Creating Personalized Recommendations in a Smart Community by Performing User Trajectory Analysis through Social Internet of Things Deployment

Despite advancements in the Internet of Things (IoT) and social networks, developing an intelligent service discovery and composition framework in the Social IoT (SIoT) domain remains a challenge. In the IoT, a large number of things are connected together according to the different objectives of th...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 20; no. 7; p. 2098
Main Authors Lye, Guang Xing, Cheng, Wai Khuen, Tan, Teik Boon, Hung, Chen Wei, Chen, Yen-Lin
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 08.04.2020
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Despite advancements in the Internet of Things (IoT) and social networks, developing an intelligent service discovery and composition framework in the Social IoT (SIoT) domain remains a challenge. In the IoT, a large number of things are connected together according to the different objectives of their owners. Due to this extensive connection of heterogeneous objects, generating a suitable recommendation for users becomes very difficult. The complexity of this problem exponentially increases when additional issues, such as user preferences, autonomous settings, and a chaotic IoT environment, must be considered. For the aforementioned reasons, this paper presents an SIoT architecture with a personalized recommendation framework to enhance service discovery and composition. The novel contribution of this study is the development of a unique personalized recommender engine that is based on the knowledge–desire–intention model and is suitable for service discovery in a smart community. Our algorithm provides service recommendations with high satisfaction by analyzing data concerning users’ beliefs and surroundings. Moreover, the algorithm eliminates the prevalent cold start problem in the early stage of recommendation generation. Several experiments and benchmarking on different datasets are conducted to investigate the performance of the proposed personalized recommender engine. The experimental precision and recall results indicate that the proposed approach can achieve up to an approximately 28% higher F-score than conventional approaches. In general, the proposed hybrid approach outperforms other methods.
AbstractList Despite advancements in the Internet of Things (IoT) and social networks, developing an intelligent service discovery and composition framework in the Social IoT (SIoT) domain remains a challenge. In the IoT, a large number of things are connected together according to the different objectives of their owners. Due to this extensive connection of heterogeneous objects, generating a suitable recommendation for users becomes very difficult. The complexity of this problem exponentially increases when additional issues, such as user preferences, autonomous settings, and a chaotic IoT environment, must be considered. For the aforementioned reasons, this paper presents an SIoT architecture with a personalized recommendation framework to enhance service discovery and composition. The novel contribution of this study is the development of a unique personalized recommender engine that is based on the knowledge–desire–intention model and is suitable for service discovery in a smart community. Our algorithm provides service recommendations with high satisfaction by analyzing data concerning users’ beliefs and surroundings. Moreover, the algorithm eliminates the prevalent cold start problem in the early stage of recommendation generation. Several experiments and benchmarking on different datasets are conducted to investigate the performance of the proposed personalized recommender engine. The experimental precision and recall results indicate that the proposed approach can achieve up to an approximately 28% higher F-score than conventional approaches. In general, the proposed hybrid approach outperforms other methods.
Despite advancements in the Internet of Things (IoT) and social networks, developing an intelligent service discovery and composition framework in the Social IoT (SIoT) domain remains a challenge. In the IoT, a large number of things are connected together according to the different objectives of their owners. Due to this extensive connection of heterogeneous objects, generating a suitable recommendation for users becomes very difficult. The complexity of this problem exponentially increases when additional issues, such as user preferences, autonomous settings, and a chaotic IoT environment, must be considered. For the aforementioned reasons, this paper presents an SIoT architecture with a personalized recommendation framework to enhance service discovery and composition. The novel contribution of this study is the development of a unique personalized recommender engine that is based on the knowledge-desire-intention model and is suitable for service discovery in a smart community. Our algorithm provides service recommendations with high satisfaction by analyzing data concerning users' beliefs and surroundings. Moreover, the algorithm eliminates the prevalent cold start problem in the early stage of recommendation generation. Several experiments and benchmarking on different datasets are conducted to investigate the performance of the proposed personalized recommender engine. The experimental precision and recall results indicate that the proposed approach can achieve up to an approximately 28% higher F-score than conventional approaches. In general, the proposed hybrid approach outperforms other methods.Despite advancements in the Internet of Things (IoT) and social networks, developing an intelligent service discovery and composition framework in the Social IoT (SIoT) domain remains a challenge. In the IoT, a large number of things are connected together according to the different objectives of their owners. Due to this extensive connection of heterogeneous objects, generating a suitable recommendation for users becomes very difficult. The complexity of this problem exponentially increases when additional issues, such as user preferences, autonomous settings, and a chaotic IoT environment, must be considered. For the aforementioned reasons, this paper presents an SIoT architecture with a personalized recommendation framework to enhance service discovery and composition. The novel contribution of this study is the development of a unique personalized recommender engine that is based on the knowledge-desire-intention model and is suitable for service discovery in a smart community. Our algorithm provides service recommendations with high satisfaction by analyzing data concerning users' beliefs and surroundings. Moreover, the algorithm eliminates the prevalent cold start problem in the early stage of recommendation generation. Several experiments and benchmarking on different datasets are conducted to investigate the performance of the proposed personalized recommender engine. The experimental precision and recall results indicate that the proposed approach can achieve up to an approximately 28% higher F-score than conventional approaches. In general, the proposed hybrid approach outperforms other methods.
Author Cheng, Wai Khuen
Chen, Yen-Lin
Tan, Teik Boon
Hung, Chen Wei
Lye, Guang Xing
AuthorAffiliation 1 Faculty of Information and Communication Technology, Universiti Tunku Abdul Rahman, 31900 Kampar, Perak, Malaysia; simple@1utar.my (G.X.L.); chengwk@utar.edu.my (W.K.C.); tantb@utar.edu.my (T.B.T.); hungcw@utar.edu.my (C.W.H.)
2 Department of Computer Science and Information Engineering, National Taipei University of Technology, 1, Sec. 3, Chung-hsiao E. Rd., Taipei 10608, Taiwan
AuthorAffiliation_xml – name: 2 Department of Computer Science and Information Engineering, National Taipei University of Technology, 1, Sec. 3, Chung-hsiao E. Rd., Taipei 10608, Taiwan
– name: 1 Faculty of Information and Communication Technology, Universiti Tunku Abdul Rahman, 31900 Kampar, Perak, Malaysia; simple@1utar.my (G.X.L.); chengwk@utar.edu.my (W.K.C.); tantb@utar.edu.my (T.B.T.); hungcw@utar.edu.my (C.W.H.)
Author_xml – sequence: 1
  givenname: Guang Xing
  surname: Lye
  fullname: Lye, Guang Xing
– sequence: 2
  givenname: Wai Khuen
  orcidid: 0000-0003-1707-0462
  surname: Cheng
  fullname: Cheng, Wai Khuen
– sequence: 3
  givenname: Teik Boon
  orcidid: 0000-0003-0708-1213
  surname: Tan
  fullname: Tan, Teik Boon
– sequence: 4
  givenname: Chen Wei
  surname: Hung
  fullname: Hung, Chen Wei
– sequence: 5
  givenname: Yen-Lin
  orcidid: 0000-0001-7717-9393
  surname: Chen
  fullname: Chen, Yen-Lin
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32276431$$D View this record in MEDLINE/PubMed
BookMark eNptkstuEzEUhkeoiF5gwQsgS2zKItSXicfeIFXhFqkSiKZry_YcJ45m7GLPIA0PwTPjNCVqK1a2fL7_9_ntc1odhRigql4T_J4xiS8yxbihWIpn1QmpaT0TlOKjB_vj6jTnLcaUMSZeVMeM0obXjJxUfxYJ9ODDGn2HlGPQnf8NLfoBNvY9hLbUYsjIB6TRda_TgBalMAY_TMhMO5GLqd_pbzIktEp6C3aIaUKXxWvKPqNhk-K43qDraL3u0DIMkAIMKDq02hRlRh_htotTuW54WT13usvw6n49q24-f1otvs6uvn1ZLi6vZrbmcpg5Qh3lBls6J5ZKPtdg5k3DKdfMWWwazRsDxIE0WFsrDcwJrYE1TvMajGVn1XLv20a9VbfJl2iTitqru4OY1qpk9bYDZVrGW0kFxkzUsmlk2RdzQ1xrpHOueH3Ye92OpofWlhhJd49MH1eC36h1_KUaIgiZ18Xg_N4gxZ8j5EH1PlvoOh0gjllRJoQgUjSsoG-foNs4pvLSe4pzIQkt1JuHHR1a-fftBXi3B2yKOSdwB4RgtRspdRipwl48Ya0f7saihPHdfxR_Abb20Fg
CitedBy_id crossref_primary_10_1016_j_ins_2025_121914
crossref_primary_10_1016_j_comnet_2021_108568
crossref_primary_10_1109_ACCESS_2023_3271678
crossref_primary_10_1016_j_dcan_2022_04_025
crossref_primary_10_3390_s20113118
crossref_primary_10_1155_2022_4434833
crossref_primary_10_1109_JIOT_2021_3081556
crossref_primary_10_1109_ACCESS_2022_3218912
crossref_primary_10_3390_s21227689
crossref_primary_10_3390_ijerph192215279
crossref_primary_10_1109_ACCESS_2020_3026310
crossref_primary_10_3390_math11041032
crossref_primary_10_1155_2022_4038084
crossref_primary_10_1016_j_engappai_2023_107243
crossref_primary_10_1016_j_future_2023_09_009
crossref_primary_10_1088_1742_6596_1969_1_012040
crossref_primary_10_3390_smartcities6020053
crossref_primary_10_1080_17517575_2020_1856423
crossref_primary_10_3390_s22186759
crossref_primary_10_3390_fi15020066
crossref_primary_10_1109_TSC_2023_3274647
crossref_primary_10_1016_j_comnet_2024_111016
crossref_primary_10_1016_j_jnca_2024_104092
Cites_doi 10.1016/j.knosys.2013.03.012
10.1002/asi.4630240406
10.1007/978-3-540-72079-9_3
10.1177/1550147718767845
10.3390/s19092007
10.1016/j.eswa.2012.12.061
10.1109/MDM.2009.66
10.1109/MDM.2009.50
10.3390/s19020431
10.1007/s10844-018-0530-7
10.1109/WETICE.2012.26
10.1145/2020408.2020579
10.1109/MDM.2010.22
10.1109/SAINT.2006.55
10.1109/IPIN.2017.8115929
10.1109/TKDE.2005.99
10.1145/3158369
10.3390/s18051341
10.5840/tpm20136152
10.1109/MCOM.2014.6710070
10.1109/JIOT.2018.2869933
10.1145/963770.963772
10.1109/TITS.2017.2781138
10.1007/978-3-319-26869-9_7
10.3390/jsan5010003
10.1145/1869790.1869861
10.1109/ACCESS.2018.2890388
10.1016/j.jcss.2017.03.007
10.1109/ICETSS.2017.8324177
10.1109/MIS.2007.4338497
10.1145/1526709.1526816
10.1145/3132847.3132926
10.1109/JIOT.2019.2960822
10.1016/j.eswa.2020.113301
10.1109/ICGHIT.2019.00013
10.1007/s11042-016-4209-1
10.1145/1889681.1889683
10.1109/JIOT.2017.2775047
10.1145/2661829.2662002
10.1109/TII.2020.2963910
10.3233/AIC-2008-0437
10.1023/A:1006544522159
10.1109/WF-IoT.2016.7845500
10.1145/3154526
10.1109/ASONAM.2014.6921631
10.1145/245108.245124
10.3390/s17061346
10.1109/MIC.2003.1167344
10.1109/JIOT.2017.2764259
10.1145/2507157.2508069
10.1007/s10707-014-0220-8
10.1145/1867699.1867706
10.1007/11428572_8
10.1137/1.9781611972757.43
10.1016/j.comcom.2019.03.009
10.1049/cp.2012.2100
10.1023/B:USER.0000028981.43614.94
10.1109/IWCMC.2017.7986378
10.1109/MCOM.2017.1600263
10.1109/TNNLS.2019.2955567
10.1080/088395197118127
10.1109/JAS.2017.7510538
10.1016/j.compeleceng.2018.05.023
10.1145/2037556.2037602
10.1145/324133.324140
10.1016/j.adhoc.2016.12.004
10.1109/TENCON.2018.8650511
10.1016/j.ins.2011.08.026
10.1109/SKG.2016.014
10.1109/CCGRID.2017.123
10.1109/ISPACS48206.2019.8986239
10.1109/WiCom.2008.2152
10.1007/978-0-85729-997-0_23
10.1109/CVPR.2008.4587569
10.1016/j.comcom.2013.06.009
ContentType Journal Article
Copyright 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2020 by the authors. 2020
Copyright_xml – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2020 by the authors. 2020
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
7X8
5PM
DOA
DOI 10.3390/s20072098
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef
Publicly Available Content Database

PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_bd36d9280038497799287beb1fdb9fff
PMC7181154
32276431
10_3390_s20072098
Genre Journal Article
GrantInformation_xml – fundername: Ministry of Science and Technology of Taiwan
  grantid: MOST- 108-2218-E-027 -017
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
ABJCF
ARAPS
HCIFZ
KB.
M7S
NPM
PDBOC
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c469t-f12f26b0c251c2965aeb577626a3fc0b7a67be1fe9b0acc9be5124e37fa64ebc3
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 01:31:16 EDT 2025
Thu Aug 21 14:19:36 EDT 2025
Thu Jul 10 17:24:48 EDT 2025
Fri Jul 25 20:25:11 EDT 2025
Wed Feb 19 02:31:00 EST 2025
Tue Jul 01 00:42:26 EDT 2025
Thu Apr 24 23:10:43 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords recommender engine
personalized recommendation
service discovery
user trajectory analysis
smart community
Social Internet of Things (SIoT)
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c469t-f12f26b0c251c2965aeb577626a3fc0b7a67be1fe9b0acc9be5124e37fa64ebc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1707-0462
0000-0003-0708-1213
0000-0001-7717-9393
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s20072098
PMID 32276431
PQID 2388668912
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_bd36d9280038497799287beb1fdb9fff
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7181154
proquest_miscellaneous_2388819873
proquest_journals_2388668912
pubmed_primary_32276431
crossref_primary_10_3390_s20072098
crossref_citationtrail_10_3390_s20072098
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200408
PublicationDateYYYYMMDD 2020-04-08
PublicationDate_xml – month: 4
  year: 2020
  text: 20200408
  day: 8
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2020
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Felfernig (ref_35) 2018; 52
ref_50
Chen (ref_41) 2020; 7
Yang (ref_43) 2014; 41
ref_58
ref_11
Atzori (ref_9) 2014; 52
ref_10
ref_52
Bao (ref_42) 2015; 19
Balabanovic (ref_55) 1997; 40
ref_18
ref_17
ref_16
ref_15
ref_59
Pazzani (ref_46) 1999; 13
Lippi (ref_7) 2018; 5
Lamarca (ref_80) 2005; 3468
ref_61
ref_60
Jung (ref_6) 2018; 5
Cantador (ref_48) 2008; 21
Luo (ref_73) 2019; 102
Junior (ref_5) 2010; 27
Zhang (ref_71) 2019; 52
ref_69
ref_24
ref_23
ref_67
ref_65
ref_62
Porcel (ref_66) 2012; 184
Bobadilla (ref_22) 2013; 46
Small (ref_64) 1973; 24
Kleinberg (ref_53) 1999; 46
ref_29
ref_28
ref_27
ref_26
ref_72
ref_70
Ali (ref_3) 2018; 2018
ref_79
ref_34
ref_78
ref_33
ref_32
ref_31
ref_30
Esmaeili (ref_68) 2020; 149
ref_74
Ning (ref_14) 2017; 5
Bai (ref_54) 2019; 7
Micarelli (ref_77) 2004; 14
ref_39
ref_38
Lucas (ref_49) 2013; 40
Moukas (ref_75) 1997; 11
Linden (ref_47) 2003; 7
ref_83
Roopa (ref_21) 2019; 139
ref_82
ref_81
Stai (ref_44) 2016; 77
Calabrese (ref_2) 2010; Volume 6030
Butt (ref_12) 2018; 69
ref_45
Huang (ref_63) 2007; 22
Ning (ref_13) 2017; 55
Luan (ref_37) 2018; 19
Mariani (ref_20) 2018; Volume 11176
ref_40
ref_84
ref_1
Atzori (ref_19) 2017; 56
Luan (ref_36) 2017; 4
ref_8
Zheng (ref_25) 2011; 2
Adomavicius (ref_57) 2005; 17
Herlocker (ref_56) 2004; 22
ref_4
Ding (ref_51) 2018; 51
Mobasher (ref_76) 2007; Volume 4321
References_xml – volume: 46
  start-page: 109
  year: 2013
  ident: ref_22
  article-title: Recommender systems survey
  publication-title: Knowledge-Based Syst.
  doi: 10.1016/j.knosys.2013.03.012
– volume: 24
  start-page: 265
  year: 1973
  ident: ref_64
  article-title: Co-citation in the scientific literature: A new measure of the relationship between two documents
  publication-title: J. Am. Soc. Inf. Sci.
  doi: 10.1002/asi.4630240406
– volume: Volume 4321
  start-page: 90
  year: 2007
  ident: ref_76
  article-title: Data Mining for Web Personalization
  publication-title: The Adaptive Web
  doi: 10.1007/978-3-540-72079-9_3
– ident: ref_78
– ident: ref_84
  doi: 10.1177/1550147718767845
– ident: ref_18
  doi: 10.3390/s19092007
– ident: ref_74
– volume: 40
  start-page: 3532
  year: 2013
  ident: ref_49
  article-title: A hybrid recommendation approach for a tourism system
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2012.12.061
– ident: ref_45
  doi: 10.1109/MDM.2009.66
– ident: ref_28
  doi: 10.1109/MDM.2009.50
– ident: ref_67
  doi: 10.3390/s19020431
– volume: 52
  start-page: 285
  year: 2018
  ident: ref_35
  article-title: An overview of recommender systems in the internet of things
  publication-title: J. Intell. Inf. Syst.
  doi: 10.1007/s10844-018-0530-7
– ident: ref_4
  doi: 10.1109/WETICE.2012.26
– ident: ref_30
  doi: 10.1145/2020408.2020579
– ident: ref_62
  doi: 10.1109/MDM.2010.22
– volume: 27
  start-page: 66
  year: 2010
  ident: ref_5
  article-title: Crowd Analysis Using Computer Vision Techniques
  publication-title: IEEE Signal Process. Mag.
– ident: ref_60
  doi: 10.1109/SAINT.2006.55
– ident: ref_81
  doi: 10.1109/IPIN.2017.8115929
– volume: 17
  start-page: 734
  year: 2005
  ident: ref_57
  article-title: Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2005.99
– volume: 52
  start-page: 1
  year: 2019
  ident: ref_71
  article-title: Deep Learning Based Recommender System
  publication-title: ACM Comput. Surv.
  doi: 10.1145/3158369
– ident: ref_17
  doi: 10.3390/s18051341
– ident: ref_83
  doi: 10.5840/tpm20136152
– volume: 52
  start-page: 97
  year: 2014
  ident: ref_9
  article-title: From “smart objects” to “social objects”: The next evolutionary step of the internet of things
  publication-title: IEEE Commun. Mag.
  doi: 10.1109/MCOM.2014.6710070
– ident: ref_52
– volume: 5
  start-page: 4066
  year: 2018
  ident: ref_6
  article-title: Quantitative Computation of Social Strength in Social Internet of Things
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2018.2869933
– volume: 22
  start-page: 5
  year: 2004
  ident: ref_56
  article-title: Evaluating collaborative filtering recommender systems
  publication-title: ACM Trans. Inf. Syst.
  doi: 10.1145/963770.963772
– volume: 19
  start-page: 3461
  year: 2018
  ident: ref_37
  article-title: MPTR: A Maximal-Marginal-Relevance-Based Personalized Trip Recommendation Method
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2017.2781138
– ident: ref_32
  doi: 10.1007/978-3-319-26869-9_7
– volume: 2018
  start-page: 1
  year: 2018
  ident: ref_3
  article-title: A Model of Socially Connected Web Objects for IoT Applications
  publication-title: Wirel. Commun. Mob. Comput.
– ident: ref_11
  doi: 10.3390/jsan5010003
– ident: ref_61
  doi: 10.1145/1869790.1869861
– ident: ref_72
– volume: 7
  start-page: 9324
  year: 2019
  ident: ref_54
  article-title: Scientific Paper Recommendation: A Survey
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2890388
– volume: 102
  start-page: 42
  year: 2019
  ident: ref_73
  article-title: Gaussian-Gamma collaborative filtering: A hierarchical Bayesian model for recommender systems
  publication-title: J. Comput. Syst. Sci.
  doi: 10.1016/j.jcss.2017.03.007
– ident: ref_23
  doi: 10.1109/ICETSS.2017.8324177
– volume: 22
  start-page: 68
  year: 2007
  ident: ref_63
  article-title: A comparative study of recommendation algorithms in e-commerce applications
  publication-title: IEEE Intell. Syst.
  doi: 10.1109/MIS.2007.4338497
– ident: ref_24
  doi: 10.1145/1526709.1526816
– ident: ref_69
  doi: 10.1145/3132847.3132926
– volume: 7
  start-page: 2014
  year: 2020
  ident: ref_41
  article-title: Time-Aware Smart Object Recommendation in Social Internet of Things
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2019.2960822
– volume: 149
  start-page: 113301
  year: 2020
  ident: ref_68
  article-title: A novel tourism recommender system in the context of social commerce
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.113301
– ident: ref_27
  doi: 10.1109/ICGHIT.2019.00013
– volume: 77
  start-page: 283
  year: 2016
  ident: ref_44
  article-title: A holistic approach for personalization, relevance feedback & recommendation in enriched multimedia content
  publication-title: Multimedia Tools Appl.
  doi: 10.1007/s11042-016-4209-1
– volume: 2
  start-page: 1
  year: 2011
  ident: ref_25
  article-title: Learning travel recommendations from user-generated GPS traces
  publication-title: ACM Trans. Intell. Syst. Technol.
  doi: 10.1145/1889681.1889683
– volume: 5
  start-page: 2537
  year: 2018
  ident: ref_7
  article-title: An Argumentation-Based Perspective Over the Social IoT
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2017.2775047
– ident: ref_29
  doi: 10.1145/2661829.2662002
– ident: ref_16
  doi: 10.1109/TII.2020.2963910
– volume: 21
  start-page: 203
  year: 2008
  ident: ref_48
  article-title: A multilayer ontology-based hybrid recommendation model
  publication-title: AI Commun.
  doi: 10.3233/AIC-2008-0437
– volume: 13
  start-page: 393
  year: 1999
  ident: ref_46
  article-title: A Framework for Collaborative, Content-Based and Demographic Filtering
  publication-title: Artif. Intell. Rev.
  doi: 10.1023/A:1006544522159
– ident: ref_33
  doi: 10.1109/WF-IoT.2016.7845500
– volume: 51
  start-page: 1
  year: 2018
  ident: ref_51
  article-title: Objectives and State-of-the-Art of Location-Based Social Network Recommender Systems
  publication-title: ACM Comput. Surv.
  doi: 10.1145/3154526
– ident: ref_82
– ident: ref_34
  doi: 10.1109/ASONAM.2014.6921631
– volume: 40
  start-page: 66
  year: 1997
  ident: ref_55
  article-title: Fab: content-based, collaborative recommendation
  publication-title: Commun. ACM
  doi: 10.1145/245108.245124
– ident: ref_31
  doi: 10.3390/s17061346
– volume: 7
  start-page: 76
  year: 2003
  ident: ref_47
  article-title: Amazon.com recommendations: item-to-item collaborative filtering
  publication-title: IEEE Internet Comput.
  doi: 10.1109/MIC.2003.1167344
– volume: 5
  start-page: 2506
  year: 2017
  ident: ref_14
  article-title: A Cooperative Quality-Aware Service Access System for Social Internet of Vehicles
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2017.2764259
– ident: ref_65
  doi: 10.1145/2507157.2508069
– volume: 19
  start-page: 525
  year: 2015
  ident: ref_42
  article-title: Recommendations in location-based social networks: a survey
  publication-title: GeoInformatica
  doi: 10.1007/s10707-014-0220-8
– ident: ref_59
  doi: 10.1145/1867699.1867706
– volume: 3468
  start-page: 116
  year: 2005
  ident: ref_80
  article-title: Place Lab: Device Positioning Using Radio Beacons in the Wild
  publication-title: Lect. Notes Comput. Sci.
  doi: 10.1007/11428572_8
– ident: ref_58
  doi: 10.1137/1.9781611972757.43
– volume: 139
  start-page: 32
  year: 2019
  ident: ref_21
  article-title: Social Internet of Things (SIoT): Foundations, thrust areas, systematic review and future directions
  publication-title: Comput. Commun.
  doi: 10.1016/j.comcom.2019.03.009
– ident: ref_79
  doi: 10.1049/cp.2012.2100
– volume: 14
  start-page: 159
  year: 2004
  ident: ref_77
  article-title: Anatomy and Empirical Evaluation of an Adaptive Web-Based Information Filtering System
  publication-title: User Model. User-Adapted Interact.
  doi: 10.1023/B:USER.0000028981.43614.94
– ident: ref_10
  doi: 10.1109/IWCMC.2017.7986378
– volume: 55
  start-page: 16
  year: 2017
  ident: ref_13
  article-title: Vehicular Social Networks: Enabling Smart Mobility
  publication-title: IEEE Commun. Mag.
  doi: 10.1109/MCOM.2017.1600263
– ident: ref_40
  doi: 10.1109/TNNLS.2019.2955567
– volume: 11
  start-page: 437
  year: 1997
  ident: ref_75
  article-title: Amalthaea information discovery and filtering using a multiagent evolving ecosystem
  publication-title: Appl. Artif. Intell.
  doi: 10.1080/088395197118127
– volume: 4
  start-page: 437
  year: 2017
  ident: ref_36
  article-title: Partition-based collaborative tensor factorization for POI recommendation
  publication-title: IEEE/CAA J. Autom. Sin.
  doi: 10.1109/JAS.2017.7510538
– volume: 69
  start-page: 68
  year: 2018
  ident: ref_12
  article-title: Social Internet of Vehicles: Architecture and enabling technologies
  publication-title: Comput. Electr. Eng.
  doi: 10.1016/j.compeleceng.2018.05.023
– ident: ref_15
  doi: 10.1145/2037556.2037602
– volume: 46
  start-page: 604
  year: 1999
  ident: ref_53
  article-title: Authoritative sources in a hyperlinked environment
  publication-title: J. ACM
  doi: 10.1145/324133.324140
– volume: 56
  start-page: 122
  year: 2017
  ident: ref_19
  article-title: Understanding the Internet of Things: definition, potentials, and societal role of a fast evolving paradigm
  publication-title: Ad Hoc Networks
  doi: 10.1016/j.adhoc.2016.12.004
– ident: ref_38
  doi: 10.1109/TENCON.2018.8650511
– volume: Volume 6030
  start-page: 22
  year: 2010
  ident: ref_2
  article-title: The Geography of Taste: Analyzing Cell-Phone Mobility and Social Events
  publication-title: Applied Reconfigurable Computing. Architectures, Tools, and Applications
– volume: 184
  start-page: 1
  year: 2012
  ident: ref_66
  article-title: A hybrid recommender system for the selective dissemination of research resources in a Technology Transfer Office
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2011.08.026
– ident: ref_26
  doi: 10.1109/SKG.2016.014
– volume: Volume 11176
  start-page: 295
  year: 2018
  ident: ref_20
  article-title: Coordination of Complex Socio-Technical Systems: Challenges and Opportunities
  publication-title: Applied Reconfigurable Computing. Architectures, Tools, and Applications
– ident: ref_50
  doi: 10.1109/CCGRID.2017.123
– ident: ref_39
  doi: 10.1109/ISPACS48206.2019.8986239
– ident: ref_70
  doi: 10.1109/WiCom.2008.2152
– ident: ref_1
  doi: 10.1007/978-0-85729-997-0_23
– ident: ref_8
  doi: 10.1109/CVPR.2008.4587569
– volume: 41
  start-page: 1
  year: 2014
  ident: ref_43
  article-title: A survey of collaborative filtering based social recommender systems
  publication-title: Comput. Commun.
  doi: 10.1016/j.comcom.2013.06.009
SSID ssj0023338
Score 2.4498734
Snippet Despite advancements in the Internet of Things (IoT) and social networks, developing an intelligent service discovery and composition framework in the Social...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 2098
SubjectTerms Algorithms
Collaboration
Customization
Datasets
Internet of Things
Methods
Performance management
personalized recommendation
recommender engine
Recommender systems
service discovery
smart community
Social Internet of Things (SIoT)
Social research
User behavior
User profiles
user trajectory analysis
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hnuCAKM_QggbEgUvUTeLYzhEKVYUEQoKVeotsx4YiNovY9LD8CH4zM7ET7aJKXLhF8VjyY-z5Zmx_A_AikBUtSx3yqqttLkwhcxMErSujLPN7E2jn18jvP8jzpXh3UV_spPriO2GRHjgO3IntKtk1peYjLEFgpaFvZWmHCZ1tQgi8-5LNm5yp5GpV5HlFHqGKnPqTDUfkSEzvWZ-RpP86ZPn3Bckdi3N2B24nqIivYhMP4Ybv78KtHQLBe_D7dMR8_Rf8OIHqX75D9ilXK5_yJW3wskeDn1bUWUwPQoYt2i1XYszK9ZekikiG69sYxd_iRFaCKZEPxne8GCOIfsB1wJjzE994ThrMUcb7sDx7-_n0PE8ZFnJHbvGQh6IMpbQLRyjHlY2sjbe1ov1Rmiq4hVVG0lgXwTd2YZxrrCd8IHylgpHCW1c9gIN-3ftHgLr22pP17wqnhFGNlUYI15kFCZOfFzJ4OY186xL9OGfB-N6SG8KT1M6TlMHzWfRH5Ny4Tug1T98swDTZ4w9SnjYpT_sv5cngeJr8Nq3dTUsgRkupm6LM4NlcTKuOj1JM79dXUUZzvKbK4GHUlbkltEUqwnlFBmpPi_aaul_SX34dmb0JKDA90uP_0bcjuFlybIBvGeljOBh-XvknBKAG-3RcK38A1nweAw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagXOCAoOWRUipTceASNXEcP04ISrcVEggJVuotsh27FLFJ6aaH7Y_gNzOTOKFbVb1Fm0nk7Mx4vhnb3xDyNkAUZUyFtKhLm3KTi9QEDn5lpEV-bwDteBr5y1dxPOefT8qTWHBbxm2V45zYT9R167BGvg-hRQmhdM7en_9JsWsUrq7GFhr3yQN4q8AtXWp2NCVcBeRfA5tQAan9_hLrcizTai0G9VT9t-HLm9skr8Wd2RPyOAJG-mHQ8FNyzzeb5NE1GsEt8vegR37NKf02QusrX1PMLBcLH7smLelZQw39vgBbofFYSLeidoUPIXLF5-dgkBTC16--lr-iI2UJje186HCalw51RN_RNtCh8yf95LF1MNYan5H57PDHwXEa-yykDpLjLg05C0zYzAHWcUyL0nhbSpglhSmCy6w0QlqfB69tZpzT1gNK4L6QwQjurSuek42mbfxLQlXplQcMUOdOciO1FYZzV5sMhCHbCwl5N_7zlYsk5NgL43cFyQgqqZqUlJC9SfR8YN64Tegjqm8SQLLs_of24rSKvlfZuhC1ZgpXQTngXQ3X8EE2D7XVIcCgdkblV9GDl9V_e0vIm-k2-B4uqJjGt5eDjMKqTZGQF4OtTCOBiVIC2ssTItesaG2o63eas589vzfABSRJ2r57WK_IQ4a5P-4iUjtko7u49K8BIHV2t_eCfx3NFUU
  priority: 102
  providerName: ProQuest
Title Creating Personalized Recommendations in a Smart Community by Performing User Trajectory Analysis through Social Internet of Things Deployment
URI https://www.ncbi.nlm.nih.gov/pubmed/32276431
https://www.proquest.com/docview/2388668912
https://www.proquest.com/docview/2388819873
https://pubmed.ncbi.nlm.nih.gov/PMC7181154
https://doaj.org/article/bd36d9280038497799287beb1fdb9fff
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB71IaFyQDxLoKwM4sAlkDiJ7RwQoqVLhdSqAlbaW2Q7dinqZmE3lVh-BL-ZmbzURXviEkXJWHIyM5lvxvE3AC89RlHOlQ-TMjNhqmMRap-iX2lpiN8bQTvtRj49EyeT9NM0m25B32Oze4HLjakd9ZOaLK5e__q5eocO_5YyTkzZ3yyp3sajXG3DLgYkSY0MTtNhMYEnmIa1pELr4ntwC81ZYkyO16JSQ96_CXH---PkjUg0vgt3OgjJ3rc6vwdbrroPt28QCz6AP0cNFqwu2HkPtn-7klGuOZu5ro_Skl1WTLMvM7Qe1m0UqVfMrGgQYVkaP0ETZRjQvjfV_RXrSUxY1-CHtft7WVtZdDWbe9b2AmUfHDUTpurjQ5iMj78enYRd54XQYrpchz7mngsTWUQ_luci085kEr-bQifeRkZqIY2LvctNpK3NjUPckLpEei1SZ2zyCHaqeeUeA1OZUw5RQRlbmWqZG6HT1JY6QmHM_3wAr_o3X9iOlpy6Y1wVmJ6QvopBXwG8GER_tFwcm4QOSX2DANFnNxfmi4ui88bClIkoc65oXTRFBJzjOT6QiX1pcu9xUge98oveJAsEN0oIlcc8gOfDbfRGWmLRlZtftzKK6jhJAPutrQwz6W0tALlmRWtTXb9TXX5rGL8RQBBt0pP_HvkU9jgVCuiXI3UAO_Xi2j1DNFWbEWzLqcSjGn8cwe7h8dn551FTmRg1XvQXdKMoPQ
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOqLxDCxgEEpeoieM4yaFC0LJs6UNIdKXegu3YpYhNSjdVtfwIfgq_kZm86KKKW2-r9WTl7Ly-GXtmAF469KKcp86Pilj7QoXSV06gXqlEU39vBO1Ujby3L8cT8fEwPlyC330tDF2r7G1iY6iLylCOfB1dSyplmoX8zckPn6ZG0elqP0KjFYsdOz_HkG22sb2F_H3F-ej9webY76YK-AZDwdp3IXdc6sCgZzc8k7GyOk7QJkgVORPoRMlE29DZTAfKmExb9InCRolTUlhtIvzda3BdROjJqTJ99GEI8CKM99ruRbgYrM8oD8iDLF3wec1ogMvw7L_XMi_4udEK3O4AKnvbStQdWLLlXbh1oW3hPfi12SDN8oh96qH8T1swimSnU9tNaZqx45Ip9nmKssm6MpR6zvScHiKkTM9PUAEYustvzdnBnPUtUlg3Poi11cOszVvamlWOtZNG2ZalUcWU27wPkyvhwANYLqvSPgKWxja1iDmK0CRCJZmWSghTqACJMbp0Hrzu__ncdE3PafbG9xyDH2JSPjDJgxcD6Unb6eMyonfEvoGAmnM3X1SnR3mn67kuIllkPKVTV4H4OsPP-EI6dIXOnMNNrfXMzzuLMcv_yrcHz4dl1HU6wFGlrc5ampSyRJEHD1tZGXaChjlBdBl6kCxI0cJWF1fK469NP3GEJ9SU6fH_t_UMbowP9nbz3e39nVW4ySnvQDeY0jVYrk_P7BMEZ7V-2mgEgy9XrYJ_AMbRU78
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYTggHgTKGAQSFyiTZzESQ4I0W5XLYXVClipt9R27NKqm5RuKrT8CH4Qv46ZvOiiiltvUTKOnMzrm7E9A_DKohflPLFukEfKDaUvXGlD1CsZK6rvjaCdTiN_moidWfhhP9pfg9_dWRjaVtnZxNpQ56WmHPkQXUsiRJL6fGjbbRHT0fjd6XeXOkjRSmvXTqMRkT2z_IHh2-Lt7gh5_Zrz8fbXrR237TDgagwLK9f63HKhPI1eXvNURNKoKEb7IGRgtadiKWJlfGtS5UmtU2XQP4YmiK0UoVE6wPdeg_WYoqIBrG9uT6af-3AvwOivqWUUBKk3XFBWkHtpsuIB60YBl6HbfzdpXvB649twq4Wr7H0jX3dgzRR34eaFIob34NdWjTuLQzbtgP1PkzOKa-dz0_ZsWrCjgkn2ZY6SytpDKdWSqSUNItxM42eoDgyd53G9krBkXcEU1jYTYs1ZYtZkMU3FSsuavqNsZKhxMWU678PsSnjwAAZFWZhHwJLIJAYRSO7rOJRxqoQMQ51LD4kx1rQOvOn-fKbbEujUieMkw1CImJT1THLgZU962tT9uIxok9jXE1Cp7vpGeXaYtZqfqTwQecoTWoMNEW2neI0fpHybq9RanNRGx_ystR-L7K-0O_Cif4yaT8s5sjDleUOTUM4ocOBhIyv9TNBMx4g1fQfiFSlamerqk-LoW11dHMEKlWh6_P9pPYfrqH7Zx93J3hO4wSkJQduZkg0YVGfn5ikitUo9a1WCwcFVa-EfxxpZUQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Creating+Personalized+Recommendations+in+a+Smart+Community+by+Performing+User+Trajectory+Analysis+through+Social+Internet+of+Things+Deployment&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Lye%2C+Guang+Xing&rft.au=Cheng%2C+Wai+Khuen&rft.au=Tan%2C+Teik+Boon&rft.au=Hung%2C+Chen+Wei&rft.date=2020-04-08&rft.pub=MDPI&rft.eissn=1424-8220&rft.volume=20&rft.issue=7&rft_id=info:doi/10.3390%2Fs20072098&rft_id=info%3Apmid%2F32276431&rft.externalDocID=PMC7181154
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon