Insights into innate immune cell evasion by Chlamydia trachomatis
Chlamydia trachomatis , is a kind of obligate intracellular pathogen. The removal of C. trachomatis relies primarily on specific cellular immunity. It is currently considered that CD4 + Th1 cytokine responses are the major protective immunity against C. trachomatis infection and reinfection rather t...
Saved in:
Published in | Frontiers in immunology Vol. 15; p. 1289644 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Media S.A
2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Chlamydia trachomatis
, is a kind of obligate intracellular pathogen. The removal of
C. trachomatis
relies primarily on specific cellular immunity. It is currently considered that CD4
+
Th1 cytokine responses are the major protective immunity against
C. trachomatis
infection and reinfection rather than CD8
+
T cells. The non-specific immunity (innate immunity) also plays an important role in the infection process. To survive inside the cells, the first process that
C. trachomatis
faces is the innate immune response. As the “sentry” of the body, mast cells attempt to engulf and remove
C. trachomatis
. Dendritic cells present antigen of
C. trachomatis
to the “commanders” (T cells) through MHC-I and MHC-II. IFN-γ produced by activated T cells and natural killer cells (NK) further activates macrophages. They form the body’s “combat troops” and produce immunity against
C. trachomatis
in the tissues and blood. In addition, the role of eosinophils, basophils, innate lymphoid cells (ILCs), natural killer T (NKT) cells, γδT cells and B-1 cells should not be underestimated in the infection of
C. trachomatis
. The protective role of innate immunity is insufficient, and sexually transmitted diseases (STDs) caused by
C. trachomatis
infections tend to be insidious and recalcitrant. As a consequence,
C. trachomatis
has developed a unique evasion mechanism that triggers inflammatory immunopathology and acts as a bridge to protective to pathological adaptive immunity. This review focuses on the recent advances in how
C. trachomatis
evades various innate immune cells, which contributes to vaccine development and our understanding of the pathophysiologic consequences of
C. trachomatis
infection. |
---|---|
AbstractList | Chlamydia trachomatis, is a kind of obligate intracellular pathogen. The removal of C. trachomatis relies primarily on specific cellular immunity. It is currently considered that CD4+ Th1 cytokine responses are the major protective immunity against C. trachomatis infection and reinfection rather than CD8+ T cells. The non-specific immunity (innate immunity) also plays an important role in the infection process. To survive inside the cells, the first process that C. trachomatis faces is the innate immune response. As the "sentry" of the body, mast cells attempt to engulf and remove C. trachomatis. Dendritic cells present antigen of C. trachomatis to the "commanders" (T cells) through MHC-I and MHC-II. IFN-γ produced by activated T cells and natural killer cells (NK) further activates macrophages. They form the body's "combat troops" and produce immunity against C. trachomatis in the tissues and blood. In addition, the role of eosinophils, basophils, innate lymphoid cells (ILCs), natural killer T (NKT) cells, γδT cells and B-1 cells should not be underestimated in the infection of C. trachomatis. The protective role of innate immunity is insufficient, and sexually transmitted diseases (STDs) caused by C. trachomatis infections tend to be insidious and recalcitrant. As a consequence, C. trachomatis has developed a unique evasion mechanism that triggers inflammatory immunopathology and acts as a bridge to protective to pathological adaptive immunity. This review focuses on the recent advances in how C. trachomatis evades various innate immune cells, which contributes to vaccine development and our understanding of the pathophysiologic consequences of C. trachomatis infection.Chlamydia trachomatis, is a kind of obligate intracellular pathogen. The removal of C. trachomatis relies primarily on specific cellular immunity. It is currently considered that CD4+ Th1 cytokine responses are the major protective immunity against C. trachomatis infection and reinfection rather than CD8+ T cells. The non-specific immunity (innate immunity) also plays an important role in the infection process. To survive inside the cells, the first process that C. trachomatis faces is the innate immune response. As the "sentry" of the body, mast cells attempt to engulf and remove C. trachomatis. Dendritic cells present antigen of C. trachomatis to the "commanders" (T cells) through MHC-I and MHC-II. IFN-γ produced by activated T cells and natural killer cells (NK) further activates macrophages. They form the body's "combat troops" and produce immunity against C. trachomatis in the tissues and blood. In addition, the role of eosinophils, basophils, innate lymphoid cells (ILCs), natural killer T (NKT) cells, γδT cells and B-1 cells should not be underestimated in the infection of C. trachomatis. The protective role of innate immunity is insufficient, and sexually transmitted diseases (STDs) caused by C. trachomatis infections tend to be insidious and recalcitrant. As a consequence, C. trachomatis has developed a unique evasion mechanism that triggers inflammatory immunopathology and acts as a bridge to protective to pathological adaptive immunity. This review focuses on the recent advances in how C. trachomatis evades various innate immune cells, which contributes to vaccine development and our understanding of the pathophysiologic consequences of C. trachomatis infection. Chlamydia trachomatis , is a kind of obligate intracellular pathogen. The removal of C. trachomatis relies primarily on specific cellular immunity. It is currently considered that CD4 + Th1 cytokine responses are the major protective immunity against C. trachomatis infection and reinfection rather than CD8 + T cells. The non-specific immunity (innate immunity) also plays an important role in the infection process. To survive inside the cells, the first process that C. trachomatis faces is the innate immune response. As the “sentry” of the body, mast cells attempt to engulf and remove C. trachomatis . Dendritic cells present antigen of C. trachomatis to the “commanders” (T cells) through MHC-I and MHC-II. IFN-γ produced by activated T cells and natural killer cells (NK) further activates macrophages. They form the body’s “combat troops” and produce immunity against C. trachomatis in the tissues and blood. In addition, the role of eosinophils, basophils, innate lymphoid cells (ILCs), natural killer T (NKT) cells, γδT cells and B-1 cells should not be underestimated in the infection of C. trachomatis . The protective role of innate immunity is insufficient, and sexually transmitted diseases (STDs) caused by C. trachomatis infections tend to be insidious and recalcitrant. As a consequence, C. trachomatis has developed a unique evasion mechanism that triggers inflammatory immunopathology and acts as a bridge to protective to pathological adaptive immunity. This review focuses on the recent advances in how C. trachomatis evades various innate immune cells, which contributes to vaccine development and our understanding of the pathophysiologic consequences of C. trachomatis infection. Chlamydia trachomatis, is a kind of obligate intracellular pathogen. The removal of C. trachomatis relies primarily on specific cellular immunity. It is currently considered that CD4+ Th1 cytokine responses are the major protective immunity against C. trachomatis infection and reinfection rather than CD8+ T cells. The non-specific immunity (innate immunity) also plays an important role in the infection process. To survive inside the cells, the first process that C. trachomatis faces is the innate immune response. As the “sentry” of the body, mast cells attempt to engulf and remove C. trachomatis. Dendritic cells present antigen of C. trachomatis to the “commanders” (T cells) through MHC-I and MHC-II. IFN-γ produced by activated T cells and natural killer cells (NK) further activates macrophages. They form the body’s “combat troops” and produce immunity against C. trachomatis in the tissues and blood. In addition, the role of eosinophils, basophils, innate lymphoid cells (ILCs), natural killer T (NKT) cells, γδT cells and B-1 cells should not be underestimated in the infection of C. trachomatis. The protective role of innate immunity is insufficient, and sexually transmitted diseases (STDs) caused by C. trachomatis infections tend to be insidious and recalcitrant. As a consequence, C. trachomatis has developed a unique evasion mechanism that triggers inflammatory immunopathology and acts as a bridge to protective to pathological adaptive immunity. This review focuses on the recent advances in how C. trachomatis evades various innate immune cells, which contributes to vaccine development and our understanding of the pathophysiologic consequences of C. trachomatis infection. , is a kind of obligate intracellular pathogen. The removal of relies primarily on specific cellular immunity. It is currently considered that CD4 Th1 cytokine responses are the major protective immunity against infection and reinfection rather than CD8 T cells. The non-specific immunity (innate immunity) also plays an important role in the infection process. To survive inside the cells, the first process that faces is the innate immune response. As the "sentry" of the body, mast cells attempt to engulf and remove . Dendritic cells present antigen of to the "commanders" (T cells) through MHC-I and MHC-II. IFN-γ produced by activated T cells and natural killer cells (NK) further activates macrophages. They form the body's "combat troops" and produce immunity against in the tissues and blood. In addition, the role of eosinophils, basophils, innate lymphoid cells (ILCs), natural killer T (NKT) cells, γδT cells and B-1 cells should not be underestimated in the infection of . The protective role of innate immunity is insufficient, and sexually transmitted diseases (STDs) caused by infections tend to be insidious and recalcitrant. As a consequence, has developed a unique evasion mechanism that triggers inflammatory immunopathology and acts as a bridge to protective to pathological adaptive immunity. This review focuses on the recent advances in how evades various innate immune cells, which contributes to vaccine development and our understanding of the pathophysiologic consequences of infection. |
Author | Li, Zhongyu Wu, Hongrong Fang, Chunxia Wang, Xinglv |
AuthorAffiliation | Institute of Pathogenic Biology, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, School of Nursing, Hengyang Medical College, University of South China , Hengyang , China |
AuthorAffiliation_xml | – name: Institute of Pathogenic Biology, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, School of Nursing, Hengyang Medical College, University of South China , Hengyang , China |
Author_xml | – sequence: 1 givenname: Xinglv surname: Wang fullname: Wang, Xinglv – sequence: 2 givenname: Hongrong surname: Wu fullname: Wu, Hongrong – sequence: 3 givenname: Chunxia surname: Fang fullname: Fang, Chunxia – sequence: 4 givenname: Zhongyu surname: Li fullname: Li, Zhongyu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38333214$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU1vGyEQhlGVqknd_IEeqj32YncZYA2nKrL6YSlSL-0ZzbKzNtEupAuO5H9fNnaqpIciBCOYeV6Y9y27CDEQY-95vRJCm0-9H8fDCmqQKw7aNFK-Yle8aeRSAMiLZ_Elu07pri5DGiGEesMuhS4BcHnFbrYh-d0-p8qHHMsSMFM1swNVjoahogdMPoaqPVab_YDjsfNY5QndPo6YfXrHXvc4JLo-7wv26-uXn5vvy9sf37abm9ulk43JS1qjElI0XLUNgAbsOqPWSvRmzanWaLDW6841gkQLpm-JSAlSrSEFSjgjFmx74nYR7-z95Eecjjait48HcdpZnLJ3A1kDXCndKhANSOw0coO9k5wbw2tQsrA-n1j3h3akzlEoHxpeQF_eBL-3u_hgea1VLcpcsI9nwhR_HyhlO_o09wsDxUOyYEAa02g5P_zDc7G_Kk8mlAR9SnBTTGmi3jqfS2vjrO2HImpny-2j5Xa23J4tL6XwT-kT_T9FfwBJxq80 |
CitedBy_id | crossref_primary_10_3390_microorganisms13030553 crossref_primary_10_3390_pathogens14020112 crossref_primary_10_3389_fimmu_2024_1460607 crossref_primary_10_3389_fimmu_2024_1396114 crossref_primary_10_1007_s00203_024_04231_w crossref_primary_10_3390_vaccines12080863 crossref_primary_10_7717_peerj_18313 |
Cites_doi | 10.1016/j.jaci.2021.03.009 10.1016/j.tim.2021.03.011 10.1371/journal.ppat.1005822 10.1128/iai.64.11.4830-4833.1996 10.1080/21505594.2022.2044666 10.1371/journal.pone.0143593 10.4049/jimmunol.182.3.1602 10.1128/microbiolspec.BAI-0012-2019 10.1002/iub.1737 10.1128/iai.00482-19 10.1128/mBio.00595-19 10.1128/iai.00152-20 10.1084/jem.189.12.1931 10.1038/s41579-023-00860-y 10.3389/fcimb.2021.718350 10.1016/j.jbc.2022.102338 10.1038/cmi.2016.53 10.1038/s41418-022-00995-0 10.1016/0092-8674(92)90296-o 10.1128/cmr.00105-13 10.1038/icb.2015.74 10.23812/20-80-a-29 10.1016/j.micpath.2023.106056 10.1371/journal.pntd.0004734 10.1001/jamanetworkopen.2020.18799 10.1128/iai.00622-10 10.1128/iai.66.12.5867-5875.1998 10.1038/s41564-018-0182-y 10.1371/journal.pntd.0007674 10.1073/pnas.1711356115 10.3389/fimmu.2018.00376 10.1128/iai.05619-11 10.1016/j.micinf.2018.10.007 10.1371/journal.pone.0069421 10.1016/j.jri.2021.103307 10.1007/s12026-015-8708-3 10.1038/icb.2015.20 10.1186/s12876-022-02233-w 10.3389/fmicb.2019.00919 10.1016/j.diagmicrobio.2022.115715 10.1128/iai.00046-17 10.1080/21645515.2015.1102804 10.1084/jem.188.5.809 10.5935/1518-0557.20200020 10.1080/14787210.2019.1577136 10.4049/jimmunol.175.5.3197 10.1128/mBio.01179-21 10.1111/aji.12764 10.1016/j.immuni.2009.08.006 10.1128/iai.05022-11 10.1093/infdis/jiab031 10.1111/sji.13263 10.1530/rep-16-0561 10.1128/cvi.00010-17 10.1074/jbc.M110.152280 10.3389/fimmu.2014.00534 10.1038/s41467-021-25749-3 10.1136/jitc-2022-004902 10.3389/fimmu.2016.00324 10.1128/iai.00275-15 10.1016/j.femsim.2005.02.010 10.1007/s11010-021-04270-7 10.1016/j.chom.2022.08.008 10.1111/j.1462-5822.2008.01178.x 10.1073/pnas.1621253114 10.1111/imr.13163 10.1038/ncomms15013 10.1128/mBio.01417-16 10.1111/j.1574-695X.2012.00930.x 10.3390/ijms21207561 10.1186/s12865-017-0212-1 10.3389/fimmu.2022.1004415 10.1186/s12866-023-02802-3 10.1101/cshperspect.a010256 10.1016/j.cyto.2013.04.022 10.1016/j.cmet.2018.05.027 10.1016/j.coi.2018.12.001 10.1128/jb.00580-19 10.4049/jimmunol.180.4.2459 10.3389/fimmu.2021.662096 10.1128/iai.00198-20 10.1155/2017/1592365 10.1016/j.psj.2019.12.011 10.4049/jimmunol.1402685 10.1128/spectrum.02817-22 10.1016/j.tim.2022.09.002 10.3389/fcimb.2019.00399 10.3389/fimmu.2021.717311 10.1038/nrmicro.2016.30 10.1371/journal.pone.0047487 10.1111/cmi.12683 10.1016/j.phrs.2020.105119 10.1093/femspd/ftw093 10.1007/s11010-018-3422-9 10.7554/eLife.76721 10.3390/ijms16010724 10.1159/000487756 10.1128/iai.00798-19 10.7759/cureus.21331 10.3390/diagnostics12081795 10.12659/msm.923909 10.4161/hv.29683 10.1111/nyas.12137 10.3389/fimmu.2022.837767 10.15698/mic2019.09.691 10.1016/j.micpath.2022.105812 10.1007/s00430-020-00695-x 10.1016/j.chom.2022.10.013 10.1111/jcmm.15475 10.1046/j.0019-2805.2001.01354.x 10.1016/j.apsb.2020.12.018 10.3389/fimmu.2015.00233 10.4049/jimmunol.177.10.7067 |
ContentType | Journal Article |
Copyright | Copyright © 2024 Wang, Wu, Fang and Li. Copyright © 2024 Wang, Wu, Fang and Li 2024 Wang, Wu, Fang and Li |
Copyright_xml | – notice: Copyright © 2024 Wang, Wu, Fang and Li. – notice: Copyright © 2024 Wang, Wu, Fang and Li 2024 Wang, Wu, Fang and Li |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM DOA |
DOI | 10.3389/fimmu.2024.1289644 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1664-3224 |
ExternalDocumentID | oai_doaj_org_article_921558b523624ad8a19afc4119910254 PMC10850350 38333214 10_3389_fimmu_2024_1289644 |
Genre | Research Support, Non-U.S. Gov't Journal Article Review |
GroupedDBID | 53G 5VS 9T4 AAFWJ AAKDD AAYXX ACGFO ACGFS ACXDI ADBBV ADRAZ AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV CITATION DIK EBS EMOBN GROUPED_DOAJ GX1 HYE KQ8 M48 M~E OK1 PGMZT RNS RPM CGR CUY CVF ECM EIF IPNFZ NPM RIG 7X8 5PM |
ID | FETCH-LOGICAL-c469t-e7a5343615b62282add95753f971e08a9a087dc63e3b29fbeee53e5b9e5253c93 |
IEDL.DBID | DOA |
ISSN | 1664-3224 |
IngestDate | Wed Aug 27 01:29:31 EDT 2025 Thu Aug 21 18:35:22 EDT 2025 Fri Jul 11 09:13:18 EDT 2025 Mon Jul 21 06:06:31 EDT 2025 Thu Apr 24 23:06:22 EDT 2025 Tue Jul 01 03:33:47 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Chlamydia trachomatis immune evasion innate immunity innate immune cells survival and growth |
Language | English |
License | Copyright © 2024 Wang, Wu, Fang and Li. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c469t-e7a5343615b62282add95753f971e08a9a087dc63e3b29fbeee53e5b9e5253c93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 Roshan Pais, Rajiv Gandhi University of Health Sciences, India Edited by: Lei Song, First Affiliated Hospital of Jilin University, China Reviewed by: Karthika Rajeeve, Rajiv Gandhi Centre for Biotechnology, India |
OpenAccessLink | https://doaj.org/article/921558b523624ad8a19afc4119910254 |
PMID | 38333214 |
PQID | 2924996849 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_921558b523624ad8a19afc4119910254 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10850350 proquest_miscellaneous_2924996849 pubmed_primary_38333214 crossref_citationtrail_10_3389_fimmu_2024_1289644 crossref_primary_10_3389_fimmu_2024_1289644 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-00-00 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – year: 2024 text: 2024-00-00 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Frontiers in immunology |
PublicationTitleAlternate | Front Immunol |
PublicationYear | 2024 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Rodrigues (B1) 2022; 12 Luo (B11) 2019; 202 Lausen (B60) 2019; 21 Darville (B4) 2021; 224 Goulart (B9) 2020; 24 Kobayashi (B67) 2023; 314 Zuck (B74) 2016; 74 Bugalhão (B38) 2019; 6 Deruaz (B43) 2015; 93 Hook (B46) 2005; 45 Kobayashi (B68) 2018; 10 Zhong (B8) 2021; 29 Vogt (B92) 2021; 11 Volpe (B114) 2022; 10 Zhao (B94) 2022; 13 Wang (B26) 2020; 88 Christian (B16) 2010; 285 Ryans (B76) 2017; 18 Zhong (B55) 1999; 189 Sherrid (B75) 2017; 85 Yeung (B65) 2017; 8 Chin (B103) 2019; 87 Shu (B58) 2023; 178 Diensthuber (B64) 2022; 103 Zhang (B33) 1992; 69 Min (B17) 2022; 173 Mackern-Oberti (B3) 2017; 154 N'Gadjaga (B12) 2022; 298 Waguia Kontchou (B107) 2022; 29 Virok (B70) 2021; 12 Lei (B37) 2021; 12 Winner (B85) 2023; 31 Elwell (B32) 2016; 14 Smith (B102) 2019; 57 Zajonc (B82) 2020; 21 Hu (B88) 2016; 10 Xiao (B31) 2021; 11 Shekhar (B93) 2015; 6 Redgrove (B18) 2014; 5 Buchacher (B62) 2015; 10 Rajeeve (B69) 2018; 3 Wolle (B2) 2019; 17 Moore (B21) 2002; 105 Vlcek (B51) 2016; 94 Luo (B57) 2022; 13 Rödel (B56) 2012; 80 Di Pietro (B111) 2014; 16 Abdelrahman (B39) 2016; 12 Aziz (B101) 2015; 63 Karunakaran (B29) 2008; 180 Ibana (B83) 2012; 65 Buckner (B53) 2013; 63 Dilek (B113) 2020; 161 Jiang (B97) 2012; 7 Horne (B7) 2020; 3 Tietzel (B45) 2019; 10 Zou (B108) 2019; 452 Allahyari (B90) 2016; 12 Ghaedi (B84) 2021; 147 Walpole (B10) 2018; 70 Hayday (B91) 2009; 31 Chiba (B81) 2015; 194 Farris (B49) 2010; 78 Xu (B86) 2020; 88 Bastidas (B13) 2013; 3 Khatwani (B27) 2022; 13 Tumurkhuu (B110) 2018; 28 Poli-Neto (B79) 2021; 145 Lausen (B20) 2021; 210 Cong (B99) 2020; 24 Armitage (B95) 2023; 97 Walsh (B24) 2022; 30 Yang (B109) 2015; 83 Choroszy-Król (B22) 2012; 21 Su (B28) 1998; 188 Jahnke (B59) 2022; 10 Valenti (B42) 2018; 9 Baumgarth (B100) 2016; 7 Yang (B25) 2019; 10 Murthy (B50) 2011; 79 Zuck (B66) 2017; 19 Le Negrate (B15) 2008; 10 Kogut (B106) 2020; 99 Pereira (B105) 2019; 13 Stelzner (B34) 2023; 21 Bilenki (B96) 2005; 175 Jordan (B48) 2017; 24 Dong (B52) 2020; 26 Faris (B40) 2019; 9 Yu (B77) 2009; 182 Di Pietro (B14) 2020; 34 Cheong (B36) 2023; 23 Vollmuth (B89) 2022; 11 Chen (B61) 2017; 2017 Gracey (B63) 2013; 8 Yang (B71) 2021; 12 Arcia Franchini (B6) 2022; 14 Rey-Ladino (B30) 2014; 10 Dolat (B35) 2022; 30 Mukura (B41) 2017; 78 Koprivsek (B87) 2020; 88 Vasilevsky (B72) 2014; 27 Bilenki (B73) 2006; 177 Bai (B98) 2017; 14 Lijek (B19) 2018; 115 Ling (B5) 2022; 477 Arévalo (B80) 2022; 22 Tseng (B47) 1998; 66 Haldar (B23) 2016; 7 Barteneva (B44) 1996; 64 Del Balzo (B54) 2021; 12 Vicetti Miguel (B78) 2017; 114 Rothstein (B104) 2013; 1285 Rother (B112) 2019; 7 |
References_xml | – volume: 147 year: 2021 ident: B84 article-title: Innate lymphoid cell development publication-title: J Allergy Clin Immunol doi: 10.1016/j.jaci.2021.03.009 – volume: 29 year: 2021 ident: B8 article-title: Chlamydia overcomes multiple gastrointestinal barriers to achieve long-lasting colonization publication-title: Trends Microbiol doi: 10.1016/j.tim.2021.03.011 – volume: 12 year: 2016 ident: B39 article-title: Polarized cell division of chlamydia trachomatis publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1005822 – volume: 64 year: 1996 ident: B44 article-title: Role of neutrophils in controlling early stages of a Chlamydia trachomatis infection publication-title: Infection Immun doi: 10.1128/iai.64.11.4830-4833.1996 – volume: 13 year: 2022 ident: B57 article-title: Lncrna Zeb1-As1/Mir-1224-5p / Map4k4 axis regulates mitochondria-mediated Hela cell apoptosis in persistent Chlamydia trachomatis infection publication-title: Virulence doi: 10.1080/21505594.2022.2044666 – volume: 10 year: 2015 ident: B62 article-title: M2 polarization of human macrophages favors survival of the intracellular pathogen chlamydia pneumoniae publication-title: PLoS One doi: 10.1371/journal.pone.0143593 – volume: 182 year: 2009 ident: B77 article-title: Novel Chlamydia muridarum T cell antigens induce protective immunity against lung and genital tract infection in murine models publication-title: J Immunol (Baltimore Md 1950) doi: 10.4049/jimmunol.182.3.1602 – volume: 7 year: 2019 ident: B112 article-title: Modulation of host cell metabolism by Chlamydia trachomatis publication-title: Microbiol Spectr doi: 10.1128/microbiolspec.BAI-0012-2019 – volume: 70 year: 2018 ident: B10 article-title: The role of lipids in host-pathogen interactions publication-title: IUBMB Life doi: 10.1002/iub.1737 – volume: 87 year: 2019 ident: B103 article-title: Splenic innate B1 B cell plasmablasts produce sustained granulocyte-macrophage colony-stimulating factor and interleukin-3 cytokines during murine malaria infections publication-title: Infection Immun doi: 10.1128/iai.00482-19 – volume: 10 year: 2019 ident: B25 article-title: Chlamydia trachomatis lipopolysaccharide evades the canonical and noncanonical inflammatory pathways to subvert innate immunity publication-title: mBio doi: 10.1128/mBio.00595-19 – volume: 88 year: 2020 ident: B86 article-title: Innate lymphoid cells are required for endometrial resistance to Chlamydia trachomatis infection publication-title: Infection Immun doi: 10.1128/iai.00152-20 – volume: 189 year: 1999 ident: B55 article-title: Chlamydia inhibits interferon gamma-inducible major histocompatibility complex class II expression by degradation of upstream stimulatory factor 1 publication-title: J Exp Med doi: 10.1084/jem.189.12.1931 – volume: 21 year: 2023 ident: B34 article-title: Intracellular lifestyle of Chlamydia trachomatis and host-pathogen interactions publication-title: Nat Rev Microbiol doi: 10.1038/s41579-023-00860-y – volume: 11 year: 2021 ident: B92 article-title: Nkt cells contribute to the control of microbial infections publication-title: Front Cell infection Microbiol doi: 10.3389/fcimb.2021.718350 – volume: 298 year: 2022 ident: B12 article-title: Chlamydia trachomatis development requires both host glycolysis and oxidative phosphorylation but has only minor effects on these pathways publication-title: J Biol Chem doi: 10.1016/j.jbc.2022.102338 – volume: 14 year: 2017 ident: B98 article-title: Respective Il-17a production by Γδ T and Th17 cells and its implication in host defense against chlamydial lung infection publication-title: Cell Mol Immunol doi: 10.1038/cmi.2016.53 – volume: 29 year: 2022 ident: B107 article-title: Chlamydia trachomatis inhibits apoptosis in infected cells by targeting the pro-apoptotic proteins Bax and Bak publication-title: Cell Death differentiation doi: 10.1038/s41418-022-00995-0 – volume: 69 year: 1992 ident: B33 article-title: Mechanism of C. Trachomatis attachment to eukaryotic host cells publication-title: Cell doi: 10.1016/0092-8674(92)90296-o – volume: 27 year: 2014 ident: B72 article-title: Genital Chlamydia trachomatis: understanding the roles of innate and adaptive immunity in vaccine research publication-title: Clin Microbiol Rev doi: 10.1128/cmr.00105-13 – volume: 94 year: 2016 ident: B51 article-title: The contribution of chlamydia-specific Cd8+ T cells to upper genital tract pathology publication-title: Immunol Cell Biol doi: 10.1038/icb.2015.74 – volume: 34 year: 2020 ident: B14 article-title: Chlamydia trachomatis elicits Tlr3 expression but disrupts the inflammatory signaling down-modulating Nfκb and Irf3 transcription factors in human Sertoli cells publication-title: J Biol regulators homeostatic Agents doi: 10.23812/20-80-a-29 – volume: 178 year: 2023 ident: B58 article-title: Pgp3 protein of chlamydia trachomatis inhibits apoptosis via Ho-1 upregulation mediated by Pi3k/Akt activation publication-title: Microbial pathogenesis doi: 10.1016/j.micpath.2023.106056 – volume: 10 year: 2016 ident: B88 article-title: Immunohistochemical analysis of scarring trachoma indicates infiltration by natural killer and Undefined Cd45 negative cells publication-title: PLoS Negl Trop Dis doi: 10.1371/journal.pntd.0004734 – volume: 3 start-page: e2018799 year: 2020 ident: B7 article-title: Association of past chlamydia trachomatis infection with miscarriage publication-title: JAMA network Open doi: 10.1001/jamanetworkopen.2020.18799 – volume: 78 year: 2010 ident: B49 article-title: Cd4+ T cells and antibody are required for optimal major outer membrane protein vaccine-induced immunity to Chlamydia muridarum genital infection publication-title: Infection Immun doi: 10.1128/iai.00622-10 – volume: 66 year: 1998 ident: B47 article-title: Role of Nk cells in early host response to chlamydial genital infection publication-title: Infection Immun doi: 10.1128/iai.66.12.5867-5875.1998 – volume: 3 year: 2018 ident: B69 article-title: Chlamydia trachomatis paralyses neutrophils to evade the host innate immune response publication-title: Nat Microbiol doi: 10.1038/s41564-018-0182-y – volume: 13 year: 2019 ident: B105 article-title: B-1 cell-mediated modulation of M1 macrophage profile ameliorates microbicidal functions and disrupt the evasion mechanisms of Encephalitozoon cuniculi publication-title: PLoS Negl Trop Dis doi: 10.1371/journal.pntd.0007674 – volume: 115 year: 2018 ident: B19 article-title: Pathology after chlamydia trachomatis infection is driven by nonprotective immune cells that are distinct from protective populations publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1711356115 – volume: 9 year: 2018 ident: B42 article-title: Role of lactobacilli and lactoferrin in the mucosal cervicovaginal defense publication-title: Front Immunol doi: 10.3389/fimmu.2018.00376 – volume: 80 start-page: 195 year: 2012 ident: B56 article-title: Persistent chlamydia trachomatis infection of hela cells mediates apoptosis resistance through a chlamydia protease-like activity factor-independent mechanism and induces high mobility group box 1 release publication-title: Infection Immun doi: 10.1128/iai.05619-11 – volume: 21 start-page: 73 year: 2019 ident: B60 article-title: Immunobiology of monocytes and macrophages during Chlamydia trachomatis infection publication-title: Microbes infection doi: 10.1016/j.micinf.2018.10.007 – volume: 8 year: 2013 ident: B63 article-title: Intracellular survival and persistence of Chlamydia muridarum is determined by macrophage polarization publication-title: PLoS One doi: 10.1371/journal.pone.0069421 – volume: 145 year: 2021 ident: B79 article-title: Eutopic endometrium from women with endometriosis and Chlamydial endometritis share immunological cell types and DNA repair imbalance: A transcriptome meta-analytical perspective publication-title: J Reprod Immunol doi: 10.1016/j.jri.2021.103307 – volume: 63 year: 2015 ident: B101 article-title: The role of B-1 cells in inflammation publication-title: Immunologic Res doi: 10.1007/s12026-015-8708-3 – volume: 93 year: 2015 ident: B43 article-title: Chemokine-mediated immune responses in the female genital tract mucosa publication-title: Immunol Cell Biol doi: 10.1038/icb.2015.20 – volume: 22 start-page: 171 year: 2022 ident: B80 article-title: Immunohistochemical detection of Chlamydia trachomatis in sexually transmitted infectious proctitis publication-title: BMC Gastroenterol doi: 10.1186/s12876-022-02233-w – volume: 10 year: 2019 ident: B45 article-title: Alternatively activated macrophages are host cells for Chlamydia trachomatis and reverse anti-chlamydial classically activated macrophages publication-title: Front Microbiol doi: 10.3389/fmicb.2019.00919 – volume: 103 year: 2022 ident: B64 article-title: Clearing Chlamydia abortus infection in epithelial cells and primary human macrophages by use of antibiotics and the Mdm2-P53-inhibitor nutlin-3 publication-title: Diagn Microbiol Infect Dis doi: 10.1016/j.diagmicrobio.2022.115715 – volume: 85 year: 2017 ident: B75 article-title: Chlamydia trachomatis cellular exit alters interactions with host dendritic cells publication-title: Infection Immun doi: 10.1128/iai.00046-17 – volume: 12 year: 2016 ident: B90 article-title: Peptide/protein vaccine delivery system based on plga particles publication-title: Hum Vaccines immunotherapeutics doi: 10.1080/21645515.2015.1102804 – volume: 188 year: 1998 ident: B28 article-title: Vaccination against Chlamydial Genital Tract Infection after Immunization with Dendritic Cells Pulsed Ex Vivo with Nonviable Chlamydiae publication-title: J Exp Med doi: 10.1084/jem.188.5.809 – volume: 24 year: 2020 ident: B9 article-title: Hiv, Hpv and Chlamydia trachomatis: impacts on male fertility publication-title: JBRA Assist Reprod doi: 10.5935/1518-0557.20200020 – volume: 17 start-page: 189 year: 2019 ident: B2 article-title: Ocular Chlamydia trachomatis infection: elimination with mass drug administration publication-title: Expert Rev anti-infective Ther doi: 10.1080/14787210.2019.1577136 – volume: 175 year: 2005 ident: B96 article-title: Nk T cell activation promotes Chlamydia trachomatis infection in vivo publication-title: J Immunol (Baltimore Md 1950) doi: 10.4049/jimmunol.175.5.3197 – volume: 12 year: 2021 ident: B37 article-title: A Chlamydial plasmid-dependent secretion system for the delivery of virulence factors to the host cytosol publication-title: mBio doi: 10.1128/mBio.01179-21 – volume: 78 year: 2017 ident: B41 article-title: Chlamydia trachomatis regulates innate immune barrier integrity and mediates cytokine and antimicrobial responses in human uterine Ecc-1 epithelial cells publication-title: Am J Reprod Immunol (New York NY 1989) doi: 10.1111/aji.12764 – volume: 31 year: 2009 ident: B91 article-title: Gammadelta T cells and the lymphoid stress-surveillance response publication-title: Immunity doi: 10.1016/j.immuni.2009.08.006 – volume: 79 year: 2011 ident: B50 article-title: Tumor necrosis factor alpha production from Cd8+ T cells mediates oviduct pathological sequelae following primary genital chlamydia muridarum infection publication-title: Infection Immun doi: 10.1128/iai.05022-11 – volume: 224 start-page: S39 year: 2021 ident: B4 article-title: Pelvic inflammatory disease due to Neisseria gonorrhoeae and Chlamydia trachomatis: immune evasion mechanisms and pathogenic disease pathways publication-title: J Infect Dis doi: 10.1093/infdis/jiab031 – volume: 97 start-page: e13263 year: 2023 ident: B95 article-title: Pathogenic Nkt cells attenuate urogenital Chlamydial clearance and enhance infertility publication-title: Scandinavian J Immunol doi: 10.1111/sji.13263 – volume: 154 start-page: R99 year: 2017 ident: B3 article-title: Male genital tract immune response against Chlamydia trachomatis infection publication-title: Reproduction doi: 10.1530/rep-16-0561 – volume: 24 year: 2017 ident: B48 article-title: The predominant Cd4(+) Th1 cytokine elicited to Chlamydia trachomatis infection in women is tumor necrosis factor alpha and not interferon gamma publication-title: Clin Vaccine Immunol CVI doi: 10.1128/cvi.00010-17 – volume: 285 year: 2010 ident: B16 article-title: Cleavage of the Nf-Kb family protein P65/rela by the chlamydial protease-like activity factor (Cpaf) impairs proinflammatory signaling in cells infected with Chlamydiae publication-title: J Biol Chem doi: 10.1074/jbc.M110.152280 – volume: 5 year: 2014 ident: B18 article-title: The role of the immune response in Chlamydia trachomatis infection of the male genital tract: A double-edged sword publication-title: Front Immunol doi: 10.3389/fimmu.2014.00534 – volume: 12 start-page: 5454 year: 2021 ident: B71 article-title: Chlamydia evasion of neutrophil host defense results in Nlrp3 dependent myeloid-mediated sterile inflammation through the purinergic P2x7 receptor publication-title: Nat Commun doi: 10.1038/s41467-021-25749-3 – volume: 10 year: 2022 ident: B114 article-title: Imaging cellular immunotherapies and immune cell biomarkers: from preclinical studies to patients publication-title: J immunotherapy Cancer doi: 10.1136/jitc-2022-004902 – volume: 7 year: 2016 ident: B100 article-title: B-1 cell heterogeneity and the regulation of natural and antigen-induced Igm production publication-title: Front Immunol doi: 10.3389/fimmu.2016.00324 – volume: 83 year: 2015 ident: B109 article-title: Characterization of Cpaf critical residues and secretion during Chlamydia trachomatis infection publication-title: Infection Immun doi: 10.1128/iai.00275-15 – volume: 45 year: 2005 ident: B46 article-title: Infection of epithelial and dendritic cells by chlamydia trachomatis results in Il-18 and Il-12 production, leading to interferon-gamma production by human natural killer cells publication-title: FEMS Immunol Med Microbiol doi: 10.1016/j.femsim.2005.02.010 – volume: 477 year: 2022 ident: B5 article-title: Fallopian tubal infertility: the result of Chlamydia trachomatis-induced fallopian tubal fibrosis publication-title: Mol Cell Biochem doi: 10.1007/s11010-021-04270-7 – volume: 30 start-page: 1671 year: 2022 ident: B24 article-title: The bacterial effector gard shields Chlamydia trachomatis inclusions from Rnf213-mediated ubiquitylation and destruction publication-title: Cell Host Microbe doi: 10.1016/j.chom.2022.08.008 – volume: 10 year: 2008 ident: B15 article-title: Chladub1 of Chlamydia trachomatis suppresses Nf-Kappab activation and inhibits Ikappabalpha ubiquitination and degradation publication-title: Cell Microbiol doi: 10.1111/j.1462-5822.2008.01178.x – volume: 114 year: 2017 ident: B78 article-title: Il-4-secreting eosinophils promote endometrial stromal cell proliferation and prevent chlamydia-induced upper genital tract damage publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1621253114 – volume: 314 year: 2023 ident: B67 article-title: Microbes and the fate of neutrophils publication-title: Immunol Rev doi: 10.1111/imr.13163 – volume: 8 year: 2017 ident: B65 article-title: Exploiting induced pluripotent stem cell-derived macrophages to unravel host factors influencing Chlamydia trachomatis pathogenesis publication-title: Nat Commun doi: 10.1038/ncomms15013 – volume: 7 year: 2016 ident: B23 article-title: Chlamydia trachomatis is resistant to inclusion Ubiquitination and associated host defense in gamma interferon-primed human epithelial cells publication-title: mBio doi: 10.1128/mBio.01417-16 – volume: 65 start-page: 32 year: 2012 ident: B83 article-title: Modulation of mica on the surface of Chlamydia trachomatis-infected endocervical epithelial cells promotes Nk cell-mediated killing publication-title: FEMS Immunol Med Microbiol doi: 10.1111/j.1574-695X.2012.00930.x – volume: 21 start-page: 799 year: 2012 ident: B22 article-title: Characteristics of the chlamydia trachomatis species - immunopathology and infections publication-title: Adv Clin Exp Med – volume: 21 year: 2020 ident: B82 article-title: Unconventional peptide presentation by classical Mhc class I and implications for T and Nk cell activation publication-title: Int J Mol Sci doi: 10.3390/ijms21207561 – volume: 18 start-page: 27 year: 2017 ident: B76 article-title: The immunoregulatory role of alpha enolase in dendritic cell function during chlamydia infection publication-title: BMC Immunol doi: 10.1186/s12865-017-0212-1 – volume: 13 year: 2022 ident: B27 article-title: Editorial: innate immune cell therapy of cancer publication-title: Front Immunol doi: 10.3389/fimmu.2022.1004415 – volume: 23 start-page: 58 year: 2023 ident: B36 article-title: Chlamydia trachomatis plasmid-encoding Pgp3 protein induces secretion of distinct inflammatory signatures from Hela cervical epithelial cells publication-title: BMC Microbiol doi: 10.1186/s12866-023-02802-3 – volume: 3 year: 2013 ident: B13 article-title: Chlamydial intracellular survival strategies publication-title: Cold Spring Harbor Perspect Med doi: 10.1101/cshperspect.a010256 – volume: 63 year: 2013 ident: B53 article-title: Chlamydia trachomatis infection results in a modest pro-inflammatory cytokine response and a decrease in T cell chemokine secretion in human polarized endocervical epithelial cells publication-title: Cytokine doi: 10.1016/j.cyto.2013.04.022 – volume: 28 start-page: 432 year: 2018 ident: B110 article-title: Chlamydia Pneumoniae hijacks a host autoregulatory Il-1β Loop to drive foam cell formation and accelerate atherosclerosis publication-title: Cell Metab doi: 10.1016/j.cmet.2018.05.027 – volume: 57 start-page: 23 year: 2019 ident: B102 article-title: B-1 cell responses to infections publication-title: Curr Opin Immunol doi: 10.1016/j.coi.2018.12.001 – volume: 202 year: 2019 ident: B11 article-title: Structure and metal binding properties of Chlamydia trachomatis Ytga publication-title: J bacteriology doi: 10.1128/jb.00580-19 – volume: 180 year: 2008 ident: B29 article-title: Immunoproteomic discovery of novel T cell antigens from the obligate intracellular pathogen Chlamydia publication-title: J Immunol (Baltimore Md 1950) doi: 10.4049/jimmunol.180.4.2459 – volume: 12 year: 2021 ident: B54 article-title: Chlamydia trachomatis infection impairs Mhc-I intracellular trafficking and antigen cross-presentation by dendritic cells publication-title: Front Immunol doi: 10.3389/fimmu.2021.662096 – volume: 88 year: 2020 ident: B26 article-title: Chlamydia lipooligosaccharide has varied direct and indirect roles in evading both innate and adaptive host immune responses publication-title: Infection Immun doi: 10.1128/iai.00198-20 – volume: 2017 year: 2017 ident: B61 article-title: Chlamydia muridarum infection of macrophages stimulates Il-1β Secretion and cell death via activation of caspase-1 in an Rip3-independent manner publication-title: BioMed Res Int doi: 10.1155/2017/1592365 – volume: 99 year: 2020 ident: B106 article-title: Microbiome and pathogen interaction with the immune system publication-title: Poultry Sci doi: 10.1016/j.psj.2019.12.011 – volume: 194 year: 2015 ident: B81 article-title: Mast cells play an important role in Chlamydia pneumoniae lung infection by facilitating immune cell recruitment into the airway publication-title: J Immunol (Baltimore Md 1950) doi: 10.4049/jimmunol.1402685 – volume: 10 year: 2022 ident: B59 article-title: Chlamydia trachomatis cell-to-cell spread through tunneling nanotubes publication-title: Microbiol Spectr doi: 10.1128/spectrum.02817-22 – volume: 31 year: 2023 ident: B85 article-title: Regulation of Chlamydial colonization by Ifnγ Delivered via distinct cells publication-title: Trends Microbiol doi: 10.1016/j.tim.2022.09.002 – volume: 9 year: 2019 ident: B40 article-title: Chlamydia trachomatis serovars drive differential production of proinflammatory cytokines and chemokines depending on the type of cell infected publication-title: Front Cell infection Microbiol doi: 10.3389/fcimb.2019.00399 – volume: 12 year: 2021 ident: B70 article-title: Indoleamine 2,3-dioxygenase cannot inhibit Chlamydia trachomatis growth in hl-60 human neutrophil granulocytes publication-title: Front Immunol doi: 10.3389/fimmu.2021.717311 – volume: 14 start-page: 385 year: 2016 ident: B32 article-title: Chlamydia cell biology and pathogenesis publication-title: Nat Rev Microbiol doi: 10.1038/nrmicro.2016.30 – volume: 7 year: 2012 ident: B97 article-title: Interruption of cxcl13-cxcr5 axis increases upper genital tract pathology and activation of Nkt cells following chlamydial genital infection publication-title: PloS One doi: 10.1371/journal.pone.0047487 – volume: 19 year: 2017 ident: B66 article-title: Extrusions are phagocytosed and promote chlamydia survival within macrophages publication-title: Cell Microbiol doi: 10.1111/cmi.12683 – volume: 161 year: 2020 ident: B113 article-title: Hydrogen sulfide: an endogenous regulator of the immune system publication-title: Pharmacol Res doi: 10.1016/j.phrs.2020.105119 – volume: 74 year: 2016 ident: B74 article-title: Conservation of extrusion as an exit mechanism for Chlamydia publication-title: Pathog Dis doi: 10.1093/femspd/ftw093 – volume: 452 year: 2019 ident: B108 article-title: Chlamydia trachomatis plasmid-encoded protein Pgp3 inhibits apoptosis via the Pi3k-Akt-mediated Mdm2-P53 axis publication-title: Mol Cell Biochem doi: 10.1007/s11010-018-3422-9 – volume: 11 year: 2022 ident: B89 article-title: C-myc plays a key role in Ifn-Γ-induced persistence of Chlamydia trachomatis publication-title: eLife doi: 10.7554/eLife.76721 – volume: 16 year: 2014 ident: B111 article-title: Chlamydia pneumoniae and oxidative stress in cardiovascular disease: state of the art and prevention strategies publication-title: Int J Mol Sci doi: 10.3390/ijms16010724 – volume: 10 year: 2018 ident: B68 article-title: Neutrophils and bacterial immune evasion publication-title: J innate Immun doi: 10.1159/000487756 – volume: 88 year: 2020 ident: B87 article-title: Evasion of innate lymphoid cell-regulated gamma interferon responses by Chlamydia muridarum to achieve long-lasting colonization in mouse colon publication-title: Infection Immun doi: 10.1128/iai.00798-19 – volume: 14 year: 2022 ident: B6 article-title: The role of Chlamydia trachomatis in the pathogenesis of cervical cancer publication-title: Cureus doi: 10.7759/cureus.21331 – volume: 12 start-page: 1795 year: 2022 ident: B1 article-title: Chlamydia trachomatis as a current health problem: challenges and opportunities publication-title: Diagnostics (Basel Switzerland) doi: 10.3390/diagnostics12081795 – volume: 26 year: 2020 ident: B52 article-title: Chlamydial-secreted protease chlamydia high temperature requirement protein a (Chtra) degrades human cathelicidin ll-37 and suppresses its anti-chlamydial activity publication-title: Med Sci monitor doi: 10.12659/msm.923909 – volume: 10 year: 2014 ident: B30 article-title: Immunity, immunopathology, and human vaccine development against sexually transmitted Chlamydia trachomatis publication-title: Hum Vaccines immunotherapeutics doi: 10.4161/hv.29683 – volume: 1285 start-page: 97 year: 2013 ident: B104 article-title: Human B-1 cells take the stage publication-title: Ann New York Acad Sci doi: 10.1111/nyas.12137 – volume: 13 year: 2022 ident: B94 article-title: Cross talk between natural killer T and dendritic cells and its impact on T cell responses in infections publication-title: Front Immunol doi: 10.3389/fimmu.2022.837767 – volume: 6 year: 2019 ident: B38 article-title: The multiple functions of the numerous Chlamydia trachomatis secreted proteins: the tip of the Iceberg publication-title: Microbial Cell (Graz Austria) doi: 10.15698/mic2019.09.691 – volume: 173 year: 2022 ident: B17 article-title: The dual role of cytokine responses to Chlamydia trachomatis infection in host pathogen crosstalk publication-title: Microbial pathogenesis doi: 10.1016/j.micpath.2022.105812 – volume: 210 start-page: 13 year: 2021 ident: B20 article-title: Analysis of complement deposition and processing on Chlamydia trachomatis publication-title: Med Microbiol Immunol doi: 10.1007/s00430-020-00695-x – volume: 30 start-page: 1685 year: 2022 ident: B35 article-title: Chlamydia repurposes the actin-binding protein Eps8 to disassemble epithelial tight junctions and promote infection publication-title: Cell Host Microbe doi: 10.1016/j.chom.2022.10.013 – volume: 24 year: 2020 ident: B99 article-title: Il-17a-producing T cells exacerbate fine particulate matter-induced lung inflammation and fibrosis by inhibiting Pi3k/Akt/Mtor-mediated autophagy publication-title: J Cell Mol Med doi: 10.1111/jcmm.15475 – volume: 105 year: 2002 ident: B21 article-title: Fc receptor regulation of protective immunity against Chlamydia trachomatis publication-title: Immunology doi: 10.1046/j.0019-2805.2001.01354.x – volume: 11 year: 2021 ident: B31 article-title: Biological drug and drug delivery-mediated immunotherapy publication-title: Acta Pharm Sin B doi: 10.1016/j.apsb.2020.12.018 – volume: 6 year: 2015 ident: B93 article-title: Dynamics of Nkt-cell responses to chlamydial infection publication-title: Front Immunol doi: 10.3389/fimmu.2015.00233 – volume: 177 year: 2006 ident: B73 article-title: Adoptive transfer of Cd8alpha+ Dendritic cells (Dc) isolated from mice infected with Chlamydia muridarum are more potent in inducing protective immunity than Cd8alpha- Dc publication-title: J Immunol (Baltimore Md 1950) doi: 10.4049/jimmunol.177.10.7067 |
SSID | ssj0000493335 |
Score | 2.424251 |
SecondaryResourceType | review_article |
Snippet | Chlamydia trachomatis
, is a kind of obligate intracellular pathogen. The removal of
C. trachomatis
relies primarily on specific cellular immunity. It is... , is a kind of obligate intracellular pathogen. The removal of relies primarily on specific cellular immunity. It is currently considered that CD4 Th1 cytokine... Chlamydia trachomatis, is a kind of obligate intracellular pathogen. The removal of C. trachomatis relies primarily on specific cellular immunity. It is... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1289644 |
SubjectTerms | CD8-Positive T-Lymphocytes Chlamydia Infections Chlamydia trachomatis Humans immune evasion Immunity, Innate Immunology innate immune cells innate immunity Interferon-gamma Lymphocytes - pathology survival and growth |
SummonAdditionalLinks | – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6VokpcKt6kPORK3FDaOI4T-4BQqagKUntipd4sO5nQRa0X9lF1_z0zSXbFosKJHHJIYsX6xvZ8n5OZAXhb67L2razT1somLXSo0mB1k7aotJfKG9Nw7PDZeXk6Kr5c6IstWJU7GgCc3SntuJ7UaHp1cPtz-YEm_HtWnORvD9vx9fWCpF5eHNBqa8nD34P75JkqnqhnA93_3rNhpZTuY2f-0nTDP3Vp_O_inn_-QvmbTzp5CLsDmRRHvfUfwRbGx7DTl5dcPoGjz3HG2nsmxnE-oVMkYim4LxEF79gLvPG8WybCUhxf0thY0mgR9CauoMJhD09hdPLp6_FpOpRMSGvSufMUK69VoYimhDInNUWrlyVCplpbScyMtz4zVVOXClXIbRsQUSvUwaLOtaqtegbbcRLxBYjgZRXyzJPiogOzIFtpGtSZL0IguycgV0C5esgnzmUtrhzpCgbXdeA6BtcN4Cbwbt3mR59N459Pf2T8109yJuzuwmT6zQ0Ty1niLNoE0tNlXvjGeGl9WxeSf-niSP8E9lfWczRzGFwfcbKYuZylpy1NYRN43ltz_SrS7YpLOCVgNuy80ZfNO3F82WXn5nAO_ly79z96_xIeMCL9ns8r2J5PF_iaWNA8vOmG9i_TZQXl priority: 102 providerName: Scholars Portal |
Title | Insights into innate immune cell evasion by Chlamydia trachomatis |
URI | https://www.ncbi.nlm.nih.gov/pubmed/38333214 https://www.proquest.com/docview/2924996849 https://pubmed.ncbi.nlm.nih.gov/PMC10850350 https://doaj.org/article/921558b523624ad8a19afc4119910254 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEBUlUOglJG2TuF-o0FtwYlmSLR3T0HRbSE8N7E1I9phsSLShu1vYf58Zy7vshtBc6oMOtozEm7FmnqyZYexLo6vGd6LJOyvaXOlQ58HqNu9Aai-kN6al2OHLX9XoSv0c6_FGqS86E5bSAyfgTi3aJG0C8qWqVL41XljfNUrQkR2K5KbVF23eBpm6SX6vlFKnKBlkYfa0m9zdLZAPluoEl2SLbsCWJeoT9j_lZT4-LLlhfS722O7gNvKzNN199gLia_YyFZJcvmFnP-KMWPaMT-J8ik1EF5LTXCJw2pvn8NfTvhgPS35-jVqwRL3gOBLVSqEAh7fs6uLb7_NRPhRHyBtktPMcaq-lkuiQhKpE3oTrlEXXS3a2FlAYb31h6rapJMhQ2i4AgJaggwVdatlYecB24jTCEePBizqUhUduhRcUQXTCtKALr0JACWdMrIByzZA5nApY3DpkEASu68F1BK4bwM3Y8fqd-5Q345-9vxL-656U87q_gZrgBk1wz2lCxj6vpOfwGyFwfYTpYuZKIpm2Mspm7DBJcz0UMnRJxZoyZrbkvDWX7Sdxct3n4abADfox--5_zP49e0WIpN2dD2xn_mcBH9HfmYdPvWpj-30ssL1U5gED5P4X |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Insights+into+innate+immune+cell+evasion+by+Chlamydia+trachomatis&rft.jtitle=Frontiers+in+immunology&rft.au=Xinglv+Wang&rft.au=Hongrong+Wu&rft.au=Chunxia+Fang&rft.au=Zhongyu+Li&rft.date=2024&rft.pub=Frontiers+Media+S.A&rft.eissn=1664-3224&rft.volume=15&rft_id=info:doi/10.3389%2Ffimmu.2024.1289644&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_921558b523624ad8a19afc4119910254 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-3224&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-3224&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-3224&client=summon |