Pressure Control of Multi-Mode Variable Structure Electro–Hydraulic Load Simulation System

During the loading process, significant external position disturbances occur in the electro–hydraulic load simulation system. To address these position disturbances and effectively mitigate the impact of uncertainty on system performance, this paper first treats model parameter uncertainty and exter...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 24; no. 22; p. 7400
Main Authors Hao, He, Yan, Hao, Zhang, Qi, Li, Haoyu
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 20.11.2024
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract During the loading process, significant external position disturbances occur in the electro–hydraulic load simulation system. To address these position disturbances and effectively mitigate the impact of uncertainty on system performance, this paper first treats model parameter uncertainty and external disturbances as lumped disturbances. The various states of the servo valve and the pressures within the hydraulic cylinder chambers are then examined. Building on this foundation, the paper proposes a nonlinear multi-mode variable structure independent load port electro–hydraulic load simulation system that is tailored for specific loading conditions. Secondly, in light of the significant motion disturbances present, this paper proposes an integral sliding mode active disturbance rejection composite control strategy that is based on fixed-time convergence. Based on the structure of the active disturbance rejection control framework, the fixed-time integral sliding mode and active disturbance rejection control algorithms are integrated. An extended state observer is designed to accurately estimate the lumped disturbance, effectively compensating for it to achieve precise loading of the independent load port electro–hydraulic load simulation system. The stability of the designed controller is also demonstrated. The results of the simulation research indicate that when the command input is a step signal, the pressure control accuracy under the composite control strategy is 99.94%, 99.86%, and 99.76% for disturbance frequencies of 1 Hz, 3 Hz, and 5 Hz, respectively. Conversely, when the command input is a sinusoidal signal, the pressure control accuracy remains high, measuring 99.94%, 99.8%, and 99.6% under the same disturbance frequencies. Furthermore, the simulation demonstrates that the influence of sensor random noise on the system remains within acceptable limits, highlighting the effective filtering capabilities of the extended state observer. This research establishes a solid foundation for the collaborative control of load ports and the engineering application of the independent load port electro–hydraulic load simulation system.
AbstractList During the loading process, significant external position disturbances occur in the electro–hydraulic load simulation system. To address these position disturbances and effectively mitigate the impact of uncertainty on system performance, this paper first treats model parameter uncertainty and external disturbances as lumped disturbances. The various states of the servo valve and the pressures within the hydraulic cylinder chambers are then examined. Building on this foundation, the paper proposes a nonlinear multi-mode variable structure independent load port electro–hydraulic load simulation system that is tailored for specific loading conditions. Secondly, in light of the significant motion disturbances present, this paper proposes an integral sliding mode active disturbance rejection composite control strategy that is based on fixed-time convergence. Based on the structure of the active disturbance rejection control framework, the fixed-time integral sliding mode and active disturbance rejection control algorithms are integrated. An extended state observer is designed to accurately estimate the lumped disturbance, effectively compensating for it to achieve precise loading of the independent load port electro–hydraulic load simulation system. The stability of the designed controller is also demonstrated. The results of the simulation research indicate that when the command input is a step signal, the pressure control accuracy under the composite control strategy is 99.94%, 99.86%, and 99.76% for disturbance frequencies of 1 Hz, 3 Hz, and 5 Hz, respectively. Conversely, when the command input is a sinusoidal signal, the pressure control accuracy remains high, measuring 99.94%, 99.8%, and 99.6% under the same disturbance frequencies. Furthermore, the simulation demonstrates that the influence of sensor random noise on the system remains within acceptable limits, highlighting the effective filtering capabilities of the extended state observer. This research establishes a solid foundation for the collaborative control of load ports and the engineering application of the independent load port electro–hydraulic load simulation system.
During the loading process, significant external position disturbances occur in the electro-hydraulic load simulation system. To address these position disturbances and effectively mitigate the impact of uncertainty on system performance, this paper first treats model parameter uncertainty and external disturbances as lumped disturbances. The various states of the servo valve and the pressures within the hydraulic cylinder chambers are then examined. Building on this foundation, the paper proposes a nonlinear multi-mode variable structure independent load port electro-hydraulic load simulation system that is tailored for specific loading conditions. Secondly, in light of the significant motion disturbances present, this paper proposes an integral sliding mode active disturbance rejection composite control strategy that is based on fixed-time convergence. Based on the structure of the active disturbance rejection control framework, the fixed-time integral sliding mode and active disturbance rejection control algorithms are integrated. An extended state observer is designed to accurately estimate the lumped disturbance, effectively compensating for it to achieve precise loading of the independent load port electro-hydraulic load simulation system. The stability of the designed controller is also demonstrated. The results of the simulation research indicate that when the command input is a step signal, the pressure control accuracy under the composite control strategy is 99.94%, 99.86%, and 99.76% for disturbance frequencies of 1 Hz, 3 Hz, and 5 Hz, respectively. Conversely, when the command input is a sinusoidal signal, the pressure control accuracy remains high, measuring 99.94%, 99.8%, and 99.6% under the same disturbance frequencies. Furthermore, the simulation demonstrates that the influence of sensor random noise on the system remains within acceptable limits, highlighting the effective filtering capabilities of the extended state observer. This research establishes a solid foundation for the collaborative control of load ports and the engineering application of the independent load port electro-hydraulic load simulation system.During the loading process, significant external position disturbances occur in the electro-hydraulic load simulation system. To address these position disturbances and effectively mitigate the impact of uncertainty on system performance, this paper first treats model parameter uncertainty and external disturbances as lumped disturbances. The various states of the servo valve and the pressures within the hydraulic cylinder chambers are then examined. Building on this foundation, the paper proposes a nonlinear multi-mode variable structure independent load port electro-hydraulic load simulation system that is tailored for specific loading conditions. Secondly, in light of the significant motion disturbances present, this paper proposes an integral sliding mode active disturbance rejection composite control strategy that is based on fixed-time convergence. Based on the structure of the active disturbance rejection control framework, the fixed-time integral sliding mode and active disturbance rejection control algorithms are integrated. An extended state observer is designed to accurately estimate the lumped disturbance, effectively compensating for it to achieve precise loading of the independent load port electro-hydraulic load simulation system. The stability of the designed controller is also demonstrated. The results of the simulation research indicate that when the command input is a step signal, the pressure control accuracy under the composite control strategy is 99.94%, 99.86%, and 99.76% for disturbance frequencies of 1 Hz, 3 Hz, and 5 Hz, respectively. Conversely, when the command input is a sinusoidal signal, the pressure control accuracy remains high, measuring 99.94%, 99.8%, and 99.6% under the same disturbance frequencies. Furthermore, the simulation demonstrates that the influence of sensor random noise on the system remains within acceptable limits, highlighting the effective filtering capabilities of the extended state observer. This research establishes a solid foundation for the collaborative control of load ports and the engineering application of the independent load port electro-hydraulic load simulation system.
Audience Academic
Author Hao, He
Yan, Hao
Zhang, Qi
Li, Haoyu
AuthorAffiliation 1 School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044, China; 22121296@bjtu.edu.cn (H.H.); lhy10102021@163.com (H.L.)
2 AECC Guizhou Honglin Aero–Engine Control Technology Co., Ltd., Guiyang 551522, China; qizhang821@163.com
AuthorAffiliation_xml – name: 2 AECC Guizhou Honglin Aero–Engine Control Technology Co., Ltd., Guiyang 551522, China; qizhang821@163.com
– name: 1 School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044, China; 22121296@bjtu.edu.cn (H.H.); lhy10102021@163.com (H.L.)
Author_xml – sequence: 1
  givenname: He
  surname: Hao
  fullname: Hao, He
– sequence: 2
  givenname: Hao
  surname: Yan
  fullname: Yan, Hao
– sequence: 3
  givenname: Qi
  surname: Zhang
  fullname: Zhang, Qi
– sequence: 4
  givenname: Haoyu
  surname: Li
  fullname: Li, Haoyu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39599179$$D View this record in MEDLINE/PubMed
BookMark eNpdkstu1DAUhiNURC-w4AVQJDawSPE1jleoGhVaaSqQBlghWSe-DB45cWsnSLPjHXhDngS3U0Yt8sLW8effPr__4-pgjKOtqpcYnVIq0btMGCGCIfSkOsKMsKYjBB08WB9WxzlvECKU0u5ZdUgllxILeVR9_5xsznOy9SKOU4qhjq6-msPkm6tobP0Nkoc-2Ho1pVlPt-B5sLqQf379vtiaBHPwul5GMPXKD3OAycexXm3zZIfn1VMHIdsX9_NJ9fXD-ZfFRbP89PFycbZsNGvl1BgAa4XmXCKGmGA9AiesodS0lFCje-m4k53lgraADOlaY3oD2rWag-OInlSXO10TYaOukx8gbVUEr-4KMa0VpMnrYBWTpniFHbcCmBYIDALoUTGDic5hXrTe77Su536wRtviCoRHoo93Rv9DreNPhTGXHWlZUXhzr5DizWzzpAaftQ0BRhvnrCimlHEpZFvQ1_-hmzinsXh1R9Guaxku1OmOWkPpwI8ulot1GcYOXpcoOF_qZx3umEC8peXAq4c97B__79sL8HYH6BRzTtbtEYzUbaTUPlL0L6zmvpU
Cites_doi 10.1016/j.ymssp.2020.106869
10.1109/TMECH.2022.3173991
10.3390/act12080304
10.1109/TMECH.2021.3088955
10.1002/mma.6716
10.1016/j.isatra.2019.08.057
10.1109/TTE.2023.3313567
10.1109/TII.2022.3159537
10.1109/TIE.2021.3102434
10.1016/j.ins.2022.12.061
10.1109/TCYB.2021.3077599
10.1016/j.biosystemseng.2021.07.014
10.1109/TIE.2023.3236114
10.1109/TIE.2021.3101006
10.1016/j.ymssp.2018.09.026
10.1016/j.conengprac.2018.12.013
10.1109/TMECH.2022.3201283
10.1016/j.isatra.2021.06.020
10.1109/TIE.2019.2916387
10.1109/TMECH.2021.3119414
10.3390/math11234819
10.1109/TMECH.2019.2930276
10.1109/TMECH.2022.3203517
10.1016/j.asoc.2023.111043
10.1109/TMECH.2021.3094284
10.1016/j.energy.2020.119291
10.1109/TASE.2023.3289445
10.1109/TII.2023.3249760
10.1016/j.autcon.2021.103722
10.1016/j.enconman.2024.118119
10.3390/act12100370
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2024 by the authors. 2024
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2024 by the authors. 2024
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s24227400
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni)
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList


Publicly Available Content Database
MEDLINE - Academic
CrossRef
PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ : directory of open access journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_49d4221f5e7a4c70ad0aab0917478f15
PMC11598264
A818470563
39599179
10_3390_s24227400
Genre Journal Article
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
ABJCF
ARAPS
HCIFZ
KB.
M7S
NPM
PDBOC
PMFND
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c469t-daaee7c559040474b0af7ed33d6323dcb9f5f98e5736a0d286ddbdacf6c5af503
IEDL.DBID 7X7
ISSN 1424-8220
IngestDate Wed Aug 27 01:16:20 EDT 2025
Thu Aug 21 18:35:09 EDT 2025
Fri Jul 11 09:05:36 EDT 2025
Fri Jul 25 23:30:16 EDT 2025
Tue Jun 10 20:59:51 EDT 2025
Wed Feb 19 02:03:57 EST 2025
Tue Jul 01 03:51:21 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 22
Keywords electro–hydraulic servo system
pressure control
sliding mode control
independent load port
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c469t-daaee7c559040474b0af7ed33d6323dcb9f5f98e5736a0d286ddbdacf6c5af503
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/3133388641?pq-origsite=%requestingapplication%
PMID 39599179
PQID 3133388641
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_49d4221f5e7a4c70ad0aab0917478f15
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11598264
proquest_miscellaneous_3133459796
proquest_journals_3133388641
gale_infotracacademiconefile_A818470563
pubmed_primary_39599179
crossref_primary_10_3390_s24227400
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20241120
PublicationDateYYYYMMDD 2024-11-20
PublicationDate_xml – month: 11
  year: 2024
  text: 20241120
  day: 20
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2024
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Ren (ref_14) 2022; 27
Tavernini (ref_18) 2020; 67
Abuowda (ref_32) 2020; 98
Yin (ref_16) 2019; 133
Xu (ref_19) 2023; 70
Yang (ref_20) 2024; 21
Han (ref_4) 2023; 28
ref_30
Xu (ref_6) 2021; 209
Zhu (ref_31) 2019; 85
Guo (ref_2) 2021; 146
Zhang (ref_11) 2023; 28
Abuowda (ref_25) 2022; 45
Qu (ref_22) 2021; 216
Wang (ref_28) 2024; 10
Feng (ref_8) 2021; 127
Jiang (ref_3) 2023; 623
Qin (ref_10) 2022; 27
Shi (ref_17) 2023; 19
ref_24
ref_21
Feng (ref_1) 2023; 28
Li (ref_23) 2022; 69
ref_29
Yang (ref_5) 2022; 52
Sui (ref_12) 2022; 125
Li (ref_27) 2024; 302
Lyu (ref_26) 2019; 24
Guo (ref_7) 2022; 69
Helian (ref_9) 2023; 19
Yang (ref_13) 2024; 151
Fan (ref_15) 2021; 26
References_xml – volume: 146
  start-page: 106869
  year: 2021
  ident: ref_2
  article-title: Neural adaptive control of single-rod electrohydraulic system with lumped uncertainty
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2020.106869
– volume: 27
  start-page: 1928
  year: 2022
  ident: ref_10
  article-title: An Adaptive Robust Impedance Control Considering Energy-Saving of Hydraulic Excavator Boom and Stick Systems
  publication-title: IEEE/ASME Trans. Mechatron.
  doi: 10.1109/TMECH.2022.3173991
– ident: ref_24
  doi: 10.3390/act12080304
– volume: 27
  start-page: 1457
  year: 2022
  ident: ref_14
  article-title: Fractional order integral sliding mode controller based on neural network: Theory and electro-hydraulic benchmark test
  publication-title: IEEE/ASME Trans. Mechatron.
  doi: 10.1109/TMECH.2021.3088955
– volume: 45
  start-page: 2443
  year: 2022
  ident: ref_25
  article-title: Mathematical-based control method and performance analysis of a novel hydromechatronics driving system micro-independent metering
  publication-title: Math. Methods Appl. Sci.
  doi: 10.1002/mma.6716
– volume: 98
  start-page: 364
  year: 2020
  ident: ref_32
  article-title: A review of electrohydraulic independent metering technology
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2019.08.057
– volume: 10
  start-page: 4142
  year: 2024
  ident: ref_28
  article-title: Differential Drive Collaborative Steering Control of Independent-Wheel-Drive Articulated-Steering Electric Vehicles for Energy Saving
  publication-title: IEEE Trans. Transp. Electrif.
  doi: 10.1109/TTE.2023.3313567
– volume: 19
  start-page: 1380
  year: 2023
  ident: ref_17
  article-title: A Model Predictive Control Approach for Electro-Hydraulic Braking by Wire
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2022.3159537
– volume: 69
  start-page: 7088
  year: 2022
  ident: ref_23
  article-title: Precision Motion Control of an Independent Metering Hydraulic System with Nonlinear Flow Modeling and Compensation
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2021.3102434
– volume: 623
  start-page: 577
  year: 2023
  ident: ref_3
  article-title: Finite-time fuzzy adaptive output feedback control of electro-hydraulic system with actuator faults
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2022.12.061
– volume: 52
  start-page: 11906
  year: 2022
  ident: ref_5
  article-title: Time-Driven Adaptive Control of Switched Systems with Application to Electro-Hydraulic Unit
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2021.3077599
– volume: 209
  start-page: 282
  year: 2021
  ident: ref_6
  article-title: Path following control of tractor with an electro-hydraulic coupling steering system: Layered multi-loop robust control architecture
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2021.07.014
– volume: 70
  start-page: 12500
  year: 2023
  ident: ref_19
  article-title: Barrier Lyapunov Function-Based Adaptive Output Feedback Prescribed Performance Controller for Hydraulic Systems with Uncertainties Compensation
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2023.3236114
– volume: 69
  start-page: 7140
  year: 2022
  ident: ref_7
  article-title: Adaptive Tracking Control of Hydraulic Systems with Improved Parameter Convergence
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2021.3101006
– volume: 133
  start-page: 105704
  year: 2019
  ident: ref_16
  article-title: Adaptive robust integral sliding mode pitch angle control of an electro-hydraulic servo pitch system for wind turbine
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2018.09.026
– volume: 85
  start-page: 176
  year: 2019
  ident: ref_31
  article-title: Energy-efficient and high-precision control of hydraulic robots
  publication-title: Control Eng. Pract.
  doi: 10.1016/j.conengprac.2018.12.013
– volume: 28
  start-page: 473
  year: 2023
  ident: ref_1
  article-title: Trajectory Tracking of an Electro-Hydraulic Servo System with an New Friction Model-Based Compensation
  publication-title: IEEE/ASME Trans. Mechatron.
  doi: 10.1109/TMECH.2022.3201283
– volume: 125
  start-page: 85
  year: 2022
  ident: ref_12
  article-title: Active disturbance rejection control for optoelectronic stabilized platform based on adaptive fuzzy sliding mode control
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2021.06.020
– ident: ref_21
– volume: 67
  start-page: 3990
  year: 2020
  ident: ref_18
  article-title: An Explicit Nonlinear Model Predictive ABS Controller for Electro-Hydraulic Braking Systems
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2019.2916387
– volume: 28
  start-page: 197
  year: 2023
  ident: ref_4
  article-title: Integrated Pressure Estimation and Control for Electro-hydraulic Brake Systems of Electric Vehicles Considering Actuator Characteristics and Vehicle Longitudinal Dynamics
  publication-title: IEEE/ASME Trans. Mechatron.
  doi: 10.1109/TMECH.2021.3119414
– ident: ref_30
  doi: 10.3390/math11234819
– volume: 24
  start-page: 1909
  year: 2019
  ident: ref_26
  article-title: Energy Saving Motion Control of Independent Metering Valves and Pump Combined Hydraulic System
  publication-title: IEEE/ASME Trans. Mechatron.
  doi: 10.1109/TMECH.2019.2930276
– volume: 28
  start-page: 483
  year: 2023
  ident: ref_11
  article-title: Global Integral Sliding-Mode Control with Improved Nonlinear Extended State Observer for Rotary Tracking of a Hydraulic Roofbolter
  publication-title: IEEE/ASME Trans. Mechatron.
  doi: 10.1109/TMECH.2022.3203517
– volume: 151
  start-page: 111043
  year: 2024
  ident: ref_13
  article-title: Multilayer neurocontrol of servo electromechanical systems with disturbance compensation
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2023.111043
– volume: 26
  start-page: 2870
  year: 2021
  ident: ref_15
  article-title: An Adaptive Fuzzy Trajectory Tracking Control via Improved Cerebellar Model Articulation Controller for Electro-Hydraulic Shovel
  publication-title: IEEE/ASME Trans. Mechatron.
  doi: 10.1109/TMECH.2021.3094284
– volume: 216
  start-page: 119291
  year: 2021
  ident: ref_22
  article-title: A high-efficient solution for electro-hydraulic actuators with energy regeneration capability
  publication-title: Energy
  doi: 10.1016/j.energy.2020.119291
– volume: 21
  start-page: 3886
  year: 2024
  ident: ref_20
  article-title: Practically Predefined-Time Leader-Following Funnel Control for Nonlinear Multi-Agent Systems with Fuzzy Dead-Zone
  publication-title: IEEE Trans. Autom. Sci. Eng.
  doi: 10.1109/TASE.2023.3289445
– volume: 19
  start-page: 11878
  year: 2023
  ident: ref_9
  article-title: Constrained Motion Control of an Electro- Hydraulic Actuator Under Multiple Time-Varying Constraints
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2023.3249760
– volume: 127
  start-page: 103722
  year: 2021
  ident: ref_8
  article-title: Trajectory control of electro-hydraulic position servo system using improved PSO-PID controller
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2021.103722
– volume: 302
  start-page: 118119
  year: 2024
  ident: ref_27
  article-title: Independent metering-based leveling system with multi-actuator for energy saving: Modeling, control, and application on large-size forming equipment
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2024.118119
– ident: ref_29
  doi: 10.3390/act12100370
RelatedPersons Liu, Timothy
RelatedPersons_xml – fullname: Liu, Timothy
SSID ssj0023338
Score 2.4390829
Snippet During the loading process, significant external position disturbances occur in the electro–hydraulic load simulation system. To address these position...
During the loading process, significant external position disturbances occur in the electro-hydraulic load simulation system. To address these position...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 7400
SubjectTerms Accuracy
Analysis
electro–hydraulic servo system
Energy consumption
Hydraulics
independent load port
Liu, Timothy
Mathematical models
Motion control
Pneumatics
pressure control
Robust control
Sensors
Simulation
Simulation methods
sliding mode control
Valves
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwEB1VnNoDgraUtLRyKyROEdnYieMjRaBV1fZCQRwqWY7HFitBFvFx4MZ_4B_2l3Qmzq6y6qEXjkkcyZnxeN5TPG8AdglSK9fUmGMsZK5ox8udjKxFaHwo0AffcL3zj5_19FR9O6_OR62--ExYkgdOhttXBlVZTmIVtFNeFw4L51rKciz8Hvvy8pKuFmRqoFqSmFfSEZJE6vdvKRER_eIytlH26UX6_92KR7lo9ZzkKPEcb8D6gBjFQZrpJrwI3Wt4NdIRfAO_U5HfTRCH6eS5mEfRl9bm3OtMnBEh5hIpcdKrxfLAo9T-5s_j0_QBb9z95cyL73OH4mR2NXT0EknN_C2cHh_9OpzmQ9uE3BPXvcvRuRC0J6pAAaq0agsXdUApsZalRN-aWEXThErL2hVYkqewRedj7SsXq0JuwVo378I2CMI29EKjgmqiMrolNNFiSZ6gfbLFBjP4sjCnvU7qGJZYBdvcLm2ewVc29HIAC1r3N8jNdnCz_Z-bM9hjN1kOO_KFd0P1AM2TBazsAQEPpQnNyQx2Fp60QzzeWjnhFdHUapLB5-VjiiT-PeK6ML9PYxTxK1Nn8C45fjlnaSoC0tpk0KwsiZWPWn3SzS56tW6C3IY4nHr_HGb4AC9LQlVcDFkWO7BGqyZ8JFR0137qA-AvqBENvg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5V5QIHVN6BggxC4hTwxk4cHxAqVasVolzKoh6QLMcPWKkkZdtK9MZ_4B_yS5iJs9FGIK6Jd-XMw_N9SuYbgOcIqaWtK5_7yEUu8cTLrYikRahd4N4FV1O_89GHar6Q707Kky1Yz9gcDHj-T2pH86QWq9OXP75fvcGEf02MEyn7q3MsM0iuODL3a1iQFOXnkRxfJhQCaVgSFZoun5SiXrH_73N5ozBNP5rcqEKHO3BzgI9sL_n7FmyF9jbc2BAVvAOfU8ffKrD99Bk66yLr-2xzGnzGPiE7pn4pdtxLx9LCgzQL5_fPX_Mrv7KXp0vH3nfWs-Plt2G8F0vS5ndhcXjwcX-eDzMUcofE9yL31oagHPIGzFapZMNtVMEL4StRCO8aHcuo61AqUVnuC3Sbb7x1sXKljSUX92C77drwABgCHfxBLYOso9SqQWjR-CIoi4dm42ufwbO1Oc1ZksowSDHI5ma0eQZvydDjAlK37i90qy9mSBYjtcfls1jin0unuPXc2gaRDYn9x1mZwQtyk6GoQF84O7QS4D5JzcrsIQqRCqGdyGB37Umzji0jZhQRdSVnGTwdb2Na0bsS24buMq2RSLZ0lcH95Phxz0KXiKqVzqCehMTkoaZ32uXXXrob8bdGQicf_n9fj-B6geCJeh4LvgvbGA_hMYKfi-ZJH9p_ALmKBvc
  priority: 102
  providerName: Scholars Portal
Title Pressure Control of Multi-Mode Variable Structure Electro–Hydraulic Load Simulation System
URI https://www.ncbi.nlm.nih.gov/pubmed/39599179
https://www.proquest.com/docview/3133388641
https://www.proquest.com/docview/3133459796
https://pubmed.ncbi.nlm.nih.gov/PMC11598264
https://doaj.org/article/49d4221f5e7a4c70ad0aab0917478f15
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwEB1Be4EDonwG2pVBSJyiZmMndk6orXa7QrRClKI9IEWOP8pKkJTd9sCN_8A_5Jd0JvZud4XEJYeNs3I8nvF7jucNwBuE1EKr0qbWZzwVGPFSzT1pEVbGZdY4oyjf-eS0nJyL99NiGjfcFvFY5TIm9oHadob2yPc5kimuVCmG7y5_plQ1ir6uxhIad2GbpMvoSJec3hIueiKoCXGk9vsLXI6QhFEy29oa1Ev1_xuQ11akzdOSa8vP-CE8iLiRHQRD78Ad1z6C-2tqgo_ha0j1mzt2FM6fs86zPsE2pYpn7AvSYkqUYme9Ziw1HIUiOH9__5n8snN9_X1m2IdOW3Y2-xHrerGgaf4Ezsejz0eTNBZPSA0y3qvUau2cNEgY0E2FFE2mvXSWc1vynFvTVL7wlXKF5KXObI72so3Vxpem0L7I-FPYarvWPQeGCAcfUMIJ5UUlG8QUjc2d1BgtG6tsAq-Xw1lfBo2MGrkFjXm9GvMEDmmgVw1I1rr_oZtf1NFLalFZbD70Bf65MDLTNtO6QUhDKv9-WCTwlsxUk_OhLYyOOQTYT5Kxqg8QfgiJmI4nsLu0ZB29clHfzqEEXq1uoz_RRxLduu46tBHIsqoygWfB8Ks-86pAOC2rBNTGlNh4qc077exbr9mNwLtCJide_L9fL-FejqiJkh3zbBe2cD64PUQ9V82gn9p4VePjAWwfjk4_fhr0Owh4PRHqBjH7CeY
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VcgAOiDeGAgsCcbK68a699gGhUlqlNO2lLcoBabveB0QCuyStUG_8B_4HP4pfwowfaSIkbr3GG2s9z--zd2YAXiKklibPXOwCF7HEiBcbEagXYWE9d9bbnOqd9_az4ZH8ME7HK_C7r4WhY5V9TGwCtastvSNfF0imRJ5ncvD25HtMU6Po62o_QqM1i11__gMp2-zNznvU76sk2d463BzG3VSB2CIVPI2dMd4ri0ga7VcqWXITlHdCuEwkwtmyCGkocp8qkRnuEnwQVzpjQ2ZTE1Iu8L5X4ComXk4epcYXBI922HYvEqLg6zNMf0j6qHhuIec1owH-TQALGXD5dOZCutu-BTc7nMo2WsO6DSu-ugM3FroX3oVPbWnh1LPN9rw7qwNrCnpjmrDGPiINp8IsdtD0qKWFW-3QnT8_fw3P3dScfZ1YNqqNYweTb90cMdb2UL8HR5ci1vuwWtWVfwgMERX-IZde5kEWqkQMU7rEK4PRuXS5i-BFL0590vbk0MhlSOZ6LvMI3pGg5wuojXbzQz39rDuv1LJwuHwQUry5tIobx40pEULRVIEwSCN4TWrS5OyoC2u6mgXcJ7XN0hsId6RCDCkiWOs1qbsoMNMXNhvB8_ll9F_6KGMqX5-1aySyuiKL4EGr-PmeRZEifFdFBPmSSSw91PKVavKl6RGOQL9A5igf_X9fz-Da8HBvpEc7-7uP4XqCiI0KLRO-BqtoG_4JIq7T8mlj5gyOL9uv_gLaakSG
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEB6VIiE4IP4xFFgQiJMVx7v2eg8IlbZRSkuFVIpyqLSs96eNBHZJWqHeeAfehsfhSZixnTQRErde4421nt_vs3dmAF4ipBamyF3sQsJjgREvNjxQL0JlfeKstwXVO3_Yy4cH4v0oG63A71ktDB2rnMXEJlC72tI78h5HMsWLIhf9XuiORXzcHLw9-R7TBCn60jobp9GayI4__4H0bfpmexN1_SpNB1ufNoZxN2EgtkgLT2NnjPfSIqpGWxZSlIkJ0jvOXc5T7mypQhZU4TPJc5O4FB_Klc7YkNvMhCzheN8rcFXyrE8-JkcXZI9223Yy4lwlvSmmQiSAVEi3kP-aMQH_JoOFbLh8UnMh9Q1uwc0Os7L11shuw4qv7sCNhU6Gd-GwLTOceLbRnn1ndWBNcW9M09bYZ6TkVKTF9pt-tbRwqx3A8-fnr-G5m5izr2PLdmvj2P74WzdTjLX91O_BwaWI9T6sVnXlHwJDdIV_KIQXRRBKlohnSpd6aTBSl65wEbyYiVOftP05NPIakrmeyzyCdyTo-QJqqd38UE-OdOehWiiHy_shw5sLKxPjEmNKhFM0YSD0swhek5o0OT7qwpqufgH3SS209DpCHyERT_II1maa1F1EmOoL-43g-fwy-jJ9oDGVr8_aNQIZnsojeNAqfr5nrjKE8lJFUCyZxNJDLV-pxsdNv3AE_QpZpHj0_309g2voUXp3e2_nMVxPEbxRzWWarMEqmoZ_guDrtHzaWDmDL5ftVn8BkQ5IvA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pressure+Control+of+Multi-Mode+Variable+Structure+Electro%E2%80%93Hydraulic+Load+Simulation+System&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=He%2C+Hao&rft.au=Yan%2C+Hao&rft.au=Zhang%2C+Qi&rft.au=Li%2C+Haoyu&rft.date=2024-11-20&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=24&rft.issue=22&rft.spage=7400&rft_id=info:doi/10.3390%2Fs24227400&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon