Machine Learning-Enriched Lamb Wave Approaches for Automated Damage Detection

Lamb wave approaches have been accepted as efficiently non-destructive evaluations in structural health monitoring for identifying damage in different states. Despite significant efforts in signal process of Lamb waves, physics-based prediction is still a big challenge due to complexity nature of th...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 20; no. 6; p. 1790
Main Authors Zhang, Zi, Pan, Hong, Wang, Xingyu, Lin, Zhibin
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 24.03.2020
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Lamb wave approaches have been accepted as efficiently non-destructive evaluations in structural health monitoring for identifying damage in different states. Despite significant efforts in signal process of Lamb waves, physics-based prediction is still a big challenge due to complexity nature of the Lamb wave when it propagates, scatters and disperses. Machine learning in recent years has created transformative opportunities for accelerating knowledge discovery and accurately disseminating information where conventional Lamb wave approaches cannot work. Therefore, the learning framework was proposed with a workflow from dataset generation, to sensitive feature extraction, to prediction model for lamb-wave-based damage detection. A total of 17 damage states in terms of different damage type, sizes and orientations were designed to train the feature extraction and sensitive feature selection. A machine learning method, support vector machine (SVM), was employed for the learning model. A grid searching (GS) technique was adopted to optimize the parameters of the SVM model. The results show that the machine learning-enriched Lamb wave-based damage detection method is an efficient and accuracy wave to identify the damage severity and orientation. Results demonstrated that different features generated from different domains had certain levels of sensitivity to damage, while the feature selection method revealed that time-frequency features and wavelet coefficients exhibited the highest damage-sensitivity. These features were also much more robust to noise. With increase of noise, the accuracy of the classification dramatically dropped.
AbstractList Lamb wave approaches have been accepted as efficiently non-destructive evaluations in structural health monitoring for identifying damage in different states. Despite significant efforts in signal process of Lamb waves, physics-based prediction is still a big challenge due to complexity nature of the Lamb wave when it propagates, scatters and disperses. Machine learning in recent years has created transformative opportunities for accelerating knowledge discovery and accurately disseminating information where conventional Lamb wave approaches cannot work. Therefore, the learning framework was proposed with a workflow from dataset generation, to sensitive feature extraction, to prediction model for lamb-wave-based damage detection. A total of 17 damage states in terms of different damage type, sizes and orientations were designed to train the feature extraction and sensitive feature selection. A machine learning method, support vector machine (SVM), was employed for the learning model. A grid searching (GS) technique was adopted to optimize the parameters of the SVM model. The results show that the machine learning-enriched Lamb wave-based damage detection method is an efficient and accuracy wave to identify the damage severity and orientation. Results demonstrated that different features generated from different domains had certain levels of sensitivity to damage, while the feature selection method revealed that time-frequency features and wavelet coefficients exhibited the highest damage-sensitivity. These features were also much more robust to noise. With increase of noise, the accuracy of the classification dramatically dropped.
Lamb wave approaches have been accepted as efficiently non-destructive evaluations in structural health monitoring for identifying damage in different states. Despite significant efforts in signal process of Lamb waves, physics-based prediction is still a big challenge due to complexity nature of the Lamb wave when it propagates, scatters and disperses. Machine learning in recent years has created transformative opportunities for accelerating knowledge discovery and accurately disseminating information where conventional Lamb wave approaches cannot work. Therefore, the learning framework was proposed with a workflow from dataset generation, to sensitive feature extraction, to prediction model for lamb-wave-based damage detection. A total of 17 damage states in terms of different damage type, sizes and orientations were designed to train the feature extraction and sensitive feature selection. A machine learning method, support vector machine (SVM), was employed for the learning model. A grid searching (GS) technique was adopted to optimize the parameters of the SVM model. The results show that the machine learning-enriched Lamb wave-based damage detection method is an efficient and accuracy wave to identify the damage severity and orientation. Results demonstrated that different features generated from different domains had certain levels of sensitivity to damage, while the feature selection method revealed that time-frequency features and wavelet coefficients exhibited the highest damage-sensitivity. These features were also much more robust to noise. With increase of noise, the accuracy of the classification dramatically dropped.Lamb wave approaches have been accepted as efficiently non-destructive evaluations in structural health monitoring for identifying damage in different states. Despite significant efforts in signal process of Lamb waves, physics-based prediction is still a big challenge due to complexity nature of the Lamb wave when it propagates, scatters and disperses. Machine learning in recent years has created transformative opportunities for accelerating knowledge discovery and accurately disseminating information where conventional Lamb wave approaches cannot work. Therefore, the learning framework was proposed with a workflow from dataset generation, to sensitive feature extraction, to prediction model for lamb-wave-based damage detection. A total of 17 damage states in terms of different damage type, sizes and orientations were designed to train the feature extraction and sensitive feature selection. A machine learning method, support vector machine (SVM), was employed for the learning model. A grid searching (GS) technique was adopted to optimize the parameters of the SVM model. The results show that the machine learning-enriched Lamb wave-based damage detection method is an efficient and accuracy wave to identify the damage severity and orientation. Results demonstrated that different features generated from different domains had certain levels of sensitivity to damage, while the feature selection method revealed that time-frequency features and wavelet coefficients exhibited the highest damage-sensitivity. These features were also much more robust to noise. With increase of noise, the accuracy of the classification dramatically dropped.
Author Wang, Xingyu
Zhang, Zi
Pan, Hong
Lin, Zhibin
AuthorAffiliation Department of Civil and Environmental Engineering, North Dakota State University, Fargo, ND 58018, USA; Zi.zhang@ndsu.edu (Z.Z.); Hong.pan@ndsu.edu (H.P.); Xingyu.wang@ndsu.edu (X.W.)
AuthorAffiliation_xml – name: Department of Civil and Environmental Engineering, North Dakota State University, Fargo, ND 58018, USA; Zi.zhang@ndsu.edu (Z.Z.); Hong.pan@ndsu.edu (H.P.); Xingyu.wang@ndsu.edu (X.W.)
Author_xml – sequence: 1
  givenname: Zi
  surname: Zhang
  fullname: Zhang, Zi
– sequence: 2
  givenname: Hong
  surname: Pan
  fullname: Pan, Hong
– sequence: 3
  givenname: Xingyu
  orcidid: 0000-0001-8869-6150
  surname: Wang
  fullname: Wang, Xingyu
– sequence: 4
  givenname: Zhibin
  surname: Lin
  fullname: Lin, Zhibin
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32213872$$D View this record in MEDLINE/PubMed
BookMark eNplkk1v1DAQhi1URD_gwB9AkbjAIdRfsZ0L0qotUGkrLiCOluOMd71K7MVOKvHvcdi2asvJlv3Mo1czc4qOQgyA0FuCPzHW4vNMMRZEtvgFOiGc8lpRio8e3Y_Rac47jCljTL1Cx4xSwpSkJ-jmxtitD1CtwaTgw6a-CsnbLfTV2oxd9cvcQrXa71MsHOTKxVSt5imOZirIpRnNBqpLmMBOPobX6KUzQ4Y3d-cZ-vnl6sfFt3r9_ev1xWpdWy7aqQbBhSSWGt5g3ImmwQScFQp3WDpghhDJmHRGFIQ5x7mSjlOhWMd7IVvKztD1wdtHs9P75EeT_uhovP73ENNGmzR5O4C2jnQNyKbFbcs70nd907RFhA3pWccW1-eDaz93I_QWwpTM8ET69Cf4rd7EWy0JF0w2RfDhTpDi7xnypEefLQyDCRDnrClTnGKFG1XQ98_QXZxTKK1aqDIRxZtF-O5xooco91MrwPkBsCnmnMBp6yezDKAE9IMmWC97oR_2olR8fFZxL_2f_QucgbTc
CitedBy_id crossref_primary_10_1016_j_measurement_2024_114666
crossref_primary_10_3390_s22145390
crossref_primary_10_1016_j_measurement_2022_111372
crossref_primary_10_1177_14759217241268394
crossref_primary_10_3390_s22176495
crossref_primary_10_3390_s23063183
crossref_primary_10_2139_ssrn_4017229
crossref_primary_10_1088_2631_8695_acefae
crossref_primary_10_3390_computation11110218
crossref_primary_10_3390_info13120583
crossref_primary_10_3390_s23125410
crossref_primary_10_3390_s22093183
crossref_primary_10_1007_s42417_022_00553_5
crossref_primary_10_1016_j_ultras_2022_106743
crossref_primary_10_1080_15397734_2024_2347504
crossref_primary_10_1134_S1061830921020054
crossref_primary_10_1088_1361_6501_acc963
crossref_primary_10_1177_1045389X221128583
crossref_primary_10_1038_s41598_024_54418_w
crossref_primary_10_1109_TIM_2025_3533627
crossref_primary_10_3390_polym14183755
crossref_primary_10_1016_j_compstruct_2021_114141
crossref_primary_10_1080_15397734_2024_2419529
crossref_primary_10_1016_j_measurement_2021_110155
crossref_primary_10_1121_10_0010045
crossref_primary_10_3390_app131810017
crossref_primary_10_3390_s21124135
crossref_primary_10_1016_j_conbuildmat_2024_138442
crossref_primary_10_1016_j_jobe_2021_103739
crossref_primary_10_3390_s25061681
crossref_primary_10_1016_j_prostr_2023_12_055
crossref_primary_10_1088_1361_665X_ac2e1a
crossref_primary_10_1007_s10921_024_01101_9
crossref_primary_10_1016_j_measurement_2024_115069
crossref_primary_10_1155_2021_9998187
crossref_primary_10_1016_j_measurement_2024_115609
crossref_primary_10_1134_S1061830922100333
crossref_primary_10_3390_s21030860
crossref_primary_10_1088_1361_665X_abdd00
crossref_primary_10_3390_buildings12111772
crossref_primary_10_1080_10589759_2024_2404267
crossref_primary_10_57062_ijpem_st_2024_00185
crossref_primary_10_1016_j_ymssp_2024_111645
crossref_primary_10_3390_app14072925
crossref_primary_10_3390_s22218413
crossref_primary_10_3390_s23031099
crossref_primary_10_3390_s23167059
crossref_primary_10_1016_j_eswa_2023_122133
Cites_doi 10.1061/(ASCE)EM.1943-7889.0000821
10.1088/0964-1726/14/6/001
10.1109/BIBM.2017.8217719
10.1002/stc.1819
10.1061/(ASCE)BE.1943-5592.0001038
10.1016/j.jbi.2018.07.014
10.1061/(ASCE)AS.1943-5525.0000978
10.1007/BF02411348
10.1016/j.compositesb.2018.12.120
10.1016/j.ymssp.2015.06.017
10.1177/1475921708090566
10.3390/ma10060648
10.1016/j.compstruct.2004.05.011
10.2514/1.37282
10.1109/MMAR.2018.8486097
10.1061/(ASCE)0887-3801(2001)15:3(208)
10.1109/ACCESS.2018.2854599
10.1007/s12205-017-1518-5
10.1061/(ASCE)EM.1943-7889.0001033
10.1088/0964-1726/25/5/053001
10.1016/j.ultras.2018.02.011
10.1117/12.2296964
10.3390/app7050497
10.1121/1.422761
10.1023/A:1009715923555
10.1016/B978-012088760-6.50008-8
10.1177/058310249803000201
10.1016/j.jsv.2015.11.008
10.1007/s10921-007-0027-8
10.1061/(ASCE)BE.1943-5592.0001199
10.1177/1045389X9500600306
10.1007/s12205-018-1301-2
10.1023/A:1008280620621
10.1109/19.930439
10.1016/j.apacoust.2014.05.002
10.1017/S1481803500013336
ContentType Journal Article
Copyright 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2020 by the authors. 2020
Copyright_xml – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2020 by the authors. 2020
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s20061790
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni)
Medical Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
MEDLINE - Academic
PubMed
CrossRef


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_cf1b5e7590994b1dbd5593b40a1d3b32
PMC7146375
32213872
10_3390_s20061790
Genre Journal Article
GrantInformation_xml – fundername: U.S. Department of Transportation
  grantid: DTPH5616HCAP03, 693JK318500010CAAP, and 693JK31850009CAAP
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
NPM
PJZUB
PPXIY
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c469t-e64671c2a4500b65501efc680b07fe3a117337fa6c2a3ff4487f42683b4d67923
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 01:31:27 EDT 2025
Thu Aug 21 18:15:38 EDT 2025
Fri Jul 11 01:02:17 EDT 2025
Fri Jul 25 20:47:39 EDT 2025
Mon Jul 21 05:58:19 EDT 2025
Thu Apr 24 23:07:23 EDT 2025
Tue Jul 01 00:42:24 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Lamb wave
structural health monitoring
damage identification
machine learning
data-driven approach
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c469t-e64671c2a4500b65501efc680b07fe3a117337fa6c2a3ff4487f42683b4d67923
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8869-6150
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s20061790
PMID 32213872
PQID 2383878455
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_cf1b5e7590994b1dbd5593b40a1d3b32
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7146375
proquest_miscellaneous_2384208058
proquest_journals_2383878455
pubmed_primary_32213872
crossref_citationtrail_10_3390_s20061790
crossref_primary_10_3390_s20061790
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200324
PublicationDateYYYYMMDD 2020-03-24
PublicationDate_xml – month: 3
  year: 2020
  text: 20200324
  day: 24
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2020
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Kononenko (ref_35) 1997; 7
Yang (ref_29) 2005; 14
Doebling (ref_4) 1998; 30
Legendre (ref_22) 2001; 50
Wang (ref_46) 2018; 6
ref_19
ref_18
ref_17
Kong (ref_6) 2014; 141
Gui (ref_33) 2017; 21
Kong (ref_13) 2016; 142
Feng (ref_2) 2016; 23
Pan (ref_45) 2018; 23
Nair (ref_15) 2019; 161
ref_25
HosseinAbadi (ref_26) 2014; 86
Das (ref_24) 2010; 48
Hu (ref_11) 2008; 7
Dibike (ref_38) 2001; 15
Pan (ref_16) 2018; 22
ref_28
ref_27
Yang (ref_21) 2016; 78
ref_36
ref_34
ref_31
Fan (ref_49) 2006; 8
ref_37
Kong (ref_14) 2017; 22
Seale (ref_10) 1998; 103
Burges (ref_39) 1998; 2
Mitra (ref_7) 2016; 25
ref_47
ref_44
Santos (ref_42) 2016; 363
ref_43
Su (ref_23) 2004; 66
ref_41
Xu (ref_12) 2007; 26
ref_40
ref_1
Pan (ref_32) 2019; 32
ref_3
Wang (ref_20) 2018; 87
Giurgiutiu (ref_30) 2003; 43
ref_8
Saravanos (ref_9) 1995; 6
Urbanowicz (ref_48) 2018; 85
ref_5
References_xml – volume: 141
  start-page: 04014102
  year: 2014
  ident: ref_6
  article-title: Damage detection based on transmissibility of a vehicle and bridge coupled system
  publication-title: J. Eng. Mech.
  doi: 10.1061/(ASCE)EM.1943-7889.0000821
– volume: 14
  start-page: 1083
  year: 2005
  ident: ref_29
  article-title: Modeling and experimental detection of damage in various materials using the pulse-echo method and piezoelectric sensors/actuators
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/14/6/001
– ident: ref_47
  doi: 10.1109/BIBM.2017.8217719
– volume: 23
  start-page: 876
  year: 2016
  ident: ref_2
  article-title: Vision-based multipoint displacement measurement for structural health monitoring
  publication-title: Struct. Control. Health Monit.
  doi: 10.1002/stc.1819
– volume: 22
  start-page: 04017018
  year: 2017
  ident: ref_14
  article-title: Using dynamic responses of moving vehicles to extract bridge modal properties of a field bridge
  publication-title: J. Bridge Eng.
  doi: 10.1061/(ASCE)BE.1943-5592.0001038
– volume: 85
  start-page: 189
  year: 2018
  ident: ref_48
  article-title: Relief-based feature selection: Introduction and review
  publication-title: J. Biomed. Inform.
  doi: 10.1016/j.jbi.2018.07.014
– volume: 32
  start-page: 04019014
  year: 2019
  ident: ref_32
  article-title: Enabling damage identification of structures using time series–based feature extraction algorithms
  publication-title: J. Aerosp. Eng.
  doi: 10.1061/(ASCE)AS.1943-5525.0000978
– volume: 43
  start-page: 428
  year: 2003
  ident: ref_30
  article-title: Piezoelectric wafer active sensor embedded ultrasonics in beams and plates
  publication-title: Experimental mechanics Exp. Mech.
  doi: 10.1007/BF02411348
– volume: 161
  start-page: 691
  year: 2019
  ident: ref_15
  article-title: Acoustic emission pattern recognition in CFRP retrofitted RC beams for failure mode identification
  publication-title: Compos. Part B Eng.
  doi: 10.1016/j.compositesb.2018.12.120
– volume: 78
  start-page: 118
  year: 2016
  ident: ref_21
  article-title: A probabilistic crack size quantification method using in-situ Lamb wave test and Bayesian updating
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2015.06.017
– volume: 7
  start-page: 271
  year: 2008
  ident: ref_11
  article-title: Damage identification of metallic structures using A0 mode of Lamb waves
  publication-title: Struct. Health Monit.
  doi: 10.1177/1475921708090566
– ident: ref_25
  doi: 10.3390/ma10060648
– ident: ref_8
– volume: 66
  start-page: 627
  year: 2004
  ident: ref_23
  article-title: Lamb wave-based quantitative identification of delamination in CF/EP composite structures using artificial neural algorithm
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2004.05.011
– volume: 48
  start-page: 705
  year: 2010
  ident: ref_24
  article-title: Classifying induced damage in composite plates using one-class support vector machines
  publication-title: AIAA J.
  doi: 10.2514/1.37282
– ident: ref_27
– ident: ref_36
  doi: 10.1109/MMAR.2018.8486097
– volume: 15
  start-page: 208
  year: 2001
  ident: ref_38
  article-title: Model induction with support vector machines: Introduction and applications
  publication-title: J. Comput. Civ. Eng.
  doi: 10.1061/(ASCE)0887-3801(2001)15:3(208)
– volume: 6
  start-page: 38367
  year: 2018
  ident: ref_46
  article-title: Deep learning-based intrusion detection with adversaries
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2854599
– ident: ref_41
– volume: 21
  start-page: 523
  year: 2017
  ident: ref_33
  article-title: Data-driven support vector machine with optimization techniques for structural health monitoring and damage detection
  publication-title: KSCE J. Civ. Eng.
  doi: 10.1007/s12205-017-1518-5
– volume: 142
  start-page: 04016025
  year: 2016
  ident: ref_13
  article-title: Numerically extracting bridge modal properties from dynamic responses of moving vehicles
  publication-title: J. Eng. Mech.
  doi: 10.1061/(ASCE)EM.1943-7889.0001033
– ident: ref_17
– volume: 25
  start-page: 053001
  year: 2016
  ident: ref_7
  article-title: Guided wave based structural health monitoring: A review
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/25/5/053001
– volume: 87
  start-page: 48
  year: 2018
  ident: ref_20
  article-title: Sparse representation for Lamb-wave-based damage detection using a dictionary algorithm
  publication-title: Ultrasonics
  doi: 10.1016/j.ultras.2018.02.011
– ident: ref_28
– ident: ref_31
  doi: 10.1117/12.2296964
– ident: ref_5
  doi: 10.3390/app7050497
– ident: ref_3
– ident: ref_34
– volume: 103
  start-page: 2416
  year: 1998
  ident: ref_10
  article-title: Lamb wave assessment of fatigue and thermal damage in composites
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.422761
– ident: ref_40
– volume: 2
  start-page: 121
  year: 1998
  ident: ref_39
  article-title: A tutorial on support vector machines for pattern recognition
  publication-title: Data Min. Knowl. Discov.
  doi: 10.1023/A:1009715923555
– ident: ref_37
– ident: ref_18
– ident: ref_44
– ident: ref_1
  doi: 10.1016/B978-012088760-6.50008-8
– volume: 30
  start-page: 91
  year: 1998
  ident: ref_4
  article-title: A summary review of vibration-based damage identification methods
  publication-title: Shock Vib. Dig.
  doi: 10.1177/058310249803000201
– volume: 363
  start-page: 584
  year: 2016
  ident: ref_42
  article-title: Machine learning algorithms for damage detection: Kernel-based approaches
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2015.11.008
– volume: 26
  start-page: 123
  year: 2007
  ident: ref_12
  article-title: Single mode tuning effects on Lamb wave time reversal with piezoelectric wafer active sensors for structural health monitoring
  publication-title: J. Nondestruct. Eval.
  doi: 10.1007/s10921-007-0027-8
– volume: 23
  start-page: 04018033
  year: 2018
  ident: ref_45
  article-title: Time-frequency-based data-driven structural diagnosis and damage detection for cable-stayed bridges
  publication-title: J. Bridge Eng.
  doi: 10.1061/(ASCE)BE.1943-5592.0001199
– volume: 6
  start-page: 350
  year: 1995
  ident: ref_9
  article-title: Coupled layerwise analysis of composite beams with embedded piezoelectric sensors and actuators
  publication-title: J. Intell. Mater. Syst. Struct.
  doi: 10.1177/1045389X9500600306
– volume: 22
  start-page: 928
  year: 2018
  ident: ref_16
  article-title: Deep BBN learning for health assessment toward decision-making on structures under uncertainties
  publication-title: KSCE J. Civ. Eng.
  doi: 10.1007/s12205-018-1301-2
– volume: 7
  start-page: 39
  year: 1997
  ident: ref_35
  article-title: Overcoming the myopia of inductive learning algorithms with RELIEFF
  publication-title: Appl. Intell.
  doi: 10.1023/A:1008280620621
– volume: 50
  start-page: 672
  year: 2001
  ident: ref_22
  article-title: Neural classification of Lamb wave ultrasonic weld testing signals using wavelet coefficients
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/19.930439
– ident: ref_19
– ident: ref_43
– volume: 86
  start-page: 59
  year: 2014
  ident: ref_26
  article-title: GUW-based structural damage detection using WPT statistical features and multiclass SVM
  publication-title: Appl. Acoust.
  doi: 10.1016/j.apacoust.2014.05.002
– volume: 8
  start-page: 19
  year: 2006
  ident: ref_49
  article-title: Understanding receiver operating characteristic (ROC) curves
  publication-title: Can. J. Emerg. Med.
  doi: 10.1017/S1481803500013336
SSID ssj0023338
Score 2.4920242
Snippet Lamb wave approaches have been accepted as efficiently non-destructive evaluations in structural health monitoring for identifying damage in different states....
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1790
SubjectTerms Algorithms
Artificial intelligence
Automation
Civil engineering
Classification
damage identification
data-driven approach
Datasets
Deep learning
Defects
Knowledge discovery
lamb wave
Machine learning
Methods
Neural networks
Noise
Physical restraints
Physics
Simulation
structural health monitoring
Support vector machines
Wavelet transforms
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iSQ_i2_oiigcvwbZpHntcH4uIelL0VpJmqoLbFbfr73eSdsuuCF68lWYI6Uwy8310-ELIidMKYmUFS7WwDDcFZ9aliklTFFYqgzUmdFvcy-vH7OZZPM9c9eV7whp54MZxZ0WZWAFK9BDKZDZx1iEG5jaLTeK45SH7Ys2bkqmWanFkXo2OEEdSfzZOQ6n2iXem-gSR_t-Q5c8GyZmKM1glKy1UpP1miWtkAap1sjwjILhB7u5CLyTQVib1hV1Vn76509FbM7T0yXwB7bey4TCmiFBpf1KPEKaiyaUZYjahl1CHfqxqkzwOrh4urll7QQIrkNXWDCSmuaRITSbi2EokGwmUhdSxjVUJ3CSJ4lyVRqIJL0tkYqrEiqzRfU564cAtsliNKtghNNUajCqscAKyHj5AWgptpAaMmHIuIqdTx-VFqx7uL7F4z5FFeB_nnY8jctyZfjSSGb8ZnXvvdwZe5Tq8wNjnbezzv2Ifkf1p7PL26I1zxCBcK50JEZGjbhgPjf8TYioYTYKNbyuIhY7IdhPqbiWY4RKcACdXc5tgbqnzI9XbaxDmVlh2uBK7__Fte2Qp9dQ-5izN9sli_TmBA8Q_tT0MW_0bv50DCQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwEB1BERI9ICgfDRRkEAcuVmM7jt0TWmiXClFOVPQW-SsFiSZlk-X3M_Z6wy6quEXxyLI89sw8--kZ4I3XKpTKSsq1tBQXhaDWc0Vr45ytlcEck9gWX-rT8-rThbzIB25DplWuY2IK1L538Yz8EFOL0EpXUr67_kXjq1HxdjU_oXEb7jDMNJHSpecfJ8AlEH-t1IQEQvvDgaeEHcPvRg5KUv031Zf_0iQ38s78AdzPBSOZrTz8EG6Fbg92N2QE9-BuonG64RGcnSVuZCBZNvWSnnSLSPb05LO5suSb-R3ILMuIh4FgxUpmy7HHshVNjs0VRhdyHMbEz-oew_n85OuHU5ofTKAOUe5IQ41hjzluKlmWtkbwwULral3aUrVBGMaUEKo1NZqItkVkplrM0FrYytdRSPAJ7HR9F_aBcK2DUc5KL0N1hB-Bt1KbWgf0oPK-gLfrKWxcVhOPj1r8bBBVxNluptku4PVker2S0LjJ6H30w2QQVa_Tj35x2eRN1LiWWRmUPMKytrLMW494CAdfGuaFFbyAg7UXm7wVh-bvwing1dSMmyjejJgu9MtkE2kGpdQFPF05fRoJRjyGHWDnams5bA11u6X78T0JdStMQ0LJZ_8f1nO4xyOILwXl1QHsjItleIGVzmhfpuX8B8hM_YU
  priority: 102
  providerName: ProQuest
Title Machine Learning-Enriched Lamb Wave Approaches for Automated Damage Detection
URI https://www.ncbi.nlm.nih.gov/pubmed/32213872
https://www.proquest.com/docview/2383878455
https://www.proquest.com/docview/2384208058
https://pubmed.ncbi.nlm.nih.gov/PMC7146375
https://doaj.org/article/cf1b5e7590994b1dbd5593b40a1d3b32
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3di9NAEB_OOwR9ED31jJ4lig--rCa72Y8-iPS81kPsIWKxb2G_cgp3qbap6H_v7DYNFym-hJAdlmVmdmd-2eE3AC-ckj6ThhOquCHoFIwYRyUR2lojpMYYE6stzsXZrPgw5_M92PbYbBW42gntQj-p2fLy1e-ff97ihn8TECdC9tcrGgPxEJH7AQYkGRoZTIvuMoEyhGEbUqG-eC8URcb-XWnmv9WS18LP5C7cafPGdLQx9D3Y8_Uh3L7GJngIN2M1p13dh-k0lkj6tGVPvSDjehlqPl36UV-Z9Kv-5dNRyybuVykmrulo3Swwe0WRU32Fh0x66ptYplU_gNlk_OXdGWn7JhCLYLchXuDpl1uqC55lRiAGyX1lhcpMJivPdJ5LxmSlBYqwqkKAJisM1IqZwonAJ_gQ9utF7R9BSpXyWlrDHffFEF88rbjSQnk0pHQugZdbFZa2JRUPvS0uSwQXQdtlp-0EnneiPzZMGruEToIdOoFAfh0_LJYXZbuXSlvlhnvJh5jdFiZ3xiEswsVnOnfMMJrA8daK5dahSkxNmJKq4DyBZ90w7qVwQaJrv1hHmVBtkHGVwNHG6N1K8ODLcQKcXPbcobfU_kj9_Vvk65YYjZjkj_-_rCdwiwYsnzFCi2PYb5Zr_xQTnsYM4IacS3yqyfsBHJyMzz99HsSfB4Po6H8BDo8DSw
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQcEJRXoEBAIHGJmthx7B4QWtguW7rbUyt6C36lINGkbLIg_hS_kbHzYBdV3HqL4pE1Go_nYY-_AXhpBLcxVywigqkIlYJGyhAeZVJrlXGJPsZXWxxm0-P04wk72YDf_VsYV1bZ20RvqE2l3Rn5DroWKrhIGXt7_j1yXaPc7WrfQqNViwP76yembPWb_TGu7ytCJntH76dR11Ug0pgKNpHN0DYkmsiUxbHKMEJPbKEzEauYF5bKJOGU8kJmSEKLAtMXXqAbE1SlJnNoezjvFbiaUvTk7mX65MOQ4FHM91r0IhyMd2riAwRn7ld8nm8NcFE8-29Z5oqfm9yGW12AGo5ajboDG7bcgpsrsIVbcM2Xjer6LsznvhbThh1M62m0Vy5ccakJZ_JMhZ_kDxuOOthyW4cYIYejZVNhmIwkY3mG1iwc28bXg5X34PhSRHkfNsuqtA8hJEJYybVihtl0Fz8sKZiQmbCoMdyYAF73Isx1h17ummh8yzGLcdLOB2kH8GIgPW8hOy4ieufWYSBwKNv-R7U4zbtNm-siUcxytothdKoSowzmX8h8LBNDFSUBbPermHdbv87_KmoAz4dh3LTuJkaWtlp6GlfWEDMRwIN20QdO0MImOAFOztfUYY3V9ZHy6xcPDM7R7VHOHv2frWdwfXo0n-Wz_cODx3CDuAOEmEYk3YbNZrG0TzDKatRTr9ohfL7svfQHdWs4xg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrUBwQFBegQIBgcTF2sSOY-8BoS27q5a2qwpR0Vtqx05BoknZZEH8NX4d47zYRRW33qJkZFme8TzsL98AvDJS2EBoTqjkmqBRMKINFSRWaapjoTDG1GiLebx7HH044Scb8Lv7F8bBKjufWDtqU6TujHyIoYVJISPOh1kLiziazN5dfCeug5S7ae3aaTQmsm9__cTyrXy7N0Fdv6Z0Nv30fpe0HQZIimVhRWyMfiJMqYp4EOgYs_XQZmksAx2IzDIVhoIxkakYRViWYSkjMgxpkunIxI55D8e9BpvCVUUD2NyZzo8-9uUew-qv4TJibBQMS1qnC875r0TAulHAZdntvyDNlag3uwO323TVHzf2dRc2bL4Ft1ZIDLfgeg0iTct7cHhYIzOt35K2npFpvnBQU-MfqHPtf1Y_rD9uScxt6WO-7I-XVYFJM4pM1Dn6Nn9iqxodlt-H4ytZzAcwyIvcPgKfSmmVSDU33EYjfLA041LF0qL9CGM8eNMtYZK2XOaupca3BGsat9pJv9oevOxFLxoCj8uEdpweegHHuV2_KBZnSbuFkzQLNbeCjzCpjnRotMFqDCcfqNAwzagH250Wk9YRlMlfs_XgRf8Zt7C7l1G5LZa1jAM5BFx68LBRej8T9LchDoCDizVzWJvq-pf865eaJlxgEGSCP_7_tJ7DDdxHycHefP8J3KTuNCFghEbbMKgWS_sUU65KP2tt24fTq95OfwA8Lz5Y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+Learning-Enriched+Lamb+Wave+Approaches+for+Automated+Damage+Detection&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Zhang%2C+Zi&rft.au=Pan%2C+Hong&rft.au=Wang%2C+Xingyu&rft.au=Lin%2C+Zhibin&rft.date=2020-03-24&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=20&rft.issue=6&rft.spage=1790&rft_id=info:doi/10.3390%2Fs20061790&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon