Machine Learning-Enriched Lamb Wave Approaches for Automated Damage Detection
Lamb wave approaches have been accepted as efficiently non-destructive evaluations in structural health monitoring for identifying damage in different states. Despite significant efforts in signal process of Lamb waves, physics-based prediction is still a big challenge due to complexity nature of th...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 20; no. 6; p. 1790 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
24.03.2020
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Lamb wave approaches have been accepted as efficiently non-destructive evaluations in structural health monitoring for identifying damage in different states. Despite significant efforts in signal process of Lamb waves, physics-based prediction is still a big challenge due to complexity nature of the Lamb wave when it propagates, scatters and disperses. Machine learning in recent years has created transformative opportunities for accelerating knowledge discovery and accurately disseminating information where conventional Lamb wave approaches cannot work. Therefore, the learning framework was proposed with a workflow from dataset generation, to sensitive feature extraction, to prediction model for lamb-wave-based damage detection. A total of 17 damage states in terms of different damage type, sizes and orientations were designed to train the feature extraction and sensitive feature selection. A machine learning method, support vector machine (SVM), was employed for the learning model. A grid searching (GS) technique was adopted to optimize the parameters of the SVM model. The results show that the machine learning-enriched Lamb wave-based damage detection method is an efficient and accuracy wave to identify the damage severity and orientation. Results demonstrated that different features generated from different domains had certain levels of sensitivity to damage, while the feature selection method revealed that time-frequency features and wavelet coefficients exhibited the highest damage-sensitivity. These features were also much more robust to noise. With increase of noise, the accuracy of the classification dramatically dropped. |
---|---|
AbstractList | Lamb wave approaches have been accepted as efficiently non-destructive evaluations in structural health monitoring for identifying damage in different states. Despite significant efforts in signal process of Lamb waves, physics-based prediction is still a big challenge due to complexity nature of the Lamb wave when it propagates, scatters and disperses. Machine learning in recent years has created transformative opportunities for accelerating knowledge discovery and accurately disseminating information where conventional Lamb wave approaches cannot work. Therefore, the learning framework was proposed with a workflow from dataset generation, to sensitive feature extraction, to prediction model for lamb-wave-based damage detection. A total of 17 damage states in terms of different damage type, sizes and orientations were designed to train the feature extraction and sensitive feature selection. A machine learning method, support vector machine (SVM), was employed for the learning model. A grid searching (GS) technique was adopted to optimize the parameters of the SVM model. The results show that the machine learning-enriched Lamb wave-based damage detection method is an efficient and accuracy wave to identify the damage severity and orientation. Results demonstrated that different features generated from different domains had certain levels of sensitivity to damage, while the feature selection method revealed that time-frequency features and wavelet coefficients exhibited the highest damage-sensitivity. These features were also much more robust to noise. With increase of noise, the accuracy of the classification dramatically dropped. Lamb wave approaches have been accepted as efficiently non-destructive evaluations in structural health monitoring for identifying damage in different states. Despite significant efforts in signal process of Lamb waves, physics-based prediction is still a big challenge due to complexity nature of the Lamb wave when it propagates, scatters and disperses. Machine learning in recent years has created transformative opportunities for accelerating knowledge discovery and accurately disseminating information where conventional Lamb wave approaches cannot work. Therefore, the learning framework was proposed with a workflow from dataset generation, to sensitive feature extraction, to prediction model for lamb-wave-based damage detection. A total of 17 damage states in terms of different damage type, sizes and orientations were designed to train the feature extraction and sensitive feature selection. A machine learning method, support vector machine (SVM), was employed for the learning model. A grid searching (GS) technique was adopted to optimize the parameters of the SVM model. The results show that the machine learning-enriched Lamb wave-based damage detection method is an efficient and accuracy wave to identify the damage severity and orientation. Results demonstrated that different features generated from different domains had certain levels of sensitivity to damage, while the feature selection method revealed that time-frequency features and wavelet coefficients exhibited the highest damage-sensitivity. These features were also much more robust to noise. With increase of noise, the accuracy of the classification dramatically dropped.Lamb wave approaches have been accepted as efficiently non-destructive evaluations in structural health monitoring for identifying damage in different states. Despite significant efforts in signal process of Lamb waves, physics-based prediction is still a big challenge due to complexity nature of the Lamb wave when it propagates, scatters and disperses. Machine learning in recent years has created transformative opportunities for accelerating knowledge discovery and accurately disseminating information where conventional Lamb wave approaches cannot work. Therefore, the learning framework was proposed with a workflow from dataset generation, to sensitive feature extraction, to prediction model for lamb-wave-based damage detection. A total of 17 damage states in terms of different damage type, sizes and orientations were designed to train the feature extraction and sensitive feature selection. A machine learning method, support vector machine (SVM), was employed for the learning model. A grid searching (GS) technique was adopted to optimize the parameters of the SVM model. The results show that the machine learning-enriched Lamb wave-based damage detection method is an efficient and accuracy wave to identify the damage severity and orientation. Results demonstrated that different features generated from different domains had certain levels of sensitivity to damage, while the feature selection method revealed that time-frequency features and wavelet coefficients exhibited the highest damage-sensitivity. These features were also much more robust to noise. With increase of noise, the accuracy of the classification dramatically dropped. |
Author | Wang, Xingyu Zhang, Zi Pan, Hong Lin, Zhibin |
AuthorAffiliation | Department of Civil and Environmental Engineering, North Dakota State University, Fargo, ND 58018, USA; Zi.zhang@ndsu.edu (Z.Z.); Hong.pan@ndsu.edu (H.P.); Xingyu.wang@ndsu.edu (X.W.) |
AuthorAffiliation_xml | – name: Department of Civil and Environmental Engineering, North Dakota State University, Fargo, ND 58018, USA; Zi.zhang@ndsu.edu (Z.Z.); Hong.pan@ndsu.edu (H.P.); Xingyu.wang@ndsu.edu (X.W.) |
Author_xml | – sequence: 1 givenname: Zi surname: Zhang fullname: Zhang, Zi – sequence: 2 givenname: Hong surname: Pan fullname: Pan, Hong – sequence: 3 givenname: Xingyu orcidid: 0000-0001-8869-6150 surname: Wang fullname: Wang, Xingyu – sequence: 4 givenname: Zhibin surname: Lin fullname: Lin, Zhibin |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32213872$$D View this record in MEDLINE/PubMed |
BookMark | eNplkk1v1DAQhi1URD_gwB9AkbjAIdRfsZ0L0qotUGkrLiCOluOMd71K7MVOKvHvcdi2asvJlv3Mo1czc4qOQgyA0FuCPzHW4vNMMRZEtvgFOiGc8lpRio8e3Y_Rac47jCljTL1Cx4xSwpSkJ-jmxtitD1CtwaTgw6a-CsnbLfTV2oxd9cvcQrXa71MsHOTKxVSt5imOZirIpRnNBqpLmMBOPobX6KUzQ4Y3d-cZ-vnl6sfFt3r9_ev1xWpdWy7aqQbBhSSWGt5g3ImmwQScFQp3WDpghhDJmHRGFIQ5x7mSjlOhWMd7IVvKztD1wdtHs9P75EeT_uhovP73ENNGmzR5O4C2jnQNyKbFbcs70nd907RFhA3pWccW1-eDaz93I_QWwpTM8ET69Cf4rd7EWy0JF0w2RfDhTpDi7xnypEefLQyDCRDnrClTnGKFG1XQ98_QXZxTKK1aqDIRxZtF-O5xooco91MrwPkBsCnmnMBp6yezDKAE9IMmWC97oR_2olR8fFZxL_2f_QucgbTc |
CitedBy_id | crossref_primary_10_1016_j_measurement_2024_114666 crossref_primary_10_3390_s22145390 crossref_primary_10_1016_j_measurement_2022_111372 crossref_primary_10_1177_14759217241268394 crossref_primary_10_3390_s22176495 crossref_primary_10_3390_s23063183 crossref_primary_10_2139_ssrn_4017229 crossref_primary_10_1088_2631_8695_acefae crossref_primary_10_3390_computation11110218 crossref_primary_10_3390_info13120583 crossref_primary_10_3390_s23125410 crossref_primary_10_3390_s22093183 crossref_primary_10_1007_s42417_022_00553_5 crossref_primary_10_1016_j_ultras_2022_106743 crossref_primary_10_1080_15397734_2024_2347504 crossref_primary_10_1134_S1061830921020054 crossref_primary_10_1088_1361_6501_acc963 crossref_primary_10_1177_1045389X221128583 crossref_primary_10_1038_s41598_024_54418_w crossref_primary_10_1109_TIM_2025_3533627 crossref_primary_10_3390_polym14183755 crossref_primary_10_1016_j_compstruct_2021_114141 crossref_primary_10_1080_15397734_2024_2419529 crossref_primary_10_1016_j_measurement_2021_110155 crossref_primary_10_1121_10_0010045 crossref_primary_10_3390_app131810017 crossref_primary_10_3390_s21124135 crossref_primary_10_1016_j_conbuildmat_2024_138442 crossref_primary_10_1016_j_jobe_2021_103739 crossref_primary_10_3390_s25061681 crossref_primary_10_1016_j_prostr_2023_12_055 crossref_primary_10_1088_1361_665X_ac2e1a crossref_primary_10_1007_s10921_024_01101_9 crossref_primary_10_1016_j_measurement_2024_115069 crossref_primary_10_1155_2021_9998187 crossref_primary_10_1016_j_measurement_2024_115609 crossref_primary_10_1134_S1061830922100333 crossref_primary_10_3390_s21030860 crossref_primary_10_1088_1361_665X_abdd00 crossref_primary_10_3390_buildings12111772 crossref_primary_10_1080_10589759_2024_2404267 crossref_primary_10_57062_ijpem_st_2024_00185 crossref_primary_10_1016_j_ymssp_2024_111645 crossref_primary_10_3390_app14072925 crossref_primary_10_3390_s22218413 crossref_primary_10_3390_s23031099 crossref_primary_10_3390_s23167059 crossref_primary_10_1016_j_eswa_2023_122133 |
Cites_doi | 10.1061/(ASCE)EM.1943-7889.0000821 10.1088/0964-1726/14/6/001 10.1109/BIBM.2017.8217719 10.1002/stc.1819 10.1061/(ASCE)BE.1943-5592.0001038 10.1016/j.jbi.2018.07.014 10.1061/(ASCE)AS.1943-5525.0000978 10.1007/BF02411348 10.1016/j.compositesb.2018.12.120 10.1016/j.ymssp.2015.06.017 10.1177/1475921708090566 10.3390/ma10060648 10.1016/j.compstruct.2004.05.011 10.2514/1.37282 10.1109/MMAR.2018.8486097 10.1061/(ASCE)0887-3801(2001)15:3(208) 10.1109/ACCESS.2018.2854599 10.1007/s12205-017-1518-5 10.1061/(ASCE)EM.1943-7889.0001033 10.1088/0964-1726/25/5/053001 10.1016/j.ultras.2018.02.011 10.1117/12.2296964 10.3390/app7050497 10.1121/1.422761 10.1023/A:1009715923555 10.1016/B978-012088760-6.50008-8 10.1177/058310249803000201 10.1016/j.jsv.2015.11.008 10.1007/s10921-007-0027-8 10.1061/(ASCE)BE.1943-5592.0001199 10.1177/1045389X9500600306 10.1007/s12205-018-1301-2 10.1023/A:1008280620621 10.1109/19.930439 10.1016/j.apacoust.2014.05.002 10.1017/S1481803500013336 |
ContentType | Journal Article |
Copyright | 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2020 by the authors. 2020 |
Copyright_xml | – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2020 by the authors. 2020 |
DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/s20061790 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni) Medical Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic PubMed CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_cf1b5e7590994b1dbd5593b40a1d3b32 PMC7146375 32213872 10_3390_s20061790 |
Genre | Journal Article |
GrantInformation_xml | – fundername: U.S. Department of Transportation grantid: DTPH5616HCAP03, 693JK318500010CAAP, and 693JK31850009CAAP |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M NPM PJZUB PPXIY 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c469t-e64671c2a4500b65501efc680b07fe3a117337fa6c2a3ff4487f42683b4d67923 |
IEDL.DBID | M48 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:31:27 EDT 2025 Thu Aug 21 18:15:38 EDT 2025 Fri Jul 11 01:02:17 EDT 2025 Fri Jul 25 20:47:39 EDT 2025 Mon Jul 21 05:58:19 EDT 2025 Thu Apr 24 23:07:23 EDT 2025 Tue Jul 01 00:42:24 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Lamb wave structural health monitoring damage identification machine learning data-driven approach |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c469t-e64671c2a4500b65501efc680b07fe3a117337fa6c2a3ff4487f42683b4d67923 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-8869-6150 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s20061790 |
PMID | 32213872 |
PQID | 2383878455 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_cf1b5e7590994b1dbd5593b40a1d3b32 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7146375 proquest_miscellaneous_2384208058 proquest_journals_2383878455 pubmed_primary_32213872 crossref_citationtrail_10_3390_s20061790 crossref_primary_10_3390_s20061790 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200324 |
PublicationDateYYYYMMDD | 2020-03-24 |
PublicationDate_xml | – month: 3 year: 2020 text: 20200324 day: 24 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2020 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Kononenko (ref_35) 1997; 7 Yang (ref_29) 2005; 14 Doebling (ref_4) 1998; 30 Legendre (ref_22) 2001; 50 Wang (ref_46) 2018; 6 ref_19 ref_18 ref_17 Kong (ref_6) 2014; 141 Gui (ref_33) 2017; 21 Kong (ref_13) 2016; 142 Feng (ref_2) 2016; 23 Pan (ref_45) 2018; 23 Nair (ref_15) 2019; 161 ref_25 HosseinAbadi (ref_26) 2014; 86 Das (ref_24) 2010; 48 Hu (ref_11) 2008; 7 Dibike (ref_38) 2001; 15 Pan (ref_16) 2018; 22 ref_28 ref_27 Yang (ref_21) 2016; 78 ref_36 ref_34 ref_31 Fan (ref_49) 2006; 8 ref_37 Kong (ref_14) 2017; 22 Seale (ref_10) 1998; 103 Burges (ref_39) 1998; 2 Mitra (ref_7) 2016; 25 ref_47 ref_44 Santos (ref_42) 2016; 363 ref_43 Su (ref_23) 2004; 66 ref_41 Xu (ref_12) 2007; 26 ref_40 ref_1 Pan (ref_32) 2019; 32 ref_3 Wang (ref_20) 2018; 87 Giurgiutiu (ref_30) 2003; 43 ref_8 Saravanos (ref_9) 1995; 6 Urbanowicz (ref_48) 2018; 85 ref_5 |
References_xml | – volume: 141 start-page: 04014102 year: 2014 ident: ref_6 article-title: Damage detection based on transmissibility of a vehicle and bridge coupled system publication-title: J. Eng. Mech. doi: 10.1061/(ASCE)EM.1943-7889.0000821 – volume: 14 start-page: 1083 year: 2005 ident: ref_29 article-title: Modeling and experimental detection of damage in various materials using the pulse-echo method and piezoelectric sensors/actuators publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/14/6/001 – ident: ref_47 doi: 10.1109/BIBM.2017.8217719 – volume: 23 start-page: 876 year: 2016 ident: ref_2 article-title: Vision-based multipoint displacement measurement for structural health monitoring publication-title: Struct. Control. Health Monit. doi: 10.1002/stc.1819 – volume: 22 start-page: 04017018 year: 2017 ident: ref_14 article-title: Using dynamic responses of moving vehicles to extract bridge modal properties of a field bridge publication-title: J. Bridge Eng. doi: 10.1061/(ASCE)BE.1943-5592.0001038 – volume: 85 start-page: 189 year: 2018 ident: ref_48 article-title: Relief-based feature selection: Introduction and review publication-title: J. Biomed. Inform. doi: 10.1016/j.jbi.2018.07.014 – volume: 32 start-page: 04019014 year: 2019 ident: ref_32 article-title: Enabling damage identification of structures using time series–based feature extraction algorithms publication-title: J. Aerosp. Eng. doi: 10.1061/(ASCE)AS.1943-5525.0000978 – volume: 43 start-page: 428 year: 2003 ident: ref_30 article-title: Piezoelectric wafer active sensor embedded ultrasonics in beams and plates publication-title: Experimental mechanics Exp. Mech. doi: 10.1007/BF02411348 – volume: 161 start-page: 691 year: 2019 ident: ref_15 article-title: Acoustic emission pattern recognition in CFRP retrofitted RC beams for failure mode identification publication-title: Compos. Part B Eng. doi: 10.1016/j.compositesb.2018.12.120 – volume: 78 start-page: 118 year: 2016 ident: ref_21 article-title: A probabilistic crack size quantification method using in-situ Lamb wave test and Bayesian updating publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2015.06.017 – volume: 7 start-page: 271 year: 2008 ident: ref_11 article-title: Damage identification of metallic structures using A0 mode of Lamb waves publication-title: Struct. Health Monit. doi: 10.1177/1475921708090566 – ident: ref_25 doi: 10.3390/ma10060648 – ident: ref_8 – volume: 66 start-page: 627 year: 2004 ident: ref_23 article-title: Lamb wave-based quantitative identification of delamination in CF/EP composite structures using artificial neural algorithm publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2004.05.011 – volume: 48 start-page: 705 year: 2010 ident: ref_24 article-title: Classifying induced damage in composite plates using one-class support vector machines publication-title: AIAA J. doi: 10.2514/1.37282 – ident: ref_27 – ident: ref_36 doi: 10.1109/MMAR.2018.8486097 – volume: 15 start-page: 208 year: 2001 ident: ref_38 article-title: Model induction with support vector machines: Introduction and applications publication-title: J. Comput. Civ. Eng. doi: 10.1061/(ASCE)0887-3801(2001)15:3(208) – volume: 6 start-page: 38367 year: 2018 ident: ref_46 article-title: Deep learning-based intrusion detection with adversaries publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2854599 – ident: ref_41 – volume: 21 start-page: 523 year: 2017 ident: ref_33 article-title: Data-driven support vector machine with optimization techniques for structural health monitoring and damage detection publication-title: KSCE J. Civ. Eng. doi: 10.1007/s12205-017-1518-5 – volume: 142 start-page: 04016025 year: 2016 ident: ref_13 article-title: Numerically extracting bridge modal properties from dynamic responses of moving vehicles publication-title: J. Eng. Mech. doi: 10.1061/(ASCE)EM.1943-7889.0001033 – ident: ref_17 – volume: 25 start-page: 053001 year: 2016 ident: ref_7 article-title: Guided wave based structural health monitoring: A review publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/25/5/053001 – volume: 87 start-page: 48 year: 2018 ident: ref_20 article-title: Sparse representation for Lamb-wave-based damage detection using a dictionary algorithm publication-title: Ultrasonics doi: 10.1016/j.ultras.2018.02.011 – ident: ref_28 – ident: ref_31 doi: 10.1117/12.2296964 – ident: ref_5 doi: 10.3390/app7050497 – ident: ref_3 – ident: ref_34 – volume: 103 start-page: 2416 year: 1998 ident: ref_10 article-title: Lamb wave assessment of fatigue and thermal damage in composites publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.422761 – ident: ref_40 – volume: 2 start-page: 121 year: 1998 ident: ref_39 article-title: A tutorial on support vector machines for pattern recognition publication-title: Data Min. Knowl. Discov. doi: 10.1023/A:1009715923555 – ident: ref_37 – ident: ref_18 – ident: ref_44 – ident: ref_1 doi: 10.1016/B978-012088760-6.50008-8 – volume: 30 start-page: 91 year: 1998 ident: ref_4 article-title: A summary review of vibration-based damage identification methods publication-title: Shock Vib. Dig. doi: 10.1177/058310249803000201 – volume: 363 start-page: 584 year: 2016 ident: ref_42 article-title: Machine learning algorithms for damage detection: Kernel-based approaches publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2015.11.008 – volume: 26 start-page: 123 year: 2007 ident: ref_12 article-title: Single mode tuning effects on Lamb wave time reversal with piezoelectric wafer active sensors for structural health monitoring publication-title: J. Nondestruct. Eval. doi: 10.1007/s10921-007-0027-8 – volume: 23 start-page: 04018033 year: 2018 ident: ref_45 article-title: Time-frequency-based data-driven structural diagnosis and damage detection for cable-stayed bridges publication-title: J. Bridge Eng. doi: 10.1061/(ASCE)BE.1943-5592.0001199 – volume: 6 start-page: 350 year: 1995 ident: ref_9 article-title: Coupled layerwise analysis of composite beams with embedded piezoelectric sensors and actuators publication-title: J. Intell. Mater. Syst. Struct. doi: 10.1177/1045389X9500600306 – volume: 22 start-page: 928 year: 2018 ident: ref_16 article-title: Deep BBN learning for health assessment toward decision-making on structures under uncertainties publication-title: KSCE J. Civ. Eng. doi: 10.1007/s12205-018-1301-2 – volume: 7 start-page: 39 year: 1997 ident: ref_35 article-title: Overcoming the myopia of inductive learning algorithms with RELIEFF publication-title: Appl. Intell. doi: 10.1023/A:1008280620621 – volume: 50 start-page: 672 year: 2001 ident: ref_22 article-title: Neural classification of Lamb wave ultrasonic weld testing signals using wavelet coefficients publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/19.930439 – ident: ref_19 – ident: ref_43 – volume: 86 start-page: 59 year: 2014 ident: ref_26 article-title: GUW-based structural damage detection using WPT statistical features and multiclass SVM publication-title: Appl. Acoust. doi: 10.1016/j.apacoust.2014.05.002 – volume: 8 start-page: 19 year: 2006 ident: ref_49 article-title: Understanding receiver operating characteristic (ROC) curves publication-title: Can. J. Emerg. Med. doi: 10.1017/S1481803500013336 |
SSID | ssj0023338 |
Score | 2.4920242 |
Snippet | Lamb wave approaches have been accepted as efficiently non-destructive evaluations in structural health monitoring for identifying damage in different states.... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1790 |
SubjectTerms | Algorithms Artificial intelligence Automation Civil engineering Classification damage identification data-driven approach Datasets Deep learning Defects Knowledge discovery lamb wave Machine learning Methods Neural networks Noise Physical restraints Physics Simulation structural health monitoring Support vector machines Wavelet transforms |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iSQ_i2_oiigcvwbZpHntcH4uIelL0VpJmqoLbFbfr73eSdsuuCF68lWYI6Uwy8310-ELIidMKYmUFS7WwDDcFZ9aliklTFFYqgzUmdFvcy-vH7OZZPM9c9eV7whp54MZxZ0WZWAFK9BDKZDZx1iEG5jaLTeK45SH7Ys2bkqmWanFkXo2OEEdSfzZOQ6n2iXem-gSR_t-Q5c8GyZmKM1glKy1UpP1miWtkAap1sjwjILhB7u5CLyTQVib1hV1Vn76509FbM7T0yXwB7bey4TCmiFBpf1KPEKaiyaUZYjahl1CHfqxqkzwOrh4urll7QQIrkNXWDCSmuaRITSbi2EokGwmUhdSxjVUJ3CSJ4lyVRqIJL0tkYqrEiqzRfU564cAtsliNKtghNNUajCqscAKyHj5AWgptpAaMmHIuIqdTx-VFqx7uL7F4z5FFeB_nnY8jctyZfjSSGb8ZnXvvdwZe5Tq8wNjnbezzv2Ifkf1p7PL26I1zxCBcK50JEZGjbhgPjf8TYioYTYKNbyuIhY7IdhPqbiWY4RKcACdXc5tgbqnzI9XbaxDmVlh2uBK7__Fte2Qp9dQ-5izN9sli_TmBA8Q_tT0MW_0bv50DCQ priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwEB1BERI9ICgfDRRkEAcuVmM7jt0TWmiXClFOVPQW-SsFiSZlk-X3M_Z6wy6quEXxyLI89sw8--kZ4I3XKpTKSsq1tBQXhaDWc0Vr45ytlcEck9gWX-rT8-rThbzIB25DplWuY2IK1L538Yz8EFOL0EpXUr67_kXjq1HxdjU_oXEb7jDMNJHSpecfJ8AlEH-t1IQEQvvDgaeEHcPvRg5KUv031Zf_0iQ38s78AdzPBSOZrTz8EG6Fbg92N2QE9-BuonG64RGcnSVuZCBZNvWSnnSLSPb05LO5suSb-R3ILMuIh4FgxUpmy7HHshVNjs0VRhdyHMbEz-oew_n85OuHU5ofTKAOUe5IQ41hjzluKlmWtkbwwULral3aUrVBGMaUEKo1NZqItkVkplrM0FrYytdRSPAJ7HR9F_aBcK2DUc5KL0N1hB-Bt1KbWgf0oPK-gLfrKWxcVhOPj1r8bBBVxNluptku4PVker2S0LjJ6H30w2QQVa_Tj35x2eRN1LiWWRmUPMKytrLMW494CAdfGuaFFbyAg7UXm7wVh-bvwing1dSMmyjejJgu9MtkE2kGpdQFPF05fRoJRjyGHWDnams5bA11u6X78T0JdStMQ0LJZ_8f1nO4xyOILwXl1QHsjItleIGVzmhfpuX8B8hM_YU priority: 102 providerName: ProQuest |
Title | Machine Learning-Enriched Lamb Wave Approaches for Automated Damage Detection |
URI | https://www.ncbi.nlm.nih.gov/pubmed/32213872 https://www.proquest.com/docview/2383878455 https://www.proquest.com/docview/2384208058 https://pubmed.ncbi.nlm.nih.gov/PMC7146375 https://doaj.org/article/cf1b5e7590994b1dbd5593b40a1d3b32 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3di9NAEB_OOwR9ED31jJ4lig--rCa72Y8-iPS81kPsIWKxb2G_cgp3qbap6H_v7DYNFym-hJAdlmVmdmd-2eE3AC-ckj6ThhOquCHoFIwYRyUR2lojpMYYE6stzsXZrPgw5_M92PbYbBW42gntQj-p2fLy1e-ff97ihn8TECdC9tcrGgPxEJH7AQYkGRoZTIvuMoEyhGEbUqG-eC8URcb-XWnmv9WS18LP5C7cafPGdLQx9D3Y8_Uh3L7GJngIN2M1p13dh-k0lkj6tGVPvSDjehlqPl36UV-Z9Kv-5dNRyybuVykmrulo3Swwe0WRU32Fh0x66ptYplU_gNlk_OXdGWn7JhCLYLchXuDpl1uqC55lRiAGyX1lhcpMJivPdJ5LxmSlBYqwqkKAJisM1IqZwonAJ_gQ9utF7R9BSpXyWlrDHffFEF88rbjSQnk0pHQugZdbFZa2JRUPvS0uSwQXQdtlp-0EnneiPzZMGruEToIdOoFAfh0_LJYXZbuXSlvlhnvJh5jdFiZ3xiEswsVnOnfMMJrA8daK5dahSkxNmJKq4DyBZ90w7qVwQaJrv1hHmVBtkHGVwNHG6N1K8ODLcQKcXPbcobfU_kj9_Vvk65YYjZjkj_-_rCdwiwYsnzFCi2PYb5Zr_xQTnsYM4IacS3yqyfsBHJyMzz99HsSfB4Po6H8BDo8DSw |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQcEJRXoEBAIHGJmthx7B4QWtguW7rbUyt6C36lINGkbLIg_hS_kbHzYBdV3HqL4pE1Go_nYY-_AXhpBLcxVywigqkIlYJGyhAeZVJrlXGJPsZXWxxm0-P04wk72YDf_VsYV1bZ20RvqE2l3Rn5DroWKrhIGXt7_j1yXaPc7WrfQqNViwP76yembPWb_TGu7ytCJntH76dR11Ug0pgKNpHN0DYkmsiUxbHKMEJPbKEzEauYF5bKJOGU8kJmSEKLAtMXXqAbE1SlJnNoezjvFbiaUvTk7mX65MOQ4FHM91r0IhyMd2riAwRn7ld8nm8NcFE8-29Z5oqfm9yGW12AGo5ajboDG7bcgpsrsIVbcM2Xjer6LsznvhbThh1M62m0Vy5ccakJZ_JMhZ_kDxuOOthyW4cYIYejZVNhmIwkY3mG1iwc28bXg5X34PhSRHkfNsuqtA8hJEJYybVihtl0Fz8sKZiQmbCoMdyYAF73Isx1h17ummh8yzGLcdLOB2kH8GIgPW8hOy4ieufWYSBwKNv-R7U4zbtNm-siUcxytothdKoSowzmX8h8LBNDFSUBbPermHdbv87_KmoAz4dh3LTuJkaWtlp6GlfWEDMRwIN20QdO0MImOAFOztfUYY3V9ZHy6xcPDM7R7VHOHv2frWdwfXo0n-Wz_cODx3CDuAOEmEYk3YbNZrG0TzDKatRTr9ohfL7svfQHdWs4xg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrUBwQFBegQIBgcTF2sSOY-8BoS27q5a2qwpR0Vtqx05BoknZZEH8NX4d47zYRRW33qJkZFme8TzsL98AvDJS2EBoTqjkmqBRMKINFSRWaapjoTDG1GiLebx7HH044Scb8Lv7F8bBKjufWDtqU6TujHyIoYVJISPOh1kLiziazN5dfCeug5S7ae3aaTQmsm9__cTyrXy7N0Fdv6Z0Nv30fpe0HQZIimVhRWyMfiJMqYp4EOgYs_XQZmksAx2IzDIVhoIxkakYRViWYSkjMgxpkunIxI55D8e9BpvCVUUD2NyZzo8-9uUew-qv4TJibBQMS1qnC875r0TAulHAZdntvyDNlag3uwO323TVHzf2dRc2bL4Ft1ZIDLfgeg0iTct7cHhYIzOt35K2npFpvnBQU-MfqHPtf1Y_rD9uScxt6WO-7I-XVYFJM4pM1Dn6Nn9iqxodlt-H4ytZzAcwyIvcPgKfSmmVSDU33EYjfLA041LF0qL9CGM8eNMtYZK2XOaupca3BGsat9pJv9oevOxFLxoCj8uEdpweegHHuV2_KBZnSbuFkzQLNbeCjzCpjnRotMFqDCcfqNAwzagH250Wk9YRlMlfs_XgRf8Zt7C7l1G5LZa1jAM5BFx68LBRej8T9LchDoCDizVzWJvq-pf865eaJlxgEGSCP_7_tJ7DDdxHycHefP8J3KTuNCFghEbbMKgWS_sUU65KP2tt24fTq95OfwA8Lz5Y |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+Learning-Enriched+Lamb+Wave+Approaches+for+Automated+Damage+Detection&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Zhang%2C+Zi&rft.au=Pan%2C+Hong&rft.au=Wang%2C+Xingyu&rft.au=Lin%2C+Zhibin&rft.date=2020-03-24&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=20&rft.issue=6&rft.spage=1790&rft_id=info:doi/10.3390%2Fs20061790&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |