Estimation of Greenhouse Lettuce Growth Indices Based on a Two-Stage CNN Using RGB-D Images

Growth indices can quantify crop productivity and establish optimal environmental, nutritional, and irrigation control strategies. A convolutional neural network (CNN)-based model is presented for estimating various growth indices (i.e., fresh weight, dry weight, height, leaf area, and diameter) of...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 22; no. 15; p. 5499
Main Authors Gang, Min-Seok, Kim, Hak-Jin, Kim, Dong-Wook
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 23.07.2022
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Growth indices can quantify crop productivity and establish optimal environmental, nutritional, and irrigation control strategies. A convolutional neural network (CNN)-based model is presented for estimating various growth indices (i.e., fresh weight, dry weight, height, leaf area, and diameter) of four varieties of greenhouse lettuce using red, green, blue, and depth (RGB-D) data obtained using a stereo camera. Data from an online autonomous greenhouse challenge (Wageningen University, June 2021) were employed in this study. The data were collected using an Intel RealSense D415 camera. The developed model has a two-stage CNN architecture based on ResNet50V2 layers. The developed model provided coefficients of determination from 0.88 to 0.95, with normalized root mean square errors of 6.09%, 6.30%, 7.65%, 7.92%, and 5.62% for fresh weight, dry weight, height, diameter, and leaf area, respectively, on unknown lettuce images. Using red, green, blue (RGB) and depth data employed in the CNN improved the determination accuracy for all five lettuce growth indices due to the ability of the stereo camera to extract height information on lettuce. The average time for processing each lettuce image using the developed CNN model run on a Jetson SUB mini-PC with a Jetson Xavier NX was 0.83 s, indicating the potential for the model in fast real-time sensing of lettuce growth indices.
AbstractList Growth indices can quantify crop productivity and establish optimal environmental, nutritional, and irrigation control strategies. A convolutional neural network (CNN)-based model is presented for estimating various growth indices (i.e., fresh weight, dry weight, height, leaf area, and diameter) of four varieties of greenhouse lettuce using red, green, blue, and depth (RGB-D) data obtained using a stereo camera. Data from an online autonomous greenhouse challenge (Wageningen University, June 2021) were employed in this study. The data were collected using an Intel RealSense D415 camera. The developed model has a two-stage CNN architecture based on ResNet50V2 layers. The developed model provided coefficients of determination from 0.88 to 0.95, with normalized root mean square errors of 6.09%, 6.30%, 7.65%, 7.92%, and 5.62% for fresh weight, dry weight, height, diameter, and leaf area, respectively, on unknown lettuce images. Using red, green, blue (RGB) and depth data employed in the CNN improved the determination accuracy for all five lettuce growth indices due to the ability of the stereo camera to extract height information on lettuce. The average time for processing each lettuce image using the developed CNN model run on a Jetson SUB mini-PC with a Jetson Xavier NX was 0.83 s, indicating the potential for the model in fast real-time sensing of lettuce growth indices.
Growth indices can quantify crop productivity and establish optimal environmental, nutritional, and irrigation control strategies. A convolutional neural network (CNN)-based model is presented for estimating various growth indices (i.e., fresh weight, dry weight, height, leaf area, and diameter) of four varieties of greenhouse lettuce using red, green, blue, and depth (RGB-D) data obtained using a stereo camera. Data from an online autonomous greenhouse challenge (Wageningen University, June 2021) were employed in this study. The data were collected using an Intel RealSense D415 camera. The developed model has a two-stage CNN architecture based on ResNet50V2 layers. The developed model provided coefficients of determination from 0.88 to 0.95, with normalized root mean square errors of 6.09%, 6.30%, 7.65%, 7.92%, and 5.62% for fresh weight, dry weight, height, diameter, and leaf area, respectively, on unknown lettuce images. Using red, green, blue (RGB) and depth data employed in the CNN improved the determination accuracy for all five lettuce growth indices due to the ability of the stereo camera to extract height information on lettuce. The average time for processing each lettuce image using the developed CNN model run on a Jetson SUB mini-PC with a Jetson Xavier NX was 0.83 s, indicating the potential for the model in fast real-time sensing of lettuce growth indices.Growth indices can quantify crop productivity and establish optimal environmental, nutritional, and irrigation control strategies. A convolutional neural network (CNN)-based model is presented for estimating various growth indices (i.e., fresh weight, dry weight, height, leaf area, and diameter) of four varieties of greenhouse lettuce using red, green, blue, and depth (RGB-D) data obtained using a stereo camera. Data from an online autonomous greenhouse challenge (Wageningen University, June 2021) were employed in this study. The data were collected using an Intel RealSense D415 camera. The developed model has a two-stage CNN architecture based on ResNet50V2 layers. The developed model provided coefficients of determination from 0.88 to 0.95, with normalized root mean square errors of 6.09%, 6.30%, 7.65%, 7.92%, and 5.62% for fresh weight, dry weight, height, diameter, and leaf area, respectively, on unknown lettuce images. Using red, green, blue (RGB) and depth data employed in the CNN improved the determination accuracy for all five lettuce growth indices due to the ability of the stereo camera to extract height information on lettuce. The average time for processing each lettuce image using the developed CNN model run on a Jetson SUB mini-PC with a Jetson Xavier NX was 0.83 s, indicating the potential for the model in fast real-time sensing of lettuce growth indices.
Author Kim, Dong-Wook
Gang, Min-Seok
Kim, Hak-Jin
AuthorAffiliation 1 Department of Biosystems Engineering, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea; msg1907@snu.ac.kr (M.-S.G.); dwk8033@snu.ac.kr (D.-W.K.)
2 Integrated Major in Global Smart Farm, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
3 Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
AuthorAffiliation_xml – name: 3 Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
– name: 1 Department of Biosystems Engineering, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea; msg1907@snu.ac.kr (M.-S.G.); dwk8033@snu.ac.kr (D.-W.K.)
– name: 2 Integrated Major in Global Smart Farm, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
Author_xml – sequence: 1
  givenname: Min-Seok
  orcidid: 0000-0003-3616-0375
  surname: Gang
  fullname: Gang, Min-Seok
– sequence: 2
  givenname: Hak-Jin
  surname: Kim
  fullname: Kim, Hak-Jin
– sequence: 3
  givenname: Dong-Wook
  surname: Kim
  fullname: Kim, Dong-Wook
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35898004$$D View this record in MEDLINE/PubMed
BookMark eNptkk1vFCEYxyemxr7owS9gSLzoYSwDDDAXE7vWdZNNTbQ9eSAMPLPLZhYqMDZ-e2m3btrGE-TPj__zelwd-OChql43-AOlHT5NhDRty7ruWXXUMMJqSQg-eHA_rI5T2mBMKKXyRXVIW9lJjNlR9fM8ZbfV2QWPwoDmEcCvw5QALSHnyUCRwk1eo4W3zkBCZzqBRYXW6PIm1D-yXgGaXVygq-T8Cn2fn9Wf0WJb1PSyej7oMcGr-_Okuvpyfjn7Wi-_zRezT8vaMN7l2nbSUiCCDz0TTEvKeyADs7SRvWSSWiPang7WgGCy6bmRDBiXlBIxkAYkPakWO18b9EZdx1JP_KOCdupOCHGldMzOjKAM1z2mbSdBYyYk6Q1IbVsJBgvZW168Pu68rqd-CyWmz1GPj0wfv3i3VqvwW3WUNkySYvDu3iCGXxOkrLYuGRhH7aH0VRHecdzglt-ib5-gmzBFX1qliMBYcMKZKNSbhxntU_k3wwK83wEmhpQiDHukwep2P9R-Pwp7-oQ1Lt9NvxTjxv_8-As5y7nU
CitedBy_id crossref_primary_10_3390_agriculture13101874
crossref_primary_10_3390_plants12102061
crossref_primary_10_1016_j_inpa_2024_11_001
crossref_primary_10_12791_KSBEC_2023_32_4_434
crossref_primary_10_3390_plants13223217
crossref_primary_10_3390_app13064012
crossref_primary_10_3390_rs15122988
crossref_primary_10_3390_plants13213088
crossref_primary_10_1016_j_atech_2024_100448
crossref_primary_10_3390_app15062893
crossref_primary_10_3390_s23062929
crossref_primary_10_1016_j_compag_2023_108263
crossref_primary_10_3390_s24216920
crossref_primary_10_1186_s13007_025_01347_y
crossref_primary_10_3390_agronomy14102264
crossref_primary_10_3390_horticulturae10020117
crossref_primary_10_3390_horticulturae9121288
crossref_primary_10_3390_agronomy15010029
crossref_primary_10_1016_j_heliyon_2024_e34998
crossref_primary_10_1109_ACCESS_2023_3265597
crossref_primary_10_1109_ACCESS_2024_3349418
crossref_primary_10_3389_fpls_2024_1365266
Cites_doi 10.1080/14620316.2000.11511249
10.1016/j.compag.2021.106067
10.1016/j.compag.2017.07.008
10.3390/f12121747
10.1007/978-3-319-46493-0_38
10.1016/j.compag.2020.105827
10.5344/ajev.1985.36.3.230
10.1016/j.ifacol.2018.08.075
10.1016/j.compag.2018.09.010
10.2307/1403797
10.1109/JPROC.2017.2761740
10.1038/s41438-020-00345-6
10.1016/j.biosystemseng.2013.08.011
10.1016/j.acra.2019.03.015
10.1016/j.scienta.2006.12.028
10.3389/fpls.2017.02233
10.1016/j.agrformet.2018.11.033
10.1016/j.renene.2020.05.150
10.1016/j.compag.2020.105687
10.1016/j.biosystemseng.2016.08.024
10.1063/1.4818918
10.1186/s13007-020-00613-5
10.1186/s13007-021-00722-9
10.1016/j.rse.2019.111599
10.2139/ssrn.4165001
10.34133/2020/4152816
10.1109/ICIRCA51532.2021.9545062
10.21273/JASHS.112.2.325
10.1016/j.scienta.2007.04.003
10.1007/s11119-013-9317-6
10.1109/CVPR.2016.90
10.1109/CVPR.2009.5206848
10.3390/w13131773
10.1109/MGRS.2020.2998816
10.1109/ACCESS.2019.2923742
10.1186/1746-4811-7-2
10.13031/aim.201900341
10.3390/rs13122288
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s22155499
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
MEDLINE
CrossRef

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_c6ab03598ea04782bce8ad58ec078bd6
PMC9331482
35898004
10_3390_s22155499
Genre Journal Article
GeographicLocations United States--US
GeographicLocations_xml – name: United States--US
GrantInformation_xml – fundername: Ministry of Science and ICT
  grantid: 21006031HD030
– fundername: Ministry of Agriculture, Food and Rural Affairs
  grantid: 21006031HD030
– fundername: Rural Development Administration
  grantid: PJ014911
– fundername: Rural Development Administration
  grantid: 21006031HD030
– fundername: Ministry of Education of Korea and the National Research Foundation of Korea
– fundername: Ministry of Science and ICT, Rural Development Administration (RDA)
  grantid: PJ014911
– fundername: Ministry of Agriculture, Food and Rural Affairs; Ministry of Science and ICT, Rural Development Administration (RDA)
  grantid: 21006031HD030
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c469t-d98d3e276fb474a836be2f4d318b8483dc75b3fdce7481b6c84e4683327f21e83
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 01:21:12 EDT 2025
Thu Aug 21 14:36:57 EDT 2025
Fri Jul 11 07:51:54 EDT 2025
Fri Jul 25 20:13:56 EDT 2025
Mon Jul 21 06:04:45 EDT 2025
Tue Jul 01 02:42:04 EDT 2025
Thu Apr 24 22:59:52 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 15
Keywords growth estimation
stereo camera
convolutional neural network (CNN)
growth index
greenhouse
lettuce
red, green, blue, and depth (RGB-D)
growth monitoring
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c469t-d98d3e276fb474a836be2f4d318b8483dc75b3fdce7481b6c84e4683327f21e83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3616-0375
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s22155499
PMID 35898004
PQID 2700762647
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_c6ab03598ea04782bce8ad58ec078bd6
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9331482
proquest_miscellaneous_2696010562
proquest_journals_2700762647
pubmed_primary_35898004
crossref_primary_10_3390_s22155499
crossref_citationtrail_10_3390_s22155499
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220723
PublicationDateYYYYMMDD 2022-07-23
PublicationDate_xml – month: 7
  year: 2022
  text: 20220723
  day: 23
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References ref_50
Peksen (ref_6) 2007; 113
Fix (ref_40) 1989; 57
ref_14
ref_13
Chang (ref_31) 2017; 141
Jiang (ref_9) 2018; 51
ref_51
ref_19
Yeh (ref_8) 2014; 117
ref_18
ref_17
ref_16
Lati (ref_7) 2013; 14
Dyrmann (ref_12) 2016; 151
ref_24
Ahmed (ref_35) 2000; 75
ref_22
ref_21
Olaniyi (ref_32) 2010; 4
ref_20
Fu (ref_15) 2020; 177
Williams (ref_2) 1987; 112
ref_29
Yan (ref_25) 2019; 265
ref_28
ref_27
ref_26
Bacchi (ref_37) 2020; 27
ref_34
Cho (ref_5) 2007; 111
ref_33
Mortensen (ref_23) 2018; 154
ref_30
ref_39
Zang (ref_38) 2020; 160
ref_47
ref_46
ref_45
Jin (ref_10) 2021; 9
ref_44
ref_43
ref_42
ref_41
ref_3
Sze (ref_11) 2017; 105
ref_49
Smart (ref_1) 1985; 36
ref_48
Kaselimi (ref_36) 2019; 7
ref_4
References_xml – volume: 75
  start-page: 350
  year: 2000
  ident: ref_35
  article-title: Comparison of sub-irrigation and overhead irrigation of tomato and lettuce seedlings
  publication-title: J. Hortic. Sci. Biotechnol.
  doi: 10.1080/14620316.2000.11511249
– ident: ref_13
  doi: 10.1016/j.compag.2021.106067
– ident: ref_26
– ident: ref_51
– volume: 141
  start-page: 232
  year: 2017
  ident: ref_31
  article-title: Crop height monitoring with digital imagery from unmanned aerial system (UAS)
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2017.07.008
– ident: ref_19
  doi: 10.3390/f12121747
– ident: ref_43
  doi: 10.1007/978-3-319-46493-0_38
– ident: ref_21
  doi: 10.1016/j.compag.2020.105827
– volume: 36
  start-page: 230
  year: 1985
  ident: ref_1
  article-title: Principles of grapevine canopy microclimate manipulation with implications for yield and quality: A review
  publication-title: Am. J. Enol. Vitic.
  doi: 10.5344/ajev.1985.36.3.230
– volume: 51
  start-page: 130
  year: 2018
  ident: ref_9
  article-title: On-the-go image processing system for spatial mapping of lettuce fresh weight in plant factory
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2018.08.075
– volume: 154
  start-page: 373
  year: 2018
  ident: ref_23
  article-title: Segmentation of lettuce in coloured 3D point clouds for fresh weight estimation
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2018.09.010
– volume: 57
  start-page: 238
  year: 1989
  ident: ref_40
  article-title: Discriminatory analysis. Nonparametric discrimination: Consistency properties
  publication-title: Int. Stat. Rev.
  doi: 10.2307/1403797
– volume: 105
  start-page: 2295
  year: 2017
  ident: ref_11
  article-title: Efficient processing of deep neural networks: A tutorial and survey
  publication-title: Proc. Inst. Electr. Electron. Eng.
  doi: 10.1109/JPROC.2017.2761740
– ident: ref_22
  doi: 10.1038/s41438-020-00345-6
– ident: ref_4
– volume: 117
  start-page: 43
  year: 2014
  ident: ref_8
  article-title: An automated growth measurement system for leafy vegetables
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2013.08.011
– volume: 27
  start-page: e19
  year: 2020
  ident: ref_37
  article-title: Deep learning in the prediction of ischaemic stroke thrombolysis functional outcomes: A pilot study
  publication-title: Acad. Radiol.
  doi: 10.1016/j.acra.2019.03.015
– volume: 111
  start-page: 330
  year: 2007
  ident: ref_5
  article-title: Estimation of individual leaf area, fresh weight, and dry weight of hydroponically grown cucumbers (Cucumis sativus L.) using leaf length, width, and SPAD value
  publication-title: Sci. Hortic.
  doi: 10.1016/j.scienta.2006.12.028
– ident: ref_24
  doi: 10.3389/fpls.2017.02233
– volume: 265
  start-page: 390
  year: 2019
  ident: ref_25
  article-title: Review of indirect optical measurements of leaf area index: Recent advances, challenges, and perspectives
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2018.11.033
– ident: ref_41
– volume: 160
  start-page: 26
  year: 2020
  ident: ref_38
  article-title: Short-term global horizontal irradiance forecasting based on a hybrid CNN-LSTM model with spatiotemporal correlations
  publication-title: Renew. Energ.
  doi: 10.1016/j.renene.2020.05.150
– volume: 177
  start-page: 105687
  year: 2020
  ident: ref_15
  article-title: Application of consumer RGB-D cameras for fruit detection and localization in field: A critical review
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2020.105687
– volume: 151
  start-page: 72
  year: 2016
  ident: ref_12
  article-title: Plant species classification using deep convolutional neural network
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2016.08.024
– ident: ref_45
– ident: ref_49
  doi: 10.1063/1.4818918
– ident: ref_18
  doi: 10.1186/s13007-020-00613-5
– ident: ref_28
– ident: ref_30
– ident: ref_3
– ident: ref_47
– ident: ref_16
  doi: 10.1186/s13007-021-00722-9
– ident: ref_34
  doi: 10.1016/j.rse.2019.111599
– ident: ref_29
  doi: 10.2139/ssrn.4165001
– ident: ref_14
  doi: 10.34133/2020/4152816
– ident: ref_17
  doi: 10.1109/ICIRCA51532.2021.9545062
– volume: 112
  start-page: 325
  year: 1987
  ident: ref_2
  article-title: Growth of ‘Thompson Seedless’ grapevines. I. Leaf area development and dry weight distribution
  publication-title: J. Am. Soc. Hortic. Sci.
  doi: 10.21273/JASHS.112.2.325
– volume: 113
  start-page: 322
  year: 2007
  ident: ref_6
  article-title: Non-destructive leaf area estimation model for faba bean (Vicia faba L.)
  publication-title: Sci. Hortic.
  doi: 10.1016/j.scienta.2007.04.003
– volume: 14
  start-page: 586
  year: 2013
  ident: ref_7
  article-title: Plant growth parameter estimation from sparse 3D reconstruction based on highly-textured feature points
  publication-title: Precis. Agric.
  doi: 10.1007/s11119-013-9317-6
– ident: ref_50
– ident: ref_44
  doi: 10.1109/CVPR.2016.90
– ident: ref_33
– ident: ref_42
  doi: 10.1109/CVPR.2009.5206848
– ident: ref_39
  doi: 10.3390/w13131773
– ident: ref_46
– volume: 9
  start-page: 200
  year: 2021
  ident: ref_10
  article-title: High-throughput estimation of crop traits: A review of ground and aerial phenotyping platforms
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/MGRS.2020.2998816
– volume: 7
  start-page: 81047
  year: 2019
  ident: ref_36
  article-title: Multi-channel recurrent convolutional neural networks for energy disaggregation
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2923742
– volume: 4
  start-page: 398
  year: 2010
  ident: ref_32
  article-title: Growth, fruit yield and nutritional quality of tomato varieties
  publication-title: Afr. J. Food Sci.
– ident: ref_48
  doi: 10.1186/1746-4811-7-2
– ident: ref_20
  doi: 10.13031/aim.201900341
– ident: ref_27
  doi: 10.3390/rs13122288
SSID ssj0023338
Score 2.4964392
Snippet Growth indices can quantify crop productivity and establish optimal environmental, nutritional, and irrigation control strategies. A convolutional neural...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 5499
SubjectTerms Cameras
convolutional neural network (CNN)
Crops
Datasets
Deep learning
greenhouse
Greenhouses
growth estimation
growth index
growth monitoring
Humans
Lactuca - classification
Lactuca - growth & development
Lettuce
Neural networks
Neural Networks, Computer
Performance evaluation
Plant Leaves - growth & development
Plant Roots - growth & development
Processing speed
Regression analysis
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LTxsxEB5VnOgBAYWyPCoX9cDFgthe23skEAqVyKECCamHlV_bILUbRILy9xl7N0tSReqFyx7sOXjn4ZlPHn8G-Fb1bFHhHGVSCSq0ZdS4QuJH5N5YfyZ8PNG9Hcrre_HjIX9YeOor9oQ19MCN4k6dNDbRzAUTiWSYdUEbn-vgMLlZn8i2MefNwVQLtTgir4ZHiCOoP50wFvNmInh9yz6JpH9VZflvg-RCxrnahI22VCTnzRK34EOot-HjAoHgJ_g1wAhtLh-ScUVSE80IsXwg8ZoOWg2HxrPpiNzUPu4IpI9JyxOUNuRuNqZYav4O5GI4JKl1gPz83qeX5OYvjk524P5qcHdxTdvnEqhDjDulvtCeB6ZkZYUSRnNpA6uEx6i1Wmjuncotr_CnlMBiVTotgpCac6Yq1gua78JaPa7DHhDjcm-5Q7jCC2HQZrIwKvRMMDxUuWIZnMzVWLqWSzw-afGnREwRNV52Gs_guBN9agg0Vgn1oy06gch5nQbQE8rWE8r_eUIGh3NLlm0gTsp4ro77vRQqg6_dNIZQPBcxdUCTlEwWEZZiJZjB58bw3Up4rgusqUUGaskllpa6PFM_jhJNd8F5JFndf49_O4B1Fu9dnCnK-CGsTZ9fwhFWQ1P7JTn-K4rHCdk
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BucAB8SZQkEEcuFjt2o7tnBBbum2R2ANqpUocIr_SrQRJ6S7q32fGyaZdVHHJwfbB8Xg883nG3wB8aCa-arCPC20UV9YL7kKl8aPK6HzcVZEiut_m-vBEfT0tT4cLt-WQVrk-E_NBHbtAd-Q7FCBFxdXKfLr4zalqFEVXhxIad-HeBC0NpXTZ2cEIuCTir55NSCK031kKQdYz07xe26BM1X-bf_lvmuQNuzN7BA8Hh5F97iX8GO6k9gk8uEEj-BR-7KOe9k8QWdewnEqzQESfGD3WQdlhU3e1WrCjNtK5wKZouiLD0Y4dX3UcHc6zxPbmc5YTCNj3gyn_wo5-YevyGZzM9o_3DvlQNIEHRLorHisbZRJGN14Z5azUPolGRdRdb5WVMZjSywZ_yih0WXWwKiltpRSmEZNk5XPYars2vQTmQhm9DAhaZKUcSk5XzqSJS06mpjSigI_rZazDwChOhS1-1ogsaMXrccULeD8OvehpNG4bNCVZjAOI-To3dJdn9aBIddDOZ9rB5IhYSPiQrIulTQGdHR91AdtrSdaDOi7r681TwLuxGxWJoiOuTSiSWuiKwCn6gwW86AU_zkSWtkLPWhVgNrbExlQ3e9rzRSbrrqQkqtVX_5_Wa7gv6F3FruFCbsPW6vJPeoPezsq_zVv6L-pcAHU
  priority: 102
  providerName: ProQuest
Title Estimation of Greenhouse Lettuce Growth Indices Based on a Two-Stage CNN Using RGB-D Images
URI https://www.ncbi.nlm.nih.gov/pubmed/35898004
https://www.proquest.com/docview/2700762647
https://www.proquest.com/docview/2696010562
https://pubmed.ncbi.nlm.nih.gov/PMC9331482
https://doaj.org/article/c6ab03598ea04782bce8ad58ec078bd6
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1Lb9QwEB71IaFyQDxLoKwM4sAl0LUd2zkgxJbdtkhdoaorrcQh8itdpJK0u4sK_55xXmrQcvHBHkXOjCczX2x_A_A2H5o0x7GYCsljrgyNtU0FNjxx2rhD7sKO7tlUnMz413ky34K2xmajwNVGaBfqSc2WV-9_3_z5hA7_MSBOhOwfVpSGqJim27CLAUmGQgZnvNtMoAxhWE0q1Bffg3ssUSmmTLwXlSry_k0Z578HJ-9EoslDeNCkkORzbfNHsOWLx3D_DrHgE_g-Rs-tLyWSMifV4ZoFYnxPwvUdtCZ2lbfrBTktXPhSkBEGM0dQWpOL2zLGFPTSk6PplFRHCsj58Sj-Qk5_Yu_qKcwm44ujk7gpoxBbxL7r2KXKMU-lyA2XXCsmjKc5d-jNRnHFnJWJYTm-lOSYxAqruOdCMUZlTodesWewU5SFfw5E28QZZhHGsJRrtKVItfRD7TXzeSJpBO9aNWa24RgPpS6uMsQaQflZp_wI3nSi1zWxxiahUbBFJxC4sKuOcnmZNa6VWaFNRUTodaAaosZ6pV2ivMX0xzgRwUFryaxdX1nYb8c4ILiM4HU3jK4V9kt04dEkGRVpgKuYIUawXxu-m0m7cCKQvSXRm2p_pPixqOi7U8YC-eqL_z7zJezRcMniUMaUHcDOevnLv8LUZ20GsC3nEls1OR7A7mg8_XY-qH4jDKol_xc1XQYi
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VcgAOiDcLBQwCicuqie21vQeESNs0oW0OKJUqcVj82qZS2S1Nqog_xW9kvK82qOLWSw62tbLm4ZnJzHwD8D7vmzTHvZgKyWOuDI21TQX-8MRp43rchYzuwUSMDvnXo-RoDf60vTChrLJ9E6uH2pU2_Ee-GRKkqLiCy89nv-IwNSpkV9sRGrVY7PnfSwzZ5p_G28jfD5QOd6Zbo7iZKhBbDAUXsUuVY55KkRsuuVZMGE9z7lC4jeKKOSsTw3JnveTo0wmruOdCMUZlTvteMfzuLbjNGVry0Jk-3O0CPIbxXo1ehJu9zTmlwVpXsLKXNq8aDXCdP_tvWeYVOzd8APcbB5V8qSXqIaz54hHcuwJb-Bi-7-C7ULc8kjInVenOrLyYexKag1BWcKlcLmZkXLjwDpEBmkpH8LQm02UZo4N77MnWZEKqggXybXcQb5PxT1ydP4HDGyHnU1gvysI_B6Jt4gyzGCSxlGuUFJFq6fvaa-bzRNIIPrZkzGyDYB4GaZxmGMkEimcdxSN41x09q2E7rjs0CLzoDgSk7WqhPD_OGsXNrNCmgjn0OgAZUWO90i5R3qJzZZyIYKPlZNao_zy7FNYI3nbbqLghG6MLjyzJqEhDMIz-ZwTPasZ3N2GJStGT5xHIFZFYuerqTnEyq8DBU8YCtOuL_1_rDdwZTQ_2s_3xZO8l3KWhp6MnY8o2YH1xfuFfoae1MK8r8Sbw46b16S9aKT0R
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VVEJwQLxZKGAQSFxWSWyv7T0gRJqEhkJUVa1UqYfFr22QYLc0qSL-Gr-O8e5m26CKWy852NbKmvdkxt8AvMn7Js1xL6ZC8pgrQ2NtU4E_PHHauB53oaL7dSp2Dvnno-RoA_6s3sKEtsqVTawMtStt-I-8GwqkqLiCy27etEXsDccfTn_FYYJUqLSuxmnUIrLrfy8xfZu_nwyR128pHY8OtnfiZsJAbDEtXMQuVY55KkVuuORaMWE8zblDQTeKK-asTAzLnfWSY3wnrOKeC8UYlTnte8XwuzdgU4asqAObg9F0b79N9xhmfzWWEWNprzunNPjuCmT2wgNWgwKuim7_bdK85PXGd-FOE66Sj7V83YMNX9yH25dADB_A8QitRP0AkpQ5qRp5ZuX53JPwVAglB5fK5WJGJoULVokM0HE6gqc1OViWMYa7J55sT6ekal8g-58G8ZBMfuLq_CEcXgtBH0GnKAv_BIi2iTPMYsrEUq5RbkSqpe9rr5nPE0kjeLciY2YbPPMwVuNHhnlNoHjWUjyC1-3R0xrE46pDg8CL9kDA3a4WyrOTrFHjzAptKtBDrwOsETXWK-0S5S2GWsaJCLZWnMwaYzDPLkQ3glftNqpxqM3owiNLMirSkBpjNBrB45rx7U1YolKM63kEck0k1q66vlN8n1VQ4SljAej16f-v9RJuoi5lXybT3Wdwi4YHHj0ZU7YFncXZuX-OYdfCvGjkm8C361apv0e0QqM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimation+of+Greenhouse+Lettuce+Growth+Indices+Based+on+a+Two-Stage+CNN+Using+RGB-D+Images&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Gang%2C+Min-Seok&rft.au=Kim%2C+Hak-Jin&rft.au=Kim%2C+Dong-Wook&rft.date=2022-07-23&rft.eissn=1424-8220&rft.volume=22&rft.issue=15&rft_id=info:doi/10.3390%2Fs22155499&rft_id=info%3Apmid%2F35898004&rft.externalDocID=35898004
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon