Creating Personalized Recommendations in a Smart Community by Performing User Trajectory Analysis through Social Internet of Things Deployment
Despite advancements in the Internet of Things (IoT) and social networks, developing an intelligent service discovery and composition framework in the Social IoT (SIoT) domain remains a challenge. In the IoT, a large number of things are connected together according to the different objectives of th...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 20; no. 7; p. 2098 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
08.04.2020
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Despite advancements in the Internet of Things (IoT) and social networks, developing an intelligent service discovery and composition framework in the Social IoT (SIoT) domain remains a challenge. In the IoT, a large number of things are connected together according to the different objectives of their owners. Due to this extensive connection of heterogeneous objects, generating a suitable recommendation for users becomes very difficult. The complexity of this problem exponentially increases when additional issues, such as user preferences, autonomous settings, and a chaotic IoT environment, must be considered. For the aforementioned reasons, this paper presents an SIoT architecture with a personalized recommendation framework to enhance service discovery and composition. The novel contribution of this study is the development of a unique personalized recommender engine that is based on the knowledge–desire–intention model and is suitable for service discovery in a smart community. Our algorithm provides service recommendations with high satisfaction by analyzing data concerning users’ beliefs and surroundings. Moreover, the algorithm eliminates the prevalent cold start problem in the early stage of recommendation generation. Several experiments and benchmarking on different datasets are conducted to investigate the performance of the proposed personalized recommender engine. The experimental precision and recall results indicate that the proposed approach can achieve up to an approximately 28% higher F-score than conventional approaches. In general, the proposed hybrid approach outperforms other methods. |
---|---|
AbstractList | Despite advancements in the Internet of Things (IoT) and social networks, developing an intelligent service discovery and composition framework in the Social IoT (SIoT) domain remains a challenge. In the IoT, a large number of things are connected together according to the different objectives of their owners. Due to this extensive connection of heterogeneous objects, generating a suitable recommendation for users becomes very difficult. The complexity of this problem exponentially increases when additional issues, such as user preferences, autonomous settings, and a chaotic IoT environment, must be considered. For the aforementioned reasons, this paper presents an SIoT architecture with a personalized recommendation framework to enhance service discovery and composition. The novel contribution of this study is the development of a unique personalized recommender engine that is based on the knowledge–desire–intention model and is suitable for service discovery in a smart community. Our algorithm provides service recommendations with high satisfaction by analyzing data concerning users’ beliefs and surroundings. Moreover, the algorithm eliminates the prevalent cold start problem in the early stage of recommendation generation. Several experiments and benchmarking on different datasets are conducted to investigate the performance of the proposed personalized recommender engine. The experimental precision and recall results indicate that the proposed approach can achieve up to an approximately 28% higher F-score than conventional approaches. In general, the proposed hybrid approach outperforms other methods. Despite advancements in the Internet of Things (IoT) and social networks, developing an intelligent service discovery and composition framework in the Social IoT (SIoT) domain remains a challenge. In the IoT, a large number of things are connected together according to the different objectives of their owners. Due to this extensive connection of heterogeneous objects, generating a suitable recommendation for users becomes very difficult. The complexity of this problem exponentially increases when additional issues, such as user preferences, autonomous settings, and a chaotic IoT environment, must be considered. For the aforementioned reasons, this paper presents an SIoT architecture with a personalized recommendation framework to enhance service discovery and composition. The novel contribution of this study is the development of a unique personalized recommender engine that is based on the knowledge-desire-intention model and is suitable for service discovery in a smart community. Our algorithm provides service recommendations with high satisfaction by analyzing data concerning users' beliefs and surroundings. Moreover, the algorithm eliminates the prevalent cold start problem in the early stage of recommendation generation. Several experiments and benchmarking on different datasets are conducted to investigate the performance of the proposed personalized recommender engine. The experimental precision and recall results indicate that the proposed approach can achieve up to an approximately 28% higher F-score than conventional approaches. In general, the proposed hybrid approach outperforms other methods.Despite advancements in the Internet of Things (IoT) and social networks, developing an intelligent service discovery and composition framework in the Social IoT (SIoT) domain remains a challenge. In the IoT, a large number of things are connected together according to the different objectives of their owners. Due to this extensive connection of heterogeneous objects, generating a suitable recommendation for users becomes very difficult. The complexity of this problem exponentially increases when additional issues, such as user preferences, autonomous settings, and a chaotic IoT environment, must be considered. For the aforementioned reasons, this paper presents an SIoT architecture with a personalized recommendation framework to enhance service discovery and composition. The novel contribution of this study is the development of a unique personalized recommender engine that is based on the knowledge-desire-intention model and is suitable for service discovery in a smart community. Our algorithm provides service recommendations with high satisfaction by analyzing data concerning users' beliefs and surroundings. Moreover, the algorithm eliminates the prevalent cold start problem in the early stage of recommendation generation. Several experiments and benchmarking on different datasets are conducted to investigate the performance of the proposed personalized recommender engine. The experimental precision and recall results indicate that the proposed approach can achieve up to an approximately 28% higher F-score than conventional approaches. In general, the proposed hybrid approach outperforms other methods. |
Author | Cheng, Wai Khuen Chen, Yen-Lin Tan, Teik Boon Hung, Chen Wei Lye, Guang Xing |
AuthorAffiliation | 1 Faculty of Information and Communication Technology, Universiti Tunku Abdul Rahman, 31900 Kampar, Perak, Malaysia; simple@1utar.my (G.X.L.); chengwk@utar.edu.my (W.K.C.); tantb@utar.edu.my (T.B.T.); hungcw@utar.edu.my (C.W.H.) 2 Department of Computer Science and Information Engineering, National Taipei University of Technology, 1, Sec. 3, Chung-hsiao E. Rd., Taipei 10608, Taiwan |
AuthorAffiliation_xml | – name: 2 Department of Computer Science and Information Engineering, National Taipei University of Technology, 1, Sec. 3, Chung-hsiao E. Rd., Taipei 10608, Taiwan – name: 1 Faculty of Information and Communication Technology, Universiti Tunku Abdul Rahman, 31900 Kampar, Perak, Malaysia; simple@1utar.my (G.X.L.); chengwk@utar.edu.my (W.K.C.); tantb@utar.edu.my (T.B.T.); hungcw@utar.edu.my (C.W.H.) |
Author_xml | – sequence: 1 givenname: Guang Xing surname: Lye fullname: Lye, Guang Xing – sequence: 2 givenname: Wai Khuen orcidid: 0000-0003-1707-0462 surname: Cheng fullname: Cheng, Wai Khuen – sequence: 3 givenname: Teik Boon orcidid: 0000-0003-0708-1213 surname: Tan fullname: Tan, Teik Boon – sequence: 4 givenname: Chen Wei surname: Hung fullname: Hung, Chen Wei – sequence: 5 givenname: Yen-Lin orcidid: 0000-0001-7717-9393 surname: Chen fullname: Chen, Yen-Lin |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32276431$$D View this record in MEDLINE/PubMed |
BookMark | eNptkstuEzEUhkeoiF5gwQsgS2zKItSXicfeIFXhFqkSiKZry_YcJ45m7GLPIA0PwTPjNCVqK1a2fL7_9_ntc1odhRigql4T_J4xiS8yxbihWIpn1QmpaT0TlOKjB_vj6jTnLcaUMSZeVMeM0obXjJxUfxYJ9ODDGn2HlGPQnf8NLfoBNvY9hLbUYsjIB6TRda_TgBalMAY_TMhMO5GLqd_pbzIktEp6C3aIaUKXxWvKPqNhk-K43qDraL3u0DIMkAIMKDq02hRlRh_htotTuW54WT13usvw6n49q24-f1otvs6uvn1ZLi6vZrbmcpg5Qh3lBls6J5ZKPtdg5k3DKdfMWWwazRsDxIE0WFsrDcwJrYE1TvMajGVn1XLv20a9VbfJl2iTitqru4OY1qpk9bYDZVrGW0kFxkzUsmlk2RdzQ1xrpHOueH3Ye92OpofWlhhJd49MH1eC36h1_KUaIgiZ18Xg_N4gxZ8j5EH1PlvoOh0gjllRJoQgUjSsoG-foNs4pvLSe4pzIQkt1JuHHR1a-fftBXi3B2yKOSdwB4RgtRspdRipwl48Ya0f7saihPHdfxR_Abb20Fg |
CitedBy_id | crossref_primary_10_1016_j_ins_2025_121914 crossref_primary_10_1016_j_comnet_2021_108568 crossref_primary_10_1109_ACCESS_2023_3271678 crossref_primary_10_1016_j_dcan_2022_04_025 crossref_primary_10_3390_s20113118 crossref_primary_10_1155_2022_4434833 crossref_primary_10_1109_JIOT_2021_3081556 crossref_primary_10_1109_ACCESS_2022_3218912 crossref_primary_10_3390_s21227689 crossref_primary_10_3390_ijerph192215279 crossref_primary_10_1109_ACCESS_2020_3026310 crossref_primary_10_3390_math11041032 crossref_primary_10_1155_2022_4038084 crossref_primary_10_1016_j_engappai_2023_107243 crossref_primary_10_1016_j_future_2023_09_009 crossref_primary_10_1088_1742_6596_1969_1_012040 crossref_primary_10_3390_smartcities6020053 crossref_primary_10_1080_17517575_2020_1856423 crossref_primary_10_3390_s22186759 crossref_primary_10_3390_fi15020066 crossref_primary_10_1109_TSC_2023_3274647 crossref_primary_10_1016_j_comnet_2024_111016 crossref_primary_10_1016_j_jnca_2024_104092 |
Cites_doi | 10.1016/j.knosys.2013.03.012 10.1002/asi.4630240406 10.1007/978-3-540-72079-9_3 10.1177/1550147718767845 10.3390/s19092007 10.1016/j.eswa.2012.12.061 10.1109/MDM.2009.66 10.1109/MDM.2009.50 10.3390/s19020431 10.1007/s10844-018-0530-7 10.1109/WETICE.2012.26 10.1145/2020408.2020579 10.1109/MDM.2010.22 10.1109/SAINT.2006.55 10.1109/IPIN.2017.8115929 10.1109/TKDE.2005.99 10.1145/3158369 10.3390/s18051341 10.5840/tpm20136152 10.1109/MCOM.2014.6710070 10.1109/JIOT.2018.2869933 10.1145/963770.963772 10.1109/TITS.2017.2781138 10.1007/978-3-319-26869-9_7 10.3390/jsan5010003 10.1145/1869790.1869861 10.1109/ACCESS.2018.2890388 10.1016/j.jcss.2017.03.007 10.1109/ICETSS.2017.8324177 10.1109/MIS.2007.4338497 10.1145/1526709.1526816 10.1145/3132847.3132926 10.1109/JIOT.2019.2960822 10.1016/j.eswa.2020.113301 10.1109/ICGHIT.2019.00013 10.1007/s11042-016-4209-1 10.1145/1889681.1889683 10.1109/JIOT.2017.2775047 10.1145/2661829.2662002 10.1109/TII.2020.2963910 10.3233/AIC-2008-0437 10.1023/A:1006544522159 10.1109/WF-IoT.2016.7845500 10.1145/3154526 10.1109/ASONAM.2014.6921631 10.1145/245108.245124 10.3390/s17061346 10.1109/MIC.2003.1167344 10.1109/JIOT.2017.2764259 10.1145/2507157.2508069 10.1007/s10707-014-0220-8 10.1145/1867699.1867706 10.1007/11428572_8 10.1137/1.9781611972757.43 10.1016/j.comcom.2019.03.009 10.1049/cp.2012.2100 10.1023/B:USER.0000028981.43614.94 10.1109/IWCMC.2017.7986378 10.1109/MCOM.2017.1600263 10.1109/TNNLS.2019.2955567 10.1080/088395197118127 10.1109/JAS.2017.7510538 10.1016/j.compeleceng.2018.05.023 10.1145/2037556.2037602 10.1145/324133.324140 10.1016/j.adhoc.2016.12.004 10.1109/TENCON.2018.8650511 10.1016/j.ins.2011.08.026 10.1109/SKG.2016.014 10.1109/CCGRID.2017.123 10.1109/ISPACS48206.2019.8986239 10.1109/WiCom.2008.2152 10.1007/978-0-85729-997-0_23 10.1109/CVPR.2008.4587569 10.1016/j.comcom.2013.06.009 |
ContentType | Journal Article |
Copyright | 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2020 by the authors. 2020 |
Copyright_xml | – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2020 by the authors. 2020 |
DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI 7X8 5PM DOA |
DOI | 10.3390/s20072098 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_bd36d9280038497799287beb1fdb9fff PMC7181154 32276431 10_3390_s20072098 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Ministry of Science and Technology of Taiwan grantid: MOST- 108-2218-E-027 -017 |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. ABJCF ARAPS HCIFZ KB. M7S NPM PDBOC 7XB 8FK AZQEC DWQXO K9. PJZUB PKEHL PPXIY PQEST PQUKI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c469t-f12f26b0c251c2965aeb577626a3fc0b7a67be1fe9b0acc9be5124e37fa64ebc3 |
IEDL.DBID | M48 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:31:16 EDT 2025 Thu Aug 21 14:19:36 EDT 2025 Thu Jul 10 17:24:48 EDT 2025 Fri Jul 25 20:25:11 EDT 2025 Wed Feb 19 02:31:00 EST 2025 Tue Jul 01 00:42:26 EDT 2025 Thu Apr 24 23:10:43 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | recommender engine personalized recommendation service discovery user trajectory analysis smart community Social Internet of Things (SIoT) |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c469t-f12f26b0c251c2965aeb577626a3fc0b7a67be1fe9b0acc9be5124e37fa64ebc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-1707-0462 0000-0003-0708-1213 0000-0001-7717-9393 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s20072098 |
PMID | 32276431 |
PQID | 2388668912 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_bd36d9280038497799287beb1fdb9fff pubmedcentral_primary_oai_pubmedcentral_nih_gov_7181154 proquest_miscellaneous_2388819873 proquest_journals_2388668912 pubmed_primary_32276431 crossref_primary_10_3390_s20072098 crossref_citationtrail_10_3390_s20072098 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200408 |
PublicationDateYYYYMMDD | 2020-04-08 |
PublicationDate_xml | – month: 4 year: 2020 text: 20200408 day: 8 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2020 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Felfernig (ref_35) 2018; 52 ref_50 Chen (ref_41) 2020; 7 Yang (ref_43) 2014; 41 ref_58 ref_11 Atzori (ref_9) 2014; 52 ref_10 ref_52 Bao (ref_42) 2015; 19 Balabanovic (ref_55) 1997; 40 ref_18 ref_17 ref_16 ref_15 ref_59 Pazzani (ref_46) 1999; 13 Lippi (ref_7) 2018; 5 Lamarca (ref_80) 2005; 3468 ref_61 ref_60 Jung (ref_6) 2018; 5 Cantador (ref_48) 2008; 21 Luo (ref_73) 2019; 102 Junior (ref_5) 2010; 27 Zhang (ref_71) 2019; 52 ref_69 ref_24 ref_23 ref_67 ref_65 ref_62 Porcel (ref_66) 2012; 184 Bobadilla (ref_22) 2013; 46 Small (ref_64) 1973; 24 Kleinberg (ref_53) 1999; 46 ref_29 ref_28 ref_27 ref_26 ref_72 ref_70 Ali (ref_3) 2018; 2018 ref_79 ref_34 ref_78 ref_33 ref_32 ref_31 ref_30 Esmaeili (ref_68) 2020; 149 ref_74 Ning (ref_14) 2017; 5 Bai (ref_54) 2019; 7 Micarelli (ref_77) 2004; 14 ref_39 ref_38 Lucas (ref_49) 2013; 40 Moukas (ref_75) 1997; 11 Linden (ref_47) 2003; 7 ref_83 Roopa (ref_21) 2019; 139 ref_82 ref_81 Stai (ref_44) 2016; 77 Calabrese (ref_2) 2010; Volume 6030 Butt (ref_12) 2018; 69 ref_45 Huang (ref_63) 2007; 22 Ning (ref_13) 2017; 55 Luan (ref_37) 2018; 19 Mariani (ref_20) 2018; Volume 11176 ref_40 ref_84 ref_1 Atzori (ref_19) 2017; 56 Luan (ref_36) 2017; 4 ref_8 Zheng (ref_25) 2011; 2 Adomavicius (ref_57) 2005; 17 Herlocker (ref_56) 2004; 22 ref_4 Ding (ref_51) 2018; 51 Mobasher (ref_76) 2007; Volume 4321 |
References_xml | – volume: 46 start-page: 109 year: 2013 ident: ref_22 article-title: Recommender systems survey publication-title: Knowledge-Based Syst. doi: 10.1016/j.knosys.2013.03.012 – volume: 24 start-page: 265 year: 1973 ident: ref_64 article-title: Co-citation in the scientific literature: A new measure of the relationship between two documents publication-title: J. Am. Soc. Inf. Sci. doi: 10.1002/asi.4630240406 – volume: Volume 4321 start-page: 90 year: 2007 ident: ref_76 article-title: Data Mining for Web Personalization publication-title: The Adaptive Web doi: 10.1007/978-3-540-72079-9_3 – ident: ref_78 – ident: ref_84 doi: 10.1177/1550147718767845 – ident: ref_18 doi: 10.3390/s19092007 – ident: ref_74 – volume: 40 start-page: 3532 year: 2013 ident: ref_49 article-title: A hybrid recommendation approach for a tourism system publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2012.12.061 – ident: ref_45 doi: 10.1109/MDM.2009.66 – ident: ref_28 doi: 10.1109/MDM.2009.50 – ident: ref_67 doi: 10.3390/s19020431 – volume: 52 start-page: 285 year: 2018 ident: ref_35 article-title: An overview of recommender systems in the internet of things publication-title: J. Intell. Inf. Syst. doi: 10.1007/s10844-018-0530-7 – ident: ref_4 doi: 10.1109/WETICE.2012.26 – ident: ref_30 doi: 10.1145/2020408.2020579 – ident: ref_62 doi: 10.1109/MDM.2010.22 – volume: 27 start-page: 66 year: 2010 ident: ref_5 article-title: Crowd Analysis Using Computer Vision Techniques publication-title: IEEE Signal Process. Mag. – ident: ref_60 doi: 10.1109/SAINT.2006.55 – ident: ref_81 doi: 10.1109/IPIN.2017.8115929 – volume: 17 start-page: 734 year: 2005 ident: ref_57 article-title: Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2005.99 – volume: 52 start-page: 1 year: 2019 ident: ref_71 article-title: Deep Learning Based Recommender System publication-title: ACM Comput. Surv. doi: 10.1145/3158369 – ident: ref_17 doi: 10.3390/s18051341 – ident: ref_83 doi: 10.5840/tpm20136152 – volume: 52 start-page: 97 year: 2014 ident: ref_9 article-title: From “smart objects” to “social objects”: The next evolutionary step of the internet of things publication-title: IEEE Commun. Mag. doi: 10.1109/MCOM.2014.6710070 – ident: ref_52 – volume: 5 start-page: 4066 year: 2018 ident: ref_6 article-title: Quantitative Computation of Social Strength in Social Internet of Things publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2018.2869933 – volume: 22 start-page: 5 year: 2004 ident: ref_56 article-title: Evaluating collaborative filtering recommender systems publication-title: ACM Trans. Inf. Syst. doi: 10.1145/963770.963772 – volume: 19 start-page: 3461 year: 2018 ident: ref_37 article-title: MPTR: A Maximal-Marginal-Relevance-Based Personalized Trip Recommendation Method publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2017.2781138 – ident: ref_32 doi: 10.1007/978-3-319-26869-9_7 – volume: 2018 start-page: 1 year: 2018 ident: ref_3 article-title: A Model of Socially Connected Web Objects for IoT Applications publication-title: Wirel. Commun. Mob. Comput. – ident: ref_11 doi: 10.3390/jsan5010003 – ident: ref_61 doi: 10.1145/1869790.1869861 – ident: ref_72 – volume: 7 start-page: 9324 year: 2019 ident: ref_54 article-title: Scientific Paper Recommendation: A Survey publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2890388 – volume: 102 start-page: 42 year: 2019 ident: ref_73 article-title: Gaussian-Gamma collaborative filtering: A hierarchical Bayesian model for recommender systems publication-title: J. Comput. Syst. Sci. doi: 10.1016/j.jcss.2017.03.007 – ident: ref_23 doi: 10.1109/ICETSS.2017.8324177 – volume: 22 start-page: 68 year: 2007 ident: ref_63 article-title: A comparative study of recommendation algorithms in e-commerce applications publication-title: IEEE Intell. Syst. doi: 10.1109/MIS.2007.4338497 – ident: ref_24 doi: 10.1145/1526709.1526816 – ident: ref_69 doi: 10.1145/3132847.3132926 – volume: 7 start-page: 2014 year: 2020 ident: ref_41 article-title: Time-Aware Smart Object Recommendation in Social Internet of Things publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2019.2960822 – volume: 149 start-page: 113301 year: 2020 ident: ref_68 article-title: A novel tourism recommender system in the context of social commerce publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.113301 – ident: ref_27 doi: 10.1109/ICGHIT.2019.00013 – volume: 77 start-page: 283 year: 2016 ident: ref_44 article-title: A holistic approach for personalization, relevance feedback & recommendation in enriched multimedia content publication-title: Multimedia Tools Appl. doi: 10.1007/s11042-016-4209-1 – volume: 2 start-page: 1 year: 2011 ident: ref_25 article-title: Learning travel recommendations from user-generated GPS traces publication-title: ACM Trans. Intell. Syst. Technol. doi: 10.1145/1889681.1889683 – volume: 5 start-page: 2537 year: 2018 ident: ref_7 article-title: An Argumentation-Based Perspective Over the Social IoT publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2017.2775047 – ident: ref_29 doi: 10.1145/2661829.2662002 – ident: ref_16 doi: 10.1109/TII.2020.2963910 – volume: 21 start-page: 203 year: 2008 ident: ref_48 article-title: A multilayer ontology-based hybrid recommendation model publication-title: AI Commun. doi: 10.3233/AIC-2008-0437 – volume: 13 start-page: 393 year: 1999 ident: ref_46 article-title: A Framework for Collaborative, Content-Based and Demographic Filtering publication-title: Artif. Intell. Rev. doi: 10.1023/A:1006544522159 – ident: ref_33 doi: 10.1109/WF-IoT.2016.7845500 – volume: 51 start-page: 1 year: 2018 ident: ref_51 article-title: Objectives and State-of-the-Art of Location-Based Social Network Recommender Systems publication-title: ACM Comput. Surv. doi: 10.1145/3154526 – ident: ref_82 – ident: ref_34 doi: 10.1109/ASONAM.2014.6921631 – volume: 40 start-page: 66 year: 1997 ident: ref_55 article-title: Fab: content-based, collaborative recommendation publication-title: Commun. ACM doi: 10.1145/245108.245124 – ident: ref_31 doi: 10.3390/s17061346 – volume: 7 start-page: 76 year: 2003 ident: ref_47 article-title: Amazon.com recommendations: item-to-item collaborative filtering publication-title: IEEE Internet Comput. doi: 10.1109/MIC.2003.1167344 – volume: 5 start-page: 2506 year: 2017 ident: ref_14 article-title: A Cooperative Quality-Aware Service Access System for Social Internet of Vehicles publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2017.2764259 – ident: ref_65 doi: 10.1145/2507157.2508069 – volume: 19 start-page: 525 year: 2015 ident: ref_42 article-title: Recommendations in location-based social networks: a survey publication-title: GeoInformatica doi: 10.1007/s10707-014-0220-8 – ident: ref_59 doi: 10.1145/1867699.1867706 – volume: 3468 start-page: 116 year: 2005 ident: ref_80 article-title: Place Lab: Device Positioning Using Radio Beacons in the Wild publication-title: Lect. Notes Comput. Sci. doi: 10.1007/11428572_8 – ident: ref_58 doi: 10.1137/1.9781611972757.43 – volume: 139 start-page: 32 year: 2019 ident: ref_21 article-title: Social Internet of Things (SIoT): Foundations, thrust areas, systematic review and future directions publication-title: Comput. Commun. doi: 10.1016/j.comcom.2019.03.009 – ident: ref_79 doi: 10.1049/cp.2012.2100 – volume: 14 start-page: 159 year: 2004 ident: ref_77 article-title: Anatomy and Empirical Evaluation of an Adaptive Web-Based Information Filtering System publication-title: User Model. User-Adapted Interact. doi: 10.1023/B:USER.0000028981.43614.94 – ident: ref_10 doi: 10.1109/IWCMC.2017.7986378 – volume: 55 start-page: 16 year: 2017 ident: ref_13 article-title: Vehicular Social Networks: Enabling Smart Mobility publication-title: IEEE Commun. Mag. doi: 10.1109/MCOM.2017.1600263 – ident: ref_40 doi: 10.1109/TNNLS.2019.2955567 – volume: 11 start-page: 437 year: 1997 ident: ref_75 article-title: Amalthaea information discovery and filtering using a multiagent evolving ecosystem publication-title: Appl. Artif. Intell. doi: 10.1080/088395197118127 – volume: 4 start-page: 437 year: 2017 ident: ref_36 article-title: Partition-based collaborative tensor factorization for POI recommendation publication-title: IEEE/CAA J. Autom. Sin. doi: 10.1109/JAS.2017.7510538 – volume: 69 start-page: 68 year: 2018 ident: ref_12 article-title: Social Internet of Vehicles: Architecture and enabling technologies publication-title: Comput. Electr. Eng. doi: 10.1016/j.compeleceng.2018.05.023 – ident: ref_15 doi: 10.1145/2037556.2037602 – volume: 46 start-page: 604 year: 1999 ident: ref_53 article-title: Authoritative sources in a hyperlinked environment publication-title: J. ACM doi: 10.1145/324133.324140 – volume: 56 start-page: 122 year: 2017 ident: ref_19 article-title: Understanding the Internet of Things: definition, potentials, and societal role of a fast evolving paradigm publication-title: Ad Hoc Networks doi: 10.1016/j.adhoc.2016.12.004 – ident: ref_38 doi: 10.1109/TENCON.2018.8650511 – volume: Volume 6030 start-page: 22 year: 2010 ident: ref_2 article-title: The Geography of Taste: Analyzing Cell-Phone Mobility and Social Events publication-title: Applied Reconfigurable Computing. Architectures, Tools, and Applications – volume: 184 start-page: 1 year: 2012 ident: ref_66 article-title: A hybrid recommender system for the selective dissemination of research resources in a Technology Transfer Office publication-title: Inf. Sci. doi: 10.1016/j.ins.2011.08.026 – ident: ref_26 doi: 10.1109/SKG.2016.014 – volume: Volume 11176 start-page: 295 year: 2018 ident: ref_20 article-title: Coordination of Complex Socio-Technical Systems: Challenges and Opportunities publication-title: Applied Reconfigurable Computing. Architectures, Tools, and Applications – ident: ref_50 doi: 10.1109/CCGRID.2017.123 – ident: ref_39 doi: 10.1109/ISPACS48206.2019.8986239 – ident: ref_70 doi: 10.1109/WiCom.2008.2152 – ident: ref_1 doi: 10.1007/978-0-85729-997-0_23 – ident: ref_8 doi: 10.1109/CVPR.2008.4587569 – volume: 41 start-page: 1 year: 2014 ident: ref_43 article-title: A survey of collaborative filtering based social recommender systems publication-title: Comput. Commun. doi: 10.1016/j.comcom.2013.06.009 |
SSID | ssj0023338 |
Score | 2.4498734 |
Snippet | Despite advancements in the Internet of Things (IoT) and social networks, developing an intelligent service discovery and composition framework in the Social... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 2098 |
SubjectTerms | Algorithms Collaboration Customization Datasets Internet of Things Methods Performance management personalized recommendation recommender engine Recommender systems service discovery smart community Social Internet of Things (SIoT) Social research User behavior User profiles user trajectory analysis |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hnuCAKM_QggbEgUvUTeLYzhEKVYUEQoKVeotsx4YiNovY9LD8CH4zM7ET7aJKXLhF8VjyY-z5Zmx_A_AikBUtSx3yqqttLkwhcxMErSujLPN7E2jn18jvP8jzpXh3UV_spPriO2GRHjgO3IntKtk1peYjLEFgpaFvZWmHCZ1tQgi8-5LNm5yp5GpV5HlFHqGKnPqTDUfkSEzvWZ-RpP86ZPn3Bckdi3N2B24nqIivYhMP4Ybv78KtHQLBe_D7dMR8_Rf8OIHqX75D9ilXK5_yJW3wskeDn1bUWUwPQoYt2i1XYszK9ZekikiG69sYxd_iRFaCKZEPxne8GCOIfsB1wJjzE994ThrMUcb7sDx7-_n0PE8ZFnJHbvGQh6IMpbQLRyjHlY2sjbe1ov1Rmiq4hVVG0lgXwTd2YZxrrCd8IHylgpHCW1c9gIN-3ftHgLr22pP17wqnhFGNlUYI15kFCZOfFzJ4OY186xL9OGfB-N6SG8KT1M6TlMHzWfRH5Ny4Tug1T98swDTZ4w9SnjYpT_sv5cngeJr8Nq3dTUsgRkupm6LM4NlcTKuOj1JM79dXUUZzvKbK4GHUlbkltEUqwnlFBmpPi_aaul_SX34dmb0JKDA90uP_0bcjuFlybIBvGeljOBh-XvknBKAG-3RcK38A1nweAw priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagXOCAoOWRUipTceASNXEcP04ISrcVEggJVuotsh27FLFJ6aaH7Y_gNzOTOKFbVb1Fm0nk7Mx4vhnb3xDyNkAUZUyFtKhLm3KTi9QEDn5lpEV-bwDteBr5y1dxPOefT8qTWHBbxm2V45zYT9R167BGvg-hRQmhdM7en_9JsWsUrq7GFhr3yQN4q8AtXWp2NCVcBeRfA5tQAan9_hLrcizTai0G9VT9t-HLm9skr8Wd2RPyOAJG-mHQ8FNyzzeb5NE1GsEt8vegR37NKf02QusrX1PMLBcLH7smLelZQw39vgBbofFYSLeidoUPIXLF5-dgkBTC16--lr-iI2UJje186HCalw51RN_RNtCh8yf95LF1MNYan5H57PDHwXEa-yykDpLjLg05C0zYzAHWcUyL0nhbSpglhSmCy6w0QlqfB69tZpzT1gNK4L6QwQjurSuek42mbfxLQlXplQcMUOdOciO1FYZzV5sMhCHbCwl5N_7zlYsk5NgL43cFyQgqqZqUlJC9SfR8YN64Tegjqm8SQLLs_of24rSKvlfZuhC1ZgpXQTngXQ3X8EE2D7XVIcCgdkblV9GDl9V_e0vIm-k2-B4uqJjGt5eDjMKqTZGQF4OtTCOBiVIC2ssTItesaG2o63eas589vzfABSRJ2r57WK_IQ4a5P-4iUjtko7u49K8BIHV2t_eCfx3NFUU priority: 102 providerName: ProQuest |
Title | Creating Personalized Recommendations in a Smart Community by Performing User Trajectory Analysis through Social Internet of Things Deployment |
URI | https://www.ncbi.nlm.nih.gov/pubmed/32276431 https://www.proquest.com/docview/2388668912 https://www.proquest.com/docview/2388819873 https://pubmed.ncbi.nlm.nih.gov/PMC7181154 https://doaj.org/article/bd36d9280038497799287beb1fdb9fff |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB71IaFyQDxLoKwM4sAlkDiJ7RwQoqVLhdSqAlbaW2Q7dinqZmE3lVh-BL-ZmbzURXviEkXJWHIyM5lvxvE3AC89RlHOlQ-TMjNhqmMRap-iX2lpiN8bQTvtRj49EyeT9NM0m25B32Oze4HLjakd9ZOaLK5e__q5eocO_5YyTkzZ3yyp3sajXG3DLgYkSY0MTtNhMYEnmIa1pELr4ntwC81ZYkyO16JSQ96_CXH---PkjUg0vgt3OgjJ3rc6vwdbrroPt28QCz6AP0cNFqwu2HkPtn-7klGuOZu5ro_Skl1WTLMvM7Qe1m0UqVfMrGgQYVkaP0ETZRjQvjfV_RXrSUxY1-CHtft7WVtZdDWbe9b2AmUfHDUTpurjQ5iMj78enYRd54XQYrpchz7mngsTWUQ_luci085kEr-bQifeRkZqIY2LvctNpK3NjUPckLpEei1SZ2zyCHaqeeUeA1OZUw5RQRlbmWqZG6HT1JY6QmHM_3wAr_o3X9iOlpy6Y1wVmJ6QvopBXwG8GER_tFwcm4QOSX2DANFnNxfmi4ui88bClIkoc65oXTRFBJzjOT6QiX1pcu9xUge98oveJAsEN0oIlcc8gOfDbfRGWmLRlZtftzKK6jhJAPutrQwz6W0tALlmRWtTXb9TXX5rGL8RQBBt0pP_HvkU9jgVCuiXI3UAO_Xi2j1DNFWbEWzLqcSjGn8cwe7h8dn551FTmRg1XvQXdKMoPQ |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOqLxDCxgEEpeoieM4yaFC0LJs6UNIdKXegu3YpYhNSjdVtfwIfgq_kZm86KKKW2-r9WTl7Ly-GXtmAF469KKcp86Pilj7QoXSV06gXqlEU39vBO1Ujby3L8cT8fEwPlyC330tDF2r7G1iY6iLylCOfB1dSyplmoX8zckPn6ZG0elqP0KjFYsdOz_HkG22sb2F_H3F-ej9webY76YK-AZDwdp3IXdc6sCgZzc8k7GyOk7QJkgVORPoRMlE29DZTAfKmExb9InCRolTUlhtIvzda3BdROjJqTJ99GEI8CKM99ruRbgYrM8oD8iDLF3wec1ogMvw7L_XMi_4udEK3O4AKnvbStQdWLLlXbh1oW3hPfi12SDN8oh96qH8T1swimSnU9tNaZqx45Ip9nmKssm6MpR6zvScHiKkTM9PUAEYustvzdnBnPUtUlg3Poi11cOszVvamlWOtZNG2ZalUcWU27wPkyvhwANYLqvSPgKWxja1iDmK0CRCJZmWSghTqACJMbp0Hrzu__ncdE3PafbG9xyDH2JSPjDJgxcD6Unb6eMyonfEvoGAmnM3X1SnR3mn67kuIllkPKVTV4H4OsPP-EI6dIXOnMNNrfXMzzuLMcv_yrcHz4dl1HU6wFGlrc5ampSyRJEHD1tZGXaChjlBdBl6kCxI0cJWF1fK469NP3GEJ9SU6fH_t_UMbowP9nbz3e39nVW4ySnvQDeY0jVYrk_P7BMEZ7V-2mgEgy9XrYJ_AMbRU78 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYTggHgTKGAQSFyiTZzESQ4I0W5XLYXVClipt9R27NKqm5RuKrT8CH4Qv46ZvOiiiltvUTKOnMzrm7E9A_DKohflPLFukEfKDaUvXGlD1CsZK6rvjaCdTiN_moidWfhhP9pfg9_dWRjaVtnZxNpQ56WmHPkQXUsiRJL6fGjbbRHT0fjd6XeXOkjRSmvXTqMRkT2z_IHh2-Lt7gh5_Zrz8fbXrR237TDgagwLK9f63HKhPI1eXvNURNKoKEb7IGRgtadiKWJlfGtS5UmtU2XQP4YmiK0UoVE6wPdeg_WYoqIBrG9uT6af-3AvwOivqWUUBKk3XFBWkHtpsuIB60YBl6HbfzdpXvB649twq4Wr7H0jX3dgzRR34eaFIob34NdWjTuLQzbtgP1PkzOKa-dz0_ZsWrCjgkn2ZY6SytpDKdWSqSUNItxM42eoDgyd53G9krBkXcEU1jYTYs1ZYtZkMU3FSsuavqNsZKhxMWU678PsSnjwAAZFWZhHwJLIJAYRSO7rOJRxqoQMQ51LD4kx1rQOvOn-fKbbEujUieMkw1CImJT1THLgZU962tT9uIxok9jXE1Cp7vpGeXaYtZqfqTwQecoTWoMNEW2neI0fpHybq9RanNRGx_ystR-L7K-0O_Cif4yaT8s5sjDleUOTUM4ocOBhIyv9TNBMx4g1fQfiFSlamerqk-LoW11dHMEKlWh6_P9pPYfrqH7Zx93J3hO4wSkJQduZkg0YVGfn5ikitUo9a1WCwcFVa-EfxxpZUQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Creating+Personalized+Recommendations+in+a+Smart+Community+by+Performing+User+Trajectory+Analysis+through+Social+Internet+of+Things+Deployment&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Lye%2C+Guang+Xing&rft.au=Cheng%2C+Wai+Khuen&rft.au=Tan%2C+Teik+Boon&rft.au=Hung%2C+Chen+Wei&rft.date=2020-04-08&rft.pub=MDPI&rft.eissn=1424-8220&rft.volume=20&rft.issue=7&rft_id=info:doi/10.3390%2Fs20072098&rft_id=info%3Apmid%2F32276431&rft.externalDocID=PMC7181154 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |