An Artificial Neural Network for Movement Pattern Analysis to Estimate Blood Alcohol Content Level

Impairments in gait occur after alcohol consumption, and, if detected in real-time, could guide the delivery of “just-in-time” injury prevention interventions. We aimed to identify the salient features of gait that could be used for estimating blood alcohol content (BAC) level in a typical drinking...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 17; no. 12; p. 2897
Main Authors Gharani, Pedram, Suffoletto, Brian, Chung, Tammy, Karimi, Hassan
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 13.12.2017
MDPI
Subjects
Online AccessGet full text
ISSN1424-8220
1424-8220
DOI10.3390/s17122897

Cover

Abstract Impairments in gait occur after alcohol consumption, and, if detected in real-time, could guide the delivery of “just-in-time” injury prevention interventions. We aimed to identify the salient features of gait that could be used for estimating blood alcohol content (BAC) level in a typical drinking environment. We recruited 10 young adults with a history of heavy drinking to test our research app. During four consecutive Fridays and Saturdays, every hour from 8 p.m. to 12 a.m., they were prompted to use the app to report alcohol consumption and complete a 5-step straight-line walking task, during which 3-axis acceleration and angular velocity data was sampled at a frequency of 100 Hz. BAC for each subject was calculated. From sensor signals, 24 features were calculated using a sliding window technique, including energy, mean, and standard deviation. Using an artificial neural network (ANN), we performed regression analysis to define a model determining association between gait features and BACs. Part (70%) of the data was then used as a training dataset, and the results tested and validated using the rest of the samples. We evaluated different training algorithms for the neural network and the result showed that a Bayesian regularization neural network (BRNN) was the most efficient and accurate. Analyses support the use of the tandem gait task paired with our approach to reliably estimate BAC based on gait features. Results from this work could be useful in designing effective prevention interventions to reduce risky behaviors during periods of alcohol consumption.
AbstractList Impairments in gait occur after alcohol consumption, and, if detected in real-time, could guide the delivery of “just-in-time” injury prevention interventions. We aimed to identify the salient features of gait that could be used for estimating blood alcohol content (BAC) level in a typical drinking environment. We recruited 10 young adults with a history of heavy drinking to test our research app. During four consecutive Fridays and Saturdays, every hour from 8 p.m. to 12 a.m., they were prompted to use the app to report alcohol consumption and complete a 5-step straight-line walking task, during which 3-axis acceleration and angular velocity data was sampled at a frequency of 100 Hz. BAC for each subject was calculated. From sensor signals, 24 features were calculated using a sliding window technique, including energy, mean, and standard deviation. Using an artificial neural network (ANN), we performed regression analysis to define a model determining association between gait features and BACs. Part (70%) of the data was then used as a training dataset, and the results tested and validated using the rest of the samples. We evaluated different training algorithms for the neural network and the result showed that a Bayesian regularization neural network (BRNN) was the most efficient and accurate. Analyses support the use of the tandem gait task paired with our approach to reliably estimate BAC based on gait features. Results from this work could be useful in designing effective prevention interventions to reduce risky behaviors during periods of alcohol consumption.
Impairments in gait occur after alcohol consumption, and, if detected in real-time, could guide the delivery of "just-in-time" injury prevention interventions. We aimed to identify the salient features of gait that could be used for estimating blood alcohol content (BAC) level in a typical drinking environment. We recruited 10 young adults with a history of heavy drinking to test our research app. During four consecutive Fridays and Saturdays, every hour from 8 p.m. to 12 a.m., they were prompted to use the app to report alcohol consumption and complete a 5-step straight-line walking task, during which 3-axis acceleration and angular velocity data was sampled at a frequency of 100 Hz. BAC for each subject was calculated. From sensor signals, 24 features were calculated using a sliding window technique, including energy, mean, and standard deviation. Using an artificial neural network (ANN), we performed regression analysis to define a model determining association between gait features and BACs. Part (70%) of the data was then used as a training dataset, and the results tested and validated using the rest of the samples. We evaluated different training algorithms for the neural network and the result showed that a Bayesian regularization neural network (BRNN) was the most efficient and accurate. Analyses support the use of the tandem gait task paired with our approach to reliably estimate BAC based on gait features. Results from this work could be useful in designing effective prevention interventions to reduce risky behaviors during periods of alcohol consumption.Impairments in gait occur after alcohol consumption, and, if detected in real-time, could guide the delivery of "just-in-time" injury prevention interventions. We aimed to identify the salient features of gait that could be used for estimating blood alcohol content (BAC) level in a typical drinking environment. We recruited 10 young adults with a history of heavy drinking to test our research app. During four consecutive Fridays and Saturdays, every hour from 8 p.m. to 12 a.m., they were prompted to use the app to report alcohol consumption and complete a 5-step straight-line walking task, during which 3-axis acceleration and angular velocity data was sampled at a frequency of 100 Hz. BAC for each subject was calculated. From sensor signals, 24 features were calculated using a sliding window technique, including energy, mean, and standard deviation. Using an artificial neural network (ANN), we performed regression analysis to define a model determining association between gait features and BACs. Part (70%) of the data was then used as a training dataset, and the results tested and validated using the rest of the samples. We evaluated different training algorithms for the neural network and the result showed that a Bayesian regularization neural network (BRNN) was the most efficient and accurate. Analyses support the use of the tandem gait task paired with our approach to reliably estimate BAC based on gait features. Results from this work could be useful in designing effective prevention interventions to reduce risky behaviors during periods of alcohol consumption.
Author Chung, Tammy
Suffoletto, Brian
Gharani, Pedram
Karimi, Hassan
AuthorAffiliation 2 Department of Emergency Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; suffbp@upmc.edu
3 Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; chungta@upmc.edu
1 Department of Informatics and Networked Systems, University of Pittsburgh School of Computing and Information, Pittsburgh, PA 15260, USA; hkarimi@pitt.edu
AuthorAffiliation_xml – name: 2 Department of Emergency Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; suffbp@upmc.edu
– name: 1 Department of Informatics and Networked Systems, University of Pittsburgh School of Computing and Information, Pittsburgh, PA 15260, USA; hkarimi@pitt.edu
– name: 3 Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; chungta@upmc.edu
Author_xml – sequence: 1
  givenname: Pedram
  orcidid: 0000-0003-3383-8910
  surname: Gharani
  fullname: Gharani, Pedram
– sequence: 2
  givenname: Brian
  surname: Suffoletto
  fullname: Suffoletto, Brian
– sequence: 3
  givenname: Tammy
  orcidid: 0000-0002-1527-2792
  surname: Chung
  fullname: Chung, Tammy
– sequence: 4
  givenname: Hassan
  surname: Karimi
  fullname: Karimi, Hassan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29236078$$D View this record in MEDLINE/PubMed
BookMark eNplkk1vEzEQhleoiH7AgT-AVuICh1B77F3bF6QQtVApfBzgbHn90To469b2BvXf12naqi2nscfPvHpnPIfN3hhH2zRvMfpEiEDHGTMMwAV70RxgCnTGAdDeo_N-c5jzCiEghPBXzT4IID1i_KAZ5mM7T8U7r70K7Q87pdtQ_sX0t3Uxtd_jxq7tWNpfqhSbKj6qcJ19bktsT3Lxa1Vs-yXEaNp50PEihnYRx7ItWdqNDa-bl06FbN_cxaPmz-nJ78W32fLn17PFfDnTtBdlZrXRVlHgvHcDcYxCbwB6ShxGWhlrBDEDdcyBQ3pgRIAanGIaNAeEjCNHzdlO10S1kpepGkvXMiovbxMxnUtVO9XBSk4BiQGUAgWUYFzvQ98ZLlAPCIypWp93WpfTsLbV2FjqXJ6IPn0Z_YU8jxvZsQ73FKrAhzuBFK8mm4tc-6xtCGq0ccoSC1ZbE6zjFX3_DF3FKdUhbynOO4FZ11fq3WNHD1buv7ICxztAp5hzsk5qX1TxcWvQB4mR3C6LfFiWWvHxWcW96P_sDemKvlc
CitedBy_id crossref_primary_10_1109_ACCESS_2019_2926118
crossref_primary_10_3390_s18072322
crossref_primary_10_1016_j_copsyc_2019_01_009
crossref_primary_10_1109_ACCESS_2020_3022818
crossref_primary_10_3390_s19081906
crossref_primary_10_1089_tmj_2019_0241
crossref_primary_10_3389_fpsyt_2021_642813
crossref_primary_10_3390_s20205805
crossref_primary_10_1016_j_enconman_2023_117318
crossref_primary_10_1007_s13755_024_00324_4
crossref_primary_10_1063_5_0052909
crossref_primary_10_1111_acer_13975
crossref_primary_10_1109_JSEN_2023_3248868
crossref_primary_10_1007_s00500_019_03918_3
crossref_primary_10_1109_ACCESS_2021_3054515
crossref_primary_10_1007_s10488_020_01065_8
Cites_doi 10.3414/ME15-02-0008
10.1016/S0749-3797(01)00381-6
10.1016/j.gaitpost.2017.11.019
10.1016/j.addbeh.2015.06.042
10.1016/j.aap.2012.12.030
10.1037/0003-066X.45.8.921
10.1016/0893-6080(89)90020-8
10.1016/S0893-6080(09)80018-X
10.1016/j.drugalcdep.2017.05.031
10.1162/neco.1992.4.3.448
10.1016/j.chb.2014.04.043
10.1007/b96922
10.1080/08897077.2017.1356797
10.1080/07448480209595713
10.1145/2370216.2370354
10.1109/ICHI.2015.59
10.1037/0893-164X.19.2.140
10.1007/s11269-009-9527-x
10.1016/j.addbeh.2017.11.039
10.1093/alcalc/agw058
10.3390/mca21020020
10.15288/jsa.2000.61.55
10.1037/a0017074
10.1111/acer.12252
10.1037/0022-006X.72.2.155
10.15288/jsad.2012.73.925
10.15288/jsa.2005.66.130
10.1016/0306-4603(79)90021-2
10.1016/j.imavis.2017.06.002
10.1007/s004140050245
10.1111/j.1530-0277.2012.01869.x
10.1109/WH.2016.7764559
10.1111/add.12093
ContentType Journal Article
Copyright Copyright MDPI AG 2017
2017 by the authors. 2017
Copyright_xml – notice: Copyright MDPI AG 2017
– notice: 2017 by the authors. 2017
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s17122897
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection (ProQuest)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials Local Electronic Collection Information
ProQuest Central Database Suite (ProQuest)
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
CrossRef
Publicly Available Content Database
MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals (WRLC)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_84209b2aa2a24311842b65d8906202dd
PMC5751642
29236078
10_3390_s17122897
Genre Journal Article
GrantInformation_xml – fundername: NIAAA NIH HHS
  grantid: K23 AA023284
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
ADRAZ
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IPNFZ
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RIG
RNS
RPM
TUS
UKHRP
XSB
~8M
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c469t-ecdcea42886fb3f7426d22643f10caded93db4f7f2f0cb7392abfa7c2c8200df3
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 01:31:56 EDT 2025
Thu Aug 21 14:31:35 EDT 2025
Fri Sep 05 09:02:05 EDT 2025
Fri Jul 25 20:02:11 EDT 2025
Mon Jul 21 06:05:52 EDT 2025
Tue Jul 01 01:36:45 EDT 2025
Thu Apr 24 23:09:09 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords feature extraction
Bayesian regularization neural network (BRNN)
neural network
blood alcohol content (BAC)
Gait analysis
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c469t-ecdcea42886fb3f7426d22643f10caded93db4f7f2f0cb7392abfa7c2c8200df3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3383-8910
0000-0002-1527-2792
OpenAccessLink https://www.proquest.com/docview/1988591756?pq-origsite=%requestingapplication%
PMID 29236078
PQID 1988591756
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_84209b2aa2a24311842b65d8906202dd
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5751642
proquest_miscellaneous_1976439758
proquest_journals_1988591756
pubmed_primary_29236078
crossref_citationtrail_10_3390_s17122897
crossref_primary_10_3390_s17122897
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-12-13
PublicationDateYYYYMMDD 2017-12-13
PublicationDate_xml – month: 12
  year: 2017
  text: 2017-12-13
  day: 13
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2017
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Simons (ref_20) 2015; 50
Gharani (ref_35) 2017; 64
ref_50
Hornik (ref_42) 1993; 6
ref_12
ref_11
ref_10
ref_15
Suffoletto (ref_32) 2017; 38
Hustad (ref_17) 2005; 66
Wechsler (ref_14) 2002; 50
Jansen (ref_7) 1985; 94
Hornik (ref_41) 1989; 2
MacKay (ref_46) 1992; 4
ref_22
Steele (ref_3) 1990; 45
Alessi (ref_19) 2017; 178
Park (ref_49) 2017; 56
Babor (ref_18) 2000; 61
ref_26
Piasecki (ref_51) 2012; 73
Shults (ref_5) 2001; 21
ref_36
ref_34
Mohanty (ref_38) 2010; 24
Shiffman (ref_27) 2009; 21
ref_33
Muraven (ref_25) 2005; 19
ref_30
ref_39
Greenfield (ref_13) 2014; 36
ref_37
Lourakis (ref_44) 2005; 3
Christoforou (ref_2) 2013; 61
Lucas (ref_29) 2014; 37
Morris (ref_4) 2014; 38
ref_47
ref_45
ref_43
Nieschalk (ref_6) 1999; 112
Darkes (ref_31) 2004; 72
ref_40
ref_1
Leffingwell (ref_23) 2013; 37
Matthews (ref_16) 1979; 4
Alessi (ref_21) 2013; 108
Wray (ref_28) 2014; 36
ref_48
ref_9
ref_8
Roache (ref_24) 2017; 52
References_xml – volume: 56
  start-page: 74
  year: 2017
  ident: ref_49
  article-title: Unobtrusive and Continuous Monitoring of Alcohol-impaired Gait Using Smart Shoes
  publication-title: Methods Inf. Med.
  doi: 10.3414/ME15-02-0008
– volume: 21
  start-page: 66
  year: 2001
  ident: ref_5
  article-title: Reviews of evidence regarding interventions to reduce alcohol-impaired driving
  publication-title: Am. J. Prev. Med.
  doi: 10.1016/S0749-3797(01)00381-6
– ident: ref_22
  doi: 10.1016/j.gaitpost.2017.11.019
– volume: 50
  start-page: 205
  year: 2015
  ident: ref_20
  article-title: Quantifying alcohol consumption: Self-report, transdermal assessment, and prediction of dependence symptoms
  publication-title: Addict. Behav.
  doi: 10.1016/j.addbeh.2015.06.042
– ident: ref_26
– volume: 61
  start-page: 54
  year: 2013
  ident: ref_2
  article-title: Reaction times of young alcohol-impaired drivers
  publication-title: Accid. Anal. Prev.
  doi: 10.1016/j.aap.2012.12.030
– volume: 45
  start-page: 921
  year: 1990
  ident: ref_3
  article-title: Alcohol myopia: Its prized and dangerous effects
  publication-title: Am. Psychol.
  doi: 10.1037/0003-066X.45.8.921
– volume: 2
  start-page: 359
  year: 1989
  ident: ref_41
  article-title: Multilayer feedforward networks are universal approximators
  publication-title: Neural Netw.
  doi: 10.1016/0893-6080(89)90020-8
– ident: ref_39
– volume: 94
  start-page: 103
  year: 1985
  ident: ref_7
  article-title: Gait analysis after intake of increasing amounts of alcohol
  publication-title: Int. J. Leg. Med.
– ident: ref_1
– volume: 6
  start-page: 1069
  year: 1993
  ident: ref_42
  article-title: Some new results on neural network approximation
  publication-title: Neural Netw.
  doi: 10.1016/S0893-6080(09)80018-X
– volume: 178
  start-page: 417
  year: 2017
  ident: ref_19
  article-title: Experiences with SCRAMx alcohol monitoring technology in 100 alcohol treatment outpatients
  publication-title: Drug Alcohol Depend.
  doi: 10.1016/j.drugalcdep.2017.05.031
– volume: 4
  start-page: 448
  year: 1992
  ident: ref_46
  article-title: A Practical Bayesian Framework for Backpropagation Networks
  publication-title: Neural Comput.
  doi: 10.1162/neco.1992.4.3.448
– ident: ref_8
– volume: 37
  start-page: 94
  year: 2014
  ident: ref_29
  article-title: It’s only a computer: Virtual humans increase willingness to disclose
  publication-title: Comput. Hum. Behav.
  doi: 10.1016/j.chb.2014.04.043
– ident: ref_33
  doi: 10.1007/b96922
– volume: 38
  start-page: 438
  year: 2017
  ident: ref_32
  article-title: Can an App Help Identify Psychomotor Function Impairments During Drinking Occasions in the Real World? A Mixed Method Pilot Study
  publication-title: Subst. Abus.
  doi: 10.1080/08897077.2017.1356797
– ident: ref_45
– volume: 50
  start-page: 203
  year: 2002
  ident: ref_14
  article-title: Trends in college binge drinking during a period of increased prevention efforts: Findings from 4 Harvard School of Public Health College Alcohol Study surveys: 1993–2001
  publication-title: J. Am. Coll. Health
  doi: 10.1080/07448480209595713
– ident: ref_48
  doi: 10.1145/2370216.2370354
– ident: ref_9
  doi: 10.1109/ICHI.2015.59
– volume: 19
  start-page: 140
  year: 2005
  ident: ref_25
  article-title: Daily fluctuations in self-control demands and alcohol intake
  publication-title: Psychol. Addict. Behav.
  doi: 10.1037/0893-164X.19.2.140
– ident: ref_30
– volume: 24
  start-page: 1845
  year: 2010
  ident: ref_38
  article-title: Artificial neural network modeling for groundwater level forecasting in a river island of eastern India
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-009-9527-x
– volume: 36
  start-page: 39
  year: 2014
  ident: ref_13
  article-title: Biomonitoring for improving alcohol consumption surveys: The new gold standard?
  publication-title: Alcohol Res. Curr. Rev.
– ident: ref_11
  doi: 10.1016/j.addbeh.2017.11.039
– ident: ref_34
– volume: 52
  start-page: 35
  year: 2017
  ident: ref_24
  article-title: Time Delays in Transdermal Alcohol Concentrations Relative to Breath Alcohol Concentrations
  publication-title: Alcohol Alcohol.
  doi: 10.1093/alcalc/agw058
– ident: ref_47
  doi: 10.3390/mca21020020
– volume: 36
  start-page: 19
  year: 2014
  ident: ref_28
  article-title: Using Ecological Momentary Assessment (EMA) to Assess Situation-Level Predictors of Alcohol Use and Alcohol-Related Consequences
  publication-title: Alcohol Res.
– volume: 61
  start-page: 55
  year: 2000
  ident: ref_18
  article-title: Talk is cheap: Measuring drinking outcomes in clinical trials
  publication-title: J. Stud. Alcohol
  doi: 10.15288/jsa.2000.61.55
– volume: 21
  start-page: 486
  year: 2009
  ident: ref_27
  article-title: Ecological momentary assessment (EMA) in studies of substance use
  publication-title: Psychol. Assess.
  doi: 10.1037/a0017074
– ident: ref_40
– ident: ref_37
– volume: 3
  start-page: 2
  year: 2005
  ident: ref_44
  article-title: A Brief Description of the Levenberg-Marquardt Algorithm Implemened by levmar
  publication-title: Matrix
– volume: 38
  start-page: 521
  year: 2014
  ident: ref_4
  article-title: Perceived danger while intoxicated uniquely contributes to driving after drinking
  publication-title: Alcohol. Clin. Exp. Res.
  doi: 10.1111/acer.12252
– volume: 72
  start-page: 155
  year: 2004
  ident: ref_31
  article-title: Up close and personal: Temporal variability in the drinking of individual college students during their first year
  publication-title: J. Consult. Clin. Psychol.
  doi: 10.1037/0022-006X.72.2.155
– ident: ref_50
– ident: ref_12
– volume: 73
  start-page: 925
  year: 2012
  ident: ref_51
  article-title: Low sensitivity to alcohol: Relations with hangover occurrence and susceptibility in an ecological momentary assessment investigation
  publication-title: J. Stud. Alcohol Drugs
  doi: 10.15288/jsad.2012.73.925
– volume: 66
  start-page: 130
  year: 2005
  ident: ref_17
  article-title: Using calculations to estimate blood alcohol concentrations for naturally occurring drinking episodes: A validity study
  publication-title: J. Stud. Alcohol
  doi: 10.15288/jsa.2005.66.130
– volume: 4
  start-page: 55
  year: 1979
  ident: ref_16
  article-title: Estimating blood alcohol concentration: Two computer programs and their applications in therapy and research
  publication-title: Addict. Behav.
  doi: 10.1016/0306-4603(79)90021-2
– ident: ref_15
– volume: 64
  start-page: 103
  year: 2017
  ident: ref_35
  article-title: Context-aware obstacle detection for navigation by visually impaired
  publication-title: Image Vis. Comput.
  doi: 10.1016/j.imavis.2017.06.002
– volume: 112
  start-page: 253
  year: 1999
  ident: ref_6
  article-title: Effects of alcohol on body-sway patterns in human subjects
  publication-title: Int. J. Leg. Med.
  doi: 10.1007/s004140050245
– volume: 37
  start-page: 16
  year: 2013
  ident: ref_23
  article-title: Continuous objective monitoring of alcohol use: Twenty-first century measurement using transdermal sensors
  publication-title: Alcohol. Clin. Exp. Res.
  doi: 10.1111/j.1530-0277.2012.01869.x
– ident: ref_36
– ident: ref_10
  doi: 10.1109/WH.2016.7764559
– ident: ref_43
– volume: 108
  start-page: 900
  year: 2013
  ident: ref_21
  article-title: A randomized study of cellphone technology to reinforce alcohol abstinence in the natural environment
  publication-title: Addiction
  doi: 10.1111/add.12093
SSID ssj0023338
Score 2.3613517
Snippet Impairments in gait occur after alcohol consumption, and, if detected in real-time, could guide the delivery of “just-in-time” injury prevention interventions....
Impairments in gait occur after alcohol consumption, and, if detected in real-time, could guide the delivery of "just-in-time" injury prevention interventions....
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 2897
SubjectTerms Alcohol
Algorithms
Bayes Theorem
Bayesian regularization neural network (BRNN)
Blood Alcohol Content
blood alcohol content (BAC)
feature extraction
Gait
Gait analysis
Humans
neural network
Neural networks
Neural Networks, Computer
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS91AEB7Ekx6KtrbGWtlKD70EN7tJdnN8ivIofeKhgrewP7EgeaLx_-_MJi-8J0IvngLZCUxmZ7Pfl0y-AfghA_Ie28TcOa7y0mmeW6_LvNDeRRGidIFe6C-u6_lt-euuultr9UU1YYM88BC4M10K3lhhjDACNzskJMLWldekr8uF9_T05Q1fkamRakn0YNARkkjqz54LVQikFmpj90ki_W8hy9cFkms7ztUefBihIpsNLu7DVug-wu6agOAnsLMujQ8yEIyUNtIhlXYzxKNssUyC4D27SUKaaD6qkLB-yS5xfSNiDeycytfZbGiXy5JiFV7ymwqKDuD26vLPxTwfuybkDqlunweHbhtkFbqOVkakvrWnv2VlLDiV3PtGeltGFUXkzirER8ZGo5xwCAa4j_IzbHfLLhwCa2pTcVkG0aT230obX_IoZHRVKb0KGfxcRbN1o6Q4dbZ4aJFaUODbKfAZnE6mj4OOxltG5zQlkwFJX6cTmBDtmBDt_xIig-PVhLbjenxui0aTUJ-q6gy-T8O4kujziOnC8oVsVIJnlc7gyzD_kycYAVkjmspAbWTGhqubI93f-6TWTR-2kOQdvce9fYUdQbCiEHkhj2G7f3oJ3xAU9fYk5f8_yIkKdg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BucAB8SZQkEEcuFh17CR2TmiLulSIIg5U6i3ykyKhpHTT_8-Mkw1dVHGKFE-kkceP77Mn3wC8UxF5j2sT915oXnkjuAum4qUJPsmYlI90oH_ytTk-rT6f1WfzgdtmTqvcrol5oQ6DpzPyAyTHJLWm6-bDxW9OVaPodnUuoXEb7pS409A4N-tPC-FS6MekJqSQ2h9sSl1KJBh6Zw_KUv034ct_0ySv7TvrB3B_BoxsNUX4IdyK_SO4d01G8DG4VZ_bJzEIRnob-ZETvBmiUnYyZFnwkX3LcppoPmuRsHFgRzjLEbdGdkhJ7Gw1Fc1lWbcKP_lCaUVP4HR99P3jMZ9rJ3CPhHfk0aPbFrmFaZJTCQlwE-ifWZVKQYn3oVXBVUknmYR3GlGSdclqLz1CAhGSegp7_dDH58DaxtZCVVG2uQi4NjZUIkmVfF2poGMB77e92flZWJzqW_zqkGBQx3dLxxfwdjG9mNQ0bjI6pJAsBiSAnV8Mlz-6eT51ppKiddJaaSViIOSp0jV1MCS7LGQIBexvA9rNs3LT_R1DBbxZmnE-0SWJ7eNwRTY6g7TaFPBsiv_iCfaAahBTFaB3RsaOq7st_c_zrNlN11tI9V78362XcFcSbCglL9U-7I2XV_EVgp7Rvc4j-w8KeAOm
  priority: 102
  providerName: ProQuest
Title An Artificial Neural Network for Movement Pattern Analysis to Estimate Blood Alcohol Content Level
URI https://www.ncbi.nlm.nih.gov/pubmed/29236078
https://www.proquest.com/docview/1988591756
https://www.proquest.com/docview/1976439758
https://pubmed.ncbi.nlm.nih.gov/PMC5751642
https://doaj.org/article/84209b2aa2a24311842b65d8906202dd
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Li9RAEC72cdGD-DbrOrTiwUs06U7SnYPIjMy4iLMs4sDcQvqlwpK4s1nQf29VJxN2ZA5eEkhXk6a6i_6-dOUrgNfCIe_RpY-NSWScGZXE2qosTpU1njsvjKMP-svz4myVfV7n6wPY1tgcHHi9l9pRPanV5vLt76s_HzDg3xPjRMr-7jqVKUfiIA_hGDekgjjYMhsPE7gQoaA1_dMV436Y9AJDu113tqWg3r8Pcv6bOXlrK1rch3sDhmTTftIfwIFrHsLdW8qCj0BPm9De60MwkuAIt5DzzRCosmUblMI7dhEUNtF8kCdhXcvmGPgIZR2bUV47m_Z1dFmQssIuXyjT6DGsFvNvH8_ioZxCbJADd7EzOOwa6YYqvBYeOXFh6Tda4dOEcvFtKazOvPTcJ0ZLBE619rU03CBKSKwXT-CoaRv3DFhZ1HkiMsfLUBdcqtpmiefCmzwTVroI3my9WZlBa5xKXlxWyDnI8dXo-Ahejaa_eoGNfUYzmpLRgDSxw4N2870aQqxSGU9Kzeua1xxhEVJXrovcKlJiTri1EZxuJ7TarrMqLRUp-Mm8iODl2IwhRucmdePaG7KRAbflKoKn_fyPI0EPiAJhVgRyZ2XsDHW3pfn5I8h404kXsr-T_3jvc7jDCU6kPE7FKRx1mxv3AsFQpydwKNcSr2rxaQLHs_n5xddJ-LAwCUHwFwJFDUo
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiDeBAgaBxCWqYydxckBoC622dLfi0Ep7C_ELkFBSuqkQf4rfyIyTTbuo4tbTSuvZlTPjx_fZk28AXkuHvEeXPjaGqzg1BY-1LdI4KazxwnlpHB3ozw_z6XH6aZEtNuDP6l0YSqtcrYlhobatoTPybSTHJLWmsvz9yc-YqkbR7eqqhEY_LA7c719I2Zbv9j9ifN8Isbd79GEaD1UFYoNUsIudscbViLqL3GvpkRrmlt4mlT7hlJJuS2l16pUXnhutED_U2tfKCIObJbde4v9eg-spnYzj_FGLc4In8bl79SIpS769TFQikNCotT0vlAa4DM_-m5Z5YZ_buwO3B4DKJv2IugsbrrkHty7IFt4HPWlCey8-wUjfI3yEhHKGKJjN2yBD3rHPQb4TzQftE9a1bBdXFcTJju1Q0jyb9EV6WdDJwp_MKI3pARxfiVcfwmbTNu4xsDKvMy5TJ8pQdFwVtU25F9KbLJVWuQjerrxZmUHInOpp_KiQ0JDjq9HxEbwaTU969Y7LjHYoJKMBCW6HL9rTr9Uwf6siFbzUoq5FLTD0yIuFzjNbkMwzF9ZGsLUKaDWsAsvqfMxG8HJsxvlLlzJ149ozslEBFGZFBI_6-I89QQ_IHDFcBGptZKx1db2l-f4taITTdRpSyyf_79YLuDE9ms-q2f7hwVO4KQiyJCJO5BZsdqdn7hkCrk4_D6OcwZernlZ_AUwmQt8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIiE4IJ4lUMAgkLhE69hJnBwQ2tKuWvpQD1TaW4hfgISS0k2F-Gv8OmacbNpFFbeeVlrPrqzxjP198eQbgDfSIe_RpY-N4SpOTcFjbYs0TgprvHBeGkcP9A-P8t2T9NM8m6_Bn-W7MFRWudwTw0ZtW0PPyCdIjklqTWX5xA9lEcfbsw-nP2PqIEU3rct2Gn2I7Lvfv5C-Ld7vbeNavxVitvP54248dBiIDdLCLnbGGlcjAi9yr6VHmphberNU-oRTebotpdWpV154brRCLFFrXysjDB6c3HqJ_3sDbiqJqApzSc0vyJ5EH_RKRlKWfLJIVCKQ3KiV8y-0CbgK2_5bonnpzJvdg7sDWGXTPrruw5prHsCdSxKGD0FPmzDeC1Ew0voIH6G4nCEiZodtkCTv2HGQ8kTzQQeFdS3bwR0GMbNjW1RAz6Z9w14WNLPwJwdU0vQITq7Fq49hvWkb9wRYmdcZl6kTZWhAroraptwL6U2WSqtcBO-W3qzMIGpOvTV-VEhuyPHV6PgIXo-mp72Sx1VGW7QkowGJb4cv2rOv1ZDLVZEKXmpR16IWiL-QIwudZ7YgyWcurI1gc7mg1bAjLKqL-I3g1TiMuUwXNHXj2nOyUQEgZkUEG_36jzNBD8gc8VwEaiUyVqa6OtJ8_xb0wulqDWnm0_9P6yXcwoSqDvaO9p_BbUHoJRFxIjdhvTs7d88Re3X6RQhyBl-uO6v-AiMCRx4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Artificial+Neural+Network+for+Movement+Pattern+Analysis+to+Estimate+Blood+Alcohol+Content+Level&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Gharani%2C+Pedram&rft.au=Suffoletto%2C+Brian&rft.au=Chung%2C+Tammy&rft.au=Karimi%2C+Hassan+A&rft.date=2017-12-13&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=17&rft.issue=12&rft_id=info:doi/10.3390%2Fs17122897&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon