Insights into innate immune cell evasion by Chlamydia trachomatis

Chlamydia trachomatis , is a kind of obligate intracellular pathogen. The removal of C. trachomatis relies primarily on specific cellular immunity. It is currently considered that CD4 + Th1 cytokine responses are the major protective immunity against C. trachomatis infection and reinfection rather t...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in immunology Vol. 15; p. 1289644
Main Authors Wang, Xinglv, Wu, Hongrong, Fang, Chunxia, Li, Zhongyu
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media S.A 2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Chlamydia trachomatis , is a kind of obligate intracellular pathogen. The removal of C. trachomatis relies primarily on specific cellular immunity. It is currently considered that CD4 + Th1 cytokine responses are the major protective immunity against C. trachomatis infection and reinfection rather than CD8 + T cells. The non-specific immunity (innate immunity) also plays an important role in the infection process. To survive inside the cells, the first process that C. trachomatis faces is the innate immune response. As the “sentry” of the body, mast cells attempt to engulf and remove C. trachomatis . Dendritic cells present antigen of C. trachomatis to the “commanders” (T cells) through MHC-I and MHC-II. IFN-γ produced by activated T cells and natural killer cells (NK) further activates macrophages. They form the body’s “combat troops” and produce immunity against C. trachomatis in the tissues and blood. In addition, the role of eosinophils, basophils, innate lymphoid cells (ILCs), natural killer T (NKT) cells, γδT cells and B-1 cells should not be underestimated in the infection of C. trachomatis . The protective role of innate immunity is insufficient, and sexually transmitted diseases (STDs) caused by C. trachomatis infections tend to be insidious and recalcitrant. As a consequence, C. trachomatis has developed a unique evasion mechanism that triggers inflammatory immunopathology and acts as a bridge to protective to pathological adaptive immunity. This review focuses on the recent advances in how C. trachomatis evades various innate immune cells, which contributes to vaccine development and our understanding of the pathophysiologic consequences of C. trachomatis infection.
AbstractList Chlamydia trachomatis, is a kind of obligate intracellular pathogen. The removal of C. trachomatis relies primarily on specific cellular immunity. It is currently considered that CD4+ Th1 cytokine responses are the major protective immunity against C. trachomatis infection and reinfection rather than CD8+ T cells. The non-specific immunity (innate immunity) also plays an important role in the infection process. To survive inside the cells, the first process that C. trachomatis faces is the innate immune response. As the "sentry" of the body, mast cells attempt to engulf and remove C. trachomatis. Dendritic cells present antigen of C. trachomatis to the "commanders" (T cells) through MHC-I and MHC-II. IFN-γ produced by activated T cells and natural killer cells (NK) further activates macrophages. They form the body's "combat troops" and produce immunity against C. trachomatis in the tissues and blood. In addition, the role of eosinophils, basophils, innate lymphoid cells (ILCs), natural killer T (NKT) cells, γδT cells and B-1 cells should not be underestimated in the infection of C. trachomatis. The protective role of innate immunity is insufficient, and sexually transmitted diseases (STDs) caused by C. trachomatis infections tend to be insidious and recalcitrant. As a consequence, C. trachomatis has developed a unique evasion mechanism that triggers inflammatory immunopathology and acts as a bridge to protective to pathological adaptive immunity. This review focuses on the recent advances in how C. trachomatis evades various innate immune cells, which contributes to vaccine development and our understanding of the pathophysiologic consequences of C. trachomatis infection.Chlamydia trachomatis, is a kind of obligate intracellular pathogen. The removal of C. trachomatis relies primarily on specific cellular immunity. It is currently considered that CD4+ Th1 cytokine responses are the major protective immunity against C. trachomatis infection and reinfection rather than CD8+ T cells. The non-specific immunity (innate immunity) also plays an important role in the infection process. To survive inside the cells, the first process that C. trachomatis faces is the innate immune response. As the "sentry" of the body, mast cells attempt to engulf and remove C. trachomatis. Dendritic cells present antigen of C. trachomatis to the "commanders" (T cells) through MHC-I and MHC-II. IFN-γ produced by activated T cells and natural killer cells (NK) further activates macrophages. They form the body's "combat troops" and produce immunity against C. trachomatis in the tissues and blood. In addition, the role of eosinophils, basophils, innate lymphoid cells (ILCs), natural killer T (NKT) cells, γδT cells and B-1 cells should not be underestimated in the infection of C. trachomatis. The protective role of innate immunity is insufficient, and sexually transmitted diseases (STDs) caused by C. trachomatis infections tend to be insidious and recalcitrant. As a consequence, C. trachomatis has developed a unique evasion mechanism that triggers inflammatory immunopathology and acts as a bridge to protective to pathological adaptive immunity. This review focuses on the recent advances in how C. trachomatis evades various innate immune cells, which contributes to vaccine development and our understanding of the pathophysiologic consequences of C. trachomatis infection.
Chlamydia trachomatis , is a kind of obligate intracellular pathogen. The removal of C. trachomatis relies primarily on specific cellular immunity. It is currently considered that CD4 + Th1 cytokine responses are the major protective immunity against C. trachomatis infection and reinfection rather than CD8 + T cells. The non-specific immunity (innate immunity) also plays an important role in the infection process. To survive inside the cells, the first process that C. trachomatis faces is the innate immune response. As the “sentry” of the body, mast cells attempt to engulf and remove C. trachomatis . Dendritic cells present antigen of C. trachomatis to the “commanders” (T cells) through MHC-I and MHC-II. IFN-γ produced by activated T cells and natural killer cells (NK) further activates macrophages. They form the body’s “combat troops” and produce immunity against C. trachomatis in the tissues and blood. In addition, the role of eosinophils, basophils, innate lymphoid cells (ILCs), natural killer T (NKT) cells, γδT cells and B-1 cells should not be underestimated in the infection of C. trachomatis . The protective role of innate immunity is insufficient, and sexually transmitted diseases (STDs) caused by C. trachomatis infections tend to be insidious and recalcitrant. As a consequence, C. trachomatis has developed a unique evasion mechanism that triggers inflammatory immunopathology and acts as a bridge to protective to pathological adaptive immunity. This review focuses on the recent advances in how C. trachomatis evades various innate immune cells, which contributes to vaccine development and our understanding of the pathophysiologic consequences of C. trachomatis infection.
Chlamydia trachomatis, is a kind of obligate intracellular pathogen. The removal of C. trachomatis relies primarily on specific cellular immunity. It is currently considered that CD4+ Th1 cytokine responses are the major protective immunity against C. trachomatis infection and reinfection rather than CD8+ T cells. The non-specific immunity (innate immunity) also plays an important role in the infection process. To survive inside the cells, the first process that C. trachomatis faces is the innate immune response. As the “sentry” of the body, mast cells attempt to engulf and remove C. trachomatis. Dendritic cells present antigen of C. trachomatis to the “commanders” (T cells) through MHC-I and MHC-II. IFN-γ produced by activated T cells and natural killer cells (NK) further activates macrophages. They form the body’s “combat troops” and produce immunity against C. trachomatis in the tissues and blood. In addition, the role of eosinophils, basophils, innate lymphoid cells (ILCs), natural killer T (NKT) cells, γδT cells and B-1 cells should not be underestimated in the infection of C. trachomatis. The protective role of innate immunity is insufficient, and sexually transmitted diseases (STDs) caused by C. trachomatis infections tend to be insidious and recalcitrant. As a consequence, C. trachomatis has developed a unique evasion mechanism that triggers inflammatory immunopathology and acts as a bridge to protective to pathological adaptive immunity. This review focuses on the recent advances in how C. trachomatis evades various innate immune cells, which contributes to vaccine development and our understanding of the pathophysiologic consequences of C. trachomatis infection.
, is a kind of obligate intracellular pathogen. The removal of relies primarily on specific cellular immunity. It is currently considered that CD4 Th1 cytokine responses are the major protective immunity against infection and reinfection rather than CD8 T cells. The non-specific immunity (innate immunity) also plays an important role in the infection process. To survive inside the cells, the first process that faces is the innate immune response. As the "sentry" of the body, mast cells attempt to engulf and remove . Dendritic cells present antigen of to the "commanders" (T cells) through MHC-I and MHC-II. IFN-γ produced by activated T cells and natural killer cells (NK) further activates macrophages. They form the body's "combat troops" and produce immunity against in the tissues and blood. In addition, the role of eosinophils, basophils, innate lymphoid cells (ILCs), natural killer T (NKT) cells, γδT cells and B-1 cells should not be underestimated in the infection of . The protective role of innate immunity is insufficient, and sexually transmitted diseases (STDs) caused by infections tend to be insidious and recalcitrant. As a consequence, has developed a unique evasion mechanism that triggers inflammatory immunopathology and acts as a bridge to protective to pathological adaptive immunity. This review focuses on the recent advances in how evades various innate immune cells, which contributes to vaccine development and our understanding of the pathophysiologic consequences of infection.
Author Li, Zhongyu
Wu, Hongrong
Fang, Chunxia
Wang, Xinglv
AuthorAffiliation Institute of Pathogenic Biology, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, School of Nursing, Hengyang Medical College, University of South China , Hengyang , China
AuthorAffiliation_xml – name: Institute of Pathogenic Biology, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, School of Nursing, Hengyang Medical College, University of South China , Hengyang , China
Author_xml – sequence: 1
  givenname: Xinglv
  surname: Wang
  fullname: Wang, Xinglv
– sequence: 2
  givenname: Hongrong
  surname: Wu
  fullname: Wu, Hongrong
– sequence: 3
  givenname: Chunxia
  surname: Fang
  fullname: Fang, Chunxia
– sequence: 4
  givenname: Zhongyu
  surname: Li
  fullname: Li, Zhongyu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38333214$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1vGyEQhlGVqknd_IEeqj32YncZYA2nKrL6YSlSL-0ZzbKzNtEupAuO5H9fNnaqpIciBCOYeV6Y9y27CDEQY-95vRJCm0-9H8fDCmqQKw7aNFK-Yle8aeRSAMiLZ_Elu07pri5DGiGEesMuhS4BcHnFbrYh-d0-p8qHHMsSMFM1swNVjoahogdMPoaqPVab_YDjsfNY5QndPo6YfXrHXvc4JLo-7wv26-uXn5vvy9sf37abm9ulk43JS1qjElI0XLUNgAbsOqPWSvRmzanWaLDW6841gkQLpm-JSAlSrSEFSjgjFmx74nYR7-z95Eecjjait48HcdpZnLJ3A1kDXCndKhANSOw0coO9k5wbw2tQsrA-n1j3h3akzlEoHxpeQF_eBL-3u_hgea1VLcpcsI9nwhR_HyhlO_o09wsDxUOyYEAa02g5P_zDc7G_Kk8mlAR9SnBTTGmi3jqfS2vjrO2HImpny-2j5Xa23J4tL6XwT-kT_T9FfwBJxq80
CitedBy_id crossref_primary_10_3390_microorganisms13030553
crossref_primary_10_3390_pathogens14020112
crossref_primary_10_3389_fimmu_2024_1460607
crossref_primary_10_3389_fimmu_2024_1396114
crossref_primary_10_1007_s00203_024_04231_w
crossref_primary_10_3390_vaccines12080863
crossref_primary_10_7717_peerj_18313
Cites_doi 10.1016/j.jaci.2021.03.009
10.1016/j.tim.2021.03.011
10.1371/journal.ppat.1005822
10.1128/iai.64.11.4830-4833.1996
10.1080/21505594.2022.2044666
10.1371/journal.pone.0143593
10.4049/jimmunol.182.3.1602
10.1128/microbiolspec.BAI-0012-2019
10.1002/iub.1737
10.1128/iai.00482-19
10.1128/mBio.00595-19
10.1128/iai.00152-20
10.1084/jem.189.12.1931
10.1038/s41579-023-00860-y
10.3389/fcimb.2021.718350
10.1016/j.jbc.2022.102338
10.1038/cmi.2016.53
10.1038/s41418-022-00995-0
10.1016/0092-8674(92)90296-o
10.1128/cmr.00105-13
10.1038/icb.2015.74
10.23812/20-80-a-29
10.1016/j.micpath.2023.106056
10.1371/journal.pntd.0004734
10.1001/jamanetworkopen.2020.18799
10.1128/iai.00622-10
10.1128/iai.66.12.5867-5875.1998
10.1038/s41564-018-0182-y
10.1371/journal.pntd.0007674
10.1073/pnas.1711356115
10.3389/fimmu.2018.00376
10.1128/iai.05619-11
10.1016/j.micinf.2018.10.007
10.1371/journal.pone.0069421
10.1016/j.jri.2021.103307
10.1007/s12026-015-8708-3
10.1038/icb.2015.20
10.1186/s12876-022-02233-w
10.3389/fmicb.2019.00919
10.1016/j.diagmicrobio.2022.115715
10.1128/iai.00046-17
10.1080/21645515.2015.1102804
10.1084/jem.188.5.809
10.5935/1518-0557.20200020
10.1080/14787210.2019.1577136
10.4049/jimmunol.175.5.3197
10.1128/mBio.01179-21
10.1111/aji.12764
10.1016/j.immuni.2009.08.006
10.1128/iai.05022-11
10.1093/infdis/jiab031
10.1111/sji.13263
10.1530/rep-16-0561
10.1128/cvi.00010-17
10.1074/jbc.M110.152280
10.3389/fimmu.2014.00534
10.1038/s41467-021-25749-3
10.1136/jitc-2022-004902
10.3389/fimmu.2016.00324
10.1128/iai.00275-15
10.1016/j.femsim.2005.02.010
10.1007/s11010-021-04270-7
10.1016/j.chom.2022.08.008
10.1111/j.1462-5822.2008.01178.x
10.1073/pnas.1621253114
10.1111/imr.13163
10.1038/ncomms15013
10.1128/mBio.01417-16
10.1111/j.1574-695X.2012.00930.x
10.3390/ijms21207561
10.1186/s12865-017-0212-1
10.3389/fimmu.2022.1004415
10.1186/s12866-023-02802-3
10.1101/cshperspect.a010256
10.1016/j.cyto.2013.04.022
10.1016/j.cmet.2018.05.027
10.1016/j.coi.2018.12.001
10.1128/jb.00580-19
10.4049/jimmunol.180.4.2459
10.3389/fimmu.2021.662096
10.1128/iai.00198-20
10.1155/2017/1592365
10.1016/j.psj.2019.12.011
10.4049/jimmunol.1402685
10.1128/spectrum.02817-22
10.1016/j.tim.2022.09.002
10.3389/fcimb.2019.00399
10.3389/fimmu.2021.717311
10.1038/nrmicro.2016.30
10.1371/journal.pone.0047487
10.1111/cmi.12683
10.1016/j.phrs.2020.105119
10.1093/femspd/ftw093
10.1007/s11010-018-3422-9
10.7554/eLife.76721
10.3390/ijms16010724
10.1159/000487756
10.1128/iai.00798-19
10.7759/cureus.21331
10.3390/diagnostics12081795
10.12659/msm.923909
10.4161/hv.29683
10.1111/nyas.12137
10.3389/fimmu.2022.837767
10.15698/mic2019.09.691
10.1016/j.micpath.2022.105812
10.1007/s00430-020-00695-x
10.1016/j.chom.2022.10.013
10.1111/jcmm.15475
10.1046/j.0019-2805.2001.01354.x
10.1016/j.apsb.2020.12.018
10.3389/fimmu.2015.00233
10.4049/jimmunol.177.10.7067
ContentType Journal Article
Copyright Copyright © 2024 Wang, Wu, Fang and Li.
Copyright © 2024 Wang, Wu, Fang and Li 2024 Wang, Wu, Fang and Li
Copyright_xml – notice: Copyright © 2024 Wang, Wu, Fang and Li.
– notice: Copyright © 2024 Wang, Wu, Fang and Li 2024 Wang, Wu, Fang and Li
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOA
DOI 10.3389/fimmu.2024.1289644
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef


MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1664-3224
ExternalDocumentID oai_doaj_org_article_921558b523624ad8a19afc4119910254
PMC10850350
38333214
10_3389_fimmu_2024_1289644
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GroupedDBID 53G
5VS
9T4
AAFWJ
AAKDD
AAYXX
ACGFO
ACGFS
ACXDI
ADBBV
ADRAZ
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
CITATION
DIK
EBS
EMOBN
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
OK1
PGMZT
RNS
RPM
CGR
CUY
CVF
ECM
EIF
IPNFZ
NPM
RIG
7X8
5PM
ID FETCH-LOGICAL-c469t-e7a5343615b62282add95753f971e08a9a087dc63e3b29fbeee53e5b9e5253c93
IEDL.DBID DOA
ISSN 1664-3224
IngestDate Wed Aug 27 01:29:31 EDT 2025
Thu Aug 21 18:35:22 EDT 2025
Fri Jul 11 09:13:18 EDT 2025
Mon Jul 21 06:06:31 EDT 2025
Thu Apr 24 23:06:22 EDT 2025
Tue Jul 01 03:33:47 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Chlamydia trachomatis
immune evasion
innate immunity
innate immune cells
survival and growth
Language English
License Copyright © 2024 Wang, Wu, Fang and Li.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c469t-e7a5343615b62282add95753f971e08a9a087dc63e3b29fbeee53e5b9e5253c93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
Roshan Pais, Rajiv Gandhi University of Health Sciences, India
Edited by: Lei Song, First Affiliated Hospital of Jilin University, China
Reviewed by: Karthika Rajeeve, Rajiv Gandhi Centre for Biotechnology, India
OpenAccessLink https://doaj.org/article/921558b523624ad8a19afc4119910254
PMID 38333214
PQID 2924996849
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_921558b523624ad8a19afc4119910254
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10850350
proquest_miscellaneous_2924996849
pubmed_primary_38333214
crossref_citationtrail_10_3389_fimmu_2024_1289644
crossref_primary_10_3389_fimmu_2024_1289644
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-00-00
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 2024-00-00
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in immunology
PublicationTitleAlternate Front Immunol
PublicationYear 2024
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Rodrigues (B1) 2022; 12
Luo (B11) 2019; 202
Lausen (B60) 2019; 21
Darville (B4) 2021; 224
Goulart (B9) 2020; 24
Kobayashi (B67) 2023; 314
Zuck (B74) 2016; 74
Bugalhão (B38) 2019; 6
Deruaz (B43) 2015; 93
Hook (B46) 2005; 45
Kobayashi (B68) 2018; 10
Zhong (B8) 2021; 29
Vogt (B92) 2021; 11
Volpe (B114) 2022; 10
Zhao (B94) 2022; 13
Wang (B26) 2020; 88
Christian (B16) 2010; 285
Ryans (B76) 2017; 18
Zhong (B55) 1999; 189
Sherrid (B75) 2017; 85
Yeung (B65) 2017; 8
Chin (B103) 2019; 87
Shu (B58) 2023; 178
Diensthuber (B64) 2022; 103
Zhang (B33) 1992; 69
Min (B17) 2022; 173
Mackern-Oberti (B3) 2017; 154
N'Gadjaga (B12) 2022; 298
Waguia Kontchou (B107) 2022; 29
Virok (B70) 2021; 12
Lei (B37) 2021; 12
Winner (B85) 2023; 31
Elwell (B32) 2016; 14
Smith (B102) 2019; 57
Zajonc (B82) 2020; 21
Hu (B88) 2016; 10
Xiao (B31) 2021; 11
Shekhar (B93) 2015; 6
Redgrove (B18) 2014; 5
Buchacher (B62) 2015; 10
Rajeeve (B69) 2018; 3
Wolle (B2) 2019; 17
Moore (B21) 2002; 105
Vlcek (B51) 2016; 94
Luo (B57) 2022; 13
Rödel (B56) 2012; 80
Di Pietro (B111) 2014; 16
Abdelrahman (B39) 2016; 12
Aziz (B101) 2015; 63
Karunakaran (B29) 2008; 180
Ibana (B83) 2012; 65
Buckner (B53) 2013; 63
Dilek (B113) 2020; 161
Jiang (B97) 2012; 7
Horne (B7) 2020; 3
Tietzel (B45) 2019; 10
Zou (B108) 2019; 452
Allahyari (B90) 2016; 12
Ghaedi (B84) 2021; 147
Walpole (B10) 2018; 70
Hayday (B91) 2009; 31
Chiba (B81) 2015; 194
Farris (B49) 2010; 78
Xu (B86) 2020; 88
Bastidas (B13) 2013; 3
Khatwani (B27) 2022; 13
Tumurkhuu (B110) 2018; 28
Poli-Neto (B79) 2021; 145
Lausen (B20) 2021; 210
Cong (B99) 2020; 24
Armitage (B95) 2023; 97
Walsh (B24) 2022; 30
Yang (B109) 2015; 83
Choroszy-Król (B22) 2012; 21
Su (B28) 1998; 188
Jahnke (B59) 2022; 10
Valenti (B42) 2018; 9
Baumgarth (B100) 2016; 7
Yang (B25) 2019; 10
Murthy (B50) 2011; 79
Zuck (B66) 2017; 19
Le Negrate (B15) 2008; 10
Kogut (B106) 2020; 99
Pereira (B105) 2019; 13
Stelzner (B34) 2023; 21
Bilenki (B96) 2005; 175
Jordan (B48) 2017; 24
Dong (B52) 2020; 26
Faris (B40) 2019; 9
Yu (B77) 2009; 182
Di Pietro (B14) 2020; 34
Cheong (B36) 2023; 23
Vollmuth (B89) 2022; 11
Chen (B61) 2017; 2017
Gracey (B63) 2013; 8
Yang (B71) 2021; 12
Arcia Franchini (B6) 2022; 14
Rey-Ladino (B30) 2014; 10
Dolat (B35) 2022; 30
Mukura (B41) 2017; 78
Koprivsek (B87) 2020; 88
Vasilevsky (B72) 2014; 27
Bilenki (B73) 2006; 177
Bai (B98) 2017; 14
Lijek (B19) 2018; 115
Ling (B5) 2022; 477
Arévalo (B80) 2022; 22
Tseng (B47) 1998; 66
Haldar (B23) 2016; 7
Barteneva (B44) 1996; 64
Del Balzo (B54) 2021; 12
Vicetti Miguel (B78) 2017; 114
Rothstein (B104) 2013; 1285
Rother (B112) 2019; 7
References_xml – volume: 147
  year: 2021
  ident: B84
  article-title: Innate lymphoid cell development
  publication-title: J Allergy Clin Immunol
  doi: 10.1016/j.jaci.2021.03.009
– volume: 29
  year: 2021
  ident: B8
  article-title: Chlamydia overcomes multiple gastrointestinal barriers to achieve long-lasting colonization
  publication-title: Trends Microbiol
  doi: 10.1016/j.tim.2021.03.011
– volume: 12
  year: 2016
  ident: B39
  article-title: Polarized cell division of chlamydia trachomatis
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1005822
– volume: 64
  year: 1996
  ident: B44
  article-title: Role of neutrophils in controlling early stages of a Chlamydia trachomatis infection
  publication-title: Infection Immun
  doi: 10.1128/iai.64.11.4830-4833.1996
– volume: 13
  year: 2022
  ident: B57
  article-title: Lncrna Zeb1-As1/Mir-1224-5p / Map4k4 axis regulates mitochondria-mediated Hela cell apoptosis in persistent Chlamydia trachomatis infection
  publication-title: Virulence
  doi: 10.1080/21505594.2022.2044666
– volume: 10
  year: 2015
  ident: B62
  article-title: M2 polarization of human macrophages favors survival of the intracellular pathogen chlamydia pneumoniae
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0143593
– volume: 182
  year: 2009
  ident: B77
  article-title: Novel Chlamydia muridarum T cell antigens induce protective immunity against lung and genital tract infection in murine models
  publication-title: J Immunol (Baltimore Md 1950)
  doi: 10.4049/jimmunol.182.3.1602
– volume: 7
  year: 2019
  ident: B112
  article-title: Modulation of host cell metabolism by Chlamydia trachomatis
  publication-title: Microbiol Spectr
  doi: 10.1128/microbiolspec.BAI-0012-2019
– volume: 70
  year: 2018
  ident: B10
  article-title: The role of lipids in host-pathogen interactions
  publication-title: IUBMB Life
  doi: 10.1002/iub.1737
– volume: 87
  year: 2019
  ident: B103
  article-title: Splenic innate B1 B cell plasmablasts produce sustained granulocyte-macrophage colony-stimulating factor and interleukin-3 cytokines during murine malaria infections
  publication-title: Infection Immun
  doi: 10.1128/iai.00482-19
– volume: 10
  year: 2019
  ident: B25
  article-title: Chlamydia trachomatis lipopolysaccharide evades the canonical and noncanonical inflammatory pathways to subvert innate immunity
  publication-title: mBio
  doi: 10.1128/mBio.00595-19
– volume: 88
  year: 2020
  ident: B86
  article-title: Innate lymphoid cells are required for endometrial resistance to Chlamydia trachomatis infection
  publication-title: Infection Immun
  doi: 10.1128/iai.00152-20
– volume: 189
  year: 1999
  ident: B55
  article-title: Chlamydia inhibits interferon gamma-inducible major histocompatibility complex class II expression by degradation of upstream stimulatory factor 1
  publication-title: J Exp Med
  doi: 10.1084/jem.189.12.1931
– volume: 21
  year: 2023
  ident: B34
  article-title: Intracellular lifestyle of Chlamydia trachomatis and host-pathogen interactions
  publication-title: Nat Rev Microbiol
  doi: 10.1038/s41579-023-00860-y
– volume: 11
  year: 2021
  ident: B92
  article-title: Nkt cells contribute to the control of microbial infections
  publication-title: Front Cell infection Microbiol
  doi: 10.3389/fcimb.2021.718350
– volume: 298
  year: 2022
  ident: B12
  article-title: Chlamydia trachomatis development requires both host glycolysis and oxidative phosphorylation but has only minor effects on these pathways
  publication-title: J Biol Chem
  doi: 10.1016/j.jbc.2022.102338
– volume: 14
  year: 2017
  ident: B98
  article-title: Respective Il-17a production by Γδ T and Th17 cells and its implication in host defense against chlamydial lung infection
  publication-title: Cell Mol Immunol
  doi: 10.1038/cmi.2016.53
– volume: 29
  year: 2022
  ident: B107
  article-title: Chlamydia trachomatis inhibits apoptosis in infected cells by targeting the pro-apoptotic proteins Bax and Bak
  publication-title: Cell Death differentiation
  doi: 10.1038/s41418-022-00995-0
– volume: 69
  year: 1992
  ident: B33
  article-title: Mechanism of C. Trachomatis attachment to eukaryotic host cells
  publication-title: Cell
  doi: 10.1016/0092-8674(92)90296-o
– volume: 27
  year: 2014
  ident: B72
  article-title: Genital Chlamydia trachomatis: understanding the roles of innate and adaptive immunity in vaccine research
  publication-title: Clin Microbiol Rev
  doi: 10.1128/cmr.00105-13
– volume: 94
  year: 2016
  ident: B51
  article-title: The contribution of chlamydia-specific Cd8+ T cells to upper genital tract pathology
  publication-title: Immunol Cell Biol
  doi: 10.1038/icb.2015.74
– volume: 34
  year: 2020
  ident: B14
  article-title: Chlamydia trachomatis elicits Tlr3 expression but disrupts the inflammatory signaling down-modulating Nfκb and Irf3 transcription factors in human Sertoli cells
  publication-title: J Biol regulators homeostatic Agents
  doi: 10.23812/20-80-a-29
– volume: 178
  year: 2023
  ident: B58
  article-title: Pgp3 protein of chlamydia trachomatis inhibits apoptosis via Ho-1 upregulation mediated by Pi3k/Akt activation
  publication-title: Microbial pathogenesis
  doi: 10.1016/j.micpath.2023.106056
– volume: 10
  year: 2016
  ident: B88
  article-title: Immunohistochemical analysis of scarring trachoma indicates infiltration by natural killer and Undefined Cd45 negative cells
  publication-title: PLoS Negl Trop Dis
  doi: 10.1371/journal.pntd.0004734
– volume: 3
  start-page: e2018799
  year: 2020
  ident: B7
  article-title: Association of past chlamydia trachomatis infection with miscarriage
  publication-title: JAMA network Open
  doi: 10.1001/jamanetworkopen.2020.18799
– volume: 78
  year: 2010
  ident: B49
  article-title: Cd4+ T cells and antibody are required for optimal major outer membrane protein vaccine-induced immunity to Chlamydia muridarum genital infection
  publication-title: Infection Immun
  doi: 10.1128/iai.00622-10
– volume: 66
  year: 1998
  ident: B47
  article-title: Role of Nk cells in early host response to chlamydial genital infection
  publication-title: Infection Immun
  doi: 10.1128/iai.66.12.5867-5875.1998
– volume: 3
  year: 2018
  ident: B69
  article-title: Chlamydia trachomatis paralyses neutrophils to evade the host innate immune response
  publication-title: Nat Microbiol
  doi: 10.1038/s41564-018-0182-y
– volume: 13
  year: 2019
  ident: B105
  article-title: B-1 cell-mediated modulation of M1 macrophage profile ameliorates microbicidal functions and disrupt the evasion mechanisms of Encephalitozoon cuniculi
  publication-title: PLoS Negl Trop Dis
  doi: 10.1371/journal.pntd.0007674
– volume: 115
  year: 2018
  ident: B19
  article-title: Pathology after chlamydia trachomatis infection is driven by nonprotective immune cells that are distinct from protective populations
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1711356115
– volume: 9
  year: 2018
  ident: B42
  article-title: Role of lactobacilli and lactoferrin in the mucosal cervicovaginal defense
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2018.00376
– volume: 80
  start-page: 195
  year: 2012
  ident: B56
  article-title: Persistent chlamydia trachomatis infection of hela cells mediates apoptosis resistance through a chlamydia protease-like activity factor-independent mechanism and induces high mobility group box 1 release
  publication-title: Infection Immun
  doi: 10.1128/iai.05619-11
– volume: 21
  start-page: 73
  year: 2019
  ident: B60
  article-title: Immunobiology of monocytes and macrophages during Chlamydia trachomatis infection
  publication-title: Microbes infection
  doi: 10.1016/j.micinf.2018.10.007
– volume: 8
  year: 2013
  ident: B63
  article-title: Intracellular survival and persistence of Chlamydia muridarum is determined by macrophage polarization
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0069421
– volume: 145
  year: 2021
  ident: B79
  article-title: Eutopic endometrium from women with endometriosis and Chlamydial endometritis share immunological cell types and DNA repair imbalance: A transcriptome meta-analytical perspective
  publication-title: J Reprod Immunol
  doi: 10.1016/j.jri.2021.103307
– volume: 63
  year: 2015
  ident: B101
  article-title: The role of B-1 cells in inflammation
  publication-title: Immunologic Res
  doi: 10.1007/s12026-015-8708-3
– volume: 93
  year: 2015
  ident: B43
  article-title: Chemokine-mediated immune responses in the female genital tract mucosa
  publication-title: Immunol Cell Biol
  doi: 10.1038/icb.2015.20
– volume: 22
  start-page: 171
  year: 2022
  ident: B80
  article-title: Immunohistochemical detection of Chlamydia trachomatis in sexually transmitted infectious proctitis
  publication-title: BMC Gastroenterol
  doi: 10.1186/s12876-022-02233-w
– volume: 10
  year: 2019
  ident: B45
  article-title: Alternatively activated macrophages are host cells for Chlamydia trachomatis and reverse anti-chlamydial classically activated macrophages
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2019.00919
– volume: 103
  year: 2022
  ident: B64
  article-title: Clearing Chlamydia abortus infection in epithelial cells and primary human macrophages by use of antibiotics and the Mdm2-P53-inhibitor nutlin-3
  publication-title: Diagn Microbiol Infect Dis
  doi: 10.1016/j.diagmicrobio.2022.115715
– volume: 85
  year: 2017
  ident: B75
  article-title: Chlamydia trachomatis cellular exit alters interactions with host dendritic cells
  publication-title: Infection Immun
  doi: 10.1128/iai.00046-17
– volume: 12
  year: 2016
  ident: B90
  article-title: Peptide/protein vaccine delivery system based on plga particles
  publication-title: Hum Vaccines immunotherapeutics
  doi: 10.1080/21645515.2015.1102804
– volume: 188
  year: 1998
  ident: B28
  article-title: Vaccination against Chlamydial Genital Tract Infection after Immunization with Dendritic Cells Pulsed Ex Vivo with Nonviable Chlamydiae
  publication-title: J Exp Med
  doi: 10.1084/jem.188.5.809
– volume: 24
  year: 2020
  ident: B9
  article-title: Hiv, Hpv and Chlamydia trachomatis: impacts on male fertility
  publication-title: JBRA Assist Reprod
  doi: 10.5935/1518-0557.20200020
– volume: 17
  start-page: 189
  year: 2019
  ident: B2
  article-title: Ocular Chlamydia trachomatis infection: elimination with mass drug administration
  publication-title: Expert Rev anti-infective Ther
  doi: 10.1080/14787210.2019.1577136
– volume: 175
  year: 2005
  ident: B96
  article-title: Nk T cell activation promotes Chlamydia trachomatis infection in vivo
  publication-title: J Immunol (Baltimore Md 1950)
  doi: 10.4049/jimmunol.175.5.3197
– volume: 12
  year: 2021
  ident: B37
  article-title: A Chlamydial plasmid-dependent secretion system for the delivery of virulence factors to the host cytosol
  publication-title: mBio
  doi: 10.1128/mBio.01179-21
– volume: 78
  year: 2017
  ident: B41
  article-title: Chlamydia trachomatis regulates innate immune barrier integrity and mediates cytokine and antimicrobial responses in human uterine Ecc-1 epithelial cells
  publication-title: Am J Reprod Immunol (New York NY 1989)
  doi: 10.1111/aji.12764
– volume: 31
  year: 2009
  ident: B91
  article-title: Gammadelta T cells and the lymphoid stress-surveillance response
  publication-title: Immunity
  doi: 10.1016/j.immuni.2009.08.006
– volume: 79
  year: 2011
  ident: B50
  article-title: Tumor necrosis factor alpha production from Cd8+ T cells mediates oviduct pathological sequelae following primary genital chlamydia muridarum infection
  publication-title: Infection Immun
  doi: 10.1128/iai.05022-11
– volume: 224
  start-page: S39
  year: 2021
  ident: B4
  article-title: Pelvic inflammatory disease due to Neisseria gonorrhoeae and Chlamydia trachomatis: immune evasion mechanisms and pathogenic disease pathways
  publication-title: J Infect Dis
  doi: 10.1093/infdis/jiab031
– volume: 97
  start-page: e13263
  year: 2023
  ident: B95
  article-title: Pathogenic Nkt cells attenuate urogenital Chlamydial clearance and enhance infertility
  publication-title: Scandinavian J Immunol
  doi: 10.1111/sji.13263
– volume: 154
  start-page: R99
  year: 2017
  ident: B3
  article-title: Male genital tract immune response against Chlamydia trachomatis infection
  publication-title: Reproduction
  doi: 10.1530/rep-16-0561
– volume: 24
  year: 2017
  ident: B48
  article-title: The predominant Cd4(+) Th1 cytokine elicited to Chlamydia trachomatis infection in women is tumor necrosis factor alpha and not interferon gamma
  publication-title: Clin Vaccine Immunol CVI
  doi: 10.1128/cvi.00010-17
– volume: 285
  year: 2010
  ident: B16
  article-title: Cleavage of the Nf-Kb family protein P65/rela by the chlamydial protease-like activity factor (Cpaf) impairs proinflammatory signaling in cells infected with Chlamydiae
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M110.152280
– volume: 5
  year: 2014
  ident: B18
  article-title: The role of the immune response in Chlamydia trachomatis infection of the male genital tract: A double-edged sword
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2014.00534
– volume: 12
  start-page: 5454
  year: 2021
  ident: B71
  article-title: Chlamydia evasion of neutrophil host defense results in Nlrp3 dependent myeloid-mediated sterile inflammation through the purinergic P2x7 receptor
  publication-title: Nat Commun
  doi: 10.1038/s41467-021-25749-3
– volume: 10
  year: 2022
  ident: B114
  article-title: Imaging cellular immunotherapies and immune cell biomarkers: from preclinical studies to patients
  publication-title: J immunotherapy Cancer
  doi: 10.1136/jitc-2022-004902
– volume: 7
  year: 2016
  ident: B100
  article-title: B-1 cell heterogeneity and the regulation of natural and antigen-induced Igm production
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2016.00324
– volume: 83
  year: 2015
  ident: B109
  article-title: Characterization of Cpaf critical residues and secretion during Chlamydia trachomatis infection
  publication-title: Infection Immun
  doi: 10.1128/iai.00275-15
– volume: 45
  year: 2005
  ident: B46
  article-title: Infection of epithelial and dendritic cells by chlamydia trachomatis results in Il-18 and Il-12 production, leading to interferon-gamma production by human natural killer cells
  publication-title: FEMS Immunol Med Microbiol
  doi: 10.1016/j.femsim.2005.02.010
– volume: 477
  year: 2022
  ident: B5
  article-title: Fallopian tubal infertility: the result of Chlamydia trachomatis-induced fallopian tubal fibrosis
  publication-title: Mol Cell Biochem
  doi: 10.1007/s11010-021-04270-7
– volume: 30
  start-page: 1671
  year: 2022
  ident: B24
  article-title: The bacterial effector gard shields Chlamydia trachomatis inclusions from Rnf213-mediated ubiquitylation and destruction
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2022.08.008
– volume: 10
  year: 2008
  ident: B15
  article-title: Chladub1 of Chlamydia trachomatis suppresses Nf-Kappab activation and inhibits Ikappabalpha ubiquitination and degradation
  publication-title: Cell Microbiol
  doi: 10.1111/j.1462-5822.2008.01178.x
– volume: 114
  year: 2017
  ident: B78
  article-title: Il-4-secreting eosinophils promote endometrial stromal cell proliferation and prevent chlamydia-induced upper genital tract damage
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1621253114
– volume: 314
  year: 2023
  ident: B67
  article-title: Microbes and the fate of neutrophils
  publication-title: Immunol Rev
  doi: 10.1111/imr.13163
– volume: 8
  year: 2017
  ident: B65
  article-title: Exploiting induced pluripotent stem cell-derived macrophages to unravel host factors influencing Chlamydia trachomatis pathogenesis
  publication-title: Nat Commun
  doi: 10.1038/ncomms15013
– volume: 7
  year: 2016
  ident: B23
  article-title: Chlamydia trachomatis is resistant to inclusion Ubiquitination and associated host defense in gamma interferon-primed human epithelial cells
  publication-title: mBio
  doi: 10.1128/mBio.01417-16
– volume: 65
  start-page: 32
  year: 2012
  ident: B83
  article-title: Modulation of mica on the surface of Chlamydia trachomatis-infected endocervical epithelial cells promotes Nk cell-mediated killing
  publication-title: FEMS Immunol Med Microbiol
  doi: 10.1111/j.1574-695X.2012.00930.x
– volume: 21
  start-page: 799
  year: 2012
  ident: B22
  article-title: Characteristics of the chlamydia trachomatis species - immunopathology and infections
  publication-title: Adv Clin Exp Med
– volume: 21
  year: 2020
  ident: B82
  article-title: Unconventional peptide presentation by classical Mhc class I and implications for T and Nk cell activation
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms21207561
– volume: 18
  start-page: 27
  year: 2017
  ident: B76
  article-title: The immunoregulatory role of alpha enolase in dendritic cell function during chlamydia infection
  publication-title: BMC Immunol
  doi: 10.1186/s12865-017-0212-1
– volume: 13
  year: 2022
  ident: B27
  article-title: Editorial: innate immune cell therapy of cancer
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2022.1004415
– volume: 23
  start-page: 58
  year: 2023
  ident: B36
  article-title: Chlamydia trachomatis plasmid-encoding Pgp3 protein induces secretion of distinct inflammatory signatures from Hela cervical epithelial cells
  publication-title: BMC Microbiol
  doi: 10.1186/s12866-023-02802-3
– volume: 3
  year: 2013
  ident: B13
  article-title: Chlamydial intracellular survival strategies
  publication-title: Cold Spring Harbor Perspect Med
  doi: 10.1101/cshperspect.a010256
– volume: 63
  year: 2013
  ident: B53
  article-title: Chlamydia trachomatis infection results in a modest pro-inflammatory cytokine response and a decrease in T cell chemokine secretion in human polarized endocervical epithelial cells
  publication-title: Cytokine
  doi: 10.1016/j.cyto.2013.04.022
– volume: 28
  start-page: 432
  year: 2018
  ident: B110
  article-title: Chlamydia Pneumoniae hijacks a host autoregulatory Il-1β Loop to drive foam cell formation and accelerate atherosclerosis
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2018.05.027
– volume: 57
  start-page: 23
  year: 2019
  ident: B102
  article-title: B-1 cell responses to infections
  publication-title: Curr Opin Immunol
  doi: 10.1016/j.coi.2018.12.001
– volume: 202
  year: 2019
  ident: B11
  article-title: Structure and metal binding properties of Chlamydia trachomatis Ytga
  publication-title: J bacteriology
  doi: 10.1128/jb.00580-19
– volume: 180
  year: 2008
  ident: B29
  article-title: Immunoproteomic discovery of novel T cell antigens from the obligate intracellular pathogen Chlamydia
  publication-title: J Immunol (Baltimore Md 1950)
  doi: 10.4049/jimmunol.180.4.2459
– volume: 12
  year: 2021
  ident: B54
  article-title: Chlamydia trachomatis infection impairs Mhc-I intracellular trafficking and antigen cross-presentation by dendritic cells
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2021.662096
– volume: 88
  year: 2020
  ident: B26
  article-title: Chlamydia lipooligosaccharide has varied direct and indirect roles in evading both innate and adaptive host immune responses
  publication-title: Infection Immun
  doi: 10.1128/iai.00198-20
– volume: 2017
  year: 2017
  ident: B61
  article-title: Chlamydia muridarum infection of macrophages stimulates Il-1β Secretion and cell death via activation of caspase-1 in an Rip3-independent manner
  publication-title: BioMed Res Int
  doi: 10.1155/2017/1592365
– volume: 99
  year: 2020
  ident: B106
  article-title: Microbiome and pathogen interaction with the immune system
  publication-title: Poultry Sci
  doi: 10.1016/j.psj.2019.12.011
– volume: 194
  year: 2015
  ident: B81
  article-title: Mast cells play an important role in Chlamydia pneumoniae lung infection by facilitating immune cell recruitment into the airway
  publication-title: J Immunol (Baltimore Md 1950)
  doi: 10.4049/jimmunol.1402685
– volume: 10
  year: 2022
  ident: B59
  article-title: Chlamydia trachomatis cell-to-cell spread through tunneling nanotubes
  publication-title: Microbiol Spectr
  doi: 10.1128/spectrum.02817-22
– volume: 31
  year: 2023
  ident: B85
  article-title: Regulation of Chlamydial colonization by Ifnγ Delivered via distinct cells
  publication-title: Trends Microbiol
  doi: 10.1016/j.tim.2022.09.002
– volume: 9
  year: 2019
  ident: B40
  article-title: Chlamydia trachomatis serovars drive differential production of proinflammatory cytokines and chemokines depending on the type of cell infected
  publication-title: Front Cell infection Microbiol
  doi: 10.3389/fcimb.2019.00399
– volume: 12
  year: 2021
  ident: B70
  article-title: Indoleamine 2,3-dioxygenase cannot inhibit Chlamydia trachomatis growth in hl-60 human neutrophil granulocytes
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2021.717311
– volume: 14
  start-page: 385
  year: 2016
  ident: B32
  article-title: Chlamydia cell biology and pathogenesis
  publication-title: Nat Rev Microbiol
  doi: 10.1038/nrmicro.2016.30
– volume: 7
  year: 2012
  ident: B97
  article-title: Interruption of cxcl13-cxcr5 axis increases upper genital tract pathology and activation of Nkt cells following chlamydial genital infection
  publication-title: PloS One
  doi: 10.1371/journal.pone.0047487
– volume: 19
  year: 2017
  ident: B66
  article-title: Extrusions are phagocytosed and promote chlamydia survival within macrophages
  publication-title: Cell Microbiol
  doi: 10.1111/cmi.12683
– volume: 161
  year: 2020
  ident: B113
  article-title: Hydrogen sulfide: an endogenous regulator of the immune system
  publication-title: Pharmacol Res
  doi: 10.1016/j.phrs.2020.105119
– volume: 74
  year: 2016
  ident: B74
  article-title: Conservation of extrusion as an exit mechanism for Chlamydia
  publication-title: Pathog Dis
  doi: 10.1093/femspd/ftw093
– volume: 452
  year: 2019
  ident: B108
  article-title: Chlamydia trachomatis plasmid-encoded protein Pgp3 inhibits apoptosis via the Pi3k-Akt-mediated Mdm2-P53 axis
  publication-title: Mol Cell Biochem
  doi: 10.1007/s11010-018-3422-9
– volume: 11
  year: 2022
  ident: B89
  article-title: C-myc plays a key role in Ifn-Γ-induced persistence of Chlamydia trachomatis
  publication-title: eLife
  doi: 10.7554/eLife.76721
– volume: 16
  year: 2014
  ident: B111
  article-title: Chlamydia pneumoniae and oxidative stress in cardiovascular disease: state of the art and prevention strategies
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms16010724
– volume: 10
  year: 2018
  ident: B68
  article-title: Neutrophils and bacterial immune evasion
  publication-title: J innate Immun
  doi: 10.1159/000487756
– volume: 88
  year: 2020
  ident: B87
  article-title: Evasion of innate lymphoid cell-regulated gamma interferon responses by Chlamydia muridarum to achieve long-lasting colonization in mouse colon
  publication-title: Infection Immun
  doi: 10.1128/iai.00798-19
– volume: 14
  year: 2022
  ident: B6
  article-title: The role of Chlamydia trachomatis in the pathogenesis of cervical cancer
  publication-title: Cureus
  doi: 10.7759/cureus.21331
– volume: 12
  start-page: 1795
  year: 2022
  ident: B1
  article-title: Chlamydia trachomatis as a current health problem: challenges and opportunities
  publication-title: Diagnostics (Basel Switzerland)
  doi: 10.3390/diagnostics12081795
– volume: 26
  year: 2020
  ident: B52
  article-title: Chlamydial-secreted protease chlamydia high temperature requirement protein a (Chtra) degrades human cathelicidin ll-37 and suppresses its anti-chlamydial activity
  publication-title: Med Sci monitor
  doi: 10.12659/msm.923909
– volume: 10
  year: 2014
  ident: B30
  article-title: Immunity, immunopathology, and human vaccine development against sexually transmitted Chlamydia trachomatis
  publication-title: Hum Vaccines immunotherapeutics
  doi: 10.4161/hv.29683
– volume: 1285
  start-page: 97
  year: 2013
  ident: B104
  article-title: Human B-1 cells take the stage
  publication-title: Ann New York Acad Sci
  doi: 10.1111/nyas.12137
– volume: 13
  year: 2022
  ident: B94
  article-title: Cross talk between natural killer T and dendritic cells and its impact on T cell responses in infections
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2022.837767
– volume: 6
  year: 2019
  ident: B38
  article-title: The multiple functions of the numerous Chlamydia trachomatis secreted proteins: the tip of the Iceberg
  publication-title: Microbial Cell (Graz Austria)
  doi: 10.15698/mic2019.09.691
– volume: 173
  year: 2022
  ident: B17
  article-title: The dual role of cytokine responses to Chlamydia trachomatis infection in host pathogen crosstalk
  publication-title: Microbial pathogenesis
  doi: 10.1016/j.micpath.2022.105812
– volume: 210
  start-page: 13
  year: 2021
  ident: B20
  article-title: Analysis of complement deposition and processing on Chlamydia trachomatis
  publication-title: Med Microbiol Immunol
  doi: 10.1007/s00430-020-00695-x
– volume: 30
  start-page: 1685
  year: 2022
  ident: B35
  article-title: Chlamydia repurposes the actin-binding protein Eps8 to disassemble epithelial tight junctions and promote infection
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2022.10.013
– volume: 24
  year: 2020
  ident: B99
  article-title: Il-17a-producing T cells exacerbate fine particulate matter-induced lung inflammation and fibrosis by inhibiting Pi3k/Akt/Mtor-mediated autophagy
  publication-title: J Cell Mol Med
  doi: 10.1111/jcmm.15475
– volume: 105
  year: 2002
  ident: B21
  article-title: Fc receptor regulation of protective immunity against Chlamydia trachomatis
  publication-title: Immunology
  doi: 10.1046/j.0019-2805.2001.01354.x
– volume: 11
  year: 2021
  ident: B31
  article-title: Biological drug and drug delivery-mediated immunotherapy
  publication-title: Acta Pharm Sin B
  doi: 10.1016/j.apsb.2020.12.018
– volume: 6
  year: 2015
  ident: B93
  article-title: Dynamics of Nkt-cell responses to chlamydial infection
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2015.00233
– volume: 177
  year: 2006
  ident: B73
  article-title: Adoptive transfer of Cd8alpha+ Dendritic cells (Dc) isolated from mice infected with Chlamydia muridarum are more potent in inducing protective immunity than Cd8alpha- Dc
  publication-title: J Immunol (Baltimore Md 1950)
  doi: 10.4049/jimmunol.177.10.7067
SSID ssj0000493335
Score 2.424251
SecondaryResourceType review_article
Snippet Chlamydia trachomatis , is a kind of obligate intracellular pathogen. The removal of C. trachomatis relies primarily on specific cellular immunity. It is...
, is a kind of obligate intracellular pathogen. The removal of relies primarily on specific cellular immunity. It is currently considered that CD4 Th1 cytokine...
Chlamydia trachomatis, is a kind of obligate intracellular pathogen. The removal of C. trachomatis relies primarily on specific cellular immunity. It is...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1289644
SubjectTerms CD8-Positive T-Lymphocytes
Chlamydia Infections
Chlamydia trachomatis
Humans
immune evasion
Immunity, Innate
Immunology
innate immune cells
innate immunity
Interferon-gamma
Lymphocytes - pathology
survival and growth
SummonAdditionalLinks – databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6VokpcKt6kPORK3FDaOI4T-4BQqagKUntipd4sO5nQRa0X9lF1_z0zSXbFosKJHHJIYsX6xvZ8n5OZAXhb67L2razT1somLXSo0mB1k7aotJfKG9Nw7PDZeXk6Kr5c6IstWJU7GgCc3SntuJ7UaHp1cPtz-YEm_HtWnORvD9vx9fWCpF5eHNBqa8nD34P75JkqnqhnA93_3rNhpZTuY2f-0nTDP3Vp_O_inn_-QvmbTzp5CLsDmRRHvfUfwRbGx7DTl5dcPoGjz3HG2nsmxnE-oVMkYim4LxEF79gLvPG8WybCUhxf0thY0mgR9CauoMJhD09hdPLp6_FpOpRMSGvSufMUK69VoYimhDInNUWrlyVCplpbScyMtz4zVVOXClXIbRsQUSvUwaLOtaqtegbbcRLxBYjgZRXyzJPiogOzIFtpGtSZL0IguycgV0C5esgnzmUtrhzpCgbXdeA6BtcN4Cbwbt3mR59N459Pf2T8109yJuzuwmT6zQ0Ty1niLNoE0tNlXvjGeGl9WxeSf-niSP8E9lfWczRzGFwfcbKYuZylpy1NYRN43ltz_SrS7YpLOCVgNuy80ZfNO3F82WXn5nAO_ly79z96_xIeMCL9ns8r2J5PF_iaWNA8vOmG9i_TZQXl
  priority: 102
  providerName: Scholars Portal
Title Insights into innate immune cell evasion by Chlamydia trachomatis
URI https://www.ncbi.nlm.nih.gov/pubmed/38333214
https://www.proquest.com/docview/2924996849
https://pubmed.ncbi.nlm.nih.gov/PMC10850350
https://doaj.org/article/921558b523624ad8a19afc4119910254
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEBUlUOglJG2TuF-o0FtwYlmSLR3T0HRbSE8N7E1I9phsSLShu1vYf58Zy7vshtBc6oMOtozEm7FmnqyZYexLo6vGd6LJOyvaXOlQ58HqNu9Aai-kN6al2OHLX9XoSv0c6_FGqS86E5bSAyfgTi3aJG0C8qWqVL41XljfNUrQkR2K5KbVF23eBpm6SX6vlFKnKBlkYfa0m9zdLZAPluoEl2SLbsCWJeoT9j_lZT4-LLlhfS722O7gNvKzNN199gLia_YyFZJcvmFnP-KMWPaMT-J8ik1EF5LTXCJw2pvn8NfTvhgPS35-jVqwRL3gOBLVSqEAh7fs6uLb7_NRPhRHyBtktPMcaq-lkuiQhKpE3oTrlEXXS3a2FlAYb31h6rapJMhQ2i4AgJaggwVdatlYecB24jTCEePBizqUhUduhRcUQXTCtKALr0JACWdMrIByzZA5nApY3DpkEASu68F1BK4bwM3Y8fqd-5Q345-9vxL-656U87q_gZrgBk1wz2lCxj6vpOfwGyFwfYTpYuZKIpm2Mspm7DBJcz0UMnRJxZoyZrbkvDWX7Sdxct3n4abADfox--5_zP49e0WIpN2dD2xn_mcBH9HfmYdPvWpj-30ssL1U5gED5P4X
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Insights+into+innate+immune+cell+evasion+by+Chlamydia+trachomatis&rft.jtitle=Frontiers+in+immunology&rft.au=Xinglv+Wang&rft.au=Hongrong+Wu&rft.au=Chunxia+Fang&rft.au=Zhongyu+Li&rft.date=2024&rft.pub=Frontiers+Media+S.A&rft.eissn=1664-3224&rft.volume=15&rft_id=info:doi/10.3389%2Ffimmu.2024.1289644&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_921558b523624ad8a19afc4119910254
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-3224&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-3224&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-3224&client=summon