Modern synergetic neural network for imbalanced small data classification
Deep learning’s performance on the imbalanced small data is substantially degraded by overfitting. Recurrent neural networks retain better performance in such tasks by constructing dynamical systems for robustness. Synergetic neural network (SNN), a synergetic-based recurrent neural network, has sup...
Saved in:
Published in | Scientific reports Vol. 13; no. 1; pp. 15669 - 10 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
21.09.2023
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Deep learning’s performance on the imbalanced small data is substantially degraded by overfitting. Recurrent neural networks retain better performance in such tasks by constructing dynamical systems for robustness. Synergetic neural network (SNN), a synergetic-based recurrent neural network, has superiorities in eliminating recall errors and pseudo memories, but is subject to frequent association errors. Since the cause remains unclear, most subsequent studies use genetic algorithms to adjust parameters for better accuracy, which occupies the parameter optimization space and hinders task-oriented tuning. To solve the problem and promote SNN’s application capability, we propose the modern synergetic neural network (MSNN) model. MSNN solves the association error by correcting the state initialization method in the working process, liberating the parameter optimization space. In addition, MSNN optimizes the attention parameter of the network with the error backpropagation algorithm and the gradient bypass technique to allow the network to be trained jointly with other network layers. The self-learning of the attention parameter empowers the adaptation to the imbalanced sample size, further improving the classification performance. In 75 classification tasks of small UC Irvine Machine Learning Datasets, the average rank of the MSNN achieves the best result compared to 187 neural and non-neural network machine learning methods. |
---|---|
AbstractList | Deep learning’s performance on the imbalanced small data is substantially degraded by overfitting. Recurrent neural networks retain better performance in such tasks by constructing dynamical systems for robustness. Synergetic neural network (SNN), a synergetic-based recurrent neural network, has superiorities in eliminating recall errors and pseudo memories, but is subject to frequent association errors. Since the cause remains unclear, most subsequent studies use genetic algorithms to adjust parameters for better accuracy, which occupies the parameter optimization space and hinders task-oriented tuning. To solve the problem and promote SNN’s application capability, we propose the modern synergetic neural network (MSNN) model. MSNN solves the association error by correcting the state initialization method in the working process, liberating the parameter optimization space. In addition, MSNN optimizes the attention parameter of the network with the error backpropagation algorithm and the gradient bypass technique to allow the network to be trained jointly with other network layers. The self-learning of the attention parameter empowers the adaptation to the imbalanced sample size, further improving the classification performance. In 75 classification tasks of small UC Irvine Machine Learning Datasets, the average rank of the MSNN achieves the best result compared to 187 neural and non-neural network machine learning methods. Abstract Deep learning’s performance on the imbalanced small data is substantially degraded by overfitting. Recurrent neural networks retain better performance in such tasks by constructing dynamical systems for robustness. Synergetic neural network (SNN), a synergetic-based recurrent neural network, has superiorities in eliminating recall errors and pseudo memories, but is subject to frequent association errors. Since the cause remains unclear, most subsequent studies use genetic algorithms to adjust parameters for better accuracy, which occupies the parameter optimization space and hinders task-oriented tuning. To solve the problem and promote SNN’s application capability, we propose the modern synergetic neural network (MSNN) model. MSNN solves the association error by correcting the state initialization method in the working process, liberating the parameter optimization space. In addition, MSNN optimizes the attention parameter of the network with the error backpropagation algorithm and the gradient bypass technique to allow the network to be trained jointly with other network layers. The self-learning of the attention parameter empowers the adaptation to the imbalanced sample size, further improving the classification performance. In 75 classification tasks of small UC Irvine Machine Learning Datasets, the average rank of the MSNN achieves the best result compared to 187 neural and non-neural network machine learning methods. Deep learning's performance on the imbalanced small data is substantially degraded by overfitting. Recurrent neural networks retain better performance in such tasks by constructing dynamical systems for robustness. Synergetic neural network (SNN), a synergetic-based recurrent neural network, has superiorities in eliminating recall errors and pseudo memories, but is subject to frequent association errors. Since the cause remains unclear, most subsequent studies use genetic algorithms to adjust parameters for better accuracy, which occupies the parameter optimization space and hinders task-oriented tuning. To solve the problem and promote SNN's application capability, we propose the modern synergetic neural network (MSNN) model. MSNN solves the association error by correcting the state initialization method in the working process, liberating the parameter optimization space. In addition, MSNN optimizes the attention parameter of the network with the error backpropagation algorithm and the gradient bypass technique to allow the network to be trained jointly with other network layers. The self-learning of the attention parameter empowers the adaptation to the imbalanced sample size, further improving the classification performance. In 75 classification tasks of small UC Irvine Machine Learning Datasets, the average rank of the MSNN achieves the best result compared to 187 neural and non-neural network machine learning methods.Deep learning's performance on the imbalanced small data is substantially degraded by overfitting. Recurrent neural networks retain better performance in such tasks by constructing dynamical systems for robustness. Synergetic neural network (SNN), a synergetic-based recurrent neural network, has superiorities in eliminating recall errors and pseudo memories, but is subject to frequent association errors. Since the cause remains unclear, most subsequent studies use genetic algorithms to adjust parameters for better accuracy, which occupies the parameter optimization space and hinders task-oriented tuning. To solve the problem and promote SNN's application capability, we propose the modern synergetic neural network (MSNN) model. MSNN solves the association error by correcting the state initialization method in the working process, liberating the parameter optimization space. In addition, MSNN optimizes the attention parameter of the network with the error backpropagation algorithm and the gradient bypass technique to allow the network to be trained jointly with other network layers. The self-learning of the attention parameter empowers the adaptation to the imbalanced sample size, further improving the classification performance. In 75 classification tasks of small UC Irvine Machine Learning Datasets, the average rank of the MSNN achieves the best result compared to 187 neural and non-neural network machine learning methods. |
ArticleNumber | 15669 |
Author | Wang, Zihao Ma, Lin Li, Haifeng |
Author_xml | – sequence: 1 givenname: Zihao surname: Wang fullname: Wang, Zihao organization: Faculty of Computing, Harbin Institute of Technology – sequence: 2 givenname: Haifeng surname: Li fullname: Li, Haifeng email: lihaifeng@hit.edu.cn organization: Faculty of Computing, Harbin Institute of Technology – sequence: 3 givenname: Lin surname: Ma fullname: Ma, Lin organization: Faculty of Computing, Harbin Institute of Technology |
BookMark | eNp9kUtv1TAQhS1UREvpH2AViQ2bgF-xnRVCFY8rFbGBtTWxJxdfErvYSVH_Pb5NBZQF3oxln_l0Zs5TchJTREKeM_qKUWFeF8m63rSUi1ZyZfrWPCJnnMqu5YLzk7_up-SilAOtp-O9ZP0Tciq0Fh0X9IzsPiWPOTblNmLe4xJcE3HNMNWy_Ez5ezOm3IR5gAmiQ9-UGaap8bBA4yYoJYzBwRJSfEYejzAVvLiv5-Tr-3dfLj-2V58_7C7fXrVOqn5pPY6MjUxq5x1yZIM3yDR4px03IAcQVdENWmnHJDoD1SulHtF5OnSuF-dkt3F9goO9zmGGfGsTBHv3kPLeQq5zTGgFrWNK3wsxGonUDBq1GEEpD9wpMVTWm411vQ4zVkNxqaM_gD78ieGb3acby2jHJDOmEl7eE3L6sWJZ7ByKw6luC9NaLDfKME6p0VX64h_pIa051l0dVapXgglZVXxTuZxKyTj-dsOoPSZvt-RtTd7eJW-PLsTWVKo47jH_Qf-n6xeviLLV |
Cites_doi | 10.1145/3343440 10.24963/ijcai.2021/631 10.1016/j.neucom.2014.08.091 10.1007/11427445_5 10.1016/S0925-2312(02)00604-5 10.1016/j.procs.2018.08.150 10.1109/CVPR.2016.580 10.1007/978-3-662-22450-2 10.1080/00207160.2019.1677897 10.1016/j.neucom.2014.12.031 10.1109/TNNLS.2017.2732482 10.1073/pnas.2005013117 10.1016/0893-6080(94)90012-4 10.1109/21.87054 10.1186/s40537-019-0197-0 10.1007/s11063-015-9449-y 10.1017/S0305004100030401 10.1073/pnas.79.8.2554 10.1109/ICCIS.2010.5518581 10.1016/j.neunet.2018.07.010 10.1016/j.neucom.2015.11.055 10.1109/ICALIP.2010.5684499 10.1007/s10955-017-1806-y 10.1016/j.neucom.2012.08.018 10.1145/2911451.2914722 10.1007/978-3-540-30125-7_57 10.1016/S0893-6080(96)00061-5 10.3233/IDA-150323 10.1109/ISM.2015.126 10.1016/j.neucom.2014.06.021 |
ContentType | Journal Article |
Copyright | The Author(s) 2023 The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023. Springer Nature Limited. Springer Nature Limited 2023 |
Copyright_xml | – notice: The Author(s) 2023 – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023. Springer Nature Limited. – notice: Springer Nature Limited 2023 |
DBID | C6C AAYXX CITATION 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI Q9U 7X8 5PM DOA |
DOI | 10.1038/s41598-023-42689-8 |
DatabaseName | Springer Nature Link OA Free Journals CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection PML(ProQuest Medical Library) Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 10 |
ExternalDocumentID | oai_doaj_org_article_307354d933f84e08b7e73fa66da2c63b PMC10514188 10_1038_s41598_023_42689_8 |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT 7XB 8FK K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PUEGO Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c469t-def11f147cdce2e1bd8e17adc7c28a4ba3def5b767c14ec8a37700deecd0b5c93 |
IEDL.DBID | M48 |
ISSN | 2045-2322 |
IngestDate | Wed Aug 27 01:19:29 EDT 2025 Thu Aug 21 18:36:32 EDT 2025 Fri Jul 11 07:32:03 EDT 2025 Tue Aug 26 05:41:14 EDT 2025 Tue Jul 01 03:57:29 EDT 2025 Fri Feb 21 02:37:11 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c469t-def11f147cdce2e1bd8e17adc7c28a4ba3def5b767c14ec8a37700deecd0b5c93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-023-42689-8 |
PMID | 37735230 |
PQID | 2866963134 |
PQPubID | 2041939 |
PageCount | 10 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_307354d933f84e08b7e73fa66da2c63b pubmedcentral_primary_oai_pubmedcentral_nih_gov_10514188 proquest_miscellaneous_2868120087 proquest_journals_2866963134 crossref_primary_10_1038_s41598_023_42689_8 springer_journals_10_1038_s41598_023_42689_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-09-21 |
PublicationDateYYYYMMDD | 2023-09-21 |
PublicationDate_xml | – month: 09 year: 2023 text: 2023-09-21 day: 21 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationYear | 2023 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Krotov, Hopfield (CR15) 2016 Wu, Zeng, Song (CR19) 2016; 177 Huang, Chen, Shi (CR25) 2012; 7 Lin (CR47) 1998; 20 Demircigil, Heusel, Löwe, Upgang, Vermet (CR21) 2017; 168 CR39 CR37 Radhakrishnan, Belkin, Uhler (CR4) 2020; 117 Wang, Yu, Wen, Zhang, Yu (CR18) 2015; 154 CR33 Wu, Liu, Li, Wu (CR2) 2018; 2018 McGill, Koll (CR46) 1979; 20 Penrose (CR45) 1955; 51 Haken (CR11) 1991 Zhao, Tang, Ip, Qi (CR23) 2003; 51 Wen (CR10) 2021; 20 Gou, Jiao, Tian (CR31) 2008; 30 Fernández-Delgado, Cernadas, Barro, Amorim (CR17) 2014; 15 Yang, Zhang (CR20) 2020; 97 CR5 CR7 Khan, Hayat, Bennamoun, Sohel, Togneri (CR6) 2018; 29 Hu, Qi (CR27) 1998; 17 Ba, Hinton, Mnih, Leibo, Ionescu (CR1) 2016; 20 Fanny, Cenggoro (CR43) 2018; 135 Liu, Liu, Sun, Liu (CR34) 2011; 5 Kosko (CR13) 1988; 18 Van Den Oord, Vinyals, Kavukcuoglu (CR48) 2017; 2017 Barra, Beccaria, Fachechi (CR22) 2018; 106 Moore (CR44) 1920; 26 CR16 Huang, Chen, Shi (CR26) 2017; 21 Zheng, Cai, Li (CR36) 2015; 34 CR51 Hopfield (CR12) 1982; 79 Kaur, Pannu, Malhi (CR35) 2019 Qian, Liang, Li, Feng, Shi (CR40) 2014; 143 Shorten, Khoshgoftaar (CR8) 2019; 6 Ma, Jiao (CR28) 2004; 3211 Yu, Ni, Zhao (CR38) 2013; 101 Adachi, Aihara (CR14) 1997; 10 Charte, Rivera, del Jesus, Herrera (CR41) 2015; 163 Chen, Huang, Shi (CR30) 2016; 44 Gao (CR9) 2020; 20 CR24 Wagner, Boebel (CR32) 1994; 7 Ma, Wang, Jiao (CR29) 2005; 3497 Nugraha, Pardede, Subekti (CR42) 2022; 49 Klambauer, Unterthiner, Mayr, Hochreiter (CR50) 2017; 2017 Razavi, van den Oord, Vinyals (CR49) 2019; 32 Schlag, Schmidhuber (CR3) 2018; 2018 Z Zheng (42689_CR36) 2015; 34 H Wang (42689_CR18) 2015; 154 G Klambauer (42689_CR50) 2017; 2017 M McGill (42689_CR46) 1979; 20 Z Huang (42689_CR26) 2017; 21 I Schlag (42689_CR3) 2018; 2018 42689_CR51 A Razavi (42689_CR49) 2019; 32 S Liu (42689_CR34) 2011; 5 RA Nugraha (42689_CR42) 2022; 49 J Ba (42689_CR1) 2016; 20 42689_CR16 C Shorten (42689_CR8) 2019; 6 SP Gou (42689_CR31) 2008; 30 X Ma (42689_CR28) 2004; 3211 D Hu (42689_CR27) 1998; 17 A Wu (42689_CR19) 2016; 177 A Barra (42689_CR22) 2018; 106 R Penrose (42689_CR45) 1955; 51 42689_CR5 Z Huang (42689_CR25) 2012; 7 42689_CR7 M Fernández-Delgado (42689_CR17) 2014; 15 S Fanny (42689_CR43) 2018; 135 42689_CR24 T Wagner (42689_CR32) 1994; 7 A Radhakrishnan (42689_CR4) 2020; 117 F Charte (42689_CR41) 2015; 163 T Zhao (42689_CR23) 2003; 51 H Kaur (42689_CR35) 2019 D Lin (42689_CR47) 1998; 20 H Yu (42689_CR38) 2013; 101 Z Yang (42689_CR20) 2020; 97 SH Khan (42689_CR6) 2018; 29 Y Qian (42689_CR40) 2014; 143 M Demircigil (42689_CR21) 2017; 168 A Van Den Oord (42689_CR48) 2017; 2017 H Haken (42689_CR11) 1991 B Kosko (42689_CR13) 1988; 18 42689_CR33 42689_CR39 Q Wen (42689_CR10) 2021; 20 42689_CR37 D Krotov (42689_CR15) 2016 Y Chen (42689_CR30) 2016; 44 M Adachi (42689_CR14) 1997; 10 X Wu (42689_CR2) 2018; 2018 JJ Hopfield (42689_CR12) 1982; 79 X Ma (42689_CR29) 2005; 3497 JIE Gao (42689_CR9) 2020; 20 EH Moore (42689_CR44) 1920; 26 |
References_xml | – volume: 2017 start-page: 6307 year: 2017 end-page: 6316 ident: CR48 article-title: Neural discrete representation learning publication-title: Adv. Neural. Inf. Process. Syst. – ident: CR39 – ident: CR16 – ident: CR51 – volume: 168 start-page: 288 year: 2017 end-page: 299 ident: CR21 article-title: On a model of associative memory with huge storage capacity publication-title: J. Stat. Phys. – volume: 3211 start-page: 455 year: 2004 end-page: 462 ident: CR28 article-title: Reconstruction of order parameters based on immunity clonal strategy for image classification publication-title: Lect. Notes Comput. Sci. – volume: 51 start-page: 406 year: 1955 end-page: 413 ident: CR45 article-title: A generalized inverse for matrices publication-title: Math. Proc. Camb. Philos. Soc. – volume: 7 start-page: 1313 year: 1994 end-page: 1321 ident: CR32 article-title: Testing synergetic algorithms with industrial classification problems publication-title: Neural Netw. – volume: 3497 start-page: 26 year: 2005 end-page: 31 ident: CR29 article-title: Robust classification of immunity clonal synergetic network inspired by fuzzy integral publication-title: Lect. Notes Comput. Sci. – volume: 20 start-page: 20 year: 1979 ident: CR46 article-title: An evaluation of factors affecting document ranking by information retrieval systems publication-title: Algorithms – volume: 154 start-page: 15 year: 2015 end-page: 23 ident: CR18 article-title: Global stability analysis of fractional-order Hopfield neural networks with time delay publication-title: Neurocomputing – volume: 7 start-page: 1 year: 2012 end-page: 8 ident: CR25 article-title: A parallel SRL algorithm based on synergetic neural network publication-title: J. Converg. Inf. Technol. – year: 2019 ident: CR35 article-title: A systematic review on imbalanced data challenges in machine learning: Applications and solutions publication-title: ACM Comput. Surv. doi: 10.1145/3343440 – volume: 135 start-page: 60 year: 2018 end-page: 67 ident: CR43 article-title: Deep learning for imbalance data classification using class expert generative adversarial network publication-title: Proced. Comput. Sci. – volume: 20 start-page: 20 year: 2020 ident: CR9 article-title: Data augmentation in solving data imbalance problems publication-title: Degree Proj. Comput. Sci. Eng. – volume: 163 start-page: 3 year: 2015 end-page: 16 ident: CR41 article-title: Addressing imbalance in multilabel classification: Measures and random resampling algorithms publication-title: Neurocomputing – volume: 21 start-page: 5 year: 2017 end-page: 18 ident: CR26 article-title: A synergetic semantic role labeling model with the introduction of fluctuating force accompanied with word sense information publication-title: Intell. Data Anal. – ident: CR5 – volume: 143 start-page: 57 year: 2014 end-page: 67 ident: CR40 article-title: A resampling ensemble algorithm for classification of imbalance problems publication-title: Neurocomputing – volume: 20 start-page: 4338 year: 2016 end-page: 4346 ident: CR1 article-title: Using fast weights to attend to the recent past publication-title: Adv. Neural Inf. Process. Syst. – volume: 20 start-page: 296 year: 1998 end-page: 304 ident: CR47 article-title: An information-theoretic definition of similarity publication-title: Icml – volume: 2017 start-page: 25 year: 2017 ident: CR50 article-title: Self-normalizing neural networks publication-title: Adv. Neural. Inf. Process. Syst. – volume: 51 start-page: 105 year: 2003 end-page: 124 ident: CR23 article-title: On relevance feedback and similarity measure for image retrieval with synergetic neural nets publication-title: Neurocomputing – volume: 117 start-page: 27162 year: 2020 end-page: 27170 ident: CR4 article-title: Overparameterized neural networks implement associative memory publication-title: Proc. Natl. Acad. Sci. USA – volume: 30 start-page: 263 year: 2008 end-page: 266 ident: CR31 article-title: Image recognition using synergetic neural networks based on immune clonal clustering publication-title: J. Electron. Inf. Technol. – volume: 26 start-page: 394 year: 1920 end-page: 395 ident: CR44 article-title: On the reciprocal of the general algebraic matrix publication-title: Bull. Am. Math. Soc. – ident: CR37 – volume: 2018 start-page: 8057 year: 2018 end-page: 8068 ident: CR2 article-title: Improved expressivity through dendritic neural networks publication-title: Adv. Neural. Inf. Process. Syst. – volume: 17 start-page: 177 year: 1998 end-page: 181 ident: CR27 article-title: Reconstruction of order parameters in synergetics approach to pattern recognition publication-title: J. Infrared Millim. Waves – ident: CR33 – volume: 2018 start-page: 9981 year: 2018 end-page: 9993 ident: CR3 article-title: Learning to reason with third-order tensor products publication-title: Adv. Neural. Inf. Process. Syst. – volume: 44 start-page: 245 year: 2016 end-page: 263 ident: CR30 article-title: An SNN-based semantic role labeling model with its network parameters optimized using an improved PSO algorithm publication-title: Neural Process. Lett. – volume: 101 start-page: 309 year: 2013 end-page: 318 ident: CR38 article-title: ACOSampling: An ant colony optimization-based undersampling method for classifying imbalanced DNA microarray data publication-title: Neurocomputing – volume: 177 start-page: 489 year: 2016 end-page: 496 ident: CR19 article-title: Global Mittag–Leffler stabilization of fractional-order bidirectional associative memory neural networks publication-title: Neurocomputing – volume: 10 start-page: 83 year: 1997 end-page: 98 ident: CR14 article-title: Associative dynamics in a chaotic neural network publication-title: Neural Netw. – volume: 5 start-page: 126 year: 2011 end-page: 135 ident: CR34 article-title: Application of synergetic neural network in online writeprint identification publication-title: Int. J. Digit. Content Technol. Appl. – volume: 20 start-page: 4653 year: 2021 end-page: 4660 ident: CR10 article-title: Time series data augmentation for deep learning: A survey publication-title: IJCAI Int. Jt. Conf. Artif. Intell. doi: 10.24963/ijcai.2021/631 – volume: 34 start-page: 1017 year: 2015 end-page: 1037 ident: CR36 article-title: Oversampling method for imbalanced classification publication-title: Comput. Inform. – volume: 29 start-page: 3573 year: 2018 end-page: 3587 ident: CR6 article-title: Cost-sensitive learning of deep feature representations from imbalanced data publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 49 start-page: 2 year: 2022 ident: CR42 article-title: Oversampling based on generative adversarial networks to overcome imbalance data in predicting fraud insurance claim publication-title: Kuwait J. Sci. – volume: 15 start-page: 3133 year: 2014 end-page: 3181 ident: CR17 article-title: Do we need hundreds of classifiers to solve real world classification problems? publication-title: J. Mach. Learn. Res. – volume: 97 start-page: 2074 year: 2020 end-page: 2090 ident: CR20 article-title: Global stabilization of fractional-order bidirectional associative memory neural networks with mixed time delays via adaptive feedback control publication-title: Int. J. Comput. Math. – volume: 106 start-page: 205 year: 2018 end-page: 222 ident: CR22 article-title: A new mechanical approach to handle generalized Hopfield neural networks publication-title: Neural Netw. – year: 1991 ident: CR11 publication-title: Synergetic Computers and Cognition : A Top-Down Approach to Neural Nets. Springer Series in Synergetics, ***Vol. 50 – volume: 6 start-page: 25 year: 2019 ident: CR8 article-title: A survey on image data augmentation for deep learning publication-title: J. Big Data – volume: 79 start-page: 2554 year: 1982 end-page: 2558 ident: CR12 article-title: Neural networks and physical systems with emergent collective computational abilities publication-title: Proc. Natl. Acad. Sci. USA – ident: CR7 – start-page: 1180 year: 2016 end-page: 1188 ident: CR15 article-title: Dense associative memory for pattern recognition publication-title: Advances in Neural Information Processing Systems – ident: CR24 – volume: 32 start-page: 25 year: 2019 ident: CR49 article-title: Generating diverse high-fidelity images with VQ-VAE-2 publication-title: Adv. Neural. Inf. Process. Syst. – volume: 18 start-page: 49 year: 1988 end-page: 60 ident: CR13 article-title: Bidirectional associative memories publication-title: IEEE Trans. Syst. Man Cybern. – volume: 163 start-page: 3 year: 2015 ident: 42689_CR41 publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.08.091 – ident: 42689_CR51 – volume: 2017 start-page: 6307 year: 2017 ident: 42689_CR48 publication-title: Adv. Neural. Inf. Process. Syst. – volume: 3497 start-page: 26 year: 2005 ident: 42689_CR29 publication-title: Lect. Notes Comput. Sci. doi: 10.1007/11427445_5 – volume: 26 start-page: 394 year: 1920 ident: 42689_CR44 publication-title: Bull. Am. Math. Soc. – volume: 51 start-page: 105 year: 2003 ident: 42689_CR23 publication-title: Neurocomputing doi: 10.1016/S0925-2312(02)00604-5 – volume: 135 start-page: 60 year: 2018 ident: 42689_CR43 publication-title: Proced. Comput. Sci. doi: 10.1016/j.procs.2018.08.150 – ident: 42689_CR16 – ident: 42689_CR39 – ident: 42689_CR5 doi: 10.1109/CVPR.2016.580 – volume: 7 start-page: 1 year: 2012 ident: 42689_CR25 publication-title: J. Converg. Inf. Technol. – volume-title: Synergetic Computers and Cognition : A Top-Down Approach to Neural Nets. Springer Series in Synergetics, ***Vol. 50 year: 1991 ident: 42689_CR11 doi: 10.1007/978-3-662-22450-2 – volume: 97 start-page: 2074 year: 2020 ident: 42689_CR20 publication-title: Int. J. Comput. Math. doi: 10.1080/00207160.2019.1677897 – volume: 49 start-page: 2 year: 2022 ident: 42689_CR42 publication-title: Kuwait J. Sci. – volume: 2018 start-page: 8057 year: 2018 ident: 42689_CR2 publication-title: Adv. Neural. Inf. Process. Syst. – volume: 154 start-page: 15 year: 2015 ident: 42689_CR18 publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.12.031 – volume: 20 start-page: 20 year: 1979 ident: 42689_CR46 publication-title: Algorithms – year: 2019 ident: 42689_CR35 publication-title: ACM Comput. Surv. doi: 10.1145/3343440 – volume: 2018 start-page: 9981 year: 2018 ident: 42689_CR3 publication-title: Adv. Neural. Inf. Process. Syst. – volume: 29 start-page: 3573 year: 2018 ident: 42689_CR6 publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2017.2732482 – volume: 117 start-page: 27162 year: 2020 ident: 42689_CR4 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.2005013117 – volume: 7 start-page: 1313 year: 1994 ident: 42689_CR32 publication-title: Neural Netw. doi: 10.1016/0893-6080(94)90012-4 – volume: 18 start-page: 49 year: 1988 ident: 42689_CR13 publication-title: IEEE Trans. Syst. Man Cybern. doi: 10.1109/21.87054 – volume: 6 start-page: 25 year: 2019 ident: 42689_CR8 publication-title: J. Big Data doi: 10.1186/s40537-019-0197-0 – volume: 20 start-page: 296 year: 1998 ident: 42689_CR47 publication-title: Icml – volume: 15 start-page: 3133 year: 2014 ident: 42689_CR17 publication-title: J. Mach. Learn. Res. – volume: 44 start-page: 245 year: 2016 ident: 42689_CR30 publication-title: Neural Process. Lett. doi: 10.1007/s11063-015-9449-y – volume: 51 start-page: 406 year: 1955 ident: 42689_CR45 publication-title: Math. Proc. Camb. Philos. Soc. doi: 10.1017/S0305004100030401 – volume: 79 start-page: 2554 year: 1982 ident: 42689_CR12 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.79.8.2554 – ident: 42689_CR24 doi: 10.1109/ICCIS.2010.5518581 – volume: 106 start-page: 205 year: 2018 ident: 42689_CR22 publication-title: Neural Netw. doi: 10.1016/j.neunet.2018.07.010 – volume: 30 start-page: 263 year: 2008 ident: 42689_CR31 publication-title: J. Electron. Inf. Technol. – volume: 20 start-page: 4653 year: 2021 ident: 42689_CR10 publication-title: IJCAI Int. Jt. Conf. Artif. Intell. doi: 10.24963/ijcai.2021/631 – volume: 177 start-page: 489 year: 2016 ident: 42689_CR19 publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.11.055 – ident: 42689_CR33 doi: 10.1109/ICALIP.2010.5684499 – volume: 168 start-page: 288 year: 2017 ident: 42689_CR21 publication-title: J. Stat. Phys. doi: 10.1007/s10955-017-1806-y – volume: 32 start-page: 25 year: 2019 ident: 42689_CR49 publication-title: Adv. Neural. Inf. Process. Syst. – volume: 101 start-page: 309 year: 2013 ident: 42689_CR38 publication-title: Neurocomputing doi: 10.1016/j.neucom.2012.08.018 – volume: 20 start-page: 20 year: 2020 ident: 42689_CR9 publication-title: Degree Proj. Comput. Sci. Eng. – volume: 5 start-page: 126 year: 2011 ident: 42689_CR34 publication-title: Int. J. Digit. Content Technol. Appl. – ident: 42689_CR37 doi: 10.1145/2911451.2914722 – start-page: 1180 volume-title: Advances in Neural Information Processing Systems year: 2016 ident: 42689_CR15 – volume: 3211 start-page: 455 year: 2004 ident: 42689_CR28 publication-title: Lect. Notes Comput. Sci. doi: 10.1007/978-3-540-30125-7_57 – volume: 10 start-page: 83 year: 1997 ident: 42689_CR14 publication-title: Neural Netw. doi: 10.1016/S0893-6080(96)00061-5 – volume: 2017 start-page: 25 year: 2017 ident: 42689_CR50 publication-title: Adv. Neural. Inf. Process. Syst. – volume: 21 start-page: 5 year: 2017 ident: 42689_CR26 publication-title: Intell. Data Anal. doi: 10.3233/IDA-150323 – volume: 17 start-page: 177 year: 1998 ident: 42689_CR27 publication-title: J. Infrared Millim. Waves – ident: 42689_CR7 doi: 10.1109/ISM.2015.126 – volume: 20 start-page: 4338 year: 2016 ident: 42689_CR1 publication-title: Adv. Neural Inf. Process. Syst. – volume: 34 start-page: 1017 year: 2015 ident: 42689_CR36 publication-title: Comput. Inform. – volume: 143 start-page: 57 year: 2014 ident: 42689_CR40 publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.06.021 |
SSID | ssj0000529419 |
Score | 2.404262 |
Snippet | Deep learning’s performance on the imbalanced small data is substantially degraded by overfitting. Recurrent neural networks retain better performance in such... Deep learning's performance on the imbalanced small data is substantially degraded by overfitting. Recurrent neural networks retain better performance in such... Abstract Deep learning’s performance on the imbalanced small data is substantially degraded by overfitting. Recurrent neural networks retain better performance... |
SourceID | doaj pubmedcentral proquest crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 15669 |
SubjectTerms | 639/705 639/705/117 Algorithms Classification Deep learning Humanities and Social Sciences Learning algorithms Machine learning multidisciplinary Neural networks Science Science (multidisciplinary) |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NaxUxEA9SKHgRP3G1SgRvGrrZ5OXjqNJSBT1Z6C3kY4KFdiu-10P_e2c2-2q3IL30tmyybDK_JDNDZn7D2PsMulpZiyhOgsBnI1JvQIBPJkKlxGXKd_7-wxwd628nq5Mbpb4oJqzRAzfB7dMaXOmCfnd1GnqXLFhVozElDtmoRKcv6rwbzlRj9R68ln7OkumV21-jpqJsskEJVErOC7fQRBNh_8LKvB0jeeuidNI_h4_Zo9lw5J_agJ-wBzA-ZbutlOTVM_a1FTXj6ytK5qPMRE5UlfjF2AK9OVqn_PQ8UShjhsLX5_HsjFOAKM9kQVPI0ITSc3Z8ePDzy5GYyySIjL7tRhSoUlapbcbBDiBTcSBtLNnmwUWdosIeq2SNzVJDdlFZ2_cFIJc-rbJXL9jOeDHCS8aLNtHXbCK6UaiorDelWJ899La66H3HPmxFFn43Noww3WIrF5qAAwo4TAIOrmOfSarXPYnJenqB-IYZ33AXvh3b22IS5u21DriCDJ4cUumOvbtuxo1Btx1xhIvLqQ8aL0S51zG3wHIxoGXLePprotiWRAsvHU7h4xb2f3___4xf3ceMX7OHVNOeglIGucd2Nn8u4Q1aPpv0dlrkfwHmPAJB priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkLojxEoCAjcQOrcez144RaRNUiwYlKe7P8GEOlNts220P_PR4nu1UqwS1KHMWZsT1jzzffEPIxgsya58SS4cDKtWKhVcDABuUhY-Iy5jv_-KmOT-X35WI5HbgNE6xysybWhTqtIp6R75eXVBksXMgvl1cMq0ZhdHUqofGQPELqMoR06aXenrFgFEtyO-XKtMLsD8VeYU5ZJ1gxTcYyM7NHlbZ_5mveR0reC5dWK3T0jDyd3Ed6MOp7lzyA_jl5PBaUvH1BTsbSZnS4xZQ-zE-kSFhZ3uhHuDctPio9uwgIaIyQ6HDhz88pwkRpRD8agUNVVy_J6dG3X1-P2VQsgcWyw12zBJnzzKWOpbMd8JAMcO1T1LEzXgYvSotF0EpHLiEaL7Ru2wQQUxsW0YpXZKdf9fCa0CSVtzkqXzZTxVxpq1LSNlpodTbe2oZ82ojMXY6cGK7GsoVxo4BdEbCrAnamIYco1W1L5LOuN1bXv900PRyuNAuZrBDZSGhN0KBF9kol30UlQkP2Njpx0yQb3N2QaMiH7eMyPTDm4XtY3dQ2xYVB4r2GmJkuZx2aP-nP_lSibY7k8NyUX_i8Ufvd1__9x2_-39m35AnWrEfQScf3yM76-gbeFc9mHd7X4fsX3C_5_Q priority: 102 providerName: ProQuest – databaseName: Springer Nature Link OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NaxUxEA-1IniR-oVrq0TwpsHNJi8fx_ZhqYKeLPQW8jHRQruv9L0e-t83k919sqUevC2bCZvMJJnJzsxvCPkYQWbNc2LJcGDlWbHQKmBgg_KQMXEZ851__FQnp_L72eJsh3RTLkwN2q-QlvWYnqLDvqyLosFksE6wolOMZeYReYzQ7biql2q5_a-CnivJ7Zgf0wrzQNeZDqpQ_TP78n505D0XadU8x3vk2Wgy0sNhkM_JDvQvyJOhiOTtS_JtKGdG17eYxoc5iRRBKkuPfgjxpsUupeeXAYMYIyS6vvQXFxRDQ2lE2xmDhap8XpHT46-_lidsLJDAYrnVbliCzHnmUscy2A54SAa49inq2BkvgxeFYhG00pFLiMYLrds2AcTUhkW04jXZ7Vc9vCE0SeVtjsqXC1RRUdqqlLSNFlqdjbe2IZ8mlrmrAQfDVf-1MG5gsCsMdpXBzjTkCLm6pUQM6_pidf3bjTJ1eLosZLJCZCOhNUGDFtkrlXwXlQgNOZhk4saNtXZl7ahyZnAhG_Jh21y2BPo5fA-rm0pTzBYE22uImclyNqB5S3_-p4JrcwSE56ZM4fMk9r9f__eM3_4f-T55inXrMfCk4wdkd3N9A--KdbMJ7-tyvgPs3_fb priority: 102 providerName: Springer Nature |
Title | Modern synergetic neural network for imbalanced small data classification |
URI | https://link.springer.com/article/10.1038/s41598-023-42689-8 https://www.proquest.com/docview/2866963134 https://www.proquest.com/docview/2868120087 https://pubmed.ncbi.nlm.nih.gov/PMC10514188 https://doaj.org/article/307354d933f84e08b7e73fa66da2c63b |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swEBf9YLCXsU_mtQse7G3TZlmKPh7GSENLF2gZ2wJ5M_pyV0idNUlh-e93JzsdLt3Dnmwk2ZbuTrqTdfc7Qt76KGrF6kCDZpHCvaSukJFG46SNNQYuY7zz2bk8nYrJbDjbIdt0Rx0BV_du7TCf1HQ5__D7evMZJvynNmRcf1yBEsJAsZJT0DfaUL1L9kEzKZyoZ52532J9l0akXB8Iwk7BmCi7OJr7X9PTVQnSv2eH3vWivHOUmjTUyWPyqDMt81ErC0_ITmyekgdtssnNM_KlTXuWrzYY7oexizmCWcITTesKnoP9ml9eOXR29DHkqys7n-foQpp7tLHRqSjx8TmZnhz_GJ_SLpEC9bD7XdMQa8ZqJpSHzpaRuaAjUzZ45UtthbMcWgydksozEb22XKmiCDH6ULihN_wF2WsWTXxJ8iCkNbWXFjZaoMqUkSEo400sVK2tMRl5tyVZ9avFy6jSOTfXVUvgCghcJQJXOiNHSNXbloh1nQoWy4uqmzoVrkJDEQzntRax0E5FxWsrZbCll9xl5HDLk2orPxXImIS1hXGRkTe31TB18DzENnFxk9qAeYOgfBnRPV72OtSvaS5_JhBuhsDxTMMQ3m_Z_vfr_x7xq_-izwF5iOnt0T-lZIdkb728ia_BCFq7AdlVMzUg-6PR5PsErkfH51-_QelYjgfpx8Igyf4feVsIyQ |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQw0Kq2QnBB5SUCBYwEJ7Aax17bOSBEodUubVcItVJvxrEnUKnNlmaran-Kb8STx1apBLfeothW4nl4ZjwvQt54kKXmZWDBcGDxWbEiVcAgL5SDEhOXMd_5YKYmR_Lr8fh4jfzpc2EwrLI_E5uDOsw93pFvxUUqEgsX8uP5b4Zdo9C72rfQaMliD5ZX0WSrP0y_RPy-zbLdncPPE9Z1FWA-moILFqDkvORS--AhA14EA1y74LXPjJOFE3HGuNBKey7BGye0TtMA4ENajD0WX4pH_roU0ZQZkfXtndm376tbHfSbSZ532TmpMFt1lJCYxZYJFoWhyZkZSMCmUcBAu70Zm3nDQdvIvd0Ncr9TWOmnlsIekDWoHpI7bQvL5SMybZup0XqJSYSYEUmxRGZcUbUB5jRqxfTkrMAQSg-B1mfu9JRiYCr1qLljqFJDHY_J0a0A8gkZVfMKnhIapHJ56ZWL5lsUkDpXIejc55Dq0rg8T8i7HmT2vK3CYRvvuTC2BbCNALYNgK1JyDZCdTUTK2g3L-YXP23HkBbPtrEMuRClkZCaQoMWpVMquMwrUSRks8eJ7di6ttdEmJDXq-HIkOhlcRXML5s5UWnCUn8JMQNcDn5oOFKd_GpKe3MsR89N3ML7Hu3XX__3jp_9_2dfkbuTw4N9uz-d7T0n9zIkRnSs8U0yWlxcwouoVy2Klx0xU_LjtvnnL9QUO8U |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQw0KqKQFwQTxEoECQ4gbVxnNjOASGgrLoUKg5U2ptx7DFUarOl2Qrtr_F1zOSx1VaCW29RbCvxvO15MfbCQxG1iIEHI4Djs-J1poBDVSsHkRKXKd_5y4HaOyw-zcv5Fvsz5sJQWOUoEztBHRae7sgnuEghsQhZTOIQFvF1d_r29BenDlLkaR3bafQksg-r33h8a9_MdhHXL_N8-vHbhz0-dBjgHo-FSx4gChFFoX3wkIOogwGhXfDa58YVtZM4o6y10l4U4I2TWmdZAPAhq0tPhZhQ_F_TshTEY3qu1_c75EErRDXk6WTSTFrUlZTPlkuOatFU3Gzowq5lwIadezlK85KrttOA09vs1mC6pu96WrvDtqC5y673zSxX99isb6uWtitKJ6TcyJSKZeKKpg81T9E-To9Oagqm9BDS9sQdH6cUopp6suEpaKmjk_vs8ErA-IBtN4sGHrI0FMpV0SuHBzlUlbpSIejKV5DpaFxVJezVCDJ72tfjsJ0fXRrbA9gigG0HYGsS9p6gup5JtbS7F4uzH3ZgTUtSrixCJWU0BWSm1qBldEoFl3sl64TtjDixA4O39oIcE_Z8PYysSf4W18DivJuD5hMV_UuY2cDlxg9tjjRHP7si34IK0wuDW3g9ov3i6__e8aP__-wzdgO5xn6eHew_ZjdzokXysIkdtr08O4cnaGAt66cdJafs-1Wzzl_O0T6V |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modern+synergetic+neural+network+for+imbalanced+small+data+classification&rft.jtitle=Scientific+reports&rft.au=Wang%2C+Zihao&rft.au=Li%2C+Haifeng&rft.au=Ma%2C+Lin&rft.date=2023-09-21&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=13&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-023-42689-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41598_023_42689_8 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |