Modern synergetic neural network for imbalanced small data classification

Deep learning’s performance on the imbalanced small data is substantially degraded by overfitting. Recurrent neural networks retain better performance in such tasks by constructing dynamical systems for robustness. Synergetic neural network (SNN), a synergetic-based recurrent neural network, has sup...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 13; no. 1; pp. 15669 - 10
Main Authors Wang, Zihao, Li, Haifeng, Ma, Lin
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 21.09.2023
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Deep learning’s performance on the imbalanced small data is substantially degraded by overfitting. Recurrent neural networks retain better performance in such tasks by constructing dynamical systems for robustness. Synergetic neural network (SNN), a synergetic-based recurrent neural network, has superiorities in eliminating recall errors and pseudo memories, but is subject to frequent association errors. Since the cause remains unclear, most subsequent studies use genetic algorithms to adjust parameters for better accuracy, which occupies the parameter optimization space and hinders task-oriented tuning. To solve the problem and promote SNN’s application capability, we propose the modern synergetic neural network (MSNN) model. MSNN solves the association error by correcting the state initialization method in the working process, liberating the parameter optimization space. In addition, MSNN optimizes the attention parameter of the network with the error backpropagation algorithm and the gradient bypass technique to allow the network to be trained jointly with other network layers. The self-learning of the attention parameter empowers the adaptation to the imbalanced sample size, further improving the classification performance. In 75 classification tasks of small UC Irvine Machine Learning Datasets, the average rank of the MSNN achieves the best result compared to 187 neural and non-neural network machine learning methods.
AbstractList Deep learning’s performance on the imbalanced small data is substantially degraded by overfitting. Recurrent neural networks retain better performance in such tasks by constructing dynamical systems for robustness. Synergetic neural network (SNN), a synergetic-based recurrent neural network, has superiorities in eliminating recall errors and pseudo memories, but is subject to frequent association errors. Since the cause remains unclear, most subsequent studies use genetic algorithms to adjust parameters for better accuracy, which occupies the parameter optimization space and hinders task-oriented tuning. To solve the problem and promote SNN’s application capability, we propose the modern synergetic neural network (MSNN) model. MSNN solves the association error by correcting the state initialization method in the working process, liberating the parameter optimization space. In addition, MSNN optimizes the attention parameter of the network with the error backpropagation algorithm and the gradient bypass technique to allow the network to be trained jointly with other network layers. The self-learning of the attention parameter empowers the adaptation to the imbalanced sample size, further improving the classification performance. In 75 classification tasks of small UC Irvine Machine Learning Datasets, the average rank of the MSNN achieves the best result compared to 187 neural and non-neural network machine learning methods.
Abstract Deep learning’s performance on the imbalanced small data is substantially degraded by overfitting. Recurrent neural networks retain better performance in such tasks by constructing dynamical systems for robustness. Synergetic neural network (SNN), a synergetic-based recurrent neural network, has superiorities in eliminating recall errors and pseudo memories, but is subject to frequent association errors. Since the cause remains unclear, most subsequent studies use genetic algorithms to adjust parameters for better accuracy, which occupies the parameter optimization space and hinders task-oriented tuning. To solve the problem and promote SNN’s application capability, we propose the modern synergetic neural network (MSNN) model. MSNN solves the association error by correcting the state initialization method in the working process, liberating the parameter optimization space. In addition, MSNN optimizes the attention parameter of the network with the error backpropagation algorithm and the gradient bypass technique to allow the network to be trained jointly with other network layers. The self-learning of the attention parameter empowers the adaptation to the imbalanced sample size, further improving the classification performance. In 75 classification tasks of small UC Irvine Machine Learning Datasets, the average rank of the MSNN achieves the best result compared to 187 neural and non-neural network machine learning methods.
Deep learning's performance on the imbalanced small data is substantially degraded by overfitting. Recurrent neural networks retain better performance in such tasks by constructing dynamical systems for robustness. Synergetic neural network (SNN), a synergetic-based recurrent neural network, has superiorities in eliminating recall errors and pseudo memories, but is subject to frequent association errors. Since the cause remains unclear, most subsequent studies use genetic algorithms to adjust parameters for better accuracy, which occupies the parameter optimization space and hinders task-oriented tuning. To solve the problem and promote SNN's application capability, we propose the modern synergetic neural network (MSNN) model. MSNN solves the association error by correcting the state initialization method in the working process, liberating the parameter optimization space. In addition, MSNN optimizes the attention parameter of the network with the error backpropagation algorithm and the gradient bypass technique to allow the network to be trained jointly with other network layers. The self-learning of the attention parameter empowers the adaptation to the imbalanced sample size, further improving the classification performance. In 75 classification tasks of small UC Irvine Machine Learning Datasets, the average rank of the MSNN achieves the best result compared to 187 neural and non-neural network machine learning methods.Deep learning's performance on the imbalanced small data is substantially degraded by overfitting. Recurrent neural networks retain better performance in such tasks by constructing dynamical systems for robustness. Synergetic neural network (SNN), a synergetic-based recurrent neural network, has superiorities in eliminating recall errors and pseudo memories, but is subject to frequent association errors. Since the cause remains unclear, most subsequent studies use genetic algorithms to adjust parameters for better accuracy, which occupies the parameter optimization space and hinders task-oriented tuning. To solve the problem and promote SNN's application capability, we propose the modern synergetic neural network (MSNN) model. MSNN solves the association error by correcting the state initialization method in the working process, liberating the parameter optimization space. In addition, MSNN optimizes the attention parameter of the network with the error backpropagation algorithm and the gradient bypass technique to allow the network to be trained jointly with other network layers. The self-learning of the attention parameter empowers the adaptation to the imbalanced sample size, further improving the classification performance. In 75 classification tasks of small UC Irvine Machine Learning Datasets, the average rank of the MSNN achieves the best result compared to 187 neural and non-neural network machine learning methods.
ArticleNumber 15669
Author Wang, Zihao
Ma, Lin
Li, Haifeng
Author_xml – sequence: 1
  givenname: Zihao
  surname: Wang
  fullname: Wang, Zihao
  organization: Faculty of Computing, Harbin Institute of Technology
– sequence: 2
  givenname: Haifeng
  surname: Li
  fullname: Li, Haifeng
  email: lihaifeng@hit.edu.cn
  organization: Faculty of Computing, Harbin Institute of Technology
– sequence: 3
  givenname: Lin
  surname: Ma
  fullname: Ma, Lin
  organization: Faculty of Computing, Harbin Institute of Technology
BookMark eNp9kUtv1TAQhS1UREvpH2AViQ2bgF-xnRVCFY8rFbGBtTWxJxdfErvYSVH_Pb5NBZQF3oxln_l0Zs5TchJTREKeM_qKUWFeF8m63rSUi1ZyZfrWPCJnnMqu5YLzk7_up-SilAOtp-O9ZP0Tciq0Fh0X9IzsPiWPOTblNmLe4xJcE3HNMNWy_Ez5ezOm3IR5gAmiQ9-UGaap8bBA4yYoJYzBwRJSfEYejzAVvLiv5-Tr-3dfLj-2V58_7C7fXrVOqn5pPY6MjUxq5x1yZIM3yDR4px03IAcQVdENWmnHJDoD1SulHtF5OnSuF-dkt3F9goO9zmGGfGsTBHv3kPLeQq5zTGgFrWNK3wsxGonUDBq1GEEpD9wpMVTWm411vQ4zVkNxqaM_gD78ieGb3acby2jHJDOmEl7eE3L6sWJZ7ByKw6luC9NaLDfKME6p0VX64h_pIa051l0dVapXgglZVXxTuZxKyTj-dsOoPSZvt-RtTd7eJW-PLsTWVKo47jH_Qf-n6xeviLLV
Cites_doi 10.1145/3343440
10.24963/ijcai.2021/631
10.1016/j.neucom.2014.08.091
10.1007/11427445_5
10.1016/S0925-2312(02)00604-5
10.1016/j.procs.2018.08.150
10.1109/CVPR.2016.580
10.1007/978-3-662-22450-2
10.1080/00207160.2019.1677897
10.1016/j.neucom.2014.12.031
10.1109/TNNLS.2017.2732482
10.1073/pnas.2005013117
10.1016/0893-6080(94)90012-4
10.1109/21.87054
10.1186/s40537-019-0197-0
10.1007/s11063-015-9449-y
10.1017/S0305004100030401
10.1073/pnas.79.8.2554
10.1109/ICCIS.2010.5518581
10.1016/j.neunet.2018.07.010
10.1016/j.neucom.2015.11.055
10.1109/ICALIP.2010.5684499
10.1007/s10955-017-1806-y
10.1016/j.neucom.2012.08.018
10.1145/2911451.2914722
10.1007/978-3-540-30125-7_57
10.1016/S0893-6080(96)00061-5
10.3233/IDA-150323
10.1109/ISM.2015.126
10.1016/j.neucom.2014.06.021
ContentType Journal Article
Copyright The Author(s) 2023
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023. Springer Nature Limited.
Springer Nature Limited 2023
Copyright_xml – notice: The Author(s) 2023
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023. Springer Nature Limited.
– notice: Springer Nature Limited 2023
DBID C6C
AAYXX
CITATION
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-023-42689-8
DatabaseName Springer Nature Link OA Free Journals
CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
CrossRef


Publicly Available Content Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 10
ExternalDocumentID oai_doaj_org_article_307354d933f84e08b7e73fa66da2c63b
PMC10514188
10_1038_s41598_023_42689_8
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
7XB
8FK
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PUEGO
Q9U
7X8
5PM
ID FETCH-LOGICAL-c469t-def11f147cdce2e1bd8e17adc7c28a4ba3def5b767c14ec8a37700deecd0b5c93
IEDL.DBID M48
ISSN 2045-2322
IngestDate Wed Aug 27 01:19:29 EDT 2025
Thu Aug 21 18:36:32 EDT 2025
Fri Jul 11 07:32:03 EDT 2025
Tue Aug 26 05:41:14 EDT 2025
Tue Jul 01 03:57:29 EDT 2025
Fri Feb 21 02:37:11 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c469t-def11f147cdce2e1bd8e17adc7c28a4ba3def5b767c14ec8a37700deecd0b5c93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-023-42689-8
PMID 37735230
PQID 2866963134
PQPubID 2041939
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_307354d933f84e08b7e73fa66da2c63b
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10514188
proquest_miscellaneous_2868120087
proquest_journals_2866963134
crossref_primary_10_1038_s41598_023_42689_8
springer_journals_10_1038_s41598_023_42689_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-09-21
PublicationDateYYYYMMDD 2023-09-21
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-21
  day: 21
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationYear 2023
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Krotov, Hopfield (CR15) 2016
Wu, Zeng, Song (CR19) 2016; 177
Huang, Chen, Shi (CR25) 2012; 7
Lin (CR47) 1998; 20
Demircigil, Heusel, Löwe, Upgang, Vermet (CR21) 2017; 168
CR39
CR37
Radhakrishnan, Belkin, Uhler (CR4) 2020; 117
Wang, Yu, Wen, Zhang, Yu (CR18) 2015; 154
CR33
Wu, Liu, Li, Wu (CR2) 2018; 2018
McGill, Koll (CR46) 1979; 20
Penrose (CR45) 1955; 51
Haken (CR11) 1991
Zhao, Tang, Ip, Qi (CR23) 2003; 51
Wen (CR10) 2021; 20
Gou, Jiao, Tian (CR31) 2008; 30
Fernández-Delgado, Cernadas, Barro, Amorim (CR17) 2014; 15
Yang, Zhang (CR20) 2020; 97
CR5
CR7
Khan, Hayat, Bennamoun, Sohel, Togneri (CR6) 2018; 29
Hu, Qi (CR27) 1998; 17
Ba, Hinton, Mnih, Leibo, Ionescu (CR1) 2016; 20
Fanny, Cenggoro (CR43) 2018; 135
Liu, Liu, Sun, Liu (CR34) 2011; 5
Kosko (CR13) 1988; 18
Van Den Oord, Vinyals, Kavukcuoglu (CR48) 2017; 2017
Barra, Beccaria, Fachechi (CR22) 2018; 106
Moore (CR44) 1920; 26
CR16
Huang, Chen, Shi (CR26) 2017; 21
Zheng, Cai, Li (CR36) 2015; 34
CR51
Hopfield (CR12) 1982; 79
Kaur, Pannu, Malhi (CR35) 2019
Qian, Liang, Li, Feng, Shi (CR40) 2014; 143
Shorten, Khoshgoftaar (CR8) 2019; 6
Ma, Jiao (CR28) 2004; 3211
Yu, Ni, Zhao (CR38) 2013; 101
Adachi, Aihara (CR14) 1997; 10
Charte, Rivera, del Jesus, Herrera (CR41) 2015; 163
Chen, Huang, Shi (CR30) 2016; 44
Gao (CR9) 2020; 20
CR24
Wagner, Boebel (CR32) 1994; 7
Ma, Wang, Jiao (CR29) 2005; 3497
Nugraha, Pardede, Subekti (CR42) 2022; 49
Klambauer, Unterthiner, Mayr, Hochreiter (CR50) 2017; 2017
Razavi, van den Oord, Vinyals (CR49) 2019; 32
Schlag, Schmidhuber (CR3) 2018; 2018
Z Zheng (42689_CR36) 2015; 34
H Wang (42689_CR18) 2015; 154
G Klambauer (42689_CR50) 2017; 2017
M McGill (42689_CR46) 1979; 20
Z Huang (42689_CR26) 2017; 21
I Schlag (42689_CR3) 2018; 2018
42689_CR51
A Razavi (42689_CR49) 2019; 32
S Liu (42689_CR34) 2011; 5
RA Nugraha (42689_CR42) 2022; 49
J Ba (42689_CR1) 2016; 20
42689_CR16
C Shorten (42689_CR8) 2019; 6
SP Gou (42689_CR31) 2008; 30
X Ma (42689_CR28) 2004; 3211
D Hu (42689_CR27) 1998; 17
A Wu (42689_CR19) 2016; 177
A Barra (42689_CR22) 2018; 106
R Penrose (42689_CR45) 1955; 51
42689_CR5
Z Huang (42689_CR25) 2012; 7
42689_CR7
M Fernández-Delgado (42689_CR17) 2014; 15
S Fanny (42689_CR43) 2018; 135
42689_CR24
T Wagner (42689_CR32) 1994; 7
A Radhakrishnan (42689_CR4) 2020; 117
F Charte (42689_CR41) 2015; 163
T Zhao (42689_CR23) 2003; 51
H Kaur (42689_CR35) 2019
D Lin (42689_CR47) 1998; 20
H Yu (42689_CR38) 2013; 101
Z Yang (42689_CR20) 2020; 97
SH Khan (42689_CR6) 2018; 29
Y Qian (42689_CR40) 2014; 143
M Demircigil (42689_CR21) 2017; 168
A Van Den Oord (42689_CR48) 2017; 2017
H Haken (42689_CR11) 1991
B Kosko (42689_CR13) 1988; 18
42689_CR33
42689_CR39
Q Wen (42689_CR10) 2021; 20
42689_CR37
D Krotov (42689_CR15) 2016
Y Chen (42689_CR30) 2016; 44
M Adachi (42689_CR14) 1997; 10
X Wu (42689_CR2) 2018; 2018
JJ Hopfield (42689_CR12) 1982; 79
X Ma (42689_CR29) 2005; 3497
JIE Gao (42689_CR9) 2020; 20
EH Moore (42689_CR44) 1920; 26
References_xml – volume: 2017
  start-page: 6307
  year: 2017
  end-page: 6316
  ident: CR48
  article-title: Neural discrete representation learning
  publication-title: Adv. Neural. Inf. Process. Syst.
– ident: CR39
– ident: CR16
– ident: CR51
– volume: 168
  start-page: 288
  year: 2017
  end-page: 299
  ident: CR21
  article-title: On a model of associative memory with huge storage capacity
  publication-title: J. Stat. Phys.
– volume: 3211
  start-page: 455
  year: 2004
  end-page: 462
  ident: CR28
  article-title: Reconstruction of order parameters based on immunity clonal strategy for image classification
  publication-title: Lect. Notes Comput. Sci.
– volume: 51
  start-page: 406
  year: 1955
  end-page: 413
  ident: CR45
  article-title: A generalized inverse for matrices
  publication-title: Math. Proc. Camb. Philos. Soc.
– volume: 7
  start-page: 1313
  year: 1994
  end-page: 1321
  ident: CR32
  article-title: Testing synergetic algorithms with industrial classification problems
  publication-title: Neural Netw.
– volume: 3497
  start-page: 26
  year: 2005
  end-page: 31
  ident: CR29
  article-title: Robust classification of immunity clonal synergetic network inspired by fuzzy integral
  publication-title: Lect. Notes Comput. Sci.
– volume: 20
  start-page: 20
  year: 1979
  ident: CR46
  article-title: An evaluation of factors affecting document ranking by information retrieval systems
  publication-title: Algorithms
– volume: 154
  start-page: 15
  year: 2015
  end-page: 23
  ident: CR18
  article-title: Global stability analysis of fractional-order Hopfield neural networks with time delay
  publication-title: Neurocomputing
– volume: 7
  start-page: 1
  year: 2012
  end-page: 8
  ident: CR25
  article-title: A parallel SRL algorithm based on synergetic neural network
  publication-title: J. Converg. Inf. Technol.
– year: 2019
  ident: CR35
  article-title: A systematic review on imbalanced data challenges in machine learning: Applications and solutions
  publication-title: ACM Comput. Surv.
  doi: 10.1145/3343440
– volume: 135
  start-page: 60
  year: 2018
  end-page: 67
  ident: CR43
  article-title: Deep learning for imbalance data classification using class expert generative adversarial network
  publication-title: Proced. Comput. Sci.
– volume: 20
  start-page: 20
  year: 2020
  ident: CR9
  article-title: Data augmentation in solving data imbalance problems
  publication-title: Degree Proj. Comput. Sci. Eng.
– volume: 163
  start-page: 3
  year: 2015
  end-page: 16
  ident: CR41
  article-title: Addressing imbalance in multilabel classification: Measures and random resampling algorithms
  publication-title: Neurocomputing
– volume: 21
  start-page: 5
  year: 2017
  end-page: 18
  ident: CR26
  article-title: A synergetic semantic role labeling model with the introduction of fluctuating force accompanied with word sense information
  publication-title: Intell. Data Anal.
– ident: CR5
– volume: 143
  start-page: 57
  year: 2014
  end-page: 67
  ident: CR40
  article-title: A resampling ensemble algorithm for classification of imbalance problems
  publication-title: Neurocomputing
– volume: 20
  start-page: 4338
  year: 2016
  end-page: 4346
  ident: CR1
  article-title: Using fast weights to attend to the recent past
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 20
  start-page: 296
  year: 1998
  end-page: 304
  ident: CR47
  article-title: An information-theoretic definition of similarity
  publication-title: Icml
– volume: 2017
  start-page: 25
  year: 2017
  ident: CR50
  article-title: Self-normalizing neural networks
  publication-title: Adv. Neural. Inf. Process. Syst.
– volume: 51
  start-page: 105
  year: 2003
  end-page: 124
  ident: CR23
  article-title: On relevance feedback and similarity measure for image retrieval with synergetic neural nets
  publication-title: Neurocomputing
– volume: 117
  start-page: 27162
  year: 2020
  end-page: 27170
  ident: CR4
  article-title: Overparameterized neural networks implement associative memory
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 30
  start-page: 263
  year: 2008
  end-page: 266
  ident: CR31
  article-title: Image recognition using synergetic neural networks based on immune clonal clustering
  publication-title: J. Electron. Inf. Technol.
– volume: 26
  start-page: 394
  year: 1920
  end-page: 395
  ident: CR44
  article-title: On the reciprocal of the general algebraic matrix
  publication-title: Bull. Am. Math. Soc.
– ident: CR37
– volume: 2018
  start-page: 8057
  year: 2018
  end-page: 8068
  ident: CR2
  article-title: Improved expressivity through dendritic neural networks
  publication-title: Adv. Neural. Inf. Process. Syst.
– volume: 17
  start-page: 177
  year: 1998
  end-page: 181
  ident: CR27
  article-title: Reconstruction of order parameters in synergetics approach to pattern recognition
  publication-title: J. Infrared Millim. Waves
– ident: CR33
– volume: 2018
  start-page: 9981
  year: 2018
  end-page: 9993
  ident: CR3
  article-title: Learning to reason with third-order tensor products
  publication-title: Adv. Neural. Inf. Process. Syst.
– volume: 44
  start-page: 245
  year: 2016
  end-page: 263
  ident: CR30
  article-title: An SNN-based semantic role labeling model with its network parameters optimized using an improved PSO algorithm
  publication-title: Neural Process. Lett.
– volume: 101
  start-page: 309
  year: 2013
  end-page: 318
  ident: CR38
  article-title: ACOSampling: An ant colony optimization-based undersampling method for classifying imbalanced DNA microarray data
  publication-title: Neurocomputing
– volume: 177
  start-page: 489
  year: 2016
  end-page: 496
  ident: CR19
  article-title: Global Mittag–Leffler stabilization of fractional-order bidirectional associative memory neural networks
  publication-title: Neurocomputing
– volume: 10
  start-page: 83
  year: 1997
  end-page: 98
  ident: CR14
  article-title: Associative dynamics in a chaotic neural network
  publication-title: Neural Netw.
– volume: 5
  start-page: 126
  year: 2011
  end-page: 135
  ident: CR34
  article-title: Application of synergetic neural network in online writeprint identification
  publication-title: Int. J. Digit. Content Technol. Appl.
– volume: 20
  start-page: 4653
  year: 2021
  end-page: 4660
  ident: CR10
  article-title: Time series data augmentation for deep learning: A survey
  publication-title: IJCAI Int. Jt. Conf. Artif. Intell.
  doi: 10.24963/ijcai.2021/631
– volume: 34
  start-page: 1017
  year: 2015
  end-page: 1037
  ident: CR36
  article-title: Oversampling method for imbalanced classification
  publication-title: Comput. Inform.
– volume: 29
  start-page: 3573
  year: 2018
  end-page: 3587
  ident: CR6
  article-title: Cost-sensitive learning of deep feature representations from imbalanced data
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 49
  start-page: 2
  year: 2022
  ident: CR42
  article-title: Oversampling based on generative adversarial networks to overcome imbalance data in predicting fraud insurance claim
  publication-title: Kuwait J. Sci.
– volume: 15
  start-page: 3133
  year: 2014
  end-page: 3181
  ident: CR17
  article-title: Do we need hundreds of classifiers to solve real world classification problems?
  publication-title: J. Mach. Learn. Res.
– volume: 97
  start-page: 2074
  year: 2020
  end-page: 2090
  ident: CR20
  article-title: Global stabilization of fractional-order bidirectional associative memory neural networks with mixed time delays via adaptive feedback control
  publication-title: Int. J. Comput. Math.
– volume: 106
  start-page: 205
  year: 2018
  end-page: 222
  ident: CR22
  article-title: A new mechanical approach to handle generalized Hopfield neural networks
  publication-title: Neural Netw.
– year: 1991
  ident: CR11
  publication-title: Synergetic Computers and Cognition : A Top-Down Approach to Neural Nets. Springer Series in Synergetics, ***Vol. 50
– volume: 6
  start-page: 25
  year: 2019
  ident: CR8
  article-title: A survey on image data augmentation for deep learning
  publication-title: J. Big Data
– volume: 79
  start-page: 2554
  year: 1982
  end-page: 2558
  ident: CR12
  article-title: Neural networks and physical systems with emergent collective computational abilities
  publication-title: Proc. Natl. Acad. Sci. USA
– ident: CR7
– start-page: 1180
  year: 2016
  end-page: 1188
  ident: CR15
  article-title: Dense associative memory for pattern recognition
  publication-title: Advances in Neural Information Processing Systems
– ident: CR24
– volume: 32
  start-page: 25
  year: 2019
  ident: CR49
  article-title: Generating diverse high-fidelity images with VQ-VAE-2
  publication-title: Adv. Neural. Inf. Process. Syst.
– volume: 18
  start-page: 49
  year: 1988
  end-page: 60
  ident: CR13
  article-title: Bidirectional associative memories
  publication-title: IEEE Trans. Syst. Man Cybern.
– volume: 163
  start-page: 3
  year: 2015
  ident: 42689_CR41
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.08.091
– ident: 42689_CR51
– volume: 2017
  start-page: 6307
  year: 2017
  ident: 42689_CR48
  publication-title: Adv. Neural. Inf. Process. Syst.
– volume: 3497
  start-page: 26
  year: 2005
  ident: 42689_CR29
  publication-title: Lect. Notes Comput. Sci.
  doi: 10.1007/11427445_5
– volume: 26
  start-page: 394
  year: 1920
  ident: 42689_CR44
  publication-title: Bull. Am. Math. Soc.
– volume: 51
  start-page: 105
  year: 2003
  ident: 42689_CR23
  publication-title: Neurocomputing
  doi: 10.1016/S0925-2312(02)00604-5
– volume: 135
  start-page: 60
  year: 2018
  ident: 42689_CR43
  publication-title: Proced. Comput. Sci.
  doi: 10.1016/j.procs.2018.08.150
– ident: 42689_CR16
– ident: 42689_CR39
– ident: 42689_CR5
  doi: 10.1109/CVPR.2016.580
– volume: 7
  start-page: 1
  year: 2012
  ident: 42689_CR25
  publication-title: J. Converg. Inf. Technol.
– volume-title: Synergetic Computers and Cognition : A Top-Down Approach to Neural Nets. Springer Series in Synergetics, ***Vol. 50
  year: 1991
  ident: 42689_CR11
  doi: 10.1007/978-3-662-22450-2
– volume: 97
  start-page: 2074
  year: 2020
  ident: 42689_CR20
  publication-title: Int. J. Comput. Math.
  doi: 10.1080/00207160.2019.1677897
– volume: 49
  start-page: 2
  year: 2022
  ident: 42689_CR42
  publication-title: Kuwait J. Sci.
– volume: 2018
  start-page: 8057
  year: 2018
  ident: 42689_CR2
  publication-title: Adv. Neural. Inf. Process. Syst.
– volume: 154
  start-page: 15
  year: 2015
  ident: 42689_CR18
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.12.031
– volume: 20
  start-page: 20
  year: 1979
  ident: 42689_CR46
  publication-title: Algorithms
– year: 2019
  ident: 42689_CR35
  publication-title: ACM Comput. Surv.
  doi: 10.1145/3343440
– volume: 2018
  start-page: 9981
  year: 2018
  ident: 42689_CR3
  publication-title: Adv. Neural. Inf. Process. Syst.
– volume: 29
  start-page: 3573
  year: 2018
  ident: 42689_CR6
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2017.2732482
– volume: 117
  start-page: 27162
  year: 2020
  ident: 42689_CR4
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.2005013117
– volume: 7
  start-page: 1313
  year: 1994
  ident: 42689_CR32
  publication-title: Neural Netw.
  doi: 10.1016/0893-6080(94)90012-4
– volume: 18
  start-page: 49
  year: 1988
  ident: 42689_CR13
  publication-title: IEEE Trans. Syst. Man Cybern.
  doi: 10.1109/21.87054
– volume: 6
  start-page: 25
  year: 2019
  ident: 42689_CR8
  publication-title: J. Big Data
  doi: 10.1186/s40537-019-0197-0
– volume: 20
  start-page: 296
  year: 1998
  ident: 42689_CR47
  publication-title: Icml
– volume: 15
  start-page: 3133
  year: 2014
  ident: 42689_CR17
  publication-title: J. Mach. Learn. Res.
– volume: 44
  start-page: 245
  year: 2016
  ident: 42689_CR30
  publication-title: Neural Process. Lett.
  doi: 10.1007/s11063-015-9449-y
– volume: 51
  start-page: 406
  year: 1955
  ident: 42689_CR45
  publication-title: Math. Proc. Camb. Philos. Soc.
  doi: 10.1017/S0305004100030401
– volume: 79
  start-page: 2554
  year: 1982
  ident: 42689_CR12
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.79.8.2554
– ident: 42689_CR24
  doi: 10.1109/ICCIS.2010.5518581
– volume: 106
  start-page: 205
  year: 2018
  ident: 42689_CR22
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2018.07.010
– volume: 30
  start-page: 263
  year: 2008
  ident: 42689_CR31
  publication-title: J. Electron. Inf. Technol.
– volume: 20
  start-page: 4653
  year: 2021
  ident: 42689_CR10
  publication-title: IJCAI Int. Jt. Conf. Artif. Intell.
  doi: 10.24963/ijcai.2021/631
– volume: 177
  start-page: 489
  year: 2016
  ident: 42689_CR19
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.11.055
– ident: 42689_CR33
  doi: 10.1109/ICALIP.2010.5684499
– volume: 168
  start-page: 288
  year: 2017
  ident: 42689_CR21
  publication-title: J. Stat. Phys.
  doi: 10.1007/s10955-017-1806-y
– volume: 32
  start-page: 25
  year: 2019
  ident: 42689_CR49
  publication-title: Adv. Neural. Inf. Process. Syst.
– volume: 101
  start-page: 309
  year: 2013
  ident: 42689_CR38
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.08.018
– volume: 20
  start-page: 20
  year: 2020
  ident: 42689_CR9
  publication-title: Degree Proj. Comput. Sci. Eng.
– volume: 5
  start-page: 126
  year: 2011
  ident: 42689_CR34
  publication-title: Int. J. Digit. Content Technol. Appl.
– ident: 42689_CR37
  doi: 10.1145/2911451.2914722
– start-page: 1180
  volume-title: Advances in Neural Information Processing Systems
  year: 2016
  ident: 42689_CR15
– volume: 3211
  start-page: 455
  year: 2004
  ident: 42689_CR28
  publication-title: Lect. Notes Comput. Sci.
  doi: 10.1007/978-3-540-30125-7_57
– volume: 10
  start-page: 83
  year: 1997
  ident: 42689_CR14
  publication-title: Neural Netw.
  doi: 10.1016/S0893-6080(96)00061-5
– volume: 2017
  start-page: 25
  year: 2017
  ident: 42689_CR50
  publication-title: Adv. Neural. Inf. Process. Syst.
– volume: 21
  start-page: 5
  year: 2017
  ident: 42689_CR26
  publication-title: Intell. Data Anal.
  doi: 10.3233/IDA-150323
– volume: 17
  start-page: 177
  year: 1998
  ident: 42689_CR27
  publication-title: J. Infrared Millim. Waves
– ident: 42689_CR7
  doi: 10.1109/ISM.2015.126
– volume: 20
  start-page: 4338
  year: 2016
  ident: 42689_CR1
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 34
  start-page: 1017
  year: 2015
  ident: 42689_CR36
  publication-title: Comput. Inform.
– volume: 143
  start-page: 57
  year: 2014
  ident: 42689_CR40
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.06.021
SSID ssj0000529419
Score 2.404262
Snippet Deep learning’s performance on the imbalanced small data is substantially degraded by overfitting. Recurrent neural networks retain better performance in such...
Deep learning's performance on the imbalanced small data is substantially degraded by overfitting. Recurrent neural networks retain better performance in such...
Abstract Deep learning’s performance on the imbalanced small data is substantially degraded by overfitting. Recurrent neural networks retain better performance...
SourceID doaj
pubmedcentral
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 15669
SubjectTerms 639/705
639/705/117
Algorithms
Classification
Deep learning
Humanities and Social Sciences
Learning algorithms
Machine learning
multidisciplinary
Neural networks
Science
Science (multidisciplinary)
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NaxUxEA9SKHgRP3G1SgRvGrrZ5OXjqNJSBT1Z6C3kY4KFdiu-10P_e2c2-2q3IL30tmyybDK_JDNDZn7D2PsMulpZiyhOgsBnI1JvQIBPJkKlxGXKd_7-wxwd628nq5Mbpb4oJqzRAzfB7dMaXOmCfnd1GnqXLFhVozElDtmoRKcv6rwbzlRj9R68ln7OkumV21-jpqJsskEJVErOC7fQRBNh_8LKvB0jeeuidNI_h4_Zo9lw5J_agJ-wBzA-ZbutlOTVM_a1FTXj6ytK5qPMRE5UlfjF2AK9OVqn_PQ8UShjhsLX5_HsjFOAKM9kQVPI0ITSc3Z8ePDzy5GYyySIjL7tRhSoUlapbcbBDiBTcSBtLNnmwUWdosIeq2SNzVJDdlFZ2_cFIJc-rbJXL9jOeDHCS8aLNtHXbCK6UaiorDelWJ899La66H3HPmxFFn43Noww3WIrF5qAAwo4TAIOrmOfSarXPYnJenqB-IYZ33AXvh3b22IS5u21DriCDJ4cUumOvbtuxo1Btx1xhIvLqQ8aL0S51zG3wHIxoGXLePprotiWRAsvHU7h4xb2f3___4xf3ceMX7OHVNOeglIGucd2Nn8u4Q1aPpv0dlrkfwHmPAJB
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkLojxEoCAjcQOrcez144RaRNUiwYlKe7P8GEOlNts220P_PR4nu1UqwS1KHMWZsT1jzzffEPIxgsya58SS4cDKtWKhVcDABuUhY-Iy5jv_-KmOT-X35WI5HbgNE6xysybWhTqtIp6R75eXVBksXMgvl1cMq0ZhdHUqofGQPELqMoR06aXenrFgFEtyO-XKtMLsD8VeYU5ZJ1gxTcYyM7NHlbZ_5mveR0reC5dWK3T0jDyd3Ed6MOp7lzyA_jl5PBaUvH1BTsbSZnS4xZQ-zE-kSFhZ3uhHuDctPio9uwgIaIyQ6HDhz88pwkRpRD8agUNVVy_J6dG3X1-P2VQsgcWyw12zBJnzzKWOpbMd8JAMcO1T1LEzXgYvSotF0EpHLiEaL7Ru2wQQUxsW0YpXZKdf9fCa0CSVtzkqXzZTxVxpq1LSNlpodTbe2oZ82ojMXY6cGK7GsoVxo4BdEbCrAnamIYco1W1L5LOuN1bXv900PRyuNAuZrBDZSGhN0KBF9kol30UlQkP2Njpx0yQb3N2QaMiH7eMyPTDm4XtY3dQ2xYVB4r2GmJkuZx2aP-nP_lSibY7k8NyUX_i8Ufvd1__9x2_-39m35AnWrEfQScf3yM76-gbeFc9mHd7X4fsX3C_5_Q
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature Link OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NaxUxEA-1IniR-oVrq0TwpsHNJi8fx_ZhqYKeLPQW8jHRQruv9L0e-t83k919sqUevC2bCZvMJJnJzsxvCPkYQWbNc2LJcGDlWbHQKmBgg_KQMXEZ851__FQnp_L72eJsh3RTLkwN2q-QlvWYnqLDvqyLosFksE6wolOMZeYReYzQ7biql2q5_a-CnivJ7Zgf0wrzQNeZDqpQ_TP78n505D0XadU8x3vk2Wgy0sNhkM_JDvQvyJOhiOTtS_JtKGdG17eYxoc5iRRBKkuPfgjxpsUupeeXAYMYIyS6vvQXFxRDQ2lE2xmDhap8XpHT46-_lidsLJDAYrnVbliCzHnmUscy2A54SAa49inq2BkvgxeFYhG00pFLiMYLrds2AcTUhkW04jXZ7Vc9vCE0SeVtjsqXC1RRUdqqlLSNFlqdjbe2IZ8mlrmrAQfDVf-1MG5gsCsMdpXBzjTkCLm6pUQM6_pidf3bjTJ1eLosZLJCZCOhNUGDFtkrlXwXlQgNOZhk4saNtXZl7ahyZnAhG_Jh21y2BPo5fA-rm0pTzBYE22uImclyNqB5S3_-p4JrcwSE56ZM4fMk9r9f__eM3_4f-T55inXrMfCk4wdkd3N9A--KdbMJ7-tyvgPs3_fb
  priority: 102
  providerName: Springer Nature
Title Modern synergetic neural network for imbalanced small data classification
URI https://link.springer.com/article/10.1038/s41598-023-42689-8
https://www.proquest.com/docview/2866963134
https://www.proquest.com/docview/2868120087
https://pubmed.ncbi.nlm.nih.gov/PMC10514188
https://doaj.org/article/307354d933f84e08b7e73fa66da2c63b
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swEBf9YLCXsU_mtQse7G3TZlmKPh7GSENLF2gZ2wJ5M_pyV0idNUlh-e93JzsdLt3Dnmwk2ZbuTrqTdfc7Qt76KGrF6kCDZpHCvaSukJFG46SNNQYuY7zz2bk8nYrJbDjbIdt0Rx0BV_du7TCf1HQ5__D7evMZJvynNmRcf1yBEsJAsZJT0DfaUL1L9kEzKZyoZ52532J9l0akXB8Iwk7BmCi7OJr7X9PTVQnSv2eH3vWivHOUmjTUyWPyqDMt81ErC0_ITmyekgdtssnNM_KlTXuWrzYY7oexizmCWcITTesKnoP9ml9eOXR29DHkqys7n-foQpp7tLHRqSjx8TmZnhz_GJ_SLpEC9bD7XdMQa8ZqJpSHzpaRuaAjUzZ45UtthbMcWgydksozEb22XKmiCDH6ULihN_wF2WsWTXxJ8iCkNbWXFjZaoMqUkSEo400sVK2tMRl5tyVZ9avFy6jSOTfXVUvgCghcJQJXOiNHSNXbloh1nQoWy4uqmzoVrkJDEQzntRax0E5FxWsrZbCll9xl5HDLk2orPxXImIS1hXGRkTe31TB18DzENnFxk9qAeYOgfBnRPV72OtSvaS5_JhBuhsDxTMMQ3m_Z_vfr_x7xq_-izwF5iOnt0T-lZIdkb728ia_BCFq7AdlVMzUg-6PR5PsErkfH51-_QelYjgfpx8Igyf4feVsIyQ
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQw0Kq2QnBB5SUCBYwEJ7Aax17bOSBEodUubVcItVJvxrEnUKnNlmaran-Kb8STx1apBLfeothW4nl4ZjwvQt54kKXmZWDBcGDxWbEiVcAgL5SDEhOXMd_5YKYmR_Lr8fh4jfzpc2EwrLI_E5uDOsw93pFvxUUqEgsX8uP5b4Zdo9C72rfQaMliD5ZX0WSrP0y_RPy-zbLdncPPE9Z1FWA-moILFqDkvORS--AhA14EA1y74LXPjJOFE3HGuNBKey7BGye0TtMA4ENajD0WX4pH_roU0ZQZkfXtndm376tbHfSbSZ532TmpMFt1lJCYxZYJFoWhyZkZSMCmUcBAu70Zm3nDQdvIvd0Ncr9TWOmnlsIekDWoHpI7bQvL5SMybZup0XqJSYSYEUmxRGZcUbUB5jRqxfTkrMAQSg-B1mfu9JRiYCr1qLljqFJDHY_J0a0A8gkZVfMKnhIapHJ56ZWL5lsUkDpXIejc55Dq0rg8T8i7HmT2vK3CYRvvuTC2BbCNALYNgK1JyDZCdTUTK2g3L-YXP23HkBbPtrEMuRClkZCaQoMWpVMquMwrUSRks8eJ7di6ttdEmJDXq-HIkOhlcRXML5s5UWnCUn8JMQNcDn5oOFKd_GpKe3MsR89N3ML7Hu3XX__3jp_9_2dfkbuTw4N9uz-d7T0n9zIkRnSs8U0yWlxcwouoVy2Klx0xU_LjtvnnL9QUO8U
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQw0KqKQFwQTxEoECQ4gbVxnNjOASGgrLoUKg5U2ptx7DFUarOl2Qrtr_F1zOSx1VaCW29RbCvxvO15MfbCQxG1iIEHI4Djs-J1poBDVSsHkRKXKd_5y4HaOyw-zcv5Fvsz5sJQWOUoEztBHRae7sgnuEghsQhZTOIQFvF1d_r29BenDlLkaR3bafQksg-r33h8a9_MdhHXL_N8-vHbhz0-dBjgHo-FSx4gChFFoX3wkIOogwGhXfDa58YVtZM4o6y10l4U4I2TWmdZAPAhq0tPhZhQ_F_TshTEY3qu1_c75EErRDXk6WTSTFrUlZTPlkuOatFU3Gzowq5lwIadezlK85KrttOA09vs1mC6pu96WrvDtqC5y673zSxX99isb6uWtitKJ6TcyJSKZeKKpg81T9E-To9Oagqm9BDS9sQdH6cUopp6suEpaKmjk_vs8ErA-IBtN4sGHrI0FMpV0SuHBzlUlbpSIejKV5DpaFxVJezVCDJ72tfjsJ0fXRrbA9gigG0HYGsS9p6gup5JtbS7F4uzH3ZgTUtSrixCJWU0BWSm1qBldEoFl3sl64TtjDixA4O39oIcE_Z8PYysSf4W18DivJuD5hMV_UuY2cDlxg9tjjRHP7si34IK0wuDW3g9ov3i6__e8aP__-wzdgO5xn6eHew_ZjdzokXysIkdtr08O4cnaGAt66cdJafs-1Wzzl_O0T6V
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modern+synergetic+neural+network+for+imbalanced+small+data+classification&rft.jtitle=Scientific+reports&rft.au=Wang%2C+Zihao&rft.au=Li%2C+Haifeng&rft.au=Ma%2C+Lin&rft.date=2023-09-21&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=13&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-023-42689-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41598_023_42689_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon