. Neurosci. doi: 10.3389/fnins.2017.00550 – volume: 182 start-page: 107942 year: 2021 ident: ref_13 article-title: L1-norm unsupervised Fukunaga-Koontz transform publication-title: Signal Process. doi: 10.1016/j.sigpro.2020.107942 – volume: 7 start-page: 74490 year: 2019 ident: ref_25 article-title: Using brain network features to increase the classification accuracy of MI-BCI inefficiency subject publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2917327 – volume: 96 start-page: 012316 year: 2017 ident: ref_22 article-title: Macroscopic and microscopic spectral properties of brain networks during local and global synchronization publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.96.012316 – ident: ref_52 doi: 10.1109/SMC.2019.8914176 – volume: 149 start-page: 102603 year: 2021 ident: ref_28 article-title: Experimenters Influence on Mental-Imagery based Brain-Computer Interface User Training publication-title: Int. J. Hum. Comput. Stud. doi: 10.1016/j.ijhcs.2021.102603 – volume: 16 start-page: 056021 year: 2019 ident: ref_50 article-title: Connectivity steered graph Fourier transform for motor imagery BCI decoding publication-title: J. Neural Eng. doi: 10.1088/1741-2552/ab21fd – volume: 8 start-page: 155590 year: 2020 ident: ref_29 article-title: Diverse feature blend based on filter-bank common spatial pattern and brain functional connectivity for multiple motor imagery detection publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3018962 – ident: ref_33 – ident: ref_47 doi: 10.1145/3433996.3434046 – volume: 57 start-page: 1709 year: 2019 ident: ref_30 article-title: Space-time recurrences for functional connectivity evaluation and feature extraction in motor imagery brain-computer interfaces publication-title: Med. Biol. Eng. Comput. doi: 10.1007/s11517-019-01989-w – volume: 13 start-page: 1277 year: 2019 ident: ref_55 article-title: A data-driven measure of effective connectivity based on Renyi’s α-entropy publication-title: Front. Neurosci. doi: 10.3389/fnins.2019.01277 – volume: 16 start-page: 778 year: 2021 ident: ref_4 article-title: Comparison of cerebral activation between motor execution and motor imagery of self-feeding activity publication-title: Neural Regen. Res. doi: 10.4103/1673-5374.295333 – volume: 112 start-page: 172 year: 2013 ident: ref_38 article-title: Classification of covariance matrices using a Riemannian-based kernel for BCI applications publication-title: Neurocomputing doi: 10.1016/j.neucom.2012.12.039 – volume: 230 start-page: 117806 year: 2021 ident: ref_6 article-title: Assessing the effective connectivity of premotor areas during real vs. imagined grasping: A DCM-PEB approach publication-title: NeuroImage doi: 10.1016/j.neuroimage.2021.117806 – volume: 14 start-page: 1278 year: 2020 ident: ref_11 article-title: Sensorimotor functional connectivity: A neurophysiological factor related to BCI performance publication-title: Front. Neurosci. doi: 10.3389/fnins.2020.575081 – volume: 15 start-page: 1 year: 2018 ident: ref_32 article-title: Exploiting the heightened phase synchrony in patients with neuromuscular disease for the establishment of efficient motor imagery BCIs publication-title: J. Neuroeng. Rehabil. doi: 10.1186/s12984-018-0431-6 |
SSID | ssj0023338 |
Score | 2.3941014 |
Snippet | Motor learning is associated with functional brain plasticity, involving specific functional connectivity changes in the neural networks. However, the degree... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 2750 |
SubjectTerms | Bandwidths Datasets Discriminant analysis functional connectivity Gaussian kernel Illiteracy motor execution motor imagery |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT9wwELVaemkPqIV-hNLKRRx6sdjEX8mpgmoXBKIXFolb5NizXdRVAsmuxM_vTJINbIV6ipTMRl57xvOe7bxh7NCAAYiDEcqOglBFgvNg6jCuggZMj76wjj5wvvxlzq7V-Y2-6Rfcmv5Y5XpObCfqUHlaIz9C6EtSKAhIftzdC6oaRburfQmNl-xVjJmGPDydnA6ESyL_6tSEJFL7owbpTUp65hs5qJXqfw5f_ntM8knembxl2z1g5MfdCL9jL6DcYW-eyAjusvkVXhYgpuRM_ALqEhbiBNNT4BNMW91qH2-PtPiuWARHqMrH5bzd_ucEA1c18PHDsu6-c-C3Jb-skI6L9rAc2kxd86d5z64n4-nPM9FXUBAeae9SzKw21hRez5yOAZmFtUGnsSqcdcROjXR6pp20Md5OMBaVlyZFA-2KgGRFfmBbZVXCJ8adkSHYAkbeGgVGZx7BngOZehuUzXzEvq_7NPe9vDhVuVjkSDOo-_Oh-yN2MJjedZoazxmd0MAMBiSD3d6o6t95H1U5otsZcrI0c84ok7gM_5kBbREGZ3HwMmL762HN-9hs8kdPiti34TFGFW2VuBKqFdkk-F4VZzZiHzsvGFqC7UwwveCv7YZ_bDR180l5O2-Vu9ORyRCC7f2_WZ_Z64ROzpCipNxnW8t6BV8Q-iyLr61__wWcBARE priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nj9MwEB0tywUOiG-yLMggDlwCTfyVHBBiUasVqFxopb1Fju1uV1Qpm7bS8u95TtJog3rkFMmZRI7tybyXjN8QvVNeeZ84FQs9crEoU7wHMwO_ctIjPNpSm7DBefpDnc_Ftwt5cUT7GpvdAG4OUrtQT2perz7cXP_5DIf_FBgnKPvHDWhLFnTK79BdBCQdKjhMRf8zIeWgYa2o0NB8EIoaxf5DMPPfbMlb4WfykB50uJF9aSf6ER356jHdv6Um-ISWP3FY-XgW1hT77uvKr-IzRCnHJohe7Uc_1mS22LZmBANiZeNq2WQBsIAGd7Vn45tt3W53YFcVm67ByuMmZw42M7P5tXlK88l49vU87gopxBbsdxsvtFRalVYujEw8CIbWTmaJKI02gaQqbuRCGq4TNKdwSWG5ymAgTenAWfgzOq7WlX9BzCjunC79yGolvJK5BeYznmdWO6FzG9H7_ZgWtlMZD8UuVgXYRhj-oh_-iN72pr9baY1DRmdhYnqDoIbdNKzry6JzrgIgdwFqluXGKKFSk-PJlJcaaDhPnOURne6ntdivsAJcKmjrAOFG9KY_DecKf0xM5de7YJPiviLJdUTP21XQ9wT9TBFlcLUerI9BV4dnqqtlI-CdjVQOJHbyP57tJd1LQ5pNkJ_kp3S8rXf-FXDStnzdeMFfybsSTg priority: 102 providerName: Scholars Portal |
Title | Single-Trial Kernel-Based Functional Connectivity for Enhanced Feature Extraction in Motor-Related Tasks |
URI | https://www.ncbi.nlm.nih.gov/pubmed/33924672 https://www.proquest.com/docview/2550451192 https://www.proquest.com/docview/2520864197 https://pubmed.ncbi.nlm.nih.gov/PMC8069819 https://doaj.org/article/999f08689aa6462a94ba6e5708091dc3 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nj9MwEB3BcoED4pvAUhnEgUu0TfyVHClqWYG6QtCVeosc21VXVCnqh8TP5zlOoxatxIVLGjmTyJ3MdN5rJs9E75VX3mdOpUIPXSrqHL-DhUFeOelRHm2tTXjBeXqlLq_Fl7mcHy31FXrCojxwdNwFAMwCsLsojVFC5aYUtVFeaiCdMnO21fnE3oFMdVSLg3lFHSEOUn-xBbEpgpL5SfVpRfpvQ5Z_N0geVZzJI3rYQUX2MU7xMd3xzRN6cCQg-JSWP_Cx8ukshBH76jeNX6UjFCbHJihY8X8-1jaz2LhMBANIZeNm2T74ZwEA7jeejX_vNvENB3bTsOkaRDxt2-RgMzPbn9tndD0Zzz5dpt3aCakF4d2lCy2VVrWVCyMzD06htZNFBudpE3ip4kYupOE6w3COLBSWqwIG0tQONIU_p7Nm3fiXxIzizunaD61WwitZWsA843lhtRO6tAl9OPi0sp2weFjfYlWBYAT3V737E3rXm_6Kahq3GY3CjekNggB2O4CwqLqwqP4VFgmdH25r1WXltgJ9CnI6ALUJve0PI5_CQxLT-PU-2OS4rshKndCLGAX9TDDPHIUFZ-uT-DiZ6umR5mbZanYXQ1UCfL36H9_tNd3PQ2dNUJzk53S22-z9G0CjXT2gu3qusS0mnwd0bzS--vZ90GYGtlNR_AFArxA7 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VcgAOiG8WChgEEpeoSRzbyQEhCrvast1e2Ep7C47tZStWSUl2BfwpfiMz-WoXVdx6ipRMIscee95Lxm8AXksnnQus9CLlWy_KQlwHY43zygqH4dFkStMG5-mxHJ9En-divgN_ur0wlFbZrYn1Qm0LQ9_I9xH6khQKApL3Zz88qhpFf1e7EhqNW0zc759I2ap3h59wfN-E4Wg4-zj22qoCnkEquPYWSkglMyMWWgQO0bZSVsRBlGmlibFJrsVCaK4CPB2if0aGyxgNhM4sAniOz70G1zHw-pRCqObnBI8j32vUizhP_P0K6VRM-ulbMa8uDXAZnv03LfNCnBvdgdstQGUfGo-6Czsuvwe3LsgW3oflFzysnDcj52UTV-Zu5R1gOLRshGGy-brI6hQa0xSnYAiN2TBf1ukGjGDnpnRs-GtdNvsq2GnOpgXSf69OzkObma6-Vw_g5Er69iHs5kXuHgPTklurMucbJSMnRWIQXGrHY6NspBIzgLddn6amlTOnqhqrFGkNdX_ad_8AXvWmZ42Gx2VGBzQwvQHJbtcnivJb2s7iFNH0AjlgnGgtIxnqBN9MOqEQdieBNXwAe92wpu1aUKXnnjuAl_1lnMX0a0bnrtiQTYjPjYJEDeBR4wV9S7CdIYYzvFtt-cdWU7ev5KfLWik89mWCkO_J_5v1Am6MZ9Oj9OjwePIUboaUtUNqlnwPdtflxj1D2LXOnte-zuDrVU-uv2IMPt0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIiE4IN4EChgEEhdrN3FsJweEKN1Vy9IKia20t9SxHbZilZQkK-Cv8esY59Uuqrj1FMmZWI494_kmGX8D8FpYYa1vBA3l2NAwDXAfjBTaleEW3aNOpXIHnA-PxP5x-GnBF1vwpz8L49Iq-z2x2ahNod038hFCX0eFgoBklHVpEV_2pu_PflBXQcr9ae3LabQqMrO_f2L4Vr072MO1fhME08n84z7tKgxQjWFhTTPJhRSp5pnivkXkLaXhkR-mSioXvQmmeMYVkz42B6iroWYiQgGuUoNgnmG_1-C6ZOg20Zbk4jzYYxj7tUxGjMXjUYWhVeS41Df8X1Mm4DJs-2-K5gWfN70DtzuwSj602nUXtmx-D25doDC8D8uveFlZOneKTGa2zO2K7qJrNGSKLrP90kiadBrdFqogCJPJJF82qQfEQdB1acnkV122ZyzIaU4Oi7ooaZOohzJzVX2vHsDxlcztQ9jOi9w-BqIEM0amdqylCK3gsUagqSyLtDShjLUHb_s5TXRHbe4qbKwSDHHc9CfD9HvwahA9a_k8LhPadQszCDgK7qahKL8lnUUniKwzjAejWCkRikDF-GbCcokQPPaNZh7s9MuadPtClZxrsQcvh9to0e43jcptsXYyAfYb-rH04FGrBcNIcJwBujZ8Wm7ox8ZQN-_kp8uGNTwaixjh35P_D-sF3ECzSj4fHM2ews3AJfA4Yku2A9t1ubbPEIHV6fNG1QmcXLVt_QUzl0MT |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Single-Trial+Kernel-Based+Functional+Connectivity+for+Enhanced+Feature+Extraction+in+Motor-Related+Tasks&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Daniel+Guillermo+Garc%C3%ADa-Murillo&rft.au=Andres+Alvarez-Meza&rft.au=German+Castellanos-Dominguez&rft.date=2021-04-13&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=21&rft.issue=8&rft.spage=2750&rft_id=info:doi/10.3390%2Fs21082750&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_999f08689aa6462a94ba6e5708091dc3 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |