Automatic brain tissue segmentation in fetal MRI using convolutional neural networks
MR images of fetuses allow clinicians to detect brain abnormalities in an early stage of development. The cornerstone of volumetric and morphologic analysis in fetal MRI is segmentation of the fetal brain into different tissue classes. Manual segmentation is cumbersome and time consuming, hence auto...
Saved in:
Published in | Magnetic resonance imaging Vol. 64; pp. 77 - 89 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier Inc
01.12.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | MR images of fetuses allow clinicians to detect brain abnormalities in an early stage of development. The cornerstone of volumetric and morphologic analysis in fetal MRI is segmentation of the fetal brain into different tissue classes. Manual segmentation is cumbersome and time consuming, hence automatic segmentation could substantially simplify the procedure. However, automatic brain tissue segmentation in these scans is challenging owing to artifacts including intensity inhomogeneity, caused in particular by spontaneous fetal movements during the scan. Unlike methods that estimate the bias field to remove intensity inhomogeneity as a preprocessing step to segmentation, we propose to perform segmentation using a convolutional neural network that exploits images with synthetically introduced intensity inhomogeneity as data augmentation. The method first uses a CNN to extract the intracranial volume. Thereafter, another CNN with the same architecture is employed to segment the extracted volume into seven brain tissue classes: cerebellum, basal ganglia and thalami, ventricular cerebrospinal fluid, white matter, brain stem, cortical gray matter and extracerebral cerebrospinal fluid. To make the method applicable to slices showing intensity inhomogeneity artifacts, the training data was augmented by applying a combination of linear gradients with random offsets and orientations to image slices without artifacts. To evaluate the performance of the method, Dice coefficient (DC) and Mean surface distance (MSD) per tissue class were computed between automatic and manual expert annotations. When the training data was enriched by simulated intensity inhomogeneity artifacts, the average achieved DC over all tissue classes and images increased from 0.77 to 0.88, and MSD decreased from 0.78 mm to 0.37 mm. These results demonstrate that the proposed approach can potentially replace or complement preprocessing steps, such as bias field corrections, and thereby improve the segmentation performance. |
---|---|
AbstractList | MR images of fetuses allow clinicians to detect brain abnormalities in an early stage of development. The cornerstone of volumetric and morphologic analysis in fetal MRI is segmentation of the fetal brain into different tissue classes. Manual segmentation is cumbersome and time consuming, hence automatic segmentation could substantially simplify the procedure. However, automatic brain tissue segmentation in these scans is challenging owing to artifacts including intensity inhomogeneity, caused in particular by spontaneous fetal movements during the scan. Unlike methods that estimate the bias field to remove intensity inhomogeneity as a preprocessing step to segmentation, we propose to perform segmentation using a convolutional neural network that exploits images with synthetically introduced intensity inhomogeneity as data augmentation. The method first uses a CNN to extract the intracranial volume. Thereafter, another CNN with the same architecture is employed to segment the extracted volume into seven brain tissue classes: cerebellum, basal ganglia and thalami, ventricular cerebrospinal fluid, white matter, brain stem, cortical gray matter and extracerebral cerebrospinal fluid. To make the method applicable to slices showing intensity inhomogeneity artifacts, the training data was augmented by applying a combination of linear gradients with random offsets and orientations to image slices without artifacts. To evaluate the performance of the method, Dice coefficient (DC) and Mean surface distance (MSD) per tissue class were computed between automatic and manual expert annotations. When the training data was enriched by simulated intensity inhomogeneity artifacts, the average achieved DC over all tissue classes and images increased from 0.77 to 0.88, and MSD decreased from 0.78 mm to 0.37 mm. These results demonstrate that the proposed approach can potentially replace or complement preprocessing steps, such as bias field corrections, and thereby improve the segmentation performance. MR images of fetuses allow clinicians to detect brain abnormalities in an early stage of development. The cornerstone of volumetric and morphologic analysis in fetal MRI is segmentation of the fetal brain into different tissue classes. Manual segmentation is cumbersome and time consuming, hence automatic segmentation could substantially simplify the procedure. However, automatic brain tissue segmentation in these scans is challenging owing to artifacts including intensity inhomogeneity, caused in particular by spontaneous fetal movements during the scan. Unlike methods that estimate the bias field to remove intensity inhomogeneity as a preprocessing step to segmentation, we propose to perform segmentation using a convolutional neural network that exploits images with synthetically introduced intensity inhomogeneity as data augmentation. The method first uses a CNN to extract the intracranial volume. Thereafter, another CNN with the same architecture is employed to segment the extracted volume into seven brain tissue classes: cerebellum, basal ganglia and thalami, ventricular cerebrospinal fluid, white matter, brain stem, cortical gray matter and extracerebral cerebrospinal fluid. To make the method applicable to slices showing intensity inhomogeneity artifacts, the training data was augmented by applying a combination of linear gradients with random offsets and orientations to image slices without artifacts. To evaluate the performance of the method, Dice coefficient (DC) and Mean surface distance (MSD) per tissue class were computed between automatic and manual expert annotations. When the training data was enriched by simulated intensity inhomogeneity artifacts, the average achieved DC over all tissue classes and images increased from 0.77 to 0.88, and MSD decreased from 0.78 mm to 0.37 mm. These results demonstrate that the proposed approach can potentially replace or complement preprocessing steps, such as bias field corrections, and thereby improve the segmentation performance.MR images of fetuses allow clinicians to detect brain abnormalities in an early stage of development. The cornerstone of volumetric and morphologic analysis in fetal MRI is segmentation of the fetal brain into different tissue classes. Manual segmentation is cumbersome and time consuming, hence automatic segmentation could substantially simplify the procedure. However, automatic brain tissue segmentation in these scans is challenging owing to artifacts including intensity inhomogeneity, caused in particular by spontaneous fetal movements during the scan. Unlike methods that estimate the bias field to remove intensity inhomogeneity as a preprocessing step to segmentation, we propose to perform segmentation using a convolutional neural network that exploits images with synthetically introduced intensity inhomogeneity as data augmentation. The method first uses a CNN to extract the intracranial volume. Thereafter, another CNN with the same architecture is employed to segment the extracted volume into seven brain tissue classes: cerebellum, basal ganglia and thalami, ventricular cerebrospinal fluid, white matter, brain stem, cortical gray matter and extracerebral cerebrospinal fluid. To make the method applicable to slices showing intensity inhomogeneity artifacts, the training data was augmented by applying a combination of linear gradients with random offsets and orientations to image slices without artifacts. To evaluate the performance of the method, Dice coefficient (DC) and Mean surface distance (MSD) per tissue class were computed between automatic and manual expert annotations. When the training data was enriched by simulated intensity inhomogeneity artifacts, the average achieved DC over all tissue classes and images increased from 0.77 to 0.88, and MSD decreased from 0.78 mm to 0.37 mm. These results demonstrate that the proposed approach can potentially replace or complement preprocessing steps, such as bias field corrections, and thereby improve the segmentation performance. |
Author | Lessmann, N. Heus, R. de Claessens, N. Khalili, N. Turk, E. Viergever, M.A. Benders, M.J.N.L. Kolk, T. Išgum, I. |
Author_xml | – sequence: 1 givenname: N. orcidid: 0000-0002-2255-0332 surname: Khalili fullname: Khalili, N. email: n.khalili@umcutrecht.nl organization: Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands – sequence: 2 givenname: N. orcidid: 0000-0001-7935-9611 surname: Lessmann fullname: Lessmann, N. organization: Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands – sequence: 3 givenname: E. surname: Turk fullname: Turk, E. organization: Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands – sequence: 4 givenname: N. orcidid: 0000-0002-4221-2779 surname: Claessens fullname: Claessens, N. organization: Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands – sequence: 5 givenname: R. de surname: Heus fullname: Heus, R. de organization: Department of Obstetrics, University Medical Center Utrecht, The Netherlands – sequence: 6 givenname: T. surname: Kolk fullname: Kolk, T. organization: Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands – sequence: 7 givenname: M.A. surname: Viergever fullname: Viergever, M.A. organization: Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands – sequence: 8 givenname: M.J.N.L. surname: Benders fullname: Benders, M.J.N.L. organization: Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands – sequence: 9 givenname: I. surname: Išgum fullname: Išgum, I. organization: Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31181246$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkMFO3TAQRa2KqjxoP6CbKstuko7tOI7VFUKlRaKqhEDqznKcCfIjsantUPH3-PXBhgVdjTT3npHmHJEDHzwS8pFCQ4F2X7bNEl3DgKoGRAMM3pAN7SWvRa_aA7IByaGWTPw-JEcpbQFAMC7ekUNOaU9Z223I1cmaw2Kys9UQjfNVdimtWCW8WdDnEgRflfWE2czVz8vzak3O31Q2-Pswr7u47D2u8d_If0O8Te_J28nMCT88zWNyffbt6vRHffHr-_npyUVt207lGnnfDR20E7WolIDeMmWNlZy2tIVBWmVKplDIYQQ5Cj7KqbX9xBRXrOOCH5PP-7t3MfxZMWW9uGRxno3HsCbNWMt6TrseSvXTU3UdFhz1XXSLiQ_62UQpyH3BxpBSxElbt38_Fy-zpqB3zvVWF-d651yD0MV5IekL8vn4a8zXPYNFz73DqJN16C2OLqLNegzuVVq9oO3svLNmvsWH_7CPI9essQ |
CitedBy_id | crossref_primary_10_1016_j_cmpb_2020_105841 crossref_primary_10_1016_j_neuroimage_2022_119486 crossref_primary_10_1016_j_brain_2022_100049 crossref_primary_10_12998_wjcc_v11_i16_3725 crossref_primary_10_1186_s12968_022_00902_z crossref_primary_10_1080_13682199_2023_2196494 crossref_primary_10_3390_jimaging7100200 crossref_primary_10_1007_s12021_021_09528_5 crossref_primary_10_1007_s13721_022_00394_y crossref_primary_10_1016_j_media_2022_102731 crossref_primary_10_1109_TMI_2020_3046579 crossref_primary_10_1007_s11760_024_03615_1 crossref_primary_10_1016_j_compbiomed_2022_106391 crossref_primary_10_3390_s22239101 crossref_primary_10_3389_fnhum_2024_1484431 crossref_primary_10_1002_jmri_27665 crossref_primary_10_1016_j_neuroimage_2022_119117 crossref_primary_10_3390_diagnostics10010027 crossref_primary_10_1111_1754_9485_13261 crossref_primary_10_1155_2022_8342767 crossref_primary_10_1016_j_artmed_2023_102608 crossref_primary_10_1080_03772063_2021_1946434 crossref_primary_10_1007_s00500_022_07457_2 crossref_primary_10_1155_2021_6663977 crossref_primary_10_1007_s11831_023_09967_0 crossref_primary_10_1038_s41598_022_10335_4 crossref_primary_10_1007_s42058_022_00108_3 crossref_primary_10_1155_2020_4519483 crossref_primary_10_1186_s12880_022_00807_4 crossref_primary_10_1016_j_placenta_2023_02_009 crossref_primary_10_1038_s41597_021_00946_3 crossref_primary_10_3390_brainsci11060716 crossref_primary_10_3390_s23020655 crossref_primary_10_1007_s13755_023_00220_3 crossref_primary_10_1016_j_media_2023_102833 crossref_primary_10_3390_app10124245 crossref_primary_10_3390_diagnostics11060929 crossref_primary_10_1259_bjr_20211205 crossref_primary_10_1007_s11548_021_02436_8 crossref_primary_10_3174_ajnr_A7808 crossref_primary_10_1016_j_mri_2019_07_004 crossref_primary_10_1259_bjr_20220071 crossref_primary_10_3390_e24121708 crossref_primary_10_1007_s40747_024_01639_1 crossref_primary_10_1007_s11042_023_14485_z crossref_primary_10_13104_imri_2024_0023 crossref_primary_10_1002_mrm_29016 crossref_primary_10_1002_hbm_70058 crossref_primary_10_3389_fmed_2023_1240360 crossref_primary_10_3390_app13042302 crossref_primary_10_1016_j_compbiomed_2022_106294 crossref_primary_10_1016_j_nicl_2023_103381 crossref_primary_10_1007_s11277_022_09989_0 crossref_primary_10_3390_s21134490 crossref_primary_10_1109_TPAMI_2023_3346330 crossref_primary_10_1007_s00247_023_05620_x crossref_primary_10_1016_j_mric_2024_03_004 crossref_primary_10_3174_ajnr_A7419 crossref_primary_10_1016_j_neunet_2020_02_006 crossref_primary_10_1016_j_placenta_2023_11_014 crossref_primary_10_3233_HIS_210001 crossref_primary_10_1017_S2040174420000884 crossref_primary_10_3174_ajnr_A7747 crossref_primary_10_1016_j_measen_2023_100808 crossref_primary_10_3389_fnins_2020_591683 crossref_primary_10_4236_jbm_2021_91012 crossref_primary_10_3390_diagnostics13142355 |
Cites_doi | 10.1109/TMI.2016.2548501 10.2214/ajr.168.2.9016238 10.1109/TMI.2010.2046908 10.1016/j.siny.2006.07.001 10.1148/radiol.2291020770 10.1136/adc.48.10.757 10.1109/TMI.2007.895456 10.1007/s11548-010-0512-x 10.1016/j.neuroimage.2017.06.074 10.1109/TMI.2015.2415453 10.1016/j.media.2012.07.004 10.1038/srep23470 10.1109/TMI.2010.2051680 10.1016/j.jocs.2018.05.005 10.1002/hbm.10062 10.1067/mob.2002.127146 10.1016/j.media.2017.07.005 10.1109/TMI.2004.828354 10.1109/TMI.2016.2621185 10.1016/j.media.2014.11.001 10.1007/s10278-017-9983-4 10.1002/hbm.20935 10.1016/j.tins.2013.01.006 10.1016/j.neuroimage.2012.01.128 |
ContentType | Journal Article |
Copyright | 2019 Elsevier Inc. Copyright © 2019 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2019 Elsevier Inc. – notice: Copyright © 2019 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.mri.2019.05.020 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1873-5894 |
EndPage | 89 |
ExternalDocumentID | 31181246 10_1016_j_mri_2019_05_020 S0730725X18306106 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .1- .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29M 3O- 4.4 457 4CK 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM 9JN AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABBQC ABDPE ABFNM ABGSF ABJNI ABMAC ABMZM ABNEU ABOCM ABUDA ABWVN ABXDB ACDAQ ACFVG ACGFS ACIEU ACIUM ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADUVX AEBSH AEHWI AEIPS AEKER AENEX AEUPX AEVXI AFFNX AFJKZ AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGRDE AGUBO AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AIVDX AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HEI HMK HMO HVGLF HZ~ IHE J1W KOM M29 M41 MO0 N9A O-L O9- OAUVE OGIMB OI~ OU0 OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SCC SDF SDG SDP SEL SES SEW SPC SPCBC SSH SSQ SSU SSZ T5K WUQ XPP Z5R ZGI ZMT ~G- ~S- AACTN AAIAV ABLVK ABYKQ AFCTW AFKWA AJBFU AJOXV AMFUW DOVZS EFLBG G8K LCYCR RIG AAYXX AGRNS CITATION CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c469t-e386b604f1ce99508c29cac7314140b7c9a4f19e57bd07d53d7f4c8f293926353 |
IEDL.DBID | .~1 |
ISSN | 0730-725X 1873-5894 |
IngestDate | Thu Jul 10 18:13:21 EDT 2025 Thu Apr 03 06:59:05 EDT 2025 Thu Apr 24 22:58:21 EDT 2025 Tue Jul 01 01:55:24 EDT 2025 Fri Feb 23 02:22:54 EST 2024 Tue Aug 26 16:33:44 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Deep learning Brain segmentation Intensity inhomogeneity Fetal MRI Convolutional neural network |
Language | English |
License | Copyright © 2019 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c469t-e386b604f1ce99508c29cac7314140b7c9a4f19e57bd07d53d7f4c8f293926353 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-2255-0332 0000-0001-7935-9611 0000-0002-4221-2779 |
PMID | 31181246 |
PQID | 2242831680 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_2242831680 pubmed_primary_31181246 crossref_citationtrail_10_1016_j_mri_2019_05_020 crossref_primary_10_1016_j_mri_2019_05_020 elsevier_sciencedirect_doi_10_1016_j_mri_2019_05_020 elsevier_clinicalkey_doi_10_1016_j_mri_2019_05_020 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2019 2019-12-00 20191201 |
PublicationDateYYYYMMDD | 2019-12-01 |
PublicationDate_xml | – month: 12 year: 2019 text: December 2019 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Magnetic resonance imaging |
PublicationTitleAlternate | Magn Reson Imaging |
PublicationYear | 2019 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Marie, MeritxellBach, Nick, Bruce, JeanPhilippe, Stephan (bb0015) 2012 YuDong, Chichun, Xianqing, Fubin (bb0105) 2018; 27 Salehi, Hashemi, Velasco-Annis, Ouaalam, Estroff, Erdogmus (bb0150) 2018 Marine, Plessis AdréJ, Robert, Marie, Jonathan, Laura (bb0115) 2016; 138 Maria, Gerardine, Rutherford, Hajnal, Schnabel (bb0045) 2012; 16 Ali, Alireza, Estroff, Warfield (bb0065) 2012; 60 Timothy (bb0175) 2016 Ali, Estroff, Barnewolt, Connolly, Warfield (bb0070) 2011; 6 Bernhard, Markus, Wolfgang, Maria, Christina, Kevin (bb0050) 2015; 34 Karl, Nicola, Katrin (bb0010) 2013; 36 Antonios, Counsell, Daniel (bb0100) 2018; 170 Twickler, Taylor, McIntire, Magee, Ramus (bb0020) 2002; 187 Kingma, JBa (bb0170) 2015 Zeynettin, Alfiia, Assaf, Rubin, Erickson (bb0095) 2017; 30 Sergey, Christian (bb0165) 2015 Jérémie, Angelini, Isabelle (bb0135) 2009 ShuiHua, Lv, Yuxiu, Shuai, SuJing, YuDong (bb0110) 2018; 42 Tustison, Avants, Cook, Yuanjie, Alexander, Yushkevich (bb0085) 2010; 29 NeoBrainS12. Ahmed, Manuel, Moore, Rozalia, Sparrow, Wilkinson (bb0190) 2016; 6 Habas, Kio, Francois, Glenn, AJames, Colin (bb0060) 2010; 31 Shuzhou, Hui, Alan, Mary, Daniel, Hajnal (bb0035) 2007; 26 Olaf, Phili, Thomas (bb0160) 2015 François (bb0180) 2015 Serag, Kyriakopoulou, Rutherford, Edwards, Hajnal, Aljabar (bb0080) 2012; 2012 Pim, Viergever, Mendrik, Vries LindaS, Benders, Ivana (bb0130) 2016; 35 Ivica, Nataša (bb0005) 2006; 11 Deborah, Barnes, Robertson, Geoffrey, Mehta (bb0025) 2003; 229 . Smith (bb0185) 2002; 17 Yamashita, Namimoto, Abe, Takahashi, Iwamasa, Miyazaki (bb0030) 1997; 168 Warfield, Zou, Wells (bb0075) 2004; 23 Ivana, Benders, Brian, MJorge, Counsell, EldaFischi (bb0125) 2015; 20 Martin, Lee, Ozan, Konstantinos, Jonathan, Wenjia (bb0140) 2017; 36 John, Jean (bb0120) 1973; 48 Khalili, Moeskops, Claessens, Scherpenzeel, Turk, de Heus (bb0145) 2017 Geert, Thijs, BabakEhteshami, ArnaudArindraAdiyoso, Francesco, Mohsen (bb0090) 2017; 42 Ali, Estroff, Warfield (bb0040) 2010; 29 Michael, Guotai, Li, Michael, Patel, Rosalind (bb0055) 2018 Deborah (10.1016/j.mri.2019.05.020_bb0025) 2003; 229 Ali (10.1016/j.mri.2019.05.020_bb0040) 2010; 29 Habas (10.1016/j.mri.2019.05.020_bb0060) 2010; 31 Antonios (10.1016/j.mri.2019.05.020_bb0100) 2018; 170 Salehi (10.1016/j.mri.2019.05.020_bb0150) 2018 Sergey (10.1016/j.mri.2019.05.020_bb0165) 2015 Jérémie (10.1016/j.mri.2019.05.020_bb0135) 2009 Ivana (10.1016/j.mri.2019.05.020_bb0125) 2015; 20 Shuzhou (10.1016/j.mri.2019.05.020_bb0035) 2007; 26 Maria (10.1016/j.mri.2019.05.020_bb0045) 2012; 16 Zeynettin (10.1016/j.mri.2019.05.020_bb0095) 2017; 30 Kingma (10.1016/j.mri.2019.05.020_bb0170) 2015 Smith (10.1016/j.mri.2019.05.020_bb0185) 2002; 17 Geert (10.1016/j.mri.2019.05.020_bb0090) 2017; 42 John (10.1016/j.mri.2019.05.020_bb0120) 1973; 48 Pim (10.1016/j.mri.2019.05.020_bb0130) 2016; 35 Ali (10.1016/j.mri.2019.05.020_bb0065) 2012; 60 10.1016/j.mri.2019.05.020_bb0155 Timothy (10.1016/j.mri.2019.05.020_bb0175) 2016 Bernhard (10.1016/j.mri.2019.05.020_bb0050) 2015; 34 YuDong (10.1016/j.mri.2019.05.020_bb0105) 2018; 27 Khalili (10.1016/j.mri.2019.05.020_bb0145) 2017 Ahmed (10.1016/j.mri.2019.05.020_bb0190) 2016; 6 Tustison (10.1016/j.mri.2019.05.020_bb0085) 2010; 29 Martin (10.1016/j.mri.2019.05.020_bb0140) 2017; 36 Ivica (10.1016/j.mri.2019.05.020_bb0005) 2006; 11 Warfield (10.1016/j.mri.2019.05.020_bb0075) 2004; 23 Karl (10.1016/j.mri.2019.05.020_bb0010) 2013; 36 Twickler (10.1016/j.mri.2019.05.020_bb0020) 2002; 187 Michael (10.1016/j.mri.2019.05.020_bb0055) 2018 Yamashita (10.1016/j.mri.2019.05.020_bb0030) 1997; 168 ShuiHua (10.1016/j.mri.2019.05.020_bb0110) 2018; 42 Serag (10.1016/j.mri.2019.05.020_bb0080) 2012; 2012 Marie (10.1016/j.mri.2019.05.020_bb0015) 2012 Marine (10.1016/j.mri.2019.05.020_bb0115) 2016; 138 Olaf (10.1016/j.mri.2019.05.020_bb0160) 2015 François (10.1016/j.mri.2019.05.020_bb0180) Ali (10.1016/j.mri.2019.05.020_bb0070) 2011; 6 |
References_xml | – volume: 29 start-page: 1310 year: 2010 end-page: 1320 ident: bb0085 article-title: N4ITK: improved N3 bias correction publication-title: IEEE Trans. Med. Imaging – volume: 138 year: 2016 ident: bb0115 article-title: Third trimester brain growth in preterm infants compared with in utero healthy fetuses publication-title: Pediatrics – volume: 48 start-page: 757 year: 1973 end-page: 767 ident: bb0120 article-title: Quantitative growth and development of human brain publication-title: Arch. Dis. Child. – volume: 17 start-page: 143 year: 2002 end-page: 155 ident: bb0185 article-title: Fast robust automated brain extraction publication-title: Hum. Brain Mapp. – volume: 6 start-page: 329 year: 2011 end-page: 339 ident: bb0070 article-title: Fetal brain volumetry through MRI volumetric reconstruction and segmentation publication-title: Int. J. Comput. Assist. Radiol. Surg. – year: 2012 ident: bb0015 article-title: How to measure cortical folding from MR images: a step-by-step tutorial to compute local gyrification index publication-title: J. Vis. Exp. – volume: 11 start-page: 415 year: 2006 end-page: 422 ident: bb0005 article-title: The development of cerebral connections during the first 20–45 weeks gestation publication-title: Semin. Fetal Neonatal Med. – volume: 229 start-page: 51 year: 2003 end-page: 61 ident: bb0025 article-title: Fast MR imaging of fetal central nervous system abnormalities publication-title: Radiology – volume: 60 start-page: 1819 year: 2012 end-page: 1831 ident: bb0065 article-title: Multi-atlas multi-shape segmentation of fetal brain MRI for volumetric and morphometric analysis of ventriculomegaly publication-title: NeuroImage – start-page: 313 year: 2018 end-page: 320 ident: bb0055 article-title: An automated localization, segmentation and reconstruction framework for fetal brain MRI publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – start-page: 234 year: 2015 end-page: 241 ident: bb0160 article-title: U-net: convolutional networks for biomedical image segmentation publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI) – start-page: 109 year: 2009 end-page: 112 ident: bb0135 article-title: Automatic segmentation of head structures on fetal MRI publication-title: Biomedical Imaging: From Nano to Macro, 2009. ISBI’09. IEEE International Symposium on – volume: 30 start-page: 449 year: 2017 end-page: 459 ident: bb0095 article-title: Deep learning for brain MRI segmentation: state of the art and future directions publication-title: J. Digit. Imaging – volume: 26 start-page: 967 year: 2007 end-page: 980 ident: bb0035 article-title: MRI of moving subjects using multislice snapshot images with volume reconstruction (SVR): application to fetal, neonatal, and adult brain studies publication-title: IEEE Trans. Med. Imaging – volume: 34 start-page: 1901 year: 2015 end-page: 1913 ident: bb0050 article-title: Fast volume reconstruction from motion corrupted stacks of 2D slices publication-title: IEEE Trans. Med. Imaging – volume: 2012 start-page: 1 year: 2012 end-page: 14 ident: bb0080 article-title: A multi-channel 4D probabilistic atlas of the developing brain: application to fetuses and neonates publication-title: Ann. Br. Mach. Vis. Assoc. – volume: 36 start-page: 674 year: 2017 end-page: 683 ident: bb0140 article-title: Deepcut: object segmentation from bounding box annotations using convolutional neural networks publication-title: IEEE Trans. Med. Imaging – volume: 187 start-page: 927 year: 2002 end-page: 931 ident: bb0020 article-title: Fetal central nervous system ventricle and cisterna magna measurements by magnetic resonance imaging publication-title: Am. J. Obstet. Gynecol. – year: 2016 ident: bb0175 article-title: Incorporating nesterov momentum into Adam publication-title: 4th International Conference on Learning Representations (ICLR), Workshop – volume: 35 start-page: 1252 year: 2016 end-page: 1261 ident: bb0130 article-title: Automatic segmentation of MR brain images with a convolutional neural network publication-title: IEE Transactions on Medical Imaging – volume: 20 start-page: 135 year: 2015 end-page: 151 ident: bb0125 article-title: Evaluation of automatic neonatal brain segmentation algorithms: the NeoBrainS12 challenge publication-title: Med. Image Anal. – volume: 170 start-page: 231 year: 2018 end-page: 248 ident: bb0100 article-title: A review on automatic fetal and neonatal brain MRI segmentation publication-title: NeuroImage – volume: 42 year: 2018 ident: bb0110 article-title: Alcoholism detection by data augmentation and convolutional neural network with stochastic pooling publication-title: J. Med. Syst. – start-page: 448 year: 2015 end-page: 456 ident: bb0165 article-title: Batch normalization: accelerating deep network training by reducing internal covariate shift publication-title: Proceedings of the 32nd International Conference on Machine Learning (ICML) – volume: 168 start-page: 513 year: 1997 end-page: 519 ident: bb0030 article-title: MR imaging of the fetus by a haste sequence publication-title: AJR Am. J. Roentgenol. – reference: . – reference: NeoBrainS12. – start-page: 42 year: 2017 end-page: 51 ident: bb0145 article-title: Automatic segmentation of the intracranial volume in fetal MR images publication-title: Fetal, Infant and Ophthalmic Medical Image Analysis – year: 2015 ident: bb0170 article-title: A method for stochastic optimisation publication-title: International Conference on Learning Representations (ICLR) – volume: 36 start-page: 275 year: 2013 end-page: 284 ident: bb0010 article-title: Development of cortical folding during evolution and ontogeny publication-title: Trends Neurosci. – volume: 31 start-page: 1348 year: 2010 end-page: 1358 ident: bb0060 article-title: Atlas-based segmentation of developing tissues in the human brain with quantitative validation in young fetuses publication-title: Hum. Brain Mapp. – volume: 27 start-page: 57 year: 2018 end-page: 68 ident: bb0105 article-title: Abnormal breast identification by nine-layer convolutional neural network with parametric rectified linear unit and rank-based stochastic pooling publication-title: J. Comput. Sci. – volume: 6 start-page: 23470 year: 2016 ident: bb0190 article-title: Accurate learning with few atlases (ALFA): an algorithm for MRI neonatal brain extraction and comparison with 11 publicly available methods publication-title: Sci. Rep. – volume: 23 start-page: 903 year: 2004 end-page: 921 ident: bb0075 article-title: Simultaneous truth and performance level estimation (STAPLE): an algorithm for the validation of image segmentation publication-title: IEEE Trans. Med. Imaging – volume: 29 start-page: 1739 year: 2010 end-page: 1758 ident: bb0040 article-title: Robust super-resolution volume reconstruction from slice acquisitions: application to fetal brain MRI publication-title: IEEE Trans. Med. Imaging – volume: 16 start-page: 1550 year: 2012 end-page: 1564 ident: bb0045 article-title: Reconstruction of fetal brain MRI with intensity matching and complete outlier removal publication-title: Med. Image Anal. – year: 2015 ident: bb0180 article-title: Keras – start-page: 720 year: 2018 end-page: 724 ident: bb0150 article-title: Real-time automatic fetal brain extraction in fetal MRI by deep learning publication-title: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI) – volume: 42 start-page: 60 year: 2017 end-page: 88 ident: bb0090 article-title: A survey on deep learning in medical image analysis publication-title: Med. Image Anal. – volume: 35 start-page: 1252 issue: 5 year: 2016 ident: 10.1016/j.mri.2019.05.020_bb0130 article-title: Automatic segmentation of MR brain images with a convolutional neural network publication-title: IEE Transactions on Medical Imaging doi: 10.1109/TMI.2016.2548501 – start-page: 720 year: 2018 ident: 10.1016/j.mri.2019.05.020_bb0150 article-title: Real-time automatic fetal brain extraction in fetal MRI by deep learning – issue: 59 year: 2012 ident: 10.1016/j.mri.2019.05.020_bb0015 article-title: How to measure cortical folding from MR images: a step-by-step tutorial to compute local gyrification index publication-title: J. Vis. Exp. – volume: 168 start-page: 513 issue: 2 year: 1997 ident: 10.1016/j.mri.2019.05.020_bb0030 article-title: MR imaging of the fetus by a haste sequence publication-title: AJR Am. J. Roentgenol. doi: 10.2214/ajr.168.2.9016238 – volume: 29 start-page: 1310 issue: 6 year: 2010 ident: 10.1016/j.mri.2019.05.020_bb0085 article-title: N4ITK: improved N3 bias correction publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2010.2046908 – start-page: 109 year: 2009 ident: 10.1016/j.mri.2019.05.020_bb0135 article-title: Automatic segmentation of head structures on fetal MRI – start-page: 42 year: 2017 ident: 10.1016/j.mri.2019.05.020_bb0145 article-title: Automatic segmentation of the intracranial volume in fetal MR images – ident: 10.1016/j.mri.2019.05.020_bb0180 – volume: 11 start-page: 415 issue: 6 year: 2006 ident: 10.1016/j.mri.2019.05.020_bb0005 article-title: The development of cerebral connections during the first 20–45 weeks gestation publication-title: Semin. Fetal Neonatal Med. doi: 10.1016/j.siny.2006.07.001 – volume: 229 start-page: 51 issue: 1 year: 2003 ident: 10.1016/j.mri.2019.05.020_bb0025 article-title: Fast MR imaging of fetal central nervous system abnormalities publication-title: Radiology doi: 10.1148/radiol.2291020770 – volume: 48 start-page: 757 issue: 10 year: 1973 ident: 10.1016/j.mri.2019.05.020_bb0120 article-title: Quantitative growth and development of human brain publication-title: Arch. Dis. Child. doi: 10.1136/adc.48.10.757 – year: 2016 ident: 10.1016/j.mri.2019.05.020_bb0175 article-title: Incorporating nesterov momentum into Adam – volume: 26 start-page: 967 issue: 7 year: 2007 ident: 10.1016/j.mri.2019.05.020_bb0035 article-title: MRI of moving subjects using multislice snapshot images with volume reconstruction (SVR): application to fetal, neonatal, and adult brain studies publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2007.895456 – volume: 6 start-page: 329 issue: 3 year: 2011 ident: 10.1016/j.mri.2019.05.020_bb0070 article-title: Fetal brain volumetry through MRI volumetric reconstruction and segmentation publication-title: Int. J. Comput. Assist. Radiol. Surg. doi: 10.1007/s11548-010-0512-x – volume: 170 start-page: 231 year: 2018 ident: 10.1016/j.mri.2019.05.020_bb0100 article-title: A review on automatic fetal and neonatal brain MRI segmentation publication-title: NeuroImage doi: 10.1016/j.neuroimage.2017.06.074 – volume: 34 start-page: 1901 issue: 9 year: 2015 ident: 10.1016/j.mri.2019.05.020_bb0050 article-title: Fast volume reconstruction from motion corrupted stacks of 2D slices publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2015.2415453 – volume: 16 start-page: 1550 issue: 8 year: 2012 ident: 10.1016/j.mri.2019.05.020_bb0045 article-title: Reconstruction of fetal brain MRI with intensity matching and complete outlier removal publication-title: Med. Image Anal. doi: 10.1016/j.media.2012.07.004 – volume: 6 start-page: 23470 year: 2016 ident: 10.1016/j.mri.2019.05.020_bb0190 article-title: Accurate learning with few atlases (ALFA): an algorithm for MRI neonatal brain extraction and comparison with 11 publicly available methods publication-title: Sci. Rep. doi: 10.1038/srep23470 – volume: 29 start-page: 1739 issue: 10 year: 2010 ident: 10.1016/j.mri.2019.05.020_bb0040 article-title: Robust super-resolution volume reconstruction from slice acquisitions: application to fetal brain MRI publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2010.2051680 – volume: 27 start-page: 57 year: 2018 ident: 10.1016/j.mri.2019.05.020_bb0105 article-title: Abnormal breast identification by nine-layer convolutional neural network with parametric rectified linear unit and rank-based stochastic pooling publication-title: J. Comput. Sci. doi: 10.1016/j.jocs.2018.05.005 – volume: 17 start-page: 143 issue: 3 year: 2002 ident: 10.1016/j.mri.2019.05.020_bb0185 article-title: Fast robust automated brain extraction publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.10062 – volume: 187 start-page: 927 issue: 4 year: 2002 ident: 10.1016/j.mri.2019.05.020_bb0020 article-title: Fetal central nervous system ventricle and cisterna magna measurements by magnetic resonance imaging publication-title: Am. J. Obstet. Gynecol. doi: 10.1067/mob.2002.127146 – ident: 10.1016/j.mri.2019.05.020_bb0155 – volume: 138 issue: 5 year: 2016 ident: 10.1016/j.mri.2019.05.020_bb0115 article-title: Third trimester brain growth in preterm infants compared with in utero healthy fetuses publication-title: Pediatrics – start-page: 234 year: 2015 ident: 10.1016/j.mri.2019.05.020_bb0160 article-title: U-net: convolutional networks for biomedical image segmentation – volume: 42 start-page: 60 year: 2017 ident: 10.1016/j.mri.2019.05.020_bb0090 article-title: A survey on deep learning in medical image analysis publication-title: Med. Image Anal. doi: 10.1016/j.media.2017.07.005 – volume: 23 start-page: 903 issue: 7 year: 2004 ident: 10.1016/j.mri.2019.05.020_bb0075 article-title: Simultaneous truth and performance level estimation (STAPLE): an algorithm for the validation of image segmentation publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2004.828354 – volume: 36 start-page: 674 issue: 2 year: 2017 ident: 10.1016/j.mri.2019.05.020_bb0140 article-title: Deepcut: object segmentation from bounding box annotations using convolutional neural networks publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2016.2621185 – volume: 20 start-page: 135 issue: 1 year: 2015 ident: 10.1016/j.mri.2019.05.020_bb0125 article-title: Evaluation of automatic neonatal brain segmentation algorithms: the NeoBrainS12 challenge publication-title: Med. Image Anal. doi: 10.1016/j.media.2014.11.001 – volume: 2012 start-page: 1 issue: 3 year: 2012 ident: 10.1016/j.mri.2019.05.020_bb0080 article-title: A multi-channel 4D probabilistic atlas of the developing brain: application to fetuses and neonates publication-title: Ann. Br. Mach. Vis. Assoc. – volume: 30 start-page: 449 issue: 4 year: 2017 ident: 10.1016/j.mri.2019.05.020_bb0095 article-title: Deep learning for brain MRI segmentation: state of the art and future directions publication-title: J. Digit. Imaging doi: 10.1007/s10278-017-9983-4 – year: 2015 ident: 10.1016/j.mri.2019.05.020_bb0170 article-title: A method for stochastic optimisation – volume: 31 start-page: 1348 issue: 9 year: 2010 ident: 10.1016/j.mri.2019.05.020_bb0060 article-title: Atlas-based segmentation of developing tissues in the human brain with quantitative validation in young fetuses publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.20935 – volume: 36 start-page: 275 issue: 5 year: 2013 ident: 10.1016/j.mri.2019.05.020_bb0010 article-title: Development of cortical folding during evolution and ontogeny publication-title: Trends Neurosci. doi: 10.1016/j.tins.2013.01.006 – start-page: 313 year: 2018 ident: 10.1016/j.mri.2019.05.020_bb0055 article-title: An automated localization, segmentation and reconstruction framework for fetal brain MRI – volume: 60 start-page: 1819 issue: 3 year: 2012 ident: 10.1016/j.mri.2019.05.020_bb0065 article-title: Multi-atlas multi-shape segmentation of fetal brain MRI for volumetric and morphometric analysis of ventriculomegaly publication-title: NeuroImage doi: 10.1016/j.neuroimage.2012.01.128 – volume: 42 issue: 1 year: 2018 ident: 10.1016/j.mri.2019.05.020_bb0110 article-title: Alcoholism detection by data augmentation and convolutional neural network with stochastic pooling publication-title: J. Med. Syst. – start-page: 448 year: 2015 ident: 10.1016/j.mri.2019.05.020_bb0165 article-title: Batch normalization: accelerating deep network training by reducing internal covariate shift |
SSID | ssj0005235 |
Score | 2.572397 |
Snippet | MR images of fetuses allow clinicians to detect brain abnormalities in an early stage of development. The cornerstone of volumetric and morphologic analysis in... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 77 |
SubjectTerms | Brain - abnormalities Brain - diagnostic imaging Brain - embryology Brain Diseases - diagnostic imaging Brain Diseases - embryology Brain segmentation Convolutional neural network Deep learning Female Fetal MRI Humans Image Interpretation, Computer-Assisted - methods Intensity inhomogeneity Magnetic Resonance Imaging - methods Neural Networks, Computer Pregnancy Prenatal Diagnosis - methods |
Title | Automatic brain tissue segmentation in fetal MRI using convolutional neural networks |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0730725X18306106 https://dx.doi.org/10.1016/j.mri.2019.05.020 https://www.ncbi.nlm.nih.gov/pubmed/31181246 https://www.proquest.com/docview/2242831680 |
Volume | 64 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA9DQXwRv50fI4JPQl0_0qZ9HMOxKduDbrC30KbpmLhubN2rf7t3aToUdIJPpekdDZfr5a73yx0hd4hsh9iYWaEjM4ulMrbiEANXzwdvXzKH63-6_UHQHbGnsT-ukXZ1FgZhlcb2lzZdW2sz0jTSbC6m0-YrKid3_TEoJWxKuuw2Yxy1_OHjK8yjbLIJxBZSV5lNjfGaLaeI7op08U5s-f3z3vSb76n3oM4hOTDOI22V8zsiNZUfk72-SY-fkGFrXcx1DVaaYOsHWmix0pWazMwZo5zCcKbA5ab9lx5F2PuEIvTcqCCMY4lLfdEA8dUpGXUeh-2uZdomWBJi3cJSXhgkgc0yR6oIm7xKN5Kx5J7DIJpKuIxieBYpnyepzVPfS3nGZJjBxh9haRrvjOzk81xdEOoGWeImgc-5DaJldpiFaZQqnUyzY-nWiV0JTEhTUxxbW7yLCjz2JkDGAmUsbF-AjOvkfsOyKAtqbCN2q1UQ1UlRsG0CzP02JrZh-qZKf7HdVsss4BPDvEmcq_l6JcDLASfMCUKgOS_XfzN1z9EuUnD5v5dekX28K_Ex12SnWK7VDXg5RdLQatwgu63ec3fwCQCj-PU |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA9DQX0Rv52fEXwS6vqRNu3jGMqm2x50wt5Cm6Zj4rqxda_-7d6l6VDwA3wqJHe0XC53l94vd4RcI7IdzsbMCh2ZWSyVsRWHeHD1fIj2JXO4_qfb6wftF_Yw9Ic10qruwiCs0tj-0qZra21GGkaajdl43HhG5eSuPwSlBKeEZbfXGWxfbGNw-_4Z51F22QRqC8mr1KYGeU3mY4R3Rbp6J_b8_t45_RR8aid0v0O2TfRIm-UH7pKayvfIRs_kx_fJoLksproIK02w9wMttFzpQo0m5pJRTmE4UxBz095ThyLufUQRe250EMaxxqV-aIT44oC83N8NWm3L9E2wJBx2C0t5YZAENsscqSLs8irdSMaSew6D41TCZRTDXKR8nqQ2T30v5RmTYQaeP8LaNN4hWcunuTom1A2yxE0Cn3ObMc7sMAvTKFU6m2bH0q0TuxKYkKaoOPa2eBMVeuxVgIwFyljYvgAZ18nNimVWVtT4jditVkFUV0XBuAmw978xsRXTF136i-2qWmYBewwTJ3GupsuFgDAHojAnCIHmqFz_1ad7jo6RgpP_vfSSbLYHva7odvqPp2QLZ0qwzBlZK-ZLdQ4hT5FcaJX-AKvL-oM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+brain+tissue+segmentation+in+fetal+MRI+using+convolutional+neural+networks&rft.jtitle=Magnetic+resonance+imaging&rft.au=Khalili%2C+N.&rft.au=Lessmann%2C+N.&rft.au=Turk%2C+E.&rft.au=Claessens%2C+N.&rft.date=2019-12-01&rft.pub=Elsevier+Inc&rft.issn=0730-725X&rft.eissn=1873-5894&rft.volume=64&rft.spage=77&rft.epage=89&rft_id=info:doi/10.1016%2Fj.mri.2019.05.020&rft.externalDocID=S0730725X18306106 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0730-725X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0730-725X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0730-725X&client=summon |