Pressure Control of Multi-Mode Variable Structure Electro–Hydraulic Load Simulation System
During the loading process, significant external position disturbances occur in the electro–hydraulic load simulation system. To address these position disturbances and effectively mitigate the impact of uncertainty on system performance, this paper first treats model parameter uncertainty and exter...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 24; no. 22; p. 7400 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
20.11.2024
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | During the loading process, significant external position disturbances occur in the electro–hydraulic load simulation system. To address these position disturbances and effectively mitigate the impact of uncertainty on system performance, this paper first treats model parameter uncertainty and external disturbances as lumped disturbances. The various states of the servo valve and the pressures within the hydraulic cylinder chambers are then examined. Building on this foundation, the paper proposes a nonlinear multi-mode variable structure independent load port electro–hydraulic load simulation system that is tailored for specific loading conditions. Secondly, in light of the significant motion disturbances present, this paper proposes an integral sliding mode active disturbance rejection composite control strategy that is based on fixed-time convergence. Based on the structure of the active disturbance rejection control framework, the fixed-time integral sliding mode and active disturbance rejection control algorithms are integrated. An extended state observer is designed to accurately estimate the lumped disturbance, effectively compensating for it to achieve precise loading of the independent load port electro–hydraulic load simulation system. The stability of the designed controller is also demonstrated. The results of the simulation research indicate that when the command input is a step signal, the pressure control accuracy under the composite control strategy is 99.94%, 99.86%, and 99.76% for disturbance frequencies of 1 Hz, 3 Hz, and 5 Hz, respectively. Conversely, when the command input is a sinusoidal signal, the pressure control accuracy remains high, measuring 99.94%, 99.8%, and 99.6% under the same disturbance frequencies. Furthermore, the simulation demonstrates that the influence of sensor random noise on the system remains within acceptable limits, highlighting the effective filtering capabilities of the extended state observer. This research establishes a solid foundation for the collaborative control of load ports and the engineering application of the independent load port electro–hydraulic load simulation system. |
---|---|
AbstractList | During the loading process, significant external position disturbances occur in the electro–hydraulic load simulation system. To address these position disturbances and effectively mitigate the impact of uncertainty on system performance, this paper first treats model parameter uncertainty and external disturbances as lumped disturbances. The various states of the servo valve and the pressures within the hydraulic cylinder chambers are then examined. Building on this foundation, the paper proposes a nonlinear multi-mode variable structure independent load port electro–hydraulic load simulation system that is tailored for specific loading conditions. Secondly, in light of the significant motion disturbances present, this paper proposes an integral sliding mode active disturbance rejection composite control strategy that is based on fixed-time convergence. Based on the structure of the active disturbance rejection control framework, the fixed-time integral sliding mode and active disturbance rejection control algorithms are integrated. An extended state observer is designed to accurately estimate the lumped disturbance, effectively compensating for it to achieve precise loading of the independent load port electro–hydraulic load simulation system. The stability of the designed controller is also demonstrated. The results of the simulation research indicate that when the command input is a step signal, the pressure control accuracy under the composite control strategy is 99.94%, 99.86%, and 99.76% for disturbance frequencies of 1 Hz, 3 Hz, and 5 Hz, respectively. Conversely, when the command input is a sinusoidal signal, the pressure control accuracy remains high, measuring 99.94%, 99.8%, and 99.6% under the same disturbance frequencies. Furthermore, the simulation demonstrates that the influence of sensor random noise on the system remains within acceptable limits, highlighting the effective filtering capabilities of the extended state observer. This research establishes a solid foundation for the collaborative control of load ports and the engineering application of the independent load port electro–hydraulic load simulation system. During the loading process, significant external position disturbances occur in the electro-hydraulic load simulation system. To address these position disturbances and effectively mitigate the impact of uncertainty on system performance, this paper first treats model parameter uncertainty and external disturbances as lumped disturbances. The various states of the servo valve and the pressures within the hydraulic cylinder chambers are then examined. Building on this foundation, the paper proposes a nonlinear multi-mode variable structure independent load port electro-hydraulic load simulation system that is tailored for specific loading conditions. Secondly, in light of the significant motion disturbances present, this paper proposes an integral sliding mode active disturbance rejection composite control strategy that is based on fixed-time convergence. Based on the structure of the active disturbance rejection control framework, the fixed-time integral sliding mode and active disturbance rejection control algorithms are integrated. An extended state observer is designed to accurately estimate the lumped disturbance, effectively compensating for it to achieve precise loading of the independent load port electro-hydraulic load simulation system. The stability of the designed controller is also demonstrated. The results of the simulation research indicate that when the command input is a step signal, the pressure control accuracy under the composite control strategy is 99.94%, 99.86%, and 99.76% for disturbance frequencies of 1 Hz, 3 Hz, and 5 Hz, respectively. Conversely, when the command input is a sinusoidal signal, the pressure control accuracy remains high, measuring 99.94%, 99.8%, and 99.6% under the same disturbance frequencies. Furthermore, the simulation demonstrates that the influence of sensor random noise on the system remains within acceptable limits, highlighting the effective filtering capabilities of the extended state observer. This research establishes a solid foundation for the collaborative control of load ports and the engineering application of the independent load port electro-hydraulic load simulation system.During the loading process, significant external position disturbances occur in the electro-hydraulic load simulation system. To address these position disturbances and effectively mitigate the impact of uncertainty on system performance, this paper first treats model parameter uncertainty and external disturbances as lumped disturbances. The various states of the servo valve and the pressures within the hydraulic cylinder chambers are then examined. Building on this foundation, the paper proposes a nonlinear multi-mode variable structure independent load port electro-hydraulic load simulation system that is tailored for specific loading conditions. Secondly, in light of the significant motion disturbances present, this paper proposes an integral sliding mode active disturbance rejection composite control strategy that is based on fixed-time convergence. Based on the structure of the active disturbance rejection control framework, the fixed-time integral sliding mode and active disturbance rejection control algorithms are integrated. An extended state observer is designed to accurately estimate the lumped disturbance, effectively compensating for it to achieve precise loading of the independent load port electro-hydraulic load simulation system. The stability of the designed controller is also demonstrated. The results of the simulation research indicate that when the command input is a step signal, the pressure control accuracy under the composite control strategy is 99.94%, 99.86%, and 99.76% for disturbance frequencies of 1 Hz, 3 Hz, and 5 Hz, respectively. Conversely, when the command input is a sinusoidal signal, the pressure control accuracy remains high, measuring 99.94%, 99.8%, and 99.6% under the same disturbance frequencies. Furthermore, the simulation demonstrates that the influence of sensor random noise on the system remains within acceptable limits, highlighting the effective filtering capabilities of the extended state observer. This research establishes a solid foundation for the collaborative control of load ports and the engineering application of the independent load port electro-hydraulic load simulation system. |
Audience | Academic |
Author | Hao, He Yan, Hao Zhang, Qi Li, Haoyu |
AuthorAffiliation | 1 School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044, China; 22121296@bjtu.edu.cn (H.H.); lhy10102021@163.com (H.L.) 2 AECC Guizhou Honglin Aero–Engine Control Technology Co., Ltd., Guiyang 551522, China; qizhang821@163.com |
AuthorAffiliation_xml | – name: 2 AECC Guizhou Honglin Aero–Engine Control Technology Co., Ltd., Guiyang 551522, China; qizhang821@163.com – name: 1 School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044, China; 22121296@bjtu.edu.cn (H.H.); lhy10102021@163.com (H.L.) |
Author_xml | – sequence: 1 givenname: He surname: Hao fullname: Hao, He – sequence: 2 givenname: Hao surname: Yan fullname: Yan, Hao – sequence: 3 givenname: Qi surname: Zhang fullname: Zhang, Qi – sequence: 4 givenname: Haoyu surname: Li fullname: Li, Haoyu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39599179$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkstu1DAUhiNURC-w4AVQJDawSPE1jleoGhVaaSqQBlghWSe-DB45cWsnSLPjHXhDngS3U0Yt8sLW8effPr__4-pgjKOtqpcYnVIq0btMGCGCIfSkOsKMsKYjBB08WB9WxzlvECKU0u5ZdUgllxILeVR9_5xsznOy9SKOU4qhjq6-msPkm6tobP0Nkoc-2Ho1pVlPt-B5sLqQf379vtiaBHPwul5GMPXKD3OAycexXm3zZIfn1VMHIdsX9_NJ9fXD-ZfFRbP89PFycbZsNGvl1BgAa4XmXCKGmGA9AiesodS0lFCje-m4k53lgraADOlaY3oD2rWag-OInlSXO10TYaOukx8gbVUEr-4KMa0VpMnrYBWTpniFHbcCmBYIDALoUTGDic5hXrTe77Su536wRtviCoRHoo93Rv9DreNPhTGXHWlZUXhzr5DizWzzpAaftQ0BRhvnrCimlHEpZFvQ1_-hmzinsXh1R9Guaxku1OmOWkPpwI8ulot1GcYOXpcoOF_qZx3umEC8peXAq4c97B__79sL8HYH6BRzTtbtEYzUbaTUPlL0L6zmvpU |
Cites_doi | 10.1016/j.ymssp.2020.106869 10.1109/TMECH.2022.3173991 10.3390/act12080304 10.1109/TMECH.2021.3088955 10.1002/mma.6716 10.1016/j.isatra.2019.08.057 10.1109/TTE.2023.3313567 10.1109/TII.2022.3159537 10.1109/TIE.2021.3102434 10.1016/j.ins.2022.12.061 10.1109/TCYB.2021.3077599 10.1016/j.biosystemseng.2021.07.014 10.1109/TIE.2023.3236114 10.1109/TIE.2021.3101006 10.1016/j.ymssp.2018.09.026 10.1016/j.conengprac.2018.12.013 10.1109/TMECH.2022.3201283 10.1016/j.isatra.2021.06.020 10.1109/TIE.2019.2916387 10.1109/TMECH.2021.3119414 10.3390/math11234819 10.1109/TMECH.2019.2930276 10.1109/TMECH.2022.3203517 10.1016/j.asoc.2023.111043 10.1109/TMECH.2021.3094284 10.1016/j.energy.2020.119291 10.1109/TASE.2023.3289445 10.1109/TII.2023.3249760 10.1016/j.autcon.2021.103722 10.1016/j.enconman.2024.118119 10.3390/act12100370 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2024 by the authors. 2024 |
Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2024 by the authors. 2024 |
DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/s24227400 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni) Medical Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic CrossRef PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ : directory of open access journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_49d4221f5e7a4c70ad0aab0917478f15 PMC11598264 A818470563 39599179 10_3390_s24227400 |
Genre | Journal Article |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. ABJCF ARAPS HCIFZ KB. M7S NPM PDBOC PMFND 7XB 8FK AZQEC DWQXO K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c469t-daaee7c559040474b0af7ed33d6323dcb9f5f98e5736a0d286ddbdacf6c5af503 |
IEDL.DBID | 7X7 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:16:20 EDT 2025 Thu Aug 21 18:35:09 EDT 2025 Fri Jul 11 09:05:36 EDT 2025 Fri Jul 25 23:30:16 EDT 2025 Tue Jun 10 20:59:51 EDT 2025 Wed Feb 19 02:03:57 EST 2025 Tue Jul 01 03:51:21 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 22 |
Keywords | electro–hydraulic servo system pressure control sliding mode control independent load port |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c469t-daaee7c559040474b0af7ed33d6323dcb9f5f98e5736a0d286ddbdacf6c5af503 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.proquest.com/docview/3133388641?pq-origsite=%requestingapplication% |
PMID | 39599179 |
PQID | 3133388641 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_49d4221f5e7a4c70ad0aab0917478f15 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11598264 proquest_miscellaneous_3133459796 proquest_journals_3133388641 gale_infotracacademiconefile_A818470563 pubmed_primary_39599179 crossref_primary_10_3390_s24227400 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20241120 |
PublicationDateYYYYMMDD | 2024-11-20 |
PublicationDate_xml | – month: 11 year: 2024 text: 20241120 day: 20 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2024 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Ren (ref_14) 2022; 27 Tavernini (ref_18) 2020; 67 Abuowda (ref_32) 2020; 98 Yin (ref_16) 2019; 133 Xu (ref_19) 2023; 70 Yang (ref_20) 2024; 21 Han (ref_4) 2023; 28 ref_30 Xu (ref_6) 2021; 209 Zhu (ref_31) 2019; 85 Guo (ref_2) 2021; 146 Zhang (ref_11) 2023; 28 Abuowda (ref_25) 2022; 45 Qu (ref_22) 2021; 216 Wang (ref_28) 2024; 10 Feng (ref_8) 2021; 127 Jiang (ref_3) 2023; 623 Qin (ref_10) 2022; 27 Shi (ref_17) 2023; 19 ref_24 ref_21 Feng (ref_1) 2023; 28 Li (ref_23) 2022; 69 ref_29 Yang (ref_5) 2022; 52 Sui (ref_12) 2022; 125 Li (ref_27) 2024; 302 Lyu (ref_26) 2019; 24 Guo (ref_7) 2022; 69 Helian (ref_9) 2023; 19 Yang (ref_13) 2024; 151 Fan (ref_15) 2021; 26 |
References_xml | – volume: 146 start-page: 106869 year: 2021 ident: ref_2 article-title: Neural adaptive control of single-rod electrohydraulic system with lumped uncertainty publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2020.106869 – volume: 27 start-page: 1928 year: 2022 ident: ref_10 article-title: An Adaptive Robust Impedance Control Considering Energy-Saving of Hydraulic Excavator Boom and Stick Systems publication-title: IEEE/ASME Trans. Mechatron. doi: 10.1109/TMECH.2022.3173991 – ident: ref_24 doi: 10.3390/act12080304 – volume: 27 start-page: 1457 year: 2022 ident: ref_14 article-title: Fractional order integral sliding mode controller based on neural network: Theory and electro-hydraulic benchmark test publication-title: IEEE/ASME Trans. Mechatron. doi: 10.1109/TMECH.2021.3088955 – volume: 45 start-page: 2443 year: 2022 ident: ref_25 article-title: Mathematical-based control method and performance analysis of a novel hydromechatronics driving system micro-independent metering publication-title: Math. Methods Appl. Sci. doi: 10.1002/mma.6716 – volume: 98 start-page: 364 year: 2020 ident: ref_32 article-title: A review of electrohydraulic independent metering technology publication-title: ISA Trans. doi: 10.1016/j.isatra.2019.08.057 – volume: 10 start-page: 4142 year: 2024 ident: ref_28 article-title: Differential Drive Collaborative Steering Control of Independent-Wheel-Drive Articulated-Steering Electric Vehicles for Energy Saving publication-title: IEEE Trans. Transp. Electrif. doi: 10.1109/TTE.2023.3313567 – volume: 19 start-page: 1380 year: 2023 ident: ref_17 article-title: A Model Predictive Control Approach for Electro-Hydraulic Braking by Wire publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2022.3159537 – volume: 69 start-page: 7088 year: 2022 ident: ref_23 article-title: Precision Motion Control of an Independent Metering Hydraulic System with Nonlinear Flow Modeling and Compensation publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2021.3102434 – volume: 623 start-page: 577 year: 2023 ident: ref_3 article-title: Finite-time fuzzy adaptive output feedback control of electro-hydraulic system with actuator faults publication-title: Inf. Sci. doi: 10.1016/j.ins.2022.12.061 – volume: 52 start-page: 11906 year: 2022 ident: ref_5 article-title: Time-Driven Adaptive Control of Switched Systems with Application to Electro-Hydraulic Unit publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2021.3077599 – volume: 209 start-page: 282 year: 2021 ident: ref_6 article-title: Path following control of tractor with an electro-hydraulic coupling steering system: Layered multi-loop robust control architecture publication-title: Biosyst. Eng. doi: 10.1016/j.biosystemseng.2021.07.014 – volume: 70 start-page: 12500 year: 2023 ident: ref_19 article-title: Barrier Lyapunov Function-Based Adaptive Output Feedback Prescribed Performance Controller for Hydraulic Systems with Uncertainties Compensation publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2023.3236114 – volume: 69 start-page: 7140 year: 2022 ident: ref_7 article-title: Adaptive Tracking Control of Hydraulic Systems with Improved Parameter Convergence publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2021.3101006 – volume: 133 start-page: 105704 year: 2019 ident: ref_16 article-title: Adaptive robust integral sliding mode pitch angle control of an electro-hydraulic servo pitch system for wind turbine publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2018.09.026 – volume: 85 start-page: 176 year: 2019 ident: ref_31 article-title: Energy-efficient and high-precision control of hydraulic robots publication-title: Control Eng. Pract. doi: 10.1016/j.conengprac.2018.12.013 – volume: 28 start-page: 473 year: 2023 ident: ref_1 article-title: Trajectory Tracking of an Electro-Hydraulic Servo System with an New Friction Model-Based Compensation publication-title: IEEE/ASME Trans. Mechatron. doi: 10.1109/TMECH.2022.3201283 – volume: 125 start-page: 85 year: 2022 ident: ref_12 article-title: Active disturbance rejection control for optoelectronic stabilized platform based on adaptive fuzzy sliding mode control publication-title: ISA Trans. doi: 10.1016/j.isatra.2021.06.020 – ident: ref_21 – volume: 67 start-page: 3990 year: 2020 ident: ref_18 article-title: An Explicit Nonlinear Model Predictive ABS Controller for Electro-Hydraulic Braking Systems publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2019.2916387 – volume: 28 start-page: 197 year: 2023 ident: ref_4 article-title: Integrated Pressure Estimation and Control for Electro-hydraulic Brake Systems of Electric Vehicles Considering Actuator Characteristics and Vehicle Longitudinal Dynamics publication-title: IEEE/ASME Trans. Mechatron. doi: 10.1109/TMECH.2021.3119414 – ident: ref_30 doi: 10.3390/math11234819 – volume: 24 start-page: 1909 year: 2019 ident: ref_26 article-title: Energy Saving Motion Control of Independent Metering Valves and Pump Combined Hydraulic System publication-title: IEEE/ASME Trans. Mechatron. doi: 10.1109/TMECH.2019.2930276 – volume: 28 start-page: 483 year: 2023 ident: ref_11 article-title: Global Integral Sliding-Mode Control with Improved Nonlinear Extended State Observer for Rotary Tracking of a Hydraulic Roofbolter publication-title: IEEE/ASME Trans. Mechatron. doi: 10.1109/TMECH.2022.3203517 – volume: 151 start-page: 111043 year: 2024 ident: ref_13 article-title: Multilayer neurocontrol of servo electromechanical systems with disturbance compensation publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2023.111043 – volume: 26 start-page: 2870 year: 2021 ident: ref_15 article-title: An Adaptive Fuzzy Trajectory Tracking Control via Improved Cerebellar Model Articulation Controller for Electro-Hydraulic Shovel publication-title: IEEE/ASME Trans. Mechatron. doi: 10.1109/TMECH.2021.3094284 – volume: 216 start-page: 119291 year: 2021 ident: ref_22 article-title: A high-efficient solution for electro-hydraulic actuators with energy regeneration capability publication-title: Energy doi: 10.1016/j.energy.2020.119291 – volume: 21 start-page: 3886 year: 2024 ident: ref_20 article-title: Practically Predefined-Time Leader-Following Funnel Control for Nonlinear Multi-Agent Systems with Fuzzy Dead-Zone publication-title: IEEE Trans. Autom. Sci. Eng. doi: 10.1109/TASE.2023.3289445 – volume: 19 start-page: 11878 year: 2023 ident: ref_9 article-title: Constrained Motion Control of an Electro- Hydraulic Actuator Under Multiple Time-Varying Constraints publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2023.3249760 – volume: 127 start-page: 103722 year: 2021 ident: ref_8 article-title: Trajectory control of electro-hydraulic position servo system using improved PSO-PID controller publication-title: Autom. Constr. doi: 10.1016/j.autcon.2021.103722 – volume: 302 start-page: 118119 year: 2024 ident: ref_27 article-title: Independent metering-based leveling system with multi-actuator for energy saving: Modeling, control, and application on large-size forming equipment publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2024.118119 – ident: ref_29 doi: 10.3390/act12100370 |
RelatedPersons | Liu, Timothy |
RelatedPersons_xml | – fullname: Liu, Timothy |
SSID | ssj0023338 |
Score | 2.4390829 |
Snippet | During the loading process, significant external position disturbances occur in the electro–hydraulic load simulation system. To address these position... During the loading process, significant external position disturbances occur in the electro-hydraulic load simulation system. To address these position... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | 7400 |
SubjectTerms | Accuracy Analysis electro–hydraulic servo system Energy consumption Hydraulics independent load port Liu, Timothy Mathematical models Motion control Pneumatics pressure control Robust control Sensors Simulation Simulation methods sliding mode control Valves |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwEB1VnNoDgraUtLRyKyROEdnYieMjRaBV1fZCQRwqWY7HFitBFvFx4MZ_4B_2l3Qmzq6y6qEXjkkcyZnxeN5TPG8AdglSK9fUmGMsZK5ox8udjKxFaHwo0AffcL3zj5_19FR9O6_OR62--ExYkgdOhttXBlVZTmIVtFNeFw4L51rKciz8Hvvy8pKuFmRqoFqSmFfSEZJE6vdvKRER_eIytlH26UX6_92KR7lo9ZzkKPEcb8D6gBjFQZrpJrwI3Wt4NdIRfAO_U5HfTRCH6eS5mEfRl9bm3OtMnBEh5hIpcdKrxfLAo9T-5s_j0_QBb9z95cyL73OH4mR2NXT0EknN_C2cHh_9OpzmQ9uE3BPXvcvRuRC0J6pAAaq0agsXdUApsZalRN-aWEXThErL2hVYkqewRedj7SsXq0JuwVo378I2CMI29EKjgmqiMrolNNFiSZ6gfbLFBjP4sjCnvU7qGJZYBdvcLm2ewVc29HIAC1r3N8jNdnCz_Z-bM9hjN1kOO_KFd0P1AM2TBazsAQEPpQnNyQx2Fp60QzzeWjnhFdHUapLB5-VjiiT-PeK6ML9PYxTxK1Nn8C45fjlnaSoC0tpk0KwsiZWPWn3SzS56tW6C3IY4nHr_HGb4AC9LQlVcDFkWO7BGqyZ8JFR0137qA-AvqBENvg priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5V5QIHVN6BggxC4hTwxk4cHxAqVasVolzKoh6QLMcPWKkkZdtK9MZ_4B_yS5iJs9FGIK6Jd-XMw_N9SuYbgOcIqaWtK5_7yEUu8cTLrYikRahd4N4FV1O_89GHar6Q707Kky1Yz9gcDHj-T2pH86QWq9OXP75fvcGEf02MEyn7q3MsM0iuODL3a1iQFOXnkRxfJhQCaVgSFZoun5SiXrH_73N5ozBNP5rcqEKHO3BzgI9sL_n7FmyF9jbc2BAVvAOfU8ffKrD99Bk66yLr-2xzGnzGPiE7pn4pdtxLx9LCgzQL5_fPX_Mrv7KXp0vH3nfWs-Plt2G8F0vS5ndhcXjwcX-eDzMUcofE9yL31oagHPIGzFapZMNtVMEL4StRCO8aHcuo61AqUVnuC3Sbb7x1sXKljSUX92C77drwABgCHfxBLYOso9SqQWjR-CIoi4dm42ufwbO1Oc1ZksowSDHI5ma0eQZvydDjAlK37i90qy9mSBYjtcfls1jin0unuPXc2gaRDYn9x1mZwQtyk6GoQF84O7QS4D5JzcrsIQqRCqGdyGB37Umzji0jZhQRdSVnGTwdb2Na0bsS24buMq2RSLZ0lcH95Phxz0KXiKqVzqCehMTkoaZ32uXXXrob8bdGQicf_n9fj-B6geCJeh4LvgvbGA_hMYKfi-ZJH9p_ALmKBvc priority: 102 providerName: Scholars Portal |
Title | Pressure Control of Multi-Mode Variable Structure Electro–Hydraulic Load Simulation System |
URI | https://www.ncbi.nlm.nih.gov/pubmed/39599179 https://www.proquest.com/docview/3133388641 https://www.proquest.com/docview/3133459796 https://pubmed.ncbi.nlm.nih.gov/PMC11598264 https://doaj.org/article/49d4221f5e7a4c70ad0aab0917478f15 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwEB1Be4EDonwG2pVBSJyiZmMndk6orXa7QrRClKI9IEWOP8pKkJTd9sCN_8A_5Jd0JvZud4XEJYeNs3I8nvF7jucNwBuE1EKr0qbWZzwVGPFSzT1pEVbGZdY4oyjf-eS0nJyL99NiGjfcFvFY5TIm9oHadob2yPc5kimuVCmG7y5_plQ1ir6uxhIad2GbpMvoSJec3hIueiKoCXGk9vsLXI6QhFEy29oa1Ev1_xuQ11akzdOSa8vP-CE8iLiRHQRD78Ad1z6C-2tqgo_ha0j1mzt2FM6fs86zPsE2pYpn7AvSYkqUYme9Ziw1HIUiOH9__5n8snN9_X1m2IdOW3Y2-xHrerGgaf4Ezsejz0eTNBZPSA0y3qvUau2cNEgY0E2FFE2mvXSWc1vynFvTVL7wlXKF5KXObI72so3Vxpem0L7I-FPYarvWPQeGCAcfUMIJ5UUlG8QUjc2d1BgtG6tsAq-Xw1lfBo2MGrkFjXm9GvMEDmmgVw1I1rr_oZtf1NFLalFZbD70Bf65MDLTNtO6QUhDKv9-WCTwlsxUk_OhLYyOOQTYT5Kxqg8QfgiJmI4nsLu0ZB29clHfzqEEXq1uoz_RRxLduu46tBHIsqoygWfB8Ks-86pAOC2rBNTGlNh4qc077exbr9mNwLtCJide_L9fL-FejqiJkh3zbBe2cD64PUQ9V82gn9p4VePjAWwfjk4_fhr0Owh4PRHqBjH7CeY |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VcgAOiDeGAgsCcbK68a699gGhUlqlNO2lLcoBabveB0QCuyStUG_8B_4HP4pfwowfaSIkbr3GG2s9z--zd2YAXiKklibPXOwCF7HEiBcbEagXYWE9d9bbnOqd9_az4ZH8ME7HK_C7r4WhY5V9TGwCtastvSNfF0imRJ5ncvD25HtMU6Po62o_QqM1i11__gMp2-zNznvU76sk2d463BzG3VSB2CIVPI2dMd4ri0ga7VcqWXITlHdCuEwkwtmyCGkocp8qkRnuEnwQVzpjQ2ZTE1Iu8L5X4ComXk4epcYXBI922HYvEqLg6zNMf0j6qHhuIec1owH-TQALGXD5dOZCutu-BTc7nMo2WsO6DSu-ugM3FroX3oVPbWnh1LPN9rw7qwNrCnpjmrDGPiINp8IsdtD0qKWFW-3QnT8_fw3P3dScfZ1YNqqNYweTb90cMdb2UL8HR5ci1vuwWtWVfwgMERX-IZde5kEWqkQMU7rEK4PRuXS5i-BFL0590vbk0MhlSOZ6LvMI3pGg5wuojXbzQz39rDuv1LJwuHwQUry5tIobx40pEULRVIEwSCN4TWrS5OyoC2u6mgXcJ7XN0hsId6RCDCkiWOs1qbsoMNMXNhvB8_ll9F_6KGMqX5-1aySyuiKL4EGr-PmeRZEifFdFBPmSSSw91PKVavKl6RGOQL9A5igf_X9fz-Da8HBvpEc7-7uP4XqCiI0KLRO-BqtoG_4JIq7T8mlj5gyOL9uv_gLaakSG |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEB6VIiE4IP4xFFgQiJMVx7v2eg8IlbZRSkuFVIpyqLSs96eNBHZJWqHeeAfehsfhSZixnTQRErde4421nt_vs3dmAF4ipBamyF3sQsJjgREvNjxQL0JlfeKstwXVO3_Yy4cH4v0oG63A71ktDB2rnMXEJlC72tI78h5HMsWLIhf9XuiORXzcHLw9-R7TBCn60jobp9GayI4__4H0bfpmexN1_SpNB1ufNoZxN2EgtkgLT2NnjPfSIqpGWxZSlIkJ0jvOXc5T7mypQhZU4TPJc5O4FB_Klc7YkNvMhCzheN8rcFXyrE8-JkcXZI9223Yy4lwlvSmmQiSAVEi3kP-aMQH_JoOFbLh8UnMh9Q1uwc0Os7L11shuw4qv7sCNhU6Gd-GwLTOceLbRnn1ndWBNcW9M09bYZ6TkVKTF9pt-tbRwqx3A8-fnr-G5m5izr2PLdmvj2P74WzdTjLX91O_BwaWI9T6sVnXlHwJDdIV_KIQXRRBKlohnSpd6aTBSl65wEbyYiVOftP05NPIakrmeyzyCdyTo-QJqqd38UE-OdOehWiiHy_shw5sLKxPjEmNKhFM0YSD0swhek5o0OT7qwpqufgH3SS209DpCHyERT_II1maa1F1EmOoL-43g-fwy-jJ9oDGVr8_aNQIZnsojeNAqfr5nrjKE8lJFUCyZxNJDLV-pxsdNv3AE_QpZpHj0_309g2voUXp3e2_nMVxPEbxRzWWarMEqmoZ_guDrtHzaWDmDL5ftVn8BkQ5IvA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pressure+Control+of+Multi-Mode+Variable+Structure+Electro%E2%80%93Hydraulic+Load+Simulation+System&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=He%2C+Hao&rft.au=Yan%2C+Hao&rft.au=Zhang%2C+Qi&rft.au=Li%2C+Haoyu&rft.date=2024-11-20&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=24&rft.issue=22&rft.spage=7400&rft_id=info:doi/10.3390%2Fs24227400&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |