An Artificial Neural Network for Movement Pattern Analysis to Estimate Blood Alcohol Content Level
Impairments in gait occur after alcohol consumption, and, if detected in real-time, could guide the delivery of “just-in-time” injury prevention interventions. We aimed to identify the salient features of gait that could be used for estimating blood alcohol content (BAC) level in a typical drinking...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 17; no. 12; p. 2897 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
13.12.2017
MDPI |
Subjects | |
Online Access | Get full text |
ISSN | 1424-8220 1424-8220 |
DOI | 10.3390/s17122897 |
Cover
Abstract | Impairments in gait occur after alcohol consumption, and, if detected in real-time, could guide the delivery of “just-in-time” injury prevention interventions. We aimed to identify the salient features of gait that could be used for estimating blood alcohol content (BAC) level in a typical drinking environment. We recruited 10 young adults with a history of heavy drinking to test our research app. During four consecutive Fridays and Saturdays, every hour from 8 p.m. to 12 a.m., they were prompted to use the app to report alcohol consumption and complete a 5-step straight-line walking task, during which 3-axis acceleration and angular velocity data was sampled at a frequency of 100 Hz. BAC for each subject was calculated. From sensor signals, 24 features were calculated using a sliding window technique, including energy, mean, and standard deviation. Using an artificial neural network (ANN), we performed regression analysis to define a model determining association between gait features and BACs. Part (70%) of the data was then used as a training dataset, and the results tested and validated using the rest of the samples. We evaluated different training algorithms for the neural network and the result showed that a Bayesian regularization neural network (BRNN) was the most efficient and accurate. Analyses support the use of the tandem gait task paired with our approach to reliably estimate BAC based on gait features. Results from this work could be useful in designing effective prevention interventions to reduce risky behaviors during periods of alcohol consumption. |
---|---|
AbstractList | Impairments in gait occur after alcohol consumption, and, if detected in real-time, could guide the delivery of “just-in-time” injury prevention interventions. We aimed to identify the salient features of gait that could be used for estimating blood alcohol content (BAC) level in a typical drinking environment. We recruited 10 young adults with a history of heavy drinking to test our research app. During four consecutive Fridays and Saturdays, every hour from 8 p.m. to 12 a.m., they were prompted to use the app to report alcohol consumption and complete a 5-step straight-line walking task, during which 3-axis acceleration and angular velocity data was sampled at a frequency of 100 Hz. BAC for each subject was calculated. From sensor signals, 24 features were calculated using a sliding window technique, including energy, mean, and standard deviation. Using an artificial neural network (ANN), we performed regression analysis to define a model determining association between gait features and BACs. Part (70%) of the data was then used as a training dataset, and the results tested and validated using the rest of the samples. We evaluated different training algorithms for the neural network and the result showed that a Bayesian regularization neural network (BRNN) was the most efficient and accurate. Analyses support the use of the tandem gait task paired with our approach to reliably estimate BAC based on gait features. Results from this work could be useful in designing effective prevention interventions to reduce risky behaviors during periods of alcohol consumption. Impairments in gait occur after alcohol consumption, and, if detected in real-time, could guide the delivery of "just-in-time" injury prevention interventions. We aimed to identify the salient features of gait that could be used for estimating blood alcohol content (BAC) level in a typical drinking environment. We recruited 10 young adults with a history of heavy drinking to test our research app. During four consecutive Fridays and Saturdays, every hour from 8 p.m. to 12 a.m., they were prompted to use the app to report alcohol consumption and complete a 5-step straight-line walking task, during which 3-axis acceleration and angular velocity data was sampled at a frequency of 100 Hz. BAC for each subject was calculated. From sensor signals, 24 features were calculated using a sliding window technique, including energy, mean, and standard deviation. Using an artificial neural network (ANN), we performed regression analysis to define a model determining association between gait features and BACs. Part (70%) of the data was then used as a training dataset, and the results tested and validated using the rest of the samples. We evaluated different training algorithms for the neural network and the result showed that a Bayesian regularization neural network (BRNN) was the most efficient and accurate. Analyses support the use of the tandem gait task paired with our approach to reliably estimate BAC based on gait features. Results from this work could be useful in designing effective prevention interventions to reduce risky behaviors during periods of alcohol consumption.Impairments in gait occur after alcohol consumption, and, if detected in real-time, could guide the delivery of "just-in-time" injury prevention interventions. We aimed to identify the salient features of gait that could be used for estimating blood alcohol content (BAC) level in a typical drinking environment. We recruited 10 young adults with a history of heavy drinking to test our research app. During four consecutive Fridays and Saturdays, every hour from 8 p.m. to 12 a.m., they were prompted to use the app to report alcohol consumption and complete a 5-step straight-line walking task, during which 3-axis acceleration and angular velocity data was sampled at a frequency of 100 Hz. BAC for each subject was calculated. From sensor signals, 24 features were calculated using a sliding window technique, including energy, mean, and standard deviation. Using an artificial neural network (ANN), we performed regression analysis to define a model determining association between gait features and BACs. Part (70%) of the data was then used as a training dataset, and the results tested and validated using the rest of the samples. We evaluated different training algorithms for the neural network and the result showed that a Bayesian regularization neural network (BRNN) was the most efficient and accurate. Analyses support the use of the tandem gait task paired with our approach to reliably estimate BAC based on gait features. Results from this work could be useful in designing effective prevention interventions to reduce risky behaviors during periods of alcohol consumption. |
Author | Chung, Tammy Suffoletto, Brian Gharani, Pedram Karimi, Hassan |
AuthorAffiliation | 2 Department of Emergency Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; suffbp@upmc.edu 3 Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; chungta@upmc.edu 1 Department of Informatics and Networked Systems, University of Pittsburgh School of Computing and Information, Pittsburgh, PA 15260, USA; hkarimi@pitt.edu |
AuthorAffiliation_xml | – name: 2 Department of Emergency Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; suffbp@upmc.edu – name: 1 Department of Informatics and Networked Systems, University of Pittsburgh School of Computing and Information, Pittsburgh, PA 15260, USA; hkarimi@pitt.edu – name: 3 Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; chungta@upmc.edu |
Author_xml | – sequence: 1 givenname: Pedram orcidid: 0000-0003-3383-8910 surname: Gharani fullname: Gharani, Pedram – sequence: 2 givenname: Brian surname: Suffoletto fullname: Suffoletto, Brian – sequence: 3 givenname: Tammy orcidid: 0000-0002-1527-2792 surname: Chung fullname: Chung, Tammy – sequence: 4 givenname: Hassan surname: Karimi fullname: Karimi, Hassan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29236078$$D View this record in MEDLINE/PubMed |
BookMark | eNplkk1vEzEQhleoiH7AgT-AVuICh1B77F3bF6QQtVApfBzgbHn90To469b2BvXf12naqi2nscfPvHpnPIfN3hhH2zRvMfpEiEDHGTMMwAV70RxgCnTGAdDeo_N-c5jzCiEghPBXzT4IID1i_KAZ5mM7T8U7r70K7Q87pdtQ_sX0t3Uxtd_jxq7tWNpfqhSbKj6qcJ19bktsT3Lxa1Vs-yXEaNp50PEihnYRx7ItWdqNDa-bl06FbN_cxaPmz-nJ78W32fLn17PFfDnTtBdlZrXRVlHgvHcDcYxCbwB6ShxGWhlrBDEDdcyBQ3pgRIAanGIaNAeEjCNHzdlO10S1kpepGkvXMiovbxMxnUtVO9XBSk4BiQGUAgWUYFzvQ98ZLlAPCIypWp93WpfTsLbV2FjqXJ6IPn0Z_YU8jxvZsQ73FKrAhzuBFK8mm4tc-6xtCGq0ccoSC1ZbE6zjFX3_DF3FKdUhbynOO4FZ11fq3WNHD1buv7ICxztAp5hzsk5qX1TxcWvQB4mR3C6LfFiWWvHxWcW96P_sDemKvlc |
CitedBy_id | crossref_primary_10_1109_ACCESS_2019_2926118 crossref_primary_10_3390_s18072322 crossref_primary_10_1016_j_copsyc_2019_01_009 crossref_primary_10_1109_ACCESS_2020_3022818 crossref_primary_10_3390_s19081906 crossref_primary_10_1089_tmj_2019_0241 crossref_primary_10_3389_fpsyt_2021_642813 crossref_primary_10_3390_s20205805 crossref_primary_10_1016_j_enconman_2023_117318 crossref_primary_10_1007_s13755_024_00324_4 crossref_primary_10_1063_5_0052909 crossref_primary_10_1111_acer_13975 crossref_primary_10_1109_JSEN_2023_3248868 crossref_primary_10_1007_s00500_019_03918_3 crossref_primary_10_1109_ACCESS_2021_3054515 crossref_primary_10_1007_s10488_020_01065_8 |
Cites_doi | 10.3414/ME15-02-0008 10.1016/S0749-3797(01)00381-6 10.1016/j.gaitpost.2017.11.019 10.1016/j.addbeh.2015.06.042 10.1016/j.aap.2012.12.030 10.1037/0003-066X.45.8.921 10.1016/0893-6080(89)90020-8 10.1016/S0893-6080(09)80018-X 10.1016/j.drugalcdep.2017.05.031 10.1162/neco.1992.4.3.448 10.1016/j.chb.2014.04.043 10.1007/b96922 10.1080/08897077.2017.1356797 10.1080/07448480209595713 10.1145/2370216.2370354 10.1109/ICHI.2015.59 10.1037/0893-164X.19.2.140 10.1007/s11269-009-9527-x 10.1016/j.addbeh.2017.11.039 10.1093/alcalc/agw058 10.3390/mca21020020 10.15288/jsa.2000.61.55 10.1037/a0017074 10.1111/acer.12252 10.1037/0022-006X.72.2.155 10.15288/jsad.2012.73.925 10.15288/jsa.2005.66.130 10.1016/0306-4603(79)90021-2 10.1016/j.imavis.2017.06.002 10.1007/s004140050245 10.1111/j.1530-0277.2012.01869.x 10.1109/WH.2016.7764559 10.1111/add.12093 |
ContentType | Journal Article |
Copyright | Copyright MDPI AG 2017 2017 by the authors. 2017 |
Copyright_xml | – notice: Copyright MDPI AG 2017 – notice: 2017 by the authors. 2017 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/s17122897 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection (ProQuest) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Local Electronic Collection Information ProQuest Central Database Suite (ProQuest) ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals (WRLC) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_84209b2aa2a24311842b65d8906202dd PMC5751642 29236078 10_3390_s17122897 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NIAAA NIH HHS grantid: K23 AA023284 |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS ADRAZ AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IPNFZ KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RIG RNS RPM TUS UKHRP XSB ~8M CGR CUY CVF ECM EIF NPM PJZUB PPXIY 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c469t-ecdcea42886fb3f7426d22643f10caded93db4f7f2f0cb7392abfa7c2c8200df3 |
IEDL.DBID | M48 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:31:56 EDT 2025 Thu Aug 21 14:31:35 EDT 2025 Fri Sep 05 09:02:05 EDT 2025 Fri Jul 25 20:02:11 EDT 2025 Mon Jul 21 06:05:52 EDT 2025 Tue Jul 01 01:36:45 EDT 2025 Thu Apr 24 23:09:09 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | feature extraction Bayesian regularization neural network (BRNN) neural network blood alcohol content (BAC) Gait analysis |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c469t-ecdcea42886fb3f7426d22643f10caded93db4f7f2f0cb7392abfa7c2c8200df3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-3383-8910 0000-0002-1527-2792 |
OpenAccessLink | https://www.proquest.com/docview/1988591756?pq-origsite=%requestingapplication% |
PMID | 29236078 |
PQID | 1988591756 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_84209b2aa2a24311842b65d8906202dd pubmedcentral_primary_oai_pubmedcentral_nih_gov_5751642 proquest_miscellaneous_1976439758 proquest_journals_1988591756 pubmed_primary_29236078 crossref_citationtrail_10_3390_s17122897 crossref_primary_10_3390_s17122897 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-12-13 |
PublicationDateYYYYMMDD | 2017-12-13 |
PublicationDate_xml | – month: 12 year: 2017 text: 2017-12-13 day: 13 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2017 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Simons (ref_20) 2015; 50 Gharani (ref_35) 2017; 64 ref_50 Hornik (ref_42) 1993; 6 ref_12 ref_11 ref_10 ref_15 Suffoletto (ref_32) 2017; 38 Hustad (ref_17) 2005; 66 Wechsler (ref_14) 2002; 50 Jansen (ref_7) 1985; 94 Hornik (ref_41) 1989; 2 MacKay (ref_46) 1992; 4 ref_22 Steele (ref_3) 1990; 45 Alessi (ref_19) 2017; 178 Park (ref_49) 2017; 56 Babor (ref_18) 2000; 61 ref_26 Piasecki (ref_51) 2012; 73 Shults (ref_5) 2001; 21 ref_36 ref_34 Mohanty (ref_38) 2010; 24 Shiffman (ref_27) 2009; 21 ref_33 Muraven (ref_25) 2005; 19 ref_30 ref_39 Greenfield (ref_13) 2014; 36 ref_37 Lourakis (ref_44) 2005; 3 Christoforou (ref_2) 2013; 61 Lucas (ref_29) 2014; 37 Morris (ref_4) 2014; 38 ref_47 ref_45 ref_43 Nieschalk (ref_6) 1999; 112 Darkes (ref_31) 2004; 72 ref_40 ref_1 Leffingwell (ref_23) 2013; 37 Matthews (ref_16) 1979; 4 Alessi (ref_21) 2013; 108 Wray (ref_28) 2014; 36 ref_48 ref_9 ref_8 Roache (ref_24) 2017; 52 |
References_xml | – volume: 56 start-page: 74 year: 2017 ident: ref_49 article-title: Unobtrusive and Continuous Monitoring of Alcohol-impaired Gait Using Smart Shoes publication-title: Methods Inf. Med. doi: 10.3414/ME15-02-0008 – volume: 21 start-page: 66 year: 2001 ident: ref_5 article-title: Reviews of evidence regarding interventions to reduce alcohol-impaired driving publication-title: Am. J. Prev. Med. doi: 10.1016/S0749-3797(01)00381-6 – ident: ref_22 doi: 10.1016/j.gaitpost.2017.11.019 – volume: 50 start-page: 205 year: 2015 ident: ref_20 article-title: Quantifying alcohol consumption: Self-report, transdermal assessment, and prediction of dependence symptoms publication-title: Addict. Behav. doi: 10.1016/j.addbeh.2015.06.042 – ident: ref_26 – volume: 61 start-page: 54 year: 2013 ident: ref_2 article-title: Reaction times of young alcohol-impaired drivers publication-title: Accid. Anal. Prev. doi: 10.1016/j.aap.2012.12.030 – volume: 45 start-page: 921 year: 1990 ident: ref_3 article-title: Alcohol myopia: Its prized and dangerous effects publication-title: Am. Psychol. doi: 10.1037/0003-066X.45.8.921 – volume: 2 start-page: 359 year: 1989 ident: ref_41 article-title: Multilayer feedforward networks are universal approximators publication-title: Neural Netw. doi: 10.1016/0893-6080(89)90020-8 – ident: ref_39 – volume: 94 start-page: 103 year: 1985 ident: ref_7 article-title: Gait analysis after intake of increasing amounts of alcohol publication-title: Int. J. Leg. Med. – ident: ref_1 – volume: 6 start-page: 1069 year: 1993 ident: ref_42 article-title: Some new results on neural network approximation publication-title: Neural Netw. doi: 10.1016/S0893-6080(09)80018-X – volume: 178 start-page: 417 year: 2017 ident: ref_19 article-title: Experiences with SCRAMx alcohol monitoring technology in 100 alcohol treatment outpatients publication-title: Drug Alcohol Depend. doi: 10.1016/j.drugalcdep.2017.05.031 – volume: 4 start-page: 448 year: 1992 ident: ref_46 article-title: A Practical Bayesian Framework for Backpropagation Networks publication-title: Neural Comput. doi: 10.1162/neco.1992.4.3.448 – ident: ref_8 – volume: 37 start-page: 94 year: 2014 ident: ref_29 article-title: It’s only a computer: Virtual humans increase willingness to disclose publication-title: Comput. Hum. Behav. doi: 10.1016/j.chb.2014.04.043 – ident: ref_33 doi: 10.1007/b96922 – volume: 38 start-page: 438 year: 2017 ident: ref_32 article-title: Can an App Help Identify Psychomotor Function Impairments During Drinking Occasions in the Real World? A Mixed Method Pilot Study publication-title: Subst. Abus. doi: 10.1080/08897077.2017.1356797 – ident: ref_45 – volume: 50 start-page: 203 year: 2002 ident: ref_14 article-title: Trends in college binge drinking during a period of increased prevention efforts: Findings from 4 Harvard School of Public Health College Alcohol Study surveys: 1993–2001 publication-title: J. Am. Coll. Health doi: 10.1080/07448480209595713 – ident: ref_48 doi: 10.1145/2370216.2370354 – ident: ref_9 doi: 10.1109/ICHI.2015.59 – volume: 19 start-page: 140 year: 2005 ident: ref_25 article-title: Daily fluctuations in self-control demands and alcohol intake publication-title: Psychol. Addict. Behav. doi: 10.1037/0893-164X.19.2.140 – ident: ref_30 – volume: 24 start-page: 1845 year: 2010 ident: ref_38 article-title: Artificial neural network modeling for groundwater level forecasting in a river island of eastern India publication-title: Water Resour. Manag. doi: 10.1007/s11269-009-9527-x – volume: 36 start-page: 39 year: 2014 ident: ref_13 article-title: Biomonitoring for improving alcohol consumption surveys: The new gold standard? publication-title: Alcohol Res. Curr. Rev. – ident: ref_11 doi: 10.1016/j.addbeh.2017.11.039 – ident: ref_34 – volume: 52 start-page: 35 year: 2017 ident: ref_24 article-title: Time Delays in Transdermal Alcohol Concentrations Relative to Breath Alcohol Concentrations publication-title: Alcohol Alcohol. doi: 10.1093/alcalc/agw058 – ident: ref_47 doi: 10.3390/mca21020020 – volume: 36 start-page: 19 year: 2014 ident: ref_28 article-title: Using Ecological Momentary Assessment (EMA) to Assess Situation-Level Predictors of Alcohol Use and Alcohol-Related Consequences publication-title: Alcohol Res. – volume: 61 start-page: 55 year: 2000 ident: ref_18 article-title: Talk is cheap: Measuring drinking outcomes in clinical trials publication-title: J. Stud. Alcohol doi: 10.15288/jsa.2000.61.55 – volume: 21 start-page: 486 year: 2009 ident: ref_27 article-title: Ecological momentary assessment (EMA) in studies of substance use publication-title: Psychol. Assess. doi: 10.1037/a0017074 – ident: ref_40 – ident: ref_37 – volume: 3 start-page: 2 year: 2005 ident: ref_44 article-title: A Brief Description of the Levenberg-Marquardt Algorithm Implemened by levmar publication-title: Matrix – volume: 38 start-page: 521 year: 2014 ident: ref_4 article-title: Perceived danger while intoxicated uniquely contributes to driving after drinking publication-title: Alcohol. Clin. Exp. Res. doi: 10.1111/acer.12252 – volume: 72 start-page: 155 year: 2004 ident: ref_31 article-title: Up close and personal: Temporal variability in the drinking of individual college students during their first year publication-title: J. Consult. Clin. Psychol. doi: 10.1037/0022-006X.72.2.155 – ident: ref_50 – ident: ref_12 – volume: 73 start-page: 925 year: 2012 ident: ref_51 article-title: Low sensitivity to alcohol: Relations with hangover occurrence and susceptibility in an ecological momentary assessment investigation publication-title: J. Stud. Alcohol Drugs doi: 10.15288/jsad.2012.73.925 – volume: 66 start-page: 130 year: 2005 ident: ref_17 article-title: Using calculations to estimate blood alcohol concentrations for naturally occurring drinking episodes: A validity study publication-title: J. Stud. Alcohol doi: 10.15288/jsa.2005.66.130 – volume: 4 start-page: 55 year: 1979 ident: ref_16 article-title: Estimating blood alcohol concentration: Two computer programs and their applications in therapy and research publication-title: Addict. Behav. doi: 10.1016/0306-4603(79)90021-2 – ident: ref_15 – volume: 64 start-page: 103 year: 2017 ident: ref_35 article-title: Context-aware obstacle detection for navigation by visually impaired publication-title: Image Vis. Comput. doi: 10.1016/j.imavis.2017.06.002 – volume: 112 start-page: 253 year: 1999 ident: ref_6 article-title: Effects of alcohol on body-sway patterns in human subjects publication-title: Int. J. Leg. Med. doi: 10.1007/s004140050245 – volume: 37 start-page: 16 year: 2013 ident: ref_23 article-title: Continuous objective monitoring of alcohol use: Twenty-first century measurement using transdermal sensors publication-title: Alcohol. Clin. Exp. Res. doi: 10.1111/j.1530-0277.2012.01869.x – ident: ref_36 – ident: ref_10 doi: 10.1109/WH.2016.7764559 – ident: ref_43 – volume: 108 start-page: 900 year: 2013 ident: ref_21 article-title: A randomized study of cellphone technology to reinforce alcohol abstinence in the natural environment publication-title: Addiction doi: 10.1111/add.12093 |
SSID | ssj0023338 |
Score | 2.3613517 |
Snippet | Impairments in gait occur after alcohol consumption, and, if detected in real-time, could guide the delivery of “just-in-time” injury prevention interventions.... Impairments in gait occur after alcohol consumption, and, if detected in real-time, could guide the delivery of "just-in-time" injury prevention interventions.... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 2897 |
SubjectTerms | Alcohol Algorithms Bayes Theorem Bayesian regularization neural network (BRNN) Blood Alcohol Content blood alcohol content (BAC) feature extraction Gait Gait analysis Humans neural network Neural networks Neural Networks, Computer |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS91AEB7Ekx6KtrbGWtlKD70EN7tJdnN8ivIofeKhgrewP7EgeaLx_-_MJi-8J0IvngLZCUxmZ7Pfl0y-AfghA_Ie28TcOa7y0mmeW6_LvNDeRRGidIFe6C-u6_lt-euuultr9UU1YYM88BC4M10K3lhhjDACNzskJMLWldekr8uF9_T05Q1fkamRakn0YNARkkjqz54LVQikFmpj90ki_W8hy9cFkms7ztUefBihIpsNLu7DVug-wu6agOAnsLMujQ8yEIyUNtIhlXYzxKNssUyC4D27SUKaaD6qkLB-yS5xfSNiDeycytfZbGiXy5JiFV7ymwqKDuD26vLPxTwfuybkDqlunweHbhtkFbqOVkakvrWnv2VlLDiV3PtGeltGFUXkzirER8ZGo5xwCAa4j_IzbHfLLhwCa2pTcVkG0aT230obX_IoZHRVKb0KGfxcRbN1o6Q4dbZ4aJFaUODbKfAZnE6mj4OOxltG5zQlkwFJX6cTmBDtmBDt_xIig-PVhLbjenxui0aTUJ-q6gy-T8O4kujziOnC8oVsVIJnlc7gyzD_kycYAVkjmspAbWTGhqubI93f-6TWTR-2kOQdvce9fYUdQbCiEHkhj2G7f3oJ3xAU9fYk5f8_yIkKdg priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BucAB8SZQkEEcuFh17CR2TmiLulSIIg5U6i3ykyKhpHTT_8-Mkw1dVHGKFE-kkceP77Mn3wC8UxF5j2sT915oXnkjuAum4qUJPsmYlI90oH_ytTk-rT6f1WfzgdtmTqvcrol5oQ6DpzPyAyTHJLWm6-bDxW9OVaPodnUuoXEb7pS409A4N-tPC-FS6MekJqSQ2h9sSl1KJBh6Zw_KUv034ct_0ySv7TvrB3B_BoxsNUX4IdyK_SO4d01G8DG4VZ_bJzEIRnob-ZETvBmiUnYyZFnwkX3LcppoPmuRsHFgRzjLEbdGdkhJ7Gw1Fc1lWbcKP_lCaUVP4HR99P3jMZ9rJ3CPhHfk0aPbFrmFaZJTCQlwE-ifWZVKQYn3oVXBVUknmYR3GlGSdclqLz1CAhGSegp7_dDH58DaxtZCVVG2uQi4NjZUIkmVfF2poGMB77e92flZWJzqW_zqkGBQx3dLxxfwdjG9mNQ0bjI6pJAsBiSAnV8Mlz-6eT51ppKiddJaaSViIOSp0jV1MCS7LGQIBexvA9rNs3LT_R1DBbxZmnE-0SWJ7eNwRTY6g7TaFPBsiv_iCfaAahBTFaB3RsaOq7st_c_zrNlN11tI9V78362XcFcSbCglL9U-7I2XV_EVgp7Rvc4j-w8KeAOm priority: 102 providerName: ProQuest |
Title | An Artificial Neural Network for Movement Pattern Analysis to Estimate Blood Alcohol Content Level |
URI | https://www.ncbi.nlm.nih.gov/pubmed/29236078 https://www.proquest.com/docview/1988591756 https://www.proquest.com/docview/1976439758 https://pubmed.ncbi.nlm.nih.gov/PMC5751642 https://doaj.org/article/84209b2aa2a24311842b65d8906202dd |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Li9RAEC72cdGD-DbrOrTiwUs06U7SnYPIjMy4iLMs4sDcQvqlwpK4s1nQf29VJxN2ZA5eEkhXk6a6i_6-dOUrgNfCIe_RpY-NSWScGZXE2qosTpU1njsvjKMP-svz4myVfV7n6wPY1tgcHHi9l9pRPanV5vLt76s_HzDg3xPjRMr-7jqVKUfiIA_hGDekgjjYMhsPE7gQoaA1_dMV436Y9AJDu113tqWg3r8Pcv6bOXlrK1rch3sDhmTTftIfwIFrHsLdW8qCj0BPm9De60MwkuAIt5DzzRCosmUblMI7dhEUNtF8kCdhXcvmGPgIZR2bUV47m_Z1dFmQssIuXyjT6DGsFvNvH8_ioZxCbJADd7EzOOwa6YYqvBYeOXFh6Tda4dOEcvFtKazOvPTcJ0ZLBE619rU03CBKSKwXT-CoaRv3DFhZ1HkiMsfLUBdcqtpmiefCmzwTVroI3my9WZlBa5xKXlxWyDnI8dXo-Ahejaa_eoGNfUYzmpLRgDSxw4N2870aQqxSGU9Kzeua1xxhEVJXrovcKlJiTri1EZxuJ7TarrMqLRUp-Mm8iODl2IwhRucmdePaG7KRAbflKoKn_fyPI0EPiAJhVgRyZ2XsDHW3pfn5I8h404kXsr-T_3jvc7jDCU6kPE7FKRx1mxv3AsFQpydwKNcSr2rxaQLHs_n5xddJ-LAwCUHwFwJFDUo |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiDeBAgaBxCWqYydxckBoC622dLfi0Ep7C_ELkFBSuqkQf4rfyIyTTbuo4tbTSuvZlTPjx_fZk28AXkuHvEeXPjaGqzg1BY-1LdI4KazxwnlpHB3ozw_z6XH6aZEtNuDP6l0YSqtcrYlhobatoTPybSTHJLWmsvz9yc-YqkbR7eqqhEY_LA7c719I2Zbv9j9ifN8Isbd79GEaD1UFYoNUsIudscbViLqL3GvpkRrmlt4mlT7hlJJuS2l16pUXnhutED_U2tfKCIObJbde4v9eg-spnYzj_FGLc4In8bl79SIpS769TFQikNCotT0vlAa4DM_-m5Z5YZ_buwO3B4DKJv2IugsbrrkHty7IFt4HPWlCey8-wUjfI3yEhHKGKJjN2yBD3rHPQb4TzQftE9a1bBdXFcTJju1Q0jyb9EV6WdDJwp_MKI3pARxfiVcfwmbTNu4xsDKvMy5TJ8pQdFwVtU25F9KbLJVWuQjerrxZmUHInOpp_KiQ0JDjq9HxEbwaTU969Y7LjHYoJKMBCW6HL9rTr9Uwf6siFbzUoq5FLTD0yIuFzjNbkMwzF9ZGsLUKaDWsAsvqfMxG8HJsxvlLlzJ149ozslEBFGZFBI_6-I89QQ_IHDFcBGptZKx1db2l-f4taITTdRpSyyf_79YLuDE9ms-q2f7hwVO4KQiyJCJO5BZsdqdn7hkCrk4_D6OcwZernlZ_AUwmQt8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIiE4IJ4lUMAgkLhE69hJnBwQ2tKuWvpQD1TaW4hfgISS0k2F-Gv8OmacbNpFFbeeVlrPrqzxjP198eQbgDfSIe_RpY-N4SpOTcFjbYs0TgprvHBeGkcP9A-P8t2T9NM8m6_Bn-W7MFRWudwTw0ZtW0PPyCdIjklqTWX5xA9lEcfbsw-nP2PqIEU3rct2Gn2I7Lvfv5C-Ld7vbeNavxVitvP54248dBiIDdLCLnbGGlcjAi9yr6VHmphberNU-oRTebotpdWpV154brRCLFFrXysjDB6c3HqJ_3sDbiqJqApzSc0vyJ5EH_RKRlKWfLJIVCKQ3KiV8y-0CbgK2_5bonnpzJvdg7sDWGXTPrruw5prHsCdSxKGD0FPmzDeC1Ew0voIH6G4nCEiZodtkCTv2HGQ8kTzQQeFdS3bwR0GMbNjW1RAz6Z9w14WNLPwJwdU0vQITq7Fq49hvWkb9wRYmdcZl6kTZWhAroraptwL6U2WSqtcBO-W3qzMIGpOvTV-VEhuyPHV6PgIXo-mp72Sx1VGW7QkowGJb4cv2rOv1ZDLVZEKXmpR16IWiL-QIwudZ7YgyWcurI1gc7mg1bAjLKqL-I3g1TiMuUwXNHXj2nOyUQEgZkUEG_36jzNBD8gc8VwEaiUyVqa6OtJ8_xb0wulqDWnm0_9P6yXcwoSqDvaO9p_BbUHoJRFxIjdhvTs7d88Re3X6RQhyBl-uO6v-AiMCRx4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Artificial+Neural+Network+for+Movement+Pattern+Analysis+to+Estimate+Blood+Alcohol+Content+Level&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Gharani%2C+Pedram&rft.au=Suffoletto%2C+Brian&rft.au=Chung%2C+Tammy&rft.au=Karimi%2C+Hassan+A&rft.date=2017-12-13&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=17&rft.issue=12&rft_id=info:doi/10.3390%2Fs17122897&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |