Automatic brain tissue segmentation in fetal MRI using convolutional neural networks

MR images of fetuses allow clinicians to detect brain abnormalities in an early stage of development. The cornerstone of volumetric and morphologic analysis in fetal MRI is segmentation of the fetal brain into different tissue classes. Manual segmentation is cumbersome and time consuming, hence auto...

Full description

Saved in:
Bibliographic Details
Published inMagnetic resonance imaging Vol. 64; pp. 77 - 89
Main Authors Khalili, N., Lessmann, N., Turk, E., Claessens, N., Heus, R. de, Kolk, T., Viergever, M.A., Benders, M.J.N.L., Išgum, I.
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier Inc 01.12.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract MR images of fetuses allow clinicians to detect brain abnormalities in an early stage of development. The cornerstone of volumetric and morphologic analysis in fetal MRI is segmentation of the fetal brain into different tissue classes. Manual segmentation is cumbersome and time consuming, hence automatic segmentation could substantially simplify the procedure. However, automatic brain tissue segmentation in these scans is challenging owing to artifacts including intensity inhomogeneity, caused in particular by spontaneous fetal movements during the scan. Unlike methods that estimate the bias field to remove intensity inhomogeneity as a preprocessing step to segmentation, we propose to perform segmentation using a convolutional neural network that exploits images with synthetically introduced intensity inhomogeneity as data augmentation. The method first uses a CNN to extract the intracranial volume. Thereafter, another CNN with the same architecture is employed to segment the extracted volume into seven brain tissue classes: cerebellum, basal ganglia and thalami, ventricular cerebrospinal fluid, white matter, brain stem, cortical gray matter and extracerebral cerebrospinal fluid. To make the method applicable to slices showing intensity inhomogeneity artifacts, the training data was augmented by applying a combination of linear gradients with random offsets and orientations to image slices without artifacts. To evaluate the performance of the method, Dice coefficient (DC) and Mean surface distance (MSD) per tissue class were computed between automatic and manual expert annotations. When the training data was enriched by simulated intensity inhomogeneity artifacts, the average achieved DC over all tissue classes and images increased from 0.77 to 0.88, and MSD decreased from 0.78 mm to 0.37 mm. These results demonstrate that the proposed approach can potentially replace or complement preprocessing steps, such as bias field corrections, and thereby improve the segmentation performance.
AbstractList MR images of fetuses allow clinicians to detect brain abnormalities in an early stage of development. The cornerstone of volumetric and morphologic analysis in fetal MRI is segmentation of the fetal brain into different tissue classes. Manual segmentation is cumbersome and time consuming, hence automatic segmentation could substantially simplify the procedure. However, automatic brain tissue segmentation in these scans is challenging owing to artifacts including intensity inhomogeneity, caused in particular by spontaneous fetal movements during the scan. Unlike methods that estimate the bias field to remove intensity inhomogeneity as a preprocessing step to segmentation, we propose to perform segmentation using a convolutional neural network that exploits images with synthetically introduced intensity inhomogeneity as data augmentation. The method first uses a CNN to extract the intracranial volume. Thereafter, another CNN with the same architecture is employed to segment the extracted volume into seven brain tissue classes: cerebellum, basal ganglia and thalami, ventricular cerebrospinal fluid, white matter, brain stem, cortical gray matter and extracerebral cerebrospinal fluid. To make the method applicable to slices showing intensity inhomogeneity artifacts, the training data was augmented by applying a combination of linear gradients with random offsets and orientations to image slices without artifacts. To evaluate the performance of the method, Dice coefficient (DC) and Mean surface distance (MSD) per tissue class were computed between automatic and manual expert annotations. When the training data was enriched by simulated intensity inhomogeneity artifacts, the average achieved DC over all tissue classes and images increased from 0.77 to 0.88, and MSD decreased from 0.78 mm to 0.37 mm. These results demonstrate that the proposed approach can potentially replace or complement preprocessing steps, such as bias field corrections, and thereby improve the segmentation performance.
MR images of fetuses allow clinicians to detect brain abnormalities in an early stage of development. The cornerstone of volumetric and morphologic analysis in fetal MRI is segmentation of the fetal brain into different tissue classes. Manual segmentation is cumbersome and time consuming, hence automatic segmentation could substantially simplify the procedure. However, automatic brain tissue segmentation in these scans is challenging owing to artifacts including intensity inhomogeneity, caused in particular by spontaneous fetal movements during the scan. Unlike methods that estimate the bias field to remove intensity inhomogeneity as a preprocessing step to segmentation, we propose to perform segmentation using a convolutional neural network that exploits images with synthetically introduced intensity inhomogeneity as data augmentation. The method first uses a CNN to extract the intracranial volume. Thereafter, another CNN with the same architecture is employed to segment the extracted volume into seven brain tissue classes: cerebellum, basal ganglia and thalami, ventricular cerebrospinal fluid, white matter, brain stem, cortical gray matter and extracerebral cerebrospinal fluid. To make the method applicable to slices showing intensity inhomogeneity artifacts, the training data was augmented by applying a combination of linear gradients with random offsets and orientations to image slices without artifacts. To evaluate the performance of the method, Dice coefficient (DC) and Mean surface distance (MSD) per tissue class were computed between automatic and manual expert annotations. When the training data was enriched by simulated intensity inhomogeneity artifacts, the average achieved DC over all tissue classes and images increased from 0.77 to 0.88, and MSD decreased from 0.78 mm to 0.37 mm. These results demonstrate that the proposed approach can potentially replace or complement preprocessing steps, such as bias field corrections, and thereby improve the segmentation performance.MR images of fetuses allow clinicians to detect brain abnormalities in an early stage of development. The cornerstone of volumetric and morphologic analysis in fetal MRI is segmentation of the fetal brain into different tissue classes. Manual segmentation is cumbersome and time consuming, hence automatic segmentation could substantially simplify the procedure. However, automatic brain tissue segmentation in these scans is challenging owing to artifacts including intensity inhomogeneity, caused in particular by spontaneous fetal movements during the scan. Unlike methods that estimate the bias field to remove intensity inhomogeneity as a preprocessing step to segmentation, we propose to perform segmentation using a convolutional neural network that exploits images with synthetically introduced intensity inhomogeneity as data augmentation. The method first uses a CNN to extract the intracranial volume. Thereafter, another CNN with the same architecture is employed to segment the extracted volume into seven brain tissue classes: cerebellum, basal ganglia and thalami, ventricular cerebrospinal fluid, white matter, brain stem, cortical gray matter and extracerebral cerebrospinal fluid. To make the method applicable to slices showing intensity inhomogeneity artifacts, the training data was augmented by applying a combination of linear gradients with random offsets and orientations to image slices without artifacts. To evaluate the performance of the method, Dice coefficient (DC) and Mean surface distance (MSD) per tissue class were computed between automatic and manual expert annotations. When the training data was enriched by simulated intensity inhomogeneity artifacts, the average achieved DC over all tissue classes and images increased from 0.77 to 0.88, and MSD decreased from 0.78 mm to 0.37 mm. These results demonstrate that the proposed approach can potentially replace or complement preprocessing steps, such as bias field corrections, and thereby improve the segmentation performance.
Author Lessmann, N.
Heus, R. de
Claessens, N.
Khalili, N.
Turk, E.
Viergever, M.A.
Benders, M.J.N.L.
Kolk, T.
Išgum, I.
Author_xml – sequence: 1
  givenname: N.
  orcidid: 0000-0002-2255-0332
  surname: Khalili
  fullname: Khalili, N.
  email: n.khalili@umcutrecht.nl
  organization: Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands
– sequence: 2
  givenname: N.
  orcidid: 0000-0001-7935-9611
  surname: Lessmann
  fullname: Lessmann, N.
  organization: Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands
– sequence: 3
  givenname: E.
  surname: Turk
  fullname: Turk, E.
  organization: Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
– sequence: 4
  givenname: N.
  orcidid: 0000-0002-4221-2779
  surname: Claessens
  fullname: Claessens, N.
  organization: Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
– sequence: 5
  givenname: R. de
  surname: Heus
  fullname: Heus, R. de
  organization: Department of Obstetrics, University Medical Center Utrecht, The Netherlands
– sequence: 6
  givenname: T.
  surname: Kolk
  fullname: Kolk, T.
  organization: Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
– sequence: 7
  givenname: M.A.
  surname: Viergever
  fullname: Viergever, M.A.
  organization: Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands
– sequence: 8
  givenname: M.J.N.L.
  surname: Benders
  fullname: Benders, M.J.N.L.
  organization: Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
– sequence: 9
  givenname: I.
  surname: Išgum
  fullname: Išgum, I.
  organization: Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31181246$$D View this record in MEDLINE/PubMed
BookMark eNqFkMFO3TAQRa2KqjxoP6CbKstuko7tOI7VFUKlRaKqhEDqznKcCfIjsantUPH3-PXBhgVdjTT3npHmHJEDHzwS8pFCQ4F2X7bNEl3DgKoGRAMM3pAN7SWvRa_aA7IByaGWTPw-JEcpbQFAMC7ekUNOaU9Z223I1cmaw2Kys9UQjfNVdimtWCW8WdDnEgRflfWE2czVz8vzak3O31Q2-Pswr7u47D2u8d_If0O8Te_J28nMCT88zWNyffbt6vRHffHr-_npyUVt207lGnnfDR20E7WolIDeMmWNlZy2tIVBWmVKplDIYQQ5Cj7KqbX9xBRXrOOCH5PP-7t3MfxZMWW9uGRxno3HsCbNWMt6TrseSvXTU3UdFhz1XXSLiQ_62UQpyH3BxpBSxElbt38_Fy-zpqB3zvVWF-d651yD0MV5IekL8vn4a8zXPYNFz73DqJN16C2OLqLNegzuVVq9oO3svLNmvsWH_7CPI9essQ
CitedBy_id crossref_primary_10_1016_j_cmpb_2020_105841
crossref_primary_10_1016_j_neuroimage_2022_119486
crossref_primary_10_1016_j_brain_2022_100049
crossref_primary_10_12998_wjcc_v11_i16_3725
crossref_primary_10_1186_s12968_022_00902_z
crossref_primary_10_1080_13682199_2023_2196494
crossref_primary_10_3390_jimaging7100200
crossref_primary_10_1007_s12021_021_09528_5
crossref_primary_10_1007_s13721_022_00394_y
crossref_primary_10_1016_j_media_2022_102731
crossref_primary_10_1109_TMI_2020_3046579
crossref_primary_10_1007_s11760_024_03615_1
crossref_primary_10_1016_j_compbiomed_2022_106391
crossref_primary_10_3390_s22239101
crossref_primary_10_3389_fnhum_2024_1484431
crossref_primary_10_1002_jmri_27665
crossref_primary_10_1016_j_neuroimage_2022_119117
crossref_primary_10_3390_diagnostics10010027
crossref_primary_10_1111_1754_9485_13261
crossref_primary_10_1155_2022_8342767
crossref_primary_10_1016_j_artmed_2023_102608
crossref_primary_10_1080_03772063_2021_1946434
crossref_primary_10_1007_s00500_022_07457_2
crossref_primary_10_1155_2021_6663977
crossref_primary_10_1007_s11831_023_09967_0
crossref_primary_10_1038_s41598_022_10335_4
crossref_primary_10_1007_s42058_022_00108_3
crossref_primary_10_1155_2020_4519483
crossref_primary_10_1186_s12880_022_00807_4
crossref_primary_10_1016_j_placenta_2023_02_009
crossref_primary_10_1038_s41597_021_00946_3
crossref_primary_10_3390_brainsci11060716
crossref_primary_10_3390_s23020655
crossref_primary_10_1007_s13755_023_00220_3
crossref_primary_10_1016_j_media_2023_102833
crossref_primary_10_3390_app10124245
crossref_primary_10_3390_diagnostics11060929
crossref_primary_10_1259_bjr_20211205
crossref_primary_10_1007_s11548_021_02436_8
crossref_primary_10_3174_ajnr_A7808
crossref_primary_10_1016_j_mri_2019_07_004
crossref_primary_10_1259_bjr_20220071
crossref_primary_10_3390_e24121708
crossref_primary_10_1007_s40747_024_01639_1
crossref_primary_10_1007_s11042_023_14485_z
crossref_primary_10_13104_imri_2024_0023
crossref_primary_10_1002_mrm_29016
crossref_primary_10_1002_hbm_70058
crossref_primary_10_3389_fmed_2023_1240360
crossref_primary_10_3390_app13042302
crossref_primary_10_1016_j_compbiomed_2022_106294
crossref_primary_10_1016_j_nicl_2023_103381
crossref_primary_10_1007_s11277_022_09989_0
crossref_primary_10_3390_s21134490
crossref_primary_10_1109_TPAMI_2023_3346330
crossref_primary_10_1007_s00247_023_05620_x
crossref_primary_10_1016_j_mric_2024_03_004
crossref_primary_10_3174_ajnr_A7419
crossref_primary_10_1016_j_neunet_2020_02_006
crossref_primary_10_1016_j_placenta_2023_11_014
crossref_primary_10_3233_HIS_210001
crossref_primary_10_1017_S2040174420000884
crossref_primary_10_3174_ajnr_A7747
crossref_primary_10_1016_j_measen_2023_100808
crossref_primary_10_3389_fnins_2020_591683
crossref_primary_10_4236_jbm_2021_91012
crossref_primary_10_3390_diagnostics13142355
Cites_doi 10.1109/TMI.2016.2548501
10.2214/ajr.168.2.9016238
10.1109/TMI.2010.2046908
10.1016/j.siny.2006.07.001
10.1148/radiol.2291020770
10.1136/adc.48.10.757
10.1109/TMI.2007.895456
10.1007/s11548-010-0512-x
10.1016/j.neuroimage.2017.06.074
10.1109/TMI.2015.2415453
10.1016/j.media.2012.07.004
10.1038/srep23470
10.1109/TMI.2010.2051680
10.1016/j.jocs.2018.05.005
10.1002/hbm.10062
10.1067/mob.2002.127146
10.1016/j.media.2017.07.005
10.1109/TMI.2004.828354
10.1109/TMI.2016.2621185
10.1016/j.media.2014.11.001
10.1007/s10278-017-9983-4
10.1002/hbm.20935
10.1016/j.tins.2013.01.006
10.1016/j.neuroimage.2012.01.128
ContentType Journal Article
Copyright 2019 Elsevier Inc.
Copyright © 2019 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2019 Elsevier Inc.
– notice: Copyright © 2019 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.mri.2019.05.020
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1873-5894
EndPage 89
ExternalDocumentID 31181246
10_1016_j_mri_2019_05_020
S0730725X18306106
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.1-
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29M
3O-
4.4
457
4CK
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABDPE
ABFNM
ABGSF
ABJNI
ABMAC
ABMZM
ABNEU
ABOCM
ABUDA
ABWVN
ABXDB
ACDAQ
ACFVG
ACGFS
ACIEU
ACIUM
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADUVX
AEBSH
AEHWI
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFFNX
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AIVDX
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HEI
HMK
HMO
HVGLF
HZ~
IHE
J1W
KOM
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OI~
OU0
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SSQ
SSU
SSZ
T5K
WUQ
XPP
Z5R
ZGI
ZMT
~G-
~S-
AACTN
AAIAV
ABLVK
ABYKQ
AFCTW
AFKWA
AJBFU
AJOXV
AMFUW
DOVZS
EFLBG
G8K
LCYCR
RIG
AAYXX
AGRNS
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c469t-e386b604f1ce99508c29cac7314140b7c9a4f19e57bd07d53d7f4c8f293926353
IEDL.DBID .~1
ISSN 0730-725X
1873-5894
IngestDate Thu Jul 10 18:13:21 EDT 2025
Thu Apr 03 06:59:05 EDT 2025
Thu Apr 24 22:58:21 EDT 2025
Tue Jul 01 01:55:24 EDT 2025
Fri Feb 23 02:22:54 EST 2024
Tue Aug 26 16:33:44 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Brain segmentation
Intensity inhomogeneity
Fetal MRI
Convolutional neural network
Language English
License Copyright © 2019 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c469t-e386b604f1ce99508c29cac7314140b7c9a4f19e57bd07d53d7f4c8f293926353
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-2255-0332
0000-0001-7935-9611
0000-0002-4221-2779
PMID 31181246
PQID 2242831680
PQPubID 23479
PageCount 13
ParticipantIDs proquest_miscellaneous_2242831680
pubmed_primary_31181246
crossref_citationtrail_10_1016_j_mri_2019_05_020
crossref_primary_10_1016_j_mri_2019_05_020
elsevier_sciencedirect_doi_10_1016_j_mri_2019_05_020
elsevier_clinicalkey_doi_10_1016_j_mri_2019_05_020
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2019
2019-12-00
20191201
PublicationDateYYYYMMDD 2019-12-01
PublicationDate_xml – month: 12
  year: 2019
  text: December 2019
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Magnetic resonance imaging
PublicationTitleAlternate Magn Reson Imaging
PublicationYear 2019
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Marie, MeritxellBach, Nick, Bruce, JeanPhilippe, Stephan (bb0015) 2012
YuDong, Chichun, Xianqing, Fubin (bb0105) 2018; 27
Salehi, Hashemi, Velasco-Annis, Ouaalam, Estroff, Erdogmus (bb0150) 2018
Marine, Plessis AdréJ, Robert, Marie, Jonathan, Laura (bb0115) 2016; 138
Maria, Gerardine, Rutherford, Hajnal, Schnabel (bb0045) 2012; 16
Ali, Alireza, Estroff, Warfield (bb0065) 2012; 60
Timothy (bb0175) 2016
Ali, Estroff, Barnewolt, Connolly, Warfield (bb0070) 2011; 6
Bernhard, Markus, Wolfgang, Maria, Christina, Kevin (bb0050) 2015; 34
Karl, Nicola, Katrin (bb0010) 2013; 36
Antonios, Counsell, Daniel (bb0100) 2018; 170
Twickler, Taylor, McIntire, Magee, Ramus (bb0020) 2002; 187
Kingma, JBa (bb0170) 2015
Zeynettin, Alfiia, Assaf, Rubin, Erickson (bb0095) 2017; 30
Sergey, Christian (bb0165) 2015
Jérémie, Angelini, Isabelle (bb0135) 2009
ShuiHua, Lv, Yuxiu, Shuai, SuJing, YuDong (bb0110) 2018; 42
Tustison, Avants, Cook, Yuanjie, Alexander, Yushkevich (bb0085) 2010; 29
NeoBrainS12.
Ahmed, Manuel, Moore, Rozalia, Sparrow, Wilkinson (bb0190) 2016; 6
Habas, Kio, Francois, Glenn, AJames, Colin (bb0060) 2010; 31
Shuzhou, Hui, Alan, Mary, Daniel, Hajnal (bb0035) 2007; 26
Olaf, Phili, Thomas (bb0160) 2015
François (bb0180) 2015
Serag, Kyriakopoulou, Rutherford, Edwards, Hajnal, Aljabar (bb0080) 2012; 2012
Pim, Viergever, Mendrik, Vries LindaS, Benders, Ivana (bb0130) 2016; 35
Ivica, Nataša (bb0005) 2006; 11
Deborah, Barnes, Robertson, Geoffrey, Mehta (bb0025) 2003; 229
.
Smith (bb0185) 2002; 17
Yamashita, Namimoto, Abe, Takahashi, Iwamasa, Miyazaki (bb0030) 1997; 168
Warfield, Zou, Wells (bb0075) 2004; 23
Ivana, Benders, Brian, MJorge, Counsell, EldaFischi (bb0125) 2015; 20
Martin, Lee, Ozan, Konstantinos, Jonathan, Wenjia (bb0140) 2017; 36
John, Jean (bb0120) 1973; 48
Khalili, Moeskops, Claessens, Scherpenzeel, Turk, de Heus (bb0145) 2017
Geert, Thijs, BabakEhteshami, ArnaudArindraAdiyoso, Francesco, Mohsen (bb0090) 2017; 42
Ali, Estroff, Warfield (bb0040) 2010; 29
Michael, Guotai, Li, Michael, Patel, Rosalind (bb0055) 2018
Deborah (10.1016/j.mri.2019.05.020_bb0025) 2003; 229
Ali (10.1016/j.mri.2019.05.020_bb0040) 2010; 29
Habas (10.1016/j.mri.2019.05.020_bb0060) 2010; 31
Antonios (10.1016/j.mri.2019.05.020_bb0100) 2018; 170
Salehi (10.1016/j.mri.2019.05.020_bb0150) 2018
Sergey (10.1016/j.mri.2019.05.020_bb0165) 2015
Jérémie (10.1016/j.mri.2019.05.020_bb0135) 2009
Ivana (10.1016/j.mri.2019.05.020_bb0125) 2015; 20
Shuzhou (10.1016/j.mri.2019.05.020_bb0035) 2007; 26
Maria (10.1016/j.mri.2019.05.020_bb0045) 2012; 16
Zeynettin (10.1016/j.mri.2019.05.020_bb0095) 2017; 30
Kingma (10.1016/j.mri.2019.05.020_bb0170) 2015
Smith (10.1016/j.mri.2019.05.020_bb0185) 2002; 17
Geert (10.1016/j.mri.2019.05.020_bb0090) 2017; 42
John (10.1016/j.mri.2019.05.020_bb0120) 1973; 48
Pim (10.1016/j.mri.2019.05.020_bb0130) 2016; 35
Ali (10.1016/j.mri.2019.05.020_bb0065) 2012; 60
10.1016/j.mri.2019.05.020_bb0155
Timothy (10.1016/j.mri.2019.05.020_bb0175) 2016
Bernhard (10.1016/j.mri.2019.05.020_bb0050) 2015; 34
YuDong (10.1016/j.mri.2019.05.020_bb0105) 2018; 27
Khalili (10.1016/j.mri.2019.05.020_bb0145) 2017
Ahmed (10.1016/j.mri.2019.05.020_bb0190) 2016; 6
Tustison (10.1016/j.mri.2019.05.020_bb0085) 2010; 29
Martin (10.1016/j.mri.2019.05.020_bb0140) 2017; 36
Ivica (10.1016/j.mri.2019.05.020_bb0005) 2006; 11
Warfield (10.1016/j.mri.2019.05.020_bb0075) 2004; 23
Karl (10.1016/j.mri.2019.05.020_bb0010) 2013; 36
Twickler (10.1016/j.mri.2019.05.020_bb0020) 2002; 187
Michael (10.1016/j.mri.2019.05.020_bb0055) 2018
Yamashita (10.1016/j.mri.2019.05.020_bb0030) 1997; 168
ShuiHua (10.1016/j.mri.2019.05.020_bb0110) 2018; 42
Serag (10.1016/j.mri.2019.05.020_bb0080) 2012; 2012
Marie (10.1016/j.mri.2019.05.020_bb0015) 2012
Marine (10.1016/j.mri.2019.05.020_bb0115) 2016; 138
Olaf (10.1016/j.mri.2019.05.020_bb0160) 2015
François (10.1016/j.mri.2019.05.020_bb0180)
Ali (10.1016/j.mri.2019.05.020_bb0070) 2011; 6
References_xml – volume: 29
  start-page: 1310
  year: 2010
  end-page: 1320
  ident: bb0085
  article-title: N4ITK: improved N3 bias correction
  publication-title: IEEE Trans. Med. Imaging
– volume: 138
  year: 2016
  ident: bb0115
  article-title: Third trimester brain growth in preterm infants compared with in utero healthy fetuses
  publication-title: Pediatrics
– volume: 48
  start-page: 757
  year: 1973
  end-page: 767
  ident: bb0120
  article-title: Quantitative growth and development of human brain
  publication-title: Arch. Dis. Child.
– volume: 17
  start-page: 143
  year: 2002
  end-page: 155
  ident: bb0185
  article-title: Fast robust automated brain extraction
  publication-title: Hum. Brain Mapp.
– volume: 6
  start-page: 329
  year: 2011
  end-page: 339
  ident: bb0070
  article-title: Fetal brain volumetry through MRI volumetric reconstruction and segmentation
  publication-title: Int. J. Comput. Assist. Radiol. Surg.
– year: 2012
  ident: bb0015
  article-title: How to measure cortical folding from MR images: a step-by-step tutorial to compute local gyrification index
  publication-title: J. Vis. Exp.
– volume: 11
  start-page: 415
  year: 2006
  end-page: 422
  ident: bb0005
  article-title: The development of cerebral connections during the first 20–45 weeks gestation
  publication-title: Semin. Fetal Neonatal Med.
– volume: 229
  start-page: 51
  year: 2003
  end-page: 61
  ident: bb0025
  article-title: Fast MR imaging of fetal central nervous system abnormalities
  publication-title: Radiology
– volume: 60
  start-page: 1819
  year: 2012
  end-page: 1831
  ident: bb0065
  article-title: Multi-atlas multi-shape segmentation of fetal brain MRI for volumetric and morphometric analysis of ventriculomegaly
  publication-title: NeuroImage
– start-page: 313
  year: 2018
  end-page: 320
  ident: bb0055
  article-title: An automated localization, segmentation and reconstruction framework for fetal brain MRI
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– start-page: 234
  year: 2015
  end-page: 241
  ident: bb0160
  article-title: U-net: convolutional networks for biomedical image segmentation
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI)
– start-page: 109
  year: 2009
  end-page: 112
  ident: bb0135
  article-title: Automatic segmentation of head structures on fetal MRI
  publication-title: Biomedical Imaging: From Nano to Macro, 2009. ISBI’09. IEEE International Symposium on
– volume: 30
  start-page: 449
  year: 2017
  end-page: 459
  ident: bb0095
  article-title: Deep learning for brain MRI segmentation: state of the art and future directions
  publication-title: J. Digit. Imaging
– volume: 26
  start-page: 967
  year: 2007
  end-page: 980
  ident: bb0035
  article-title: MRI of moving subjects using multislice snapshot images with volume reconstruction (SVR): application to fetal, neonatal, and adult brain studies
  publication-title: IEEE Trans. Med. Imaging
– volume: 34
  start-page: 1901
  year: 2015
  end-page: 1913
  ident: bb0050
  article-title: Fast volume reconstruction from motion corrupted stacks of 2D slices
  publication-title: IEEE Trans. Med. Imaging
– volume: 2012
  start-page: 1
  year: 2012
  end-page: 14
  ident: bb0080
  article-title: A multi-channel 4D probabilistic atlas of the developing brain: application to fetuses and neonates
  publication-title: Ann. Br. Mach. Vis. Assoc.
– volume: 36
  start-page: 674
  year: 2017
  end-page: 683
  ident: bb0140
  article-title: Deepcut: object segmentation from bounding box annotations using convolutional neural networks
  publication-title: IEEE Trans. Med. Imaging
– volume: 187
  start-page: 927
  year: 2002
  end-page: 931
  ident: bb0020
  article-title: Fetal central nervous system ventricle and cisterna magna measurements by magnetic resonance imaging
  publication-title: Am. J. Obstet. Gynecol.
– year: 2016
  ident: bb0175
  article-title: Incorporating nesterov momentum into Adam
  publication-title: 4th International Conference on Learning Representations (ICLR), Workshop
– volume: 35
  start-page: 1252
  year: 2016
  end-page: 1261
  ident: bb0130
  article-title: Automatic segmentation of MR brain images with a convolutional neural network
  publication-title: IEE Transactions on Medical Imaging
– volume: 20
  start-page: 135
  year: 2015
  end-page: 151
  ident: bb0125
  article-title: Evaluation of automatic neonatal brain segmentation algorithms: the NeoBrainS12 challenge
  publication-title: Med. Image Anal.
– volume: 170
  start-page: 231
  year: 2018
  end-page: 248
  ident: bb0100
  article-title: A review on automatic fetal and neonatal brain MRI segmentation
  publication-title: NeuroImage
– volume: 42
  year: 2018
  ident: bb0110
  article-title: Alcoholism detection by data augmentation and convolutional neural network with stochastic pooling
  publication-title: J. Med. Syst.
– start-page: 448
  year: 2015
  end-page: 456
  ident: bb0165
  article-title: Batch normalization: accelerating deep network training by reducing internal covariate shift
  publication-title: Proceedings of the 32nd International Conference on Machine Learning (ICML)
– volume: 168
  start-page: 513
  year: 1997
  end-page: 519
  ident: bb0030
  article-title: MR imaging of the fetus by a haste sequence
  publication-title: AJR Am. J. Roentgenol.
– reference: .
– reference: NeoBrainS12.
– start-page: 42
  year: 2017
  end-page: 51
  ident: bb0145
  article-title: Automatic segmentation of the intracranial volume in fetal MR images
  publication-title: Fetal, Infant and Ophthalmic Medical Image Analysis
– year: 2015
  ident: bb0170
  article-title: A method for stochastic optimisation
  publication-title: International Conference on Learning Representations (ICLR)
– volume: 36
  start-page: 275
  year: 2013
  end-page: 284
  ident: bb0010
  article-title: Development of cortical folding during evolution and ontogeny
  publication-title: Trends Neurosci.
– volume: 31
  start-page: 1348
  year: 2010
  end-page: 1358
  ident: bb0060
  article-title: Atlas-based segmentation of developing tissues in the human brain with quantitative validation in young fetuses
  publication-title: Hum. Brain Mapp.
– volume: 27
  start-page: 57
  year: 2018
  end-page: 68
  ident: bb0105
  article-title: Abnormal breast identification by nine-layer convolutional neural network with parametric rectified linear unit and rank-based stochastic pooling
  publication-title: J. Comput. Sci.
– volume: 6
  start-page: 23470
  year: 2016
  ident: bb0190
  article-title: Accurate learning with few atlases (ALFA): an algorithm for MRI neonatal brain extraction and comparison with 11 publicly available methods
  publication-title: Sci. Rep.
– volume: 23
  start-page: 903
  year: 2004
  end-page: 921
  ident: bb0075
  article-title: Simultaneous truth and performance level estimation (STAPLE): an algorithm for the validation of image segmentation
  publication-title: IEEE Trans. Med. Imaging
– volume: 29
  start-page: 1739
  year: 2010
  end-page: 1758
  ident: bb0040
  article-title: Robust super-resolution volume reconstruction from slice acquisitions: application to fetal brain MRI
  publication-title: IEEE Trans. Med. Imaging
– volume: 16
  start-page: 1550
  year: 2012
  end-page: 1564
  ident: bb0045
  article-title: Reconstruction of fetal brain MRI with intensity matching and complete outlier removal
  publication-title: Med. Image Anal.
– year: 2015
  ident: bb0180
  article-title: Keras
– start-page: 720
  year: 2018
  end-page: 724
  ident: bb0150
  article-title: Real-time automatic fetal brain extraction in fetal MRI by deep learning
  publication-title: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI)
– volume: 42
  start-page: 60
  year: 2017
  end-page: 88
  ident: bb0090
  article-title: A survey on deep learning in medical image analysis
  publication-title: Med. Image Anal.
– volume: 35
  start-page: 1252
  issue: 5
  year: 2016
  ident: 10.1016/j.mri.2019.05.020_bb0130
  article-title: Automatic segmentation of MR brain images with a convolutional neural network
  publication-title: IEE Transactions on Medical Imaging
  doi: 10.1109/TMI.2016.2548501
– start-page: 720
  year: 2018
  ident: 10.1016/j.mri.2019.05.020_bb0150
  article-title: Real-time automatic fetal brain extraction in fetal MRI by deep learning
– issue: 59
  year: 2012
  ident: 10.1016/j.mri.2019.05.020_bb0015
  article-title: How to measure cortical folding from MR images: a step-by-step tutorial to compute local gyrification index
  publication-title: J. Vis. Exp.
– volume: 168
  start-page: 513
  issue: 2
  year: 1997
  ident: 10.1016/j.mri.2019.05.020_bb0030
  article-title: MR imaging of the fetus by a haste sequence
  publication-title: AJR Am. J. Roentgenol.
  doi: 10.2214/ajr.168.2.9016238
– volume: 29
  start-page: 1310
  issue: 6
  year: 2010
  ident: 10.1016/j.mri.2019.05.020_bb0085
  article-title: N4ITK: improved N3 bias correction
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2010.2046908
– start-page: 109
  year: 2009
  ident: 10.1016/j.mri.2019.05.020_bb0135
  article-title: Automatic segmentation of head structures on fetal MRI
– start-page: 42
  year: 2017
  ident: 10.1016/j.mri.2019.05.020_bb0145
  article-title: Automatic segmentation of the intracranial volume in fetal MR images
– ident: 10.1016/j.mri.2019.05.020_bb0180
– volume: 11
  start-page: 415
  issue: 6
  year: 2006
  ident: 10.1016/j.mri.2019.05.020_bb0005
  article-title: The development of cerebral connections during the first 20–45 weeks gestation
  publication-title: Semin. Fetal Neonatal Med.
  doi: 10.1016/j.siny.2006.07.001
– volume: 229
  start-page: 51
  issue: 1
  year: 2003
  ident: 10.1016/j.mri.2019.05.020_bb0025
  article-title: Fast MR imaging of fetal central nervous system abnormalities
  publication-title: Radiology
  doi: 10.1148/radiol.2291020770
– volume: 48
  start-page: 757
  issue: 10
  year: 1973
  ident: 10.1016/j.mri.2019.05.020_bb0120
  article-title: Quantitative growth and development of human brain
  publication-title: Arch. Dis. Child.
  doi: 10.1136/adc.48.10.757
– year: 2016
  ident: 10.1016/j.mri.2019.05.020_bb0175
  article-title: Incorporating nesterov momentum into Adam
– volume: 26
  start-page: 967
  issue: 7
  year: 2007
  ident: 10.1016/j.mri.2019.05.020_bb0035
  article-title: MRI of moving subjects using multislice snapshot images with volume reconstruction (SVR): application to fetal, neonatal, and adult brain studies
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2007.895456
– volume: 6
  start-page: 329
  issue: 3
  year: 2011
  ident: 10.1016/j.mri.2019.05.020_bb0070
  article-title: Fetal brain volumetry through MRI volumetric reconstruction and segmentation
  publication-title: Int. J. Comput. Assist. Radiol. Surg.
  doi: 10.1007/s11548-010-0512-x
– volume: 170
  start-page: 231
  year: 2018
  ident: 10.1016/j.mri.2019.05.020_bb0100
  article-title: A review on automatic fetal and neonatal brain MRI segmentation
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2017.06.074
– volume: 34
  start-page: 1901
  issue: 9
  year: 2015
  ident: 10.1016/j.mri.2019.05.020_bb0050
  article-title: Fast volume reconstruction from motion corrupted stacks of 2D slices
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2015.2415453
– volume: 16
  start-page: 1550
  issue: 8
  year: 2012
  ident: 10.1016/j.mri.2019.05.020_bb0045
  article-title: Reconstruction of fetal brain MRI with intensity matching and complete outlier removal
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2012.07.004
– volume: 6
  start-page: 23470
  year: 2016
  ident: 10.1016/j.mri.2019.05.020_bb0190
  article-title: Accurate learning with few atlases (ALFA): an algorithm for MRI neonatal brain extraction and comparison with 11 publicly available methods
  publication-title: Sci. Rep.
  doi: 10.1038/srep23470
– volume: 29
  start-page: 1739
  issue: 10
  year: 2010
  ident: 10.1016/j.mri.2019.05.020_bb0040
  article-title: Robust super-resolution volume reconstruction from slice acquisitions: application to fetal brain MRI
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2010.2051680
– volume: 27
  start-page: 57
  year: 2018
  ident: 10.1016/j.mri.2019.05.020_bb0105
  article-title: Abnormal breast identification by nine-layer convolutional neural network with parametric rectified linear unit and rank-based stochastic pooling
  publication-title: J. Comput. Sci.
  doi: 10.1016/j.jocs.2018.05.005
– volume: 17
  start-page: 143
  issue: 3
  year: 2002
  ident: 10.1016/j.mri.2019.05.020_bb0185
  article-title: Fast robust automated brain extraction
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.10062
– volume: 187
  start-page: 927
  issue: 4
  year: 2002
  ident: 10.1016/j.mri.2019.05.020_bb0020
  article-title: Fetal central nervous system ventricle and cisterna magna measurements by magnetic resonance imaging
  publication-title: Am. J. Obstet. Gynecol.
  doi: 10.1067/mob.2002.127146
– ident: 10.1016/j.mri.2019.05.020_bb0155
– volume: 138
  issue: 5
  year: 2016
  ident: 10.1016/j.mri.2019.05.020_bb0115
  article-title: Third trimester brain growth in preterm infants compared with in utero healthy fetuses
  publication-title: Pediatrics
– start-page: 234
  year: 2015
  ident: 10.1016/j.mri.2019.05.020_bb0160
  article-title: U-net: convolutional networks for biomedical image segmentation
– volume: 42
  start-page: 60
  year: 2017
  ident: 10.1016/j.mri.2019.05.020_bb0090
  article-title: A survey on deep learning in medical image analysis
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2017.07.005
– volume: 23
  start-page: 903
  issue: 7
  year: 2004
  ident: 10.1016/j.mri.2019.05.020_bb0075
  article-title: Simultaneous truth and performance level estimation (STAPLE): an algorithm for the validation of image segmentation
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2004.828354
– volume: 36
  start-page: 674
  issue: 2
  year: 2017
  ident: 10.1016/j.mri.2019.05.020_bb0140
  article-title: Deepcut: object segmentation from bounding box annotations using convolutional neural networks
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2016.2621185
– volume: 20
  start-page: 135
  issue: 1
  year: 2015
  ident: 10.1016/j.mri.2019.05.020_bb0125
  article-title: Evaluation of automatic neonatal brain segmentation algorithms: the NeoBrainS12 challenge
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2014.11.001
– volume: 2012
  start-page: 1
  issue: 3
  year: 2012
  ident: 10.1016/j.mri.2019.05.020_bb0080
  article-title: A multi-channel 4D probabilistic atlas of the developing brain: application to fetuses and neonates
  publication-title: Ann. Br. Mach. Vis. Assoc.
– volume: 30
  start-page: 449
  issue: 4
  year: 2017
  ident: 10.1016/j.mri.2019.05.020_bb0095
  article-title: Deep learning for brain MRI segmentation: state of the art and future directions
  publication-title: J. Digit. Imaging
  doi: 10.1007/s10278-017-9983-4
– year: 2015
  ident: 10.1016/j.mri.2019.05.020_bb0170
  article-title: A method for stochastic optimisation
– volume: 31
  start-page: 1348
  issue: 9
  year: 2010
  ident: 10.1016/j.mri.2019.05.020_bb0060
  article-title: Atlas-based segmentation of developing tissues in the human brain with quantitative validation in young fetuses
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.20935
– volume: 36
  start-page: 275
  issue: 5
  year: 2013
  ident: 10.1016/j.mri.2019.05.020_bb0010
  article-title: Development of cortical folding during evolution and ontogeny
  publication-title: Trends Neurosci.
  doi: 10.1016/j.tins.2013.01.006
– start-page: 313
  year: 2018
  ident: 10.1016/j.mri.2019.05.020_bb0055
  article-title: An automated localization, segmentation and reconstruction framework for fetal brain MRI
– volume: 60
  start-page: 1819
  issue: 3
  year: 2012
  ident: 10.1016/j.mri.2019.05.020_bb0065
  article-title: Multi-atlas multi-shape segmentation of fetal brain MRI for volumetric and morphometric analysis of ventriculomegaly
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2012.01.128
– volume: 42
  issue: 1
  year: 2018
  ident: 10.1016/j.mri.2019.05.020_bb0110
  article-title: Alcoholism detection by data augmentation and convolutional neural network with stochastic pooling
  publication-title: J. Med. Syst.
– start-page: 448
  year: 2015
  ident: 10.1016/j.mri.2019.05.020_bb0165
  article-title: Batch normalization: accelerating deep network training by reducing internal covariate shift
SSID ssj0005235
Score 2.572397
Snippet MR images of fetuses allow clinicians to detect brain abnormalities in an early stage of development. The cornerstone of volumetric and morphologic analysis in...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 77
SubjectTerms Brain - abnormalities
Brain - diagnostic imaging
Brain - embryology
Brain Diseases - diagnostic imaging
Brain Diseases - embryology
Brain segmentation
Convolutional neural network
Deep learning
Female
Fetal MRI
Humans
Image Interpretation, Computer-Assisted - methods
Intensity inhomogeneity
Magnetic Resonance Imaging - methods
Neural Networks, Computer
Pregnancy
Prenatal Diagnosis - methods
Title Automatic brain tissue segmentation in fetal MRI using convolutional neural networks
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0730725X18306106
https://dx.doi.org/10.1016/j.mri.2019.05.020
https://www.ncbi.nlm.nih.gov/pubmed/31181246
https://www.proquest.com/docview/2242831680
Volume 64
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA9DQXwRv50fI4JPQl0_0qZ9HMOxKduDbrC30KbpmLhubN2rf7t3aToUdIJPpekdDZfr5a73yx0hd4hsh9iYWaEjM4ulMrbiEANXzwdvXzKH63-6_UHQHbGnsT-ukXZ1FgZhlcb2lzZdW2sz0jTSbC6m0-YrKid3_TEoJWxKuuw2Yxy1_OHjK8yjbLIJxBZSV5lNjfGaLaeI7op08U5s-f3z3vSb76n3oM4hOTDOI22V8zsiNZUfk72-SY-fkGFrXcx1DVaaYOsHWmix0pWazMwZo5zCcKbA5ab9lx5F2PuEIvTcqCCMY4lLfdEA8dUpGXUeh-2uZdomWBJi3cJSXhgkgc0yR6oIm7xKN5Kx5J7DIJpKuIxieBYpnyepzVPfS3nGZJjBxh9haRrvjOzk81xdEOoGWeImgc-5DaJldpiFaZQqnUyzY-nWiV0JTEhTUxxbW7yLCjz2JkDGAmUsbF-AjOvkfsOyKAtqbCN2q1UQ1UlRsG0CzP02JrZh-qZKf7HdVsss4BPDvEmcq_l6JcDLASfMCUKgOS_XfzN1z9EuUnD5v5dekX28K_Ex12SnWK7VDXg5RdLQatwgu63ec3fwCQCj-PU
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA9DQX0Rv52fEXwS6vqRNu3jGMqm2x50wt5Cm6Zj4rqxda_-7d6l6VDwA3wqJHe0XC53l94vd4RcI7IdzsbMCh2ZWSyVsRWHeHD1fIj2JXO4_qfb6wftF_Yw9Ic10qruwiCs0tj-0qZra21GGkaajdl43HhG5eSuPwSlBKeEZbfXGWxfbGNw-_4Z51F22QRqC8mr1KYGeU3mY4R3Rbp6J_b8_t45_RR8aid0v0O2TfRIm-UH7pKayvfIRs_kx_fJoLksproIK02w9wMttFzpQo0m5pJRTmE4UxBz095ThyLufUQRe250EMaxxqV-aIT44oC83N8NWm3L9E2wJBx2C0t5YZAENsscqSLs8irdSMaSew6D41TCZRTDXKR8nqQ2T30v5RmTYQaeP8LaNN4hWcunuTom1A2yxE0Cn3ObMc7sMAvTKFU6m2bH0q0TuxKYkKaoOPa2eBMVeuxVgIwFyljYvgAZ18nNimVWVtT4jditVkFUV0XBuAmw978xsRXTF136i-2qWmYBewwTJ3GupsuFgDAHojAnCIHmqFz_1ad7jo6RgpP_vfSSbLYHva7odvqPp2QLZ0qwzBlZK-ZLdQ4hT5FcaJX-AKvL-oM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+brain+tissue+segmentation+in+fetal+MRI+using+convolutional+neural+networks&rft.jtitle=Magnetic+resonance+imaging&rft.au=Khalili%2C+N.&rft.au=Lessmann%2C+N.&rft.au=Turk%2C+E.&rft.au=Claessens%2C+N.&rft.date=2019-12-01&rft.pub=Elsevier+Inc&rft.issn=0730-725X&rft.eissn=1873-5894&rft.volume=64&rft.spage=77&rft.epage=89&rft_id=info:doi/10.1016%2Fj.mri.2019.05.020&rft.externalDocID=S0730725X18306106
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0730-725X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0730-725X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0730-725X&client=summon