Glucose-Induced Intracellular Ion Changes in Sugar-Sensitive Hypothalamic Neurons

Ian A. Silver 1 and Maria Ereci ska 2 1  Department of Anatomy, School of Veterinary Science, University of Bristol, Bristol BS2 8EJ, UK; and 2  Department of Pharmacology, University of Pennsylvania, Philadelphia, Pennsylvania 19104 Silver, Ian A. and Maria Ereci ska. Glucose-induced intracellular...

Full description

Saved in:
Bibliographic Details
Published inJournal of neurophysiology Vol. 79; no. 4; pp. 1733 - 1745
Main Authors Silver, Ian A, Erecinska, Maria
Format Journal Article
LanguageEnglish
Published United States Am Phys Soc 01.04.1998
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Ian A. Silver 1 and Maria Ereci ska 2 1  Department of Anatomy, School of Veterinary Science, University of Bristol, Bristol BS2 8EJ, UK; and 2  Department of Pharmacology, University of Pennsylvania, Philadelphia, Pennsylvania 19104 Silver, Ian A. and Maria Ereci ska. Glucose-induced intracellular ion changes in sugar-sensitive hypothalamic neurons. J. Neurophysiol. 79: 1733-1745, 1998. In the lateral hypothalamic area (LHA) of rat brain, ~30% of cells showed sensitivity to small changes in local concentrations of glucose. These "glucose-sensitive" neurons demonstrated four types of behavior, three of which probably represent segments of a continuous spectrum of recruitment in response to ever more severe changes in blood sugar. Type I cells showed maximum activity 5.6 mM blood glucose but became completely silent at hyperglycemia of 10-12 mM (normoglycemia 7.6 ± 0.3 mM; mean ± SD). Type II and III neurons exhibited a wider range of response. Type IV cells (5-7% of glucose-sensitive neurons) paralleled the behavior of sugar-sensitive cells in ventromedial hypothalamic nucleus (VMH). In VMH, ~40% of cells responded to changes in blood glucose over a range of concentrations from 3.6 to 17 mM, by increasing their firing rate as sugar level rose and vice versa. Ionic shifts during increases in blood (brain) glucose levels were similar in LHA types I-III but fastest in I and slowest in III. [Na + ] i fell by 5-9 mM, [K + ] i rose by 6-8 mM, and plasma membrane hyperpolarized by 5 mV. [Ca 2+ ] i declined by 15-20 nM in line with membrane hyperpolarization. In VMH and type IV LHA cells, [K + ] i fell 3-8 mM and plasma membrane depolarized 3 to 5 mV as blood/brain glucose concentration increased from 7.6/2.4 to 17.6/4.2 mM, whereas [Ca 2+ ] i increased from 125 to 180 nM as a consequence of falling membrane potential. During falls in blood/brain sugar concentration the effects in both VMH and LHA cells were reversed. The findings are consistent with the ionic shifts in types I-III LHA cells being dependent on alterations in Na/K-ATPase activity, whereas those in VMH and type IV LHA cells could be caused by modulation of ATP-dependent K + channels. A possible mechanism for linking the effects of small changes in glucose to ATP generation, which could bring about the above phenomena, is the interposition of a "glucokinase-type" enzyme in a role similar to that which it has in glucose-sensing pancreatic -cells.
AbstractList Ian A. Silver 1 and Maria Ereci ska 2 1  Department of Anatomy, School of Veterinary Science, University of Bristol, Bristol BS2 8EJ, UK; and 2  Department of Pharmacology, University of Pennsylvania, Philadelphia, Pennsylvania 19104 Silver, Ian A. and Maria Ereci ska. Glucose-induced intracellular ion changes in sugar-sensitive hypothalamic neurons. J. Neurophysiol. 79: 1733-1745, 1998. In the lateral hypothalamic area (LHA) of rat brain, ~30% of cells showed sensitivity to small changes in local concentrations of glucose. These "glucose-sensitive" neurons demonstrated four types of behavior, three of which probably represent segments of a continuous spectrum of recruitment in response to ever more severe changes in blood sugar. Type I cells showed maximum activity 5.6 mM blood glucose but became completely silent at hyperglycemia of 10-12 mM (normoglycemia 7.6 ± 0.3 mM; mean ± SD). Type II and III neurons exhibited a wider range of response. Type IV cells (5-7% of glucose-sensitive neurons) paralleled the behavior of sugar-sensitive cells in ventromedial hypothalamic nucleus (VMH). In VMH, ~40% of cells responded to changes in blood glucose over a range of concentrations from 3.6 to 17 mM, by increasing their firing rate as sugar level rose and vice versa. Ionic shifts during increases in blood (brain) glucose levels were similar in LHA types I-III but fastest in I and slowest in III. [Na + ] i fell by 5-9 mM, [K + ] i rose by 6-8 mM, and plasma membrane hyperpolarized by 5 mV. [Ca 2+ ] i declined by 15-20 nM in line with membrane hyperpolarization. In VMH and type IV LHA cells, [K + ] i fell 3-8 mM and plasma membrane depolarized 3 to 5 mV as blood/brain glucose concentration increased from 7.6/2.4 to 17.6/4.2 mM, whereas [Ca 2+ ] i increased from 125 to 180 nM as a consequence of falling membrane potential. During falls in blood/brain sugar concentration the effects in both VMH and LHA cells were reversed. The findings are consistent with the ionic shifts in types I-III LHA cells being dependent on alterations in Na/K-ATPase activity, whereas those in VMH and type IV LHA cells could be caused by modulation of ATP-dependent K + channels. A possible mechanism for linking the effects of small changes in glucose to ATP generation, which could bring about the above phenomena, is the interposition of a "glucokinase-type" enzyme in a role similar to that which it has in glucose-sensing pancreatic -cells.
In the lateral hypothalamic area (LHA) of rat brain, similar to 30% of cells showed sensitivity to small changes in local concentrations of glucose. These "glucose-sensitive" neurons demonstrated four types of behavior, three of which probably represent segments of a continuous spectrum of recruitment in response to ever more severe changes in blood sugar. Type I cells showed maximum activity less than or equal to 5.6 mM blood glucose but became completely silent at hyperglycemia of 10-12 mM (normoglycemia 7.6 plus or minus 0.3 mM; mean plus or minus SD). Type II and III neurons exhibited a wider range of response. Type IV cells (5-7% of glucose-sensitive neurons) paralleled the behavior of sugar-sensitive cells in ventromedial hypothalamic nucleus (VMH). In VMH, similar to 40% of cells responded to changes in blood glucose over a range of concentrations from 3.6 to 17 mM, by increasing their firing rate as sugar level rose and vice versa. Ionic shifts during increases in blood (brain) glucose levels were similar in LHA types I-III but fastest in I and slowest in III. [Na super(+)] sub(i) fell by 5-9 mM, [K super(+)] sub(i) rose by 6-8 mM, and plasma membrane hyperpolarized by 5 mV. [Ca super(2+)] sub(i) declined by 15-20 nM in line with membrane hyperpolarization. In VMH and type IV LHA cells, [K super(+)] sub(i) fell 3-8 mM and plasma membrane depolarized -3 to -5 mV as blood/brain glucose concentration increased from 7.6/2.4 to 17.6/4.2 mM, whereas [Ca super(2+)] sub(i) increased from 125 to 180 nM as a consequence of falling membrane potential. During falls in blood/brain sugar concentration the effects in both VMH and LHA cells were reversed. The findings are consistent with the ionic shifts in types I-III LHA cells being dependent on alterations in Na/K-ATPase activity, whereas those in VMH and type IV LHA cells could be caused by modulation of ATP-dependent K super(+) channels. A possible mechanism for linking the effects of small changes in glucose to ATP generation, which could bring about the above phenomena, is the interposition of a "glucokinase-type" enzyme in a role similar to that which it has in glucose-sensing pancreatic beta -cells.
In the lateral hypothalamic area (LHA) of rat brain, approximately 30% of cells showed sensitivity to small changes in local concentrations of glucose. These "glucose-sensitive" neurons demonstrated four types of behavior, three of which probably represent segments of a continuous spectrum of recruitment in response to ever more severe changes in blood sugar. Type I cells showed maximum activity </=5.6 mM blood glucose but became completely silent at hyperglycemia of 10-12 mM (normoglycemia 7.6 +/- 0.3 mM; mean +/- SD). Type II and III neurons exhibited a wider range of response. Type IV cells (5-7% of glucose-sensitive neurons) paralleled the behavior of sugar-sensitive cells in ventromedial hypothalamic nucleus (VMH). In VMH, approximately 40% of cells responded to changes in blood glucose over a range of concentrations from 3.6 to 17 mM, by increasing their firing rate as sugar level rose and vice versa. Ionic shifts during increases in blood (brain) glucose levels were similar in LHA types I-III but fastest in I and slowest in III. [Na+]i fell by 5-9 mM, [K+]i rose by 6-8 mM, and plasma membrane hyperpolarized by 5 mV. [Ca2+]i declined by 15-20 nM in line with membrane hyperpolarization. In VMH and type IV LHA cells, [K+]i fell 3-8 mM and plasma membrane depolarized -3 to -5 mV as blood/brain glucose concentration increased from 7.6/2.4 to 17.6/4.2 mM, whereas [Ca2+]i increased from 125 to 180 nM as a consequence of falling membrane potential. During falls in blood/brain sugar concentration the effects in both VMH and LHA cells were reversed. The findings are consistent with the ionic shifts in types I-III LHA cells being dependent on alterations in Na/K-ATPase activity, whereas those in VMH and type IV LHA cells could be caused by modulation of ATP-dependent K+ channels. A possible mechanism for linking the effects of small changes in glucose to ATP generation, which could bring about the above phenomena, is the interposition of a "glucokinase-type" enzyme in a role similar to that which it has in glucose-sensing pancreatic beta-cells.
In the lateral hypothalamic area (LHA) of rat brain, approximately 30% of cells showed sensitivity to small changes in local concentrations of glucose. These "glucose-sensitive" neurons demonstrated four types of behavior, three of which probably represent segments of a continuous spectrum of recruitment in response to ever more severe changes in blood sugar. Type I cells showed maximum activity </=5.6 mM blood glucose but became completely silent at hyperglycemia of 10-12 mM (normoglycemia 7.6 +/- 0.3 mM; mean +/- SD). Type II and III neurons exhibited a wider range of response. Type IV cells (5-7% of glucose-sensitive neurons) paralleled the behavior of sugar-sensitive cells in ventromedial hypothalamic nucleus (VMH). In VMH, approximately 40% of cells responded to changes in blood glucose over a range of concentrations from 3.6 to 17 mM, by increasing their firing rate as sugar level rose and vice versa. Ionic shifts during increases in blood (brain) glucose levels were similar in LHA types I-III but fastest in I and slowest in III. [Na+]i fell by 5-9 mM, [K+]i rose by 6-8 mM, and plasma membrane hyperpolarized by 5 mV. [Ca2+]i declined by 15-20 nM in line with membrane hyperpolarization. In VMH and type IV LHA cells, [K+]i fell 3-8 mM and plasma membrane depolarized -3 to -5 mV as blood/brain glucose concentration increased from 7.6/2.4 to 17.6/4.2 mM, whereas [Ca2+]i increased from 125 to 180 nM as a consequence of falling membrane potential. During falls in blood/brain sugar concentration the effects in both VMH and LHA cells were reversed. The findings are consistent with the ionic shifts in types I-III LHA cells being dependent on alterations in Na/K-ATPase activity, whereas those in VMH and type IV LHA cells could be caused by modulation of ATP-dependent K+ channels. A possible mechanism for linking the effects of small changes in glucose to ATP generation, which could bring about the above phenomena, is the interposition of a "glucokinase-type" enzyme in a role similar to that which it has in glucose-sensing pancreatic beta-cells.
Silver, Ian A. and Maria Erecińska. Glucose-induced intracellular ion changes in sugar-sensitive hypothalamic neurons. J. Neurophysiol. 79: 1733–1745, 1998. In the lateral hypothalamic area (LHA) of rat brain, ∼30% of cells showed sensitivity to small changes in local concentrations of glucose. These “glucose-sensitive” neurons demonstrated four types of behavior, three of which probably represent segments of a continuous spectrum of recruitment in response to ever more severe changes in blood sugar. Type I cells showed maximum activity ≤5.6 mM blood glucose but became completely silent at hyperglycemia of 10–12 mM (normoglycemia 7.6 ± 0.3 mM; mean ± SD). Type II and III neurons exhibited a wider range of response. Type IV cells (5–7% of glucose-sensitive neurons) paralleled the behavior of sugar-sensitive cells in ventromedial hypothalamic nucleus (VMH). In VMH, ∼40% of cells responded to changes in blood glucose over a range of concentrations from 3.6 to 17 mM, by increasing their firing rate as sugar level rose and vice versa. Ionic shifts during increases in blood (brain) glucose levels were similar in LHA types I–III but fastest in I and slowest in III. [Na + ] i fell by 5–9 mM, [K + ] i rose by 6–8 mM, and plasma membrane hyperpolarized by 5 mV. [Ca 2+ ] i declined by 15–20 nM in line with membrane hyperpolarization. In VMH and type IV LHA cells, [K + ] i fell 3–8 mM and plasma membrane depolarized −3 to −5 mV as blood/brain glucose concentration increased from 7.6/2.4 to 17.6/4.2 mM, whereas [Ca 2+ ] i increased from 125 to 180 nM as a consequence of falling membrane potential. During falls in blood/brain sugar concentration the effects in both VMH and LHA cells were reversed. The findings are consistent with the ionic shifts in types I–III LHA cells being dependent on alterations in Na/K-ATPase activity, whereas those in VMH and type IV LHA cells could be caused by modulation of ATP-dependent K + channels. A possible mechanism for linking the effects of small changes in glucose to ATP generation, which could bring about the above phenomena, is the interposition of a “glucokinase-type” enzyme in a role similar to that which it has in glucose-sensing pancreatic β-cells.
Author Silver, Ian A
Erecinska, Maria
Author_xml – sequence: 1
  fullname: Silver, Ian A
– sequence: 2
  fullname: Erecinska, Maria
BackLink https://www.ncbi.nlm.nih.gov/pubmed/9535943$$D View this record in MEDLINE/PubMed
BookMark eNqFkEFr3DAQhUVJSTdJf0APBZ_ak13JsizrWJYmWQgpJclZyPJ4rUUruZLVZP99bXYJuZSeZph57-PxLtCZ8w4Q-kRwQQgrv-1cQYRoCi6KqiCc0ndoNd_LnDDRnKEVxvNOMecf0EWMO4wxZ7g8R-eCUSYqukK_bmzSPkK-cV3S0GUbNwWlwdpkVcg23mXrQbktxMy47CFtVcgfwEUzmT-Q3R5GPw3Kqr3R2T2k4F28Qu97ZSN8PM1L9HT943F9m9_9vNmsv9_luqrFlEPNOWNCc0YVbXsiet0SRmvVVKJplRCsVlDWjAjcCKUElEQrxjqgXduVGNNL9OXIHYP_nSBOcm_iElw58ClKLnjT1JT9V0jqOZCoFyE5CnXwMQbo5RjMXoWDJFgufcudk0vfM1tWcul79nw-wVO7h-7VcSp4_n89_gezHZ5NADkOh2i89dvDgntLov9WXidrH-Flmi2vDjl2Pf0LsjOeDQ
CitedBy_id crossref_primary_10_1016_j_brainresbull_2020_01_013
crossref_primary_10_1002_edm2_139
crossref_primary_10_1097_NEN_0b013e3181b2048c
crossref_primary_10_1152_ajpregu_1999_276_3_R880
crossref_primary_10_1021_acschemneuro_4c00206
crossref_primary_10_1007_s12031_020_01730_5
crossref_primary_10_1016_j_jchemneu_2012_06_002
crossref_primary_10_1016_j_brainres_2019_146311
crossref_primary_10_1016_S0166_4328_03_00140_2
crossref_primary_10_1111_jdi_13745
crossref_primary_10_21307_ane_2021_019
crossref_primary_10_1111_j_1471_4159_2010_06671_x
crossref_primary_10_1016_j_brainres_2007_08_010
crossref_primary_10_1177_17590914211035020
crossref_primary_10_1152_ajpregu_00042_2016
crossref_primary_10_1016_S0031_9384_01_00612_6
crossref_primary_10_2337_db06_0531
crossref_primary_10_1152_ajpregu_00256_2016
crossref_primary_10_3390_ijms21062013
crossref_primary_10_3390_genes10050350
crossref_primary_10_1152_ajpregu_00113_2016
crossref_primary_10_3389_fnins_2015_00324
crossref_primary_10_1016_j_neuroscience_2015_02_019
crossref_primary_10_1038_s41467_022_33484_6
crossref_primary_10_1097_WNR_0b013e32805dfb93
crossref_primary_10_1111_j_1365_2826_2009_01938_x
crossref_primary_10_1152_ajpendo_00034_2016
crossref_primary_10_1248_bpb_29_216
crossref_primary_10_1016_S0006_8993_01_03026_8
crossref_primary_10_1016_j_mehy_2012_07_034
crossref_primary_10_1111_j_1464_5491_2008_02376_x
crossref_primary_10_1113_jphysiol_2002_022434
crossref_primary_10_1016_j_lfs_2015_02_008
crossref_primary_10_1016_j_tem_2015_06_005
crossref_primary_10_3390_ijms23020917
crossref_primary_10_1113_jphysiol_2006_126094
crossref_primary_10_1007_s12035_018_1099_4
crossref_primary_10_1210_en_2004_0130
crossref_primary_10_1007_s12031_007_9020_z
crossref_primary_10_1016_j_jchemneu_2004_06_002
crossref_primary_10_1002_ddrr_13
crossref_primary_10_1111_jne_12671
crossref_primary_10_3389_fphys_2017_00468
crossref_primary_10_1016_j_neuroscience_2015_07_085
crossref_primary_10_1046_j_1471_4159_2001_00203_x
crossref_primary_10_1152_physrev_00025_2016
crossref_primary_10_1007_s12031_008_9126_y
crossref_primary_10_1038_s41598_021_95646_8
crossref_primary_10_1111_j_1469_7793_2001_t01_1_00801_x
crossref_primary_10_1152_ajpendo_2001_281_4_E649
crossref_primary_10_1152_ajpregu_00531_2011
crossref_primary_10_1080_1028415X_1999_11747274
crossref_primary_10_1007_s12020_008_9137_z
crossref_primary_10_1038_oby_2004_234
crossref_primary_10_1177_1759091420910933
crossref_primary_10_1016_S2095_4964_14_60008_X
crossref_primary_10_1038_aps_2012_17
crossref_primary_10_1007_BF02686116
crossref_primary_10_1152_jn_00689_2003
crossref_primary_10_1080_15622970410029915
crossref_primary_10_2337_diabetes_55_04_06_db05_1386
crossref_primary_10_1111_jcmm_12590
crossref_primary_10_1016_j_arcmed_2006_03_001
crossref_primary_10_1530_JOE_16_0383
crossref_primary_10_1152_ajpendo_00700_2006
crossref_primary_10_1186_1742_4682_6_26
crossref_primary_10_1186_s42234_018_0009_4
crossref_primary_10_1016_j_isci_2021_103122
crossref_primary_10_1038_87455
crossref_primary_10_1016_j_neulet_2004_08_035
crossref_primary_10_1096_fj_09_144923
crossref_primary_10_1111_j_0953_8194_2004_01135_x
crossref_primary_10_1210_me_2010_0508
crossref_primary_10_1007_s00125_023_06043_x
crossref_primary_10_1155_2017_2034691
crossref_primary_10_1152_ajpregu_00645_2007
crossref_primary_10_1523_JNEUROSCI_0334_09_2009
crossref_primary_10_1152_physiol_00010_2007
crossref_primary_10_1210_en_2004_0968
crossref_primary_10_1111_jne_12133
crossref_primary_10_1111_jne_13344
crossref_primary_10_1111_j_1365_2826_2007_01614_x
crossref_primary_10_2337_diabetes_52_11_2767
crossref_primary_10_1113_jphysiol_2011_217000
crossref_primary_10_21307_ane_2020_006
crossref_primary_10_2337_db20_1121
crossref_primary_10_1016_j_cmet_2010_09_013
crossref_primary_10_1016_S0006_8993_01_02404_0
crossref_primary_10_1111_dom_12334
crossref_primary_10_1111_jne_12937
crossref_primary_10_1016_j_mcn_2023_103863
crossref_primary_10_1016_j_cmet_2007_04_001
crossref_primary_10_1016_j_molmet_2020_101053
crossref_primary_10_1016_S0304_3940_01_02053_5
crossref_primary_10_1016_j_physbeh_2019_112617
crossref_primary_10_33549_physiolres_932596
crossref_primary_10_1016_j_mcn_2019_01_004
crossref_primary_10_1210_er_2018_00226
crossref_primary_10_1177_17590914231167230
crossref_primary_10_2337_diabetes_50_6_1282
crossref_primary_10_1016_j_brainres_2018_05_025
crossref_primary_10_14814_phy2_13484
crossref_primary_10_1002_dmrr_404
crossref_primary_10_1016_j_neuroscience_2015_04_049
crossref_primary_10_1152_ajpendo_90932_2008
crossref_primary_10_1038_ijo_2008_208
crossref_primary_10_1016_j_brainres_2019_01_012
crossref_primary_10_3390_s101009002
crossref_primary_10_1016_j_febslet_2008_09_045
crossref_primary_10_2337_diabetes_50_11_2431
crossref_primary_10_1113_expphysiol_2006_036004
crossref_primary_10_1002_hbm_23316
crossref_primary_10_1152_ajpendo_00469_2017
crossref_primary_10_1586_eem_12_6
crossref_primary_10_1016_j_brainres_2015_05_037
crossref_primary_10_1152_ajpendo_00446_2014
crossref_primary_10_1210_en_2011_1307
crossref_primary_10_1016_j_molmet_2022_101479
crossref_primary_10_3390_ijms22020759
crossref_primary_10_1179_147683010X12611460764246
crossref_primary_10_3390_biology12020242
crossref_primary_10_1016_S0031_9384_02_00761_8
crossref_primary_10_1016_j_npep_2018_10_003
crossref_primary_10_1016_j_jchemneu_2004_05_009
crossref_primary_10_1016_j_cbpb_2011_07_006
crossref_primary_10_1016_j_eprac_2022_11_010
crossref_primary_10_1016_j_mce_2013_10_013
crossref_primary_10_2337_diabetes_50_1_1
crossref_primary_10_1007_s00018_010_0414_7
crossref_primary_10_1007_s00424_006_0116_z
crossref_primary_10_1152_ajpendo_00538_2001
crossref_primary_10_1016_j_brainres_2016_07_035
crossref_primary_10_1007_s11064_013_1199_5
crossref_primary_10_1097_CCM_0b013e31818f4026
crossref_primary_10_2337_diabetes_53_8_1959
crossref_primary_10_1152_jn_00697_2005
crossref_primary_10_1152_ajpregu_1999_276_5_R1223
crossref_primary_10_1002_jnr_21530
crossref_primary_10_1016_j_npep_2020_102055
crossref_primary_10_1097_01_cej_0000220636_15976_4c
crossref_primary_10_1210_en_2003_1191
crossref_primary_10_2337_db11_1050
crossref_primary_10_1210_en_2007_0194
crossref_primary_10_1002_jps_23617
crossref_primary_10_1113_jphysiol_2003_058321
Cites_doi 10.1042/bj1590007
10.1113/jphysiol.1986.sp016313
10.1152/ajpcell.1987.252.2.C225
10.1038/jcbfm.1992.5
10.1177/000456326900600108
10.1085/jgp.94.5.911
10.1038/jcbfm.1992.62
10.1002/(SICI)1098-1136(199709)21:1<2::AID-GLIA2>3.0.CO;2-C
10.1016/0301-0082(94)90015-9
10.1016/S0021-9258(17)41910-7
10.1016/S0021-9258(19)36489-0
10.1146/annurev.ph.37.030175.000305
10.1111/j.1471-4159.1974.tb04389.x
10.1152/physrev.1979.59.2.305
10.1002/jcp.1041190305
10.1113/expphysiol.1956.sp001163
10.1113/jphysiol.1995.sp020666
10.1098/rstb.1987.0020
10.1016/0006-8993(93)90163-H
10.1038/jcbfm.1988.143
10.1007/BF00373626
10.1016/0304-4173(79)90013-2
10.1085/jgp.95.5.837
10.1038/jcbfm.1989.2
10.1111/j.1471-4159.1972.tb01417.x
10.1085/jgp.84.4.643
10.1152/physrev.1979.59.3.719
10.1038/jcbfm.1983.45
10.1038/247284a0
10.1021/ac00124a036
10.1016/0304-4157(91)90012-L
10.1152/physrev.1983.63.4.1481
10.1146/annurev.ne.11.030188.000525
10.1152/ajpcell.1986.251.1.C120
10.1042/bj2900701
10.1016/0006-8993(84)90466-9
10.1038/jcbfm.1992.107
10.1002/dmr.5610020301
10.1113/jphysiol.1975.sp011002
10.1021/ac50039a008
10.1073/pnas.76.2.806
10.1038/222282a0
10.1016/0005-2744(76)90345-4
10.1038/2261251a0
10.1073/pnas.80.1.85
10.1523/JNEUROSCI.14-08-05068.1994
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QP
7QR
7TK
8FD
FR3
P64
7X8
DOI 10.1152/jn.1998.79.4.1733
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Chemoreception Abstracts
Engineering Research Database
Technology Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList
Chemoreception Abstracts
MEDLINE - Academic
MEDLINE
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1522-1598
EndPage 1745
ExternalDocumentID 10_1152_jn_1998_79_4_1733
9535943
jn_79_4_1733
Genre Research Support, U.S. Gov't, P.H.S
Journal Article
GrantInformation_xml – fundername: NINDS NIH HHS
  grantid: NS-28329
GroupedDBID -
08R
0VX
1Z7
2WC
39C
3O-
41
53G
55
5GY
5VS
AALRV
ABFLS
ABIVO
ABPTK
ABUFD
ABZEH
ACGFS
ACNCT
ADACO
ADBBV
ADBIT
ADKLL
AENEX
AETEA
AFFNX
ALMA_UNASSIGNED_HOLDINGS
BAWUL
C1A
CS3
DIK
DL
DU5
DZ
E3Z
EBS
EJD
F5P
FH7
FRP
GJ
GX1
H~9
KQ8
L7B
MVM
NEJ
O0-
OHT
OK1
P2P
RAP
RHF
RHI
RPL
SJN
UHB
UPT
UQL
VH1
WH7
WOQ
WOW
X
X7M
ZA5
ZGI
ZXP
ZY4
---
-DZ
-~X
.55
.GJ
18M
1CY
29L
4.4
41~
476
8M5
ABCQX
ABJNI
ABKWE
ABTAH
ACGFO
ADFNX
ADIYS
AFOSN
AI.
AIZAD
BKKCC
BTFSW
CGR
CUY
CVF
ECM
EIF
EMOBN
H13
ITBOX
NPM
RPRKH
TR2
W8F
XJT
XOL
XSW
YBH
YQT
YSK
AAYXX
CITATION
7QP
7QR
7TK
8FD
FR3
P64
7X8
ID FETCH-LOGICAL-c469t-e677559c753a3bf19fcb1536a8498ba9956ae26519089aa9e21ca55de3dbd2003
ISSN 0022-3077
IngestDate Fri Aug 16 21:50:02 EDT 2024
Fri Aug 16 10:01:05 EDT 2024
Thu Sep 26 17:40:49 EDT 2024
Sat Sep 28 08:46:05 EDT 2024
Mon May 06 12:28:21 EDT 2019
Tue Jan 05 17:57:01 EST 2021
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c469t-e677559c753a3bf19fcb1536a8498ba9956ae26519089aa9e21ca55de3dbd2003
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PMID 9535943
PQID 16469965
PQPubID 23462
PageCount 13
ParticipantIDs crossref_primary_10_1152_jn_1998_79_4_1733
highwire_physiology_jn_79_4_1733
pubmed_primary_9535943
proquest_miscellaneous_79788635
proquest_miscellaneous_16469965
PublicationCentury 1900
PublicationDate 1998-04-01
PublicationDateYYYYMMDD 1998-04-01
PublicationDate_xml – month: 04
  year: 1998
  text: 1998-04-01
  day: 01
PublicationDecade 1990
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of neurophysiology
PublicationTitleAlternate J Neurophysiol
PublicationYear 1998
Publisher Am Phys Soc
Publisher_xml – name: Am Phys Soc
References B20
B22
B23
B24
B25
B27
B28
Bell G. I. (B3) 1993; 168
B30
B31
B32
B33
B34
B35
B36
B37
B38
B1
B2
B4
B5
B6
B7
B8
B9
Lipton P. (B21) 1983; 42
B40
B42
B43
B44
B45
B46
B47
Robinson P. (B39) 1986; 250
Jetton T. L. (B19) 1994; 269
B50
B51
B52
B53
B10
B54
B12
B56
B13
B15
B16
B17
Sweet I. R. (B49) 1995; 268
B18
Furler S. M. (B14) 1991; 261
Wilson J. E. (B55) 1985
Meglasson M. D. (B26) 1984; 246
References_xml – ident: B47
  doi: 10.1042/bj1590007
– ident: B50
  doi: 10.1113/jphysiol.1986.sp016313
– ident: B23
  doi: 10.1152/ajpcell.1987.252.2.C225
– volume: 250
  start-page: R127
  issue: 19
  year: 1986
  ident: B39
  publication-title: Am. J. Physiol.
  contributor:
    fullname: Robinson P.
– ident: B34
  doi: 10.1038/jcbfm.1992.5
– ident: B52
  doi: 10.1177/000456326900600108
– ident: B54
  doi: 10.1085/jgp.94.5.911
– ident: B24
  doi: 10.1038/jcbfm.1992.62
– ident: B53
  doi: 10.1002/(SICI)1098-1136(199709)21:1<2::AID-GLIA2>3.0.CO;2-C
– ident: B12
  doi: 10.1016/0301-0082(94)90015-9
– volume: 269
  start-page: 3641
  year: 1994
  ident: B19
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(17)41910-7
  contributor:
    fullname: Jetton T. L.
– volume: 168
  start-page: 19161
  year: 1993
  ident: B3
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(19)36489-0
  contributor:
    fullname: Bell G. I.
– ident: B17
  doi: 10.1146/annurev.ph.37.030175.000305
– ident: B20
  doi: 10.1111/j.1471-4159.1974.tb04389.x
– ident: B22
  doi: 10.1152/physrev.1979.59.2.305
– ident: B18
  doi: 10.1002/jcp.1041190305
– start-page: 45
  year: 1985
  ident: B55
  publication-title: Regulation of Carbohydrate Metabolism
  contributor:
    fullname: Wilson J. E.
– ident: B33
  doi: 10.1113/expphysiol.1956.sp001163
– ident: B5
  doi: 10.1113/jphysiol.1995.sp020666
– ident: B13
  doi: 10.1098/rstb.1987.0020
– ident: B36
  doi: 10.1016/0006-8993(93)90163-H
– volume: 246
  start-page: E1
  issue: 9
  year: 1984
  ident: B26
  publication-title: Am. J. Physiol.
  contributor:
    fullname: Meglasson M. D.
– ident: B35
  doi: 10.1038/jcbfm.1988.143
– ident: B2
  doi: 10.1007/BF00373626
– volume: 268
  start-page: E775
  issue: 31
  year: 1995
  ident: B49
  publication-title: Am. J. Physiol.
  contributor:
    fullname: Sweet I. R.
– ident: B38
  doi: 10.1016/0304-4173(79)90013-2
– ident: B42
  doi: 10.1085/jgp.95.5.837
– ident: B10
  doi: 10.1038/jcbfm.1989.2
– ident: B8
  doi: 10.1111/j.1471-4159.1972.tb01417.x
– ident: B45
  doi: 10.1085/jgp.84.4.643
– ident: B4
  doi: 10.1152/physrev.1979.59.3.719
– ident: B16
  doi: 10.1038/jcbfm.1983.45
– ident: B31
  doi: 10.1038/247284a0
– ident: B40
  doi: 10.1021/ac00124a036
– ident: B9
  doi: 10.1016/0304-4157(91)90012-L
– ident: B32
  doi: 10.1152/physrev.1983.63.4.1481
– ident: B1
  doi: 10.1146/annurev.ne.11.030188.000525
– ident: B51
  doi: 10.1152/ajpcell.1986.251.1.C120
– ident: B6
  doi: 10.1042/bj2900701
– ident: B28
  doi: 10.1016/0006-8993(84)90466-9
– ident: B43
  doi: 10.1038/jcbfm.1992.107
– ident: B27
  doi: 10.1002/dmr.5610020301
– ident: B15
  doi: 10.1113/jphysiol.1975.sp011002
– volume: 42
  start-page: 2875
  year: 1983
  ident: B21
  publication-title: Fed. Proc.
  contributor:
    fullname: Lipton P.
– ident: B46
  doi: 10.1021/ac50039a008
– ident: B56
  doi: 10.1073/pnas.76.2.806
– ident: B30
  doi: 10.1038/222282a0
– ident: B37
  doi: 10.1016/0005-2744(76)90345-4
– ident: B7
  doi: 10.1038/2261251a0
– ident: B25
  doi: 10.1073/pnas.80.1.85
– ident: B44
  doi: 10.1523/JNEUROSCI.14-08-05068.1994
– volume: 261
  start-page: E337
  issue: 23
  year: 1991
  ident: B14
  publication-title: Am. J. Physiol.
  contributor:
    fullname: Furler S. M.
SSID ssj0007502
Score 2.0596757
Snippet Ian A. Silver 1 and Maria Ereci ska 2 1  Department of Anatomy, School of Veterinary Science, University of Bristol, Bristol BS2 8EJ, UK; and 2  Department of...
In the lateral hypothalamic area (LHA) of rat brain, approximately 30% of cells showed sensitivity to small changes in local concentrations of glucose. These...
Silver, Ian A. and Maria Erecińska. Glucose-induced intracellular ion changes in sugar-sensitive hypothalamic neurons. J. Neurophysiol. 79: 1733–1745, 1998. In...
In the lateral hypothalamic area (LHA) of rat brain, similar to 30% of cells showed sensitivity to small changes in local concentrations of glucose. These...
SourceID proquest
crossref
pubmed
highwire
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1733
SubjectTerms Action Potentials - physiology
Animals
Blood Glucose - metabolism
Calcium - metabolism
Cations - metabolism
Female
Hypothalamic Area, Lateral - cytology
Hypothalamic Area, Lateral - metabolism
Hypothalamus, Middle - cytology
Hypothalamus, Middle - metabolism
Male
Membrane Potentials - physiology
Microelectrodes
Neurons - metabolism
Potassium - metabolism
Rats
Rats, Sprague-Dawley
Sodium - metabolism
Title Glucose-Induced Intracellular Ion Changes in Sugar-Sensitive Hypothalamic Neurons
URI http://jn.physiology.org/cgi/content/abstract/79/4/1733
https://www.ncbi.nlm.nih.gov/pubmed/9535943
https://search.proquest.com/docview/16469965
https://search.proquest.com/docview/79788635
Volume 79
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLdgXLgg2JjoGMwHxAFIaRN_xMcJdQyYBhOp1Jtlxw7sK63W9DD-ep4dN0m3TnxcoipxnPb9XPu9l9_7GaFX3CTcDhMSaWpZRKgVkR4wAYAUlBGldF54lu8xOxyTzxM6affR89Ulle7nv9bWlfwPqnAOcHVVsv-AbNMpnIDPgC8cAWE4_hXGH2u-eQRx9cK9xz91mVqXiq-5pQBsXdfrOa_zxQ91Fc0dYd3ThX5ezwAldeE2pH_rZS1D4u62q-qv-hzIShL---lF4H9-asbByKlllPNz1WZaTVtk11BROhz_QdhgJcyT9aYvYTyQzqQ35LWWRVhAIcah6ydn6sRez0pXIZn2ueiTfntrVwj7-Ks8GB8dyWw0ye6jBzEX1LE1v5y0QvDg6LRC8PBFwwtreMT7Ww9YdTmWMtB3hxTetcgeo0fB0Hi_BvgJumfLTbS1X6pqenmNX-NvjeW30MkNzPEK5hgwxwFzuIJvYI67mOOA-VM0PhhlHw6jsC1GlBMmqsgyziEOzCHQVIkuhqLINaxbTKVEpFq5UmVlYwau-SAVSgkbD3NFqbGJ0cZxEbfRRjkt7TOEBzyPkwR8aKUoSQwsOEbTmBiIkZUwjPXQm6Xl5KxWP5E-aqSxPCulM7PkQhLpzNxD75a2le2QlC6VkgG8cEPTVM5M0UN4XXPottPj3hIiCbOes6Uq7XQxl04VDyJ1encLLniagjfdQ9s1ts0PEDShgiQ7f-z8OXrY_jl20UZ1tbAvwAWt9Es_GH8DI56Kuw
link.rule.ids 315,786,790,27955,27956
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Glucose-induced+intracellular+ion+changes+in+sugar-sensitive+hypothalamic+neurons&rft.jtitle=Journal+of+neurophysiology&rft.au=Silver%2C+IA&rft.au=Erecinska%2C+M&rft.date=1998-04-01&rft.issn=0022-3077&rft.volume=79&rft.issue=4&rft.spage=1733&rft.epage=1745&rft_id=info:doi/10.1152%2Fjn.1998.79.4.1733&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3077&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3077&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3077&client=summon