Estimation of Greenhouse Lettuce Growth Indices Based on a Two-Stage CNN Using RGB-D Images
Growth indices can quantify crop productivity and establish optimal environmental, nutritional, and irrigation control strategies. A convolutional neural network (CNN)-based model is presented for estimating various growth indices (i.e., fresh weight, dry weight, height, leaf area, and diameter) of...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 22; no. 15; p. 5499 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
23.07.2022
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Growth indices can quantify crop productivity and establish optimal environmental, nutritional, and irrigation control strategies. A convolutional neural network (CNN)-based model is presented for estimating various growth indices (i.e., fresh weight, dry weight, height, leaf area, and diameter) of four varieties of greenhouse lettuce using red, green, blue, and depth (RGB-D) data obtained using a stereo camera. Data from an online autonomous greenhouse challenge (Wageningen University, June 2021) were employed in this study. The data were collected using an Intel RealSense D415 camera. The developed model has a two-stage CNN architecture based on ResNet50V2 layers. The developed model provided coefficients of determination from 0.88 to 0.95, with normalized root mean square errors of 6.09%, 6.30%, 7.65%, 7.92%, and 5.62% for fresh weight, dry weight, height, diameter, and leaf area, respectively, on unknown lettuce images. Using red, green, blue (RGB) and depth data employed in the CNN improved the determination accuracy for all five lettuce growth indices due to the ability of the stereo camera to extract height information on lettuce. The average time for processing each lettuce image using the developed CNN model run on a Jetson SUB mini-PC with a Jetson Xavier NX was 0.83 s, indicating the potential for the model in fast real-time sensing of lettuce growth indices. |
---|---|
AbstractList | Growth indices can quantify crop productivity and establish optimal environmental, nutritional, and irrigation control strategies. A convolutional neural network (CNN)-based model is presented for estimating various growth indices (i.e., fresh weight, dry weight, height, leaf area, and diameter) of four varieties of greenhouse lettuce using red, green, blue, and depth (RGB-D) data obtained using a stereo camera. Data from an online autonomous greenhouse challenge (Wageningen University, June 2021) were employed in this study. The data were collected using an Intel RealSense D415 camera. The developed model has a two-stage CNN architecture based on ResNet50V2 layers. The developed model provided coefficients of determination from 0.88 to 0.95, with normalized root mean square errors of 6.09%, 6.30%, 7.65%, 7.92%, and 5.62% for fresh weight, dry weight, height, diameter, and leaf area, respectively, on unknown lettuce images. Using red, green, blue (RGB) and depth data employed in the CNN improved the determination accuracy for all five lettuce growth indices due to the ability of the stereo camera to extract height information on lettuce. The average time for processing each lettuce image using the developed CNN model run on a Jetson SUB mini-PC with a Jetson Xavier NX was 0.83 s, indicating the potential for the model in fast real-time sensing of lettuce growth indices. Growth indices can quantify crop productivity and establish optimal environmental, nutritional, and irrigation control strategies. A convolutional neural network (CNN)-based model is presented for estimating various growth indices (i.e., fresh weight, dry weight, height, leaf area, and diameter) of four varieties of greenhouse lettuce using red, green, blue, and depth (RGB-D) data obtained using a stereo camera. Data from an online autonomous greenhouse challenge (Wageningen University, June 2021) were employed in this study. The data were collected using an Intel RealSense D415 camera. The developed model has a two-stage CNN architecture based on ResNet50V2 layers. The developed model provided coefficients of determination from 0.88 to 0.95, with normalized root mean square errors of 6.09%, 6.30%, 7.65%, 7.92%, and 5.62% for fresh weight, dry weight, height, diameter, and leaf area, respectively, on unknown lettuce images. Using red, green, blue (RGB) and depth data employed in the CNN improved the determination accuracy for all five lettuce growth indices due to the ability of the stereo camera to extract height information on lettuce. The average time for processing each lettuce image using the developed CNN model run on a Jetson SUB mini-PC with a Jetson Xavier NX was 0.83 s, indicating the potential for the model in fast real-time sensing of lettuce growth indices.Growth indices can quantify crop productivity and establish optimal environmental, nutritional, and irrigation control strategies. A convolutional neural network (CNN)-based model is presented for estimating various growth indices (i.e., fresh weight, dry weight, height, leaf area, and diameter) of four varieties of greenhouse lettuce using red, green, blue, and depth (RGB-D) data obtained using a stereo camera. Data from an online autonomous greenhouse challenge (Wageningen University, June 2021) were employed in this study. The data were collected using an Intel RealSense D415 camera. The developed model has a two-stage CNN architecture based on ResNet50V2 layers. The developed model provided coefficients of determination from 0.88 to 0.95, with normalized root mean square errors of 6.09%, 6.30%, 7.65%, 7.92%, and 5.62% for fresh weight, dry weight, height, diameter, and leaf area, respectively, on unknown lettuce images. Using red, green, blue (RGB) and depth data employed in the CNN improved the determination accuracy for all five lettuce growth indices due to the ability of the stereo camera to extract height information on lettuce. The average time for processing each lettuce image using the developed CNN model run on a Jetson SUB mini-PC with a Jetson Xavier NX was 0.83 s, indicating the potential for the model in fast real-time sensing of lettuce growth indices. |
Author | Kim, Dong-Wook Gang, Min-Seok Kim, Hak-Jin |
AuthorAffiliation | 1 Department of Biosystems Engineering, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea; msg1907@snu.ac.kr (M.-S.G.); dwk8033@snu.ac.kr (D.-W.K.) 2 Integrated Major in Global Smart Farm, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea 3 Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea |
AuthorAffiliation_xml | – name: 3 Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea – name: 1 Department of Biosystems Engineering, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea; msg1907@snu.ac.kr (M.-S.G.); dwk8033@snu.ac.kr (D.-W.K.) – name: 2 Integrated Major in Global Smart Farm, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea |
Author_xml | – sequence: 1 givenname: Min-Seok orcidid: 0000-0003-3616-0375 surname: Gang fullname: Gang, Min-Seok – sequence: 2 givenname: Hak-Jin surname: Kim fullname: Kim, Hak-Jin – sequence: 3 givenname: Dong-Wook surname: Kim fullname: Kim, Dong-Wook |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35898004$$D View this record in MEDLINE/PubMed |
BookMark | eNptkk1vFCEYxyemxr7owS9gSLzoYSwDDDAXE7vWdZNNTbQ9eSAMPLPLZhYqMDZ-e2m3btrGE-TPj__zelwd-OChql43-AOlHT5NhDRty7ruWXXUMMJqSQg-eHA_rI5T2mBMKKXyRXVIW9lJjNlR9fM8ZbfV2QWPwoDmEcCvw5QALSHnyUCRwk1eo4W3zkBCZzqBRYXW6PIm1D-yXgGaXVygq-T8Cn2fn9Wf0WJb1PSyej7oMcGr-_Okuvpyfjn7Wi-_zRezT8vaMN7l2nbSUiCCDz0TTEvKeyADs7SRvWSSWiPang7WgGCy6bmRDBiXlBIxkAYkPakWO18b9EZdx1JP_KOCdupOCHGldMzOjKAM1z2mbSdBYyYk6Q1IbVsJBgvZW168Pu68rqd-CyWmz1GPj0wfv3i3VqvwW3WUNkySYvDu3iCGXxOkrLYuGRhH7aH0VRHecdzglt-ib5-gmzBFX1qliMBYcMKZKNSbhxntU_k3wwK83wEmhpQiDHukwep2P9R-Pwp7-oQ1Lt9NvxTjxv_8-As5y7nU |
CitedBy_id | crossref_primary_10_3390_agriculture13101874 crossref_primary_10_3390_plants12102061 crossref_primary_10_1016_j_inpa_2024_11_001 crossref_primary_10_12791_KSBEC_2023_32_4_434 crossref_primary_10_3390_plants13223217 crossref_primary_10_3390_app13064012 crossref_primary_10_3390_rs15122988 crossref_primary_10_3390_plants13213088 crossref_primary_10_1016_j_atech_2024_100448 crossref_primary_10_3390_app15062893 crossref_primary_10_3390_s23062929 crossref_primary_10_1016_j_compag_2023_108263 crossref_primary_10_3390_s24216920 crossref_primary_10_1186_s13007_025_01347_y crossref_primary_10_3390_agronomy14102264 crossref_primary_10_3390_horticulturae10020117 crossref_primary_10_3390_horticulturae9121288 crossref_primary_10_3390_agronomy15010029 crossref_primary_10_1016_j_heliyon_2024_e34998 crossref_primary_10_1109_ACCESS_2023_3265597 crossref_primary_10_1109_ACCESS_2024_3349418 crossref_primary_10_3389_fpls_2024_1365266 |
Cites_doi | 10.1080/14620316.2000.11511249 10.1016/j.compag.2021.106067 10.1016/j.compag.2017.07.008 10.3390/f12121747 10.1007/978-3-319-46493-0_38 10.1016/j.compag.2020.105827 10.5344/ajev.1985.36.3.230 10.1016/j.ifacol.2018.08.075 10.1016/j.compag.2018.09.010 10.2307/1403797 10.1109/JPROC.2017.2761740 10.1038/s41438-020-00345-6 10.1016/j.biosystemseng.2013.08.011 10.1016/j.acra.2019.03.015 10.1016/j.scienta.2006.12.028 10.3389/fpls.2017.02233 10.1016/j.agrformet.2018.11.033 10.1016/j.renene.2020.05.150 10.1016/j.compag.2020.105687 10.1016/j.biosystemseng.2016.08.024 10.1063/1.4818918 10.1186/s13007-020-00613-5 10.1186/s13007-021-00722-9 10.1016/j.rse.2019.111599 10.2139/ssrn.4165001 10.34133/2020/4152816 10.1109/ICIRCA51532.2021.9545062 10.21273/JASHS.112.2.325 10.1016/j.scienta.2007.04.003 10.1007/s11119-013-9317-6 10.1109/CVPR.2016.90 10.1109/CVPR.2009.5206848 10.3390/w13131773 10.1109/MGRS.2020.2998816 10.1109/ACCESS.2019.2923742 10.1186/1746-4811-7-2 10.13031/aim.201900341 10.3390/rs13122288 |
ContentType | Journal Article |
Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022 |
Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/s22155499 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_c6ab03598ea04782bce8ad58ec078bd6 PMC9331482 35898004 10_3390_s22155499 |
Genre | Journal Article |
GeographicLocations | United States--US |
GeographicLocations_xml | – name: United States--US |
GrantInformation_xml | – fundername: Ministry of Science and ICT grantid: 21006031HD030 – fundername: Ministry of Agriculture, Food and Rural Affairs grantid: 21006031HD030 – fundername: Rural Development Administration grantid: PJ014911 – fundername: Rural Development Administration grantid: 21006031HD030 – fundername: Ministry of Education of Korea and the National Research Foundation of Korea – fundername: Ministry of Science and ICT, Rural Development Administration (RDA) grantid: PJ014911 – fundername: Ministry of Agriculture, Food and Rural Affairs; Ministry of Science and ICT, Rural Development Administration (RDA) grantid: 21006031HD030 |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M CGR CUY CVF ECM EIF NPM PJZUB PPXIY 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c469t-d98d3e276fb474a836be2f4d318b8483dc75b3fdce7481b6c84e4683327f21e83 |
IEDL.DBID | M48 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:21:12 EDT 2025 Thu Aug 21 14:36:57 EDT 2025 Fri Jul 11 07:51:54 EDT 2025 Fri Jul 25 20:13:56 EDT 2025 Mon Jul 21 06:04:45 EDT 2025 Tue Jul 01 02:42:04 EDT 2025 Thu Apr 24 22:59:52 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Keywords | growth estimation stereo camera convolutional neural network (CNN) growth index greenhouse lettuce red, green, blue, and depth (RGB-D) growth monitoring |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c469t-d98d3e276fb474a836be2f4d318b8483dc75b3fdce7481b6c84e4683327f21e83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-3616-0375 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s22155499 |
PMID | 35898004 |
PQID | 2700762647 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_c6ab03598ea04782bce8ad58ec078bd6 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9331482 proquest_miscellaneous_2696010562 proquest_journals_2700762647 pubmed_primary_35898004 crossref_primary_10_3390_s22155499 crossref_citationtrail_10_3390_s22155499 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220723 |
PublicationDateYYYYMMDD | 2022-07-23 |
PublicationDate_xml | – month: 7 year: 2022 text: 20220723 day: 23 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2022 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | ref_50 Peksen (ref_6) 2007; 113 Fix (ref_40) 1989; 57 ref_14 ref_13 Chang (ref_31) 2017; 141 Jiang (ref_9) 2018; 51 ref_51 ref_19 Yeh (ref_8) 2014; 117 ref_18 ref_17 ref_16 Lati (ref_7) 2013; 14 Dyrmann (ref_12) 2016; 151 ref_24 Ahmed (ref_35) 2000; 75 ref_22 ref_21 Olaniyi (ref_32) 2010; 4 ref_20 Fu (ref_15) 2020; 177 Williams (ref_2) 1987; 112 ref_29 Yan (ref_25) 2019; 265 ref_28 ref_27 ref_26 Bacchi (ref_37) 2020; 27 ref_34 Cho (ref_5) 2007; 111 ref_33 Mortensen (ref_23) 2018; 154 ref_30 ref_39 Zang (ref_38) 2020; 160 ref_47 ref_46 ref_45 Jin (ref_10) 2021; 9 ref_44 ref_43 ref_42 ref_41 ref_3 Sze (ref_11) 2017; 105 ref_49 Smart (ref_1) 1985; 36 ref_48 Kaselimi (ref_36) 2019; 7 ref_4 |
References_xml | – volume: 75 start-page: 350 year: 2000 ident: ref_35 article-title: Comparison of sub-irrigation and overhead irrigation of tomato and lettuce seedlings publication-title: J. Hortic. Sci. Biotechnol. doi: 10.1080/14620316.2000.11511249 – ident: ref_13 doi: 10.1016/j.compag.2021.106067 – ident: ref_26 – ident: ref_51 – volume: 141 start-page: 232 year: 2017 ident: ref_31 article-title: Crop height monitoring with digital imagery from unmanned aerial system (UAS) publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2017.07.008 – ident: ref_19 doi: 10.3390/f12121747 – ident: ref_43 doi: 10.1007/978-3-319-46493-0_38 – ident: ref_21 doi: 10.1016/j.compag.2020.105827 – volume: 36 start-page: 230 year: 1985 ident: ref_1 article-title: Principles of grapevine canopy microclimate manipulation with implications for yield and quality: A review publication-title: Am. J. Enol. Vitic. doi: 10.5344/ajev.1985.36.3.230 – volume: 51 start-page: 130 year: 2018 ident: ref_9 article-title: On-the-go image processing system for spatial mapping of lettuce fresh weight in plant factory publication-title: IFAC-PapersOnLine doi: 10.1016/j.ifacol.2018.08.075 – volume: 154 start-page: 373 year: 2018 ident: ref_23 article-title: Segmentation of lettuce in coloured 3D point clouds for fresh weight estimation publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2018.09.010 – volume: 57 start-page: 238 year: 1989 ident: ref_40 article-title: Discriminatory analysis. Nonparametric discrimination: Consistency properties publication-title: Int. Stat. Rev. doi: 10.2307/1403797 – volume: 105 start-page: 2295 year: 2017 ident: ref_11 article-title: Efficient processing of deep neural networks: A tutorial and survey publication-title: Proc. Inst. Electr. Electron. Eng. doi: 10.1109/JPROC.2017.2761740 – ident: ref_22 doi: 10.1038/s41438-020-00345-6 – ident: ref_4 – volume: 117 start-page: 43 year: 2014 ident: ref_8 article-title: An automated growth measurement system for leafy vegetables publication-title: Biosyst. Eng. doi: 10.1016/j.biosystemseng.2013.08.011 – volume: 27 start-page: e19 year: 2020 ident: ref_37 article-title: Deep learning in the prediction of ischaemic stroke thrombolysis functional outcomes: A pilot study publication-title: Acad. Radiol. doi: 10.1016/j.acra.2019.03.015 – volume: 111 start-page: 330 year: 2007 ident: ref_5 article-title: Estimation of individual leaf area, fresh weight, and dry weight of hydroponically grown cucumbers (Cucumis sativus L.) using leaf length, width, and SPAD value publication-title: Sci. Hortic. doi: 10.1016/j.scienta.2006.12.028 – ident: ref_24 doi: 10.3389/fpls.2017.02233 – volume: 265 start-page: 390 year: 2019 ident: ref_25 article-title: Review of indirect optical measurements of leaf area index: Recent advances, challenges, and perspectives publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2018.11.033 – ident: ref_41 – volume: 160 start-page: 26 year: 2020 ident: ref_38 article-title: Short-term global horizontal irradiance forecasting based on a hybrid CNN-LSTM model with spatiotemporal correlations publication-title: Renew. Energ. doi: 10.1016/j.renene.2020.05.150 – volume: 177 start-page: 105687 year: 2020 ident: ref_15 article-title: Application of consumer RGB-D cameras for fruit detection and localization in field: A critical review publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2020.105687 – volume: 151 start-page: 72 year: 2016 ident: ref_12 article-title: Plant species classification using deep convolutional neural network publication-title: Biosyst. Eng. doi: 10.1016/j.biosystemseng.2016.08.024 – ident: ref_45 – ident: ref_49 doi: 10.1063/1.4818918 – ident: ref_18 doi: 10.1186/s13007-020-00613-5 – ident: ref_28 – ident: ref_30 – ident: ref_3 – ident: ref_47 – ident: ref_16 doi: 10.1186/s13007-021-00722-9 – ident: ref_34 doi: 10.1016/j.rse.2019.111599 – ident: ref_29 doi: 10.2139/ssrn.4165001 – ident: ref_14 doi: 10.34133/2020/4152816 – ident: ref_17 doi: 10.1109/ICIRCA51532.2021.9545062 – volume: 112 start-page: 325 year: 1987 ident: ref_2 article-title: Growth of ‘Thompson Seedless’ grapevines. I. Leaf area development and dry weight distribution publication-title: J. Am. Soc. Hortic. Sci. doi: 10.21273/JASHS.112.2.325 – volume: 113 start-page: 322 year: 2007 ident: ref_6 article-title: Non-destructive leaf area estimation model for faba bean (Vicia faba L.) publication-title: Sci. Hortic. doi: 10.1016/j.scienta.2007.04.003 – volume: 14 start-page: 586 year: 2013 ident: ref_7 article-title: Plant growth parameter estimation from sparse 3D reconstruction based on highly-textured feature points publication-title: Precis. Agric. doi: 10.1007/s11119-013-9317-6 – ident: ref_50 – ident: ref_44 doi: 10.1109/CVPR.2016.90 – ident: ref_33 – ident: ref_42 doi: 10.1109/CVPR.2009.5206848 – ident: ref_39 doi: 10.3390/w13131773 – ident: ref_46 – volume: 9 start-page: 200 year: 2021 ident: ref_10 article-title: High-throughput estimation of crop traits: A review of ground and aerial phenotyping platforms publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/MGRS.2020.2998816 – volume: 7 start-page: 81047 year: 2019 ident: ref_36 article-title: Multi-channel recurrent convolutional neural networks for energy disaggregation publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2923742 – volume: 4 start-page: 398 year: 2010 ident: ref_32 article-title: Growth, fruit yield and nutritional quality of tomato varieties publication-title: Afr. J. Food Sci. – ident: ref_48 doi: 10.1186/1746-4811-7-2 – ident: ref_20 doi: 10.13031/aim.201900341 – ident: ref_27 doi: 10.3390/rs13122288 |
SSID | ssj0023338 |
Score | 2.4964392 |
Snippet | Growth indices can quantify crop productivity and establish optimal environmental, nutritional, and irrigation control strategies. A convolutional neural... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 5499 |
SubjectTerms | Cameras convolutional neural network (CNN) Crops Datasets Deep learning greenhouse Greenhouses growth estimation growth index growth monitoring Humans Lactuca - classification Lactuca - growth & development Lettuce Neural networks Neural Networks, Computer Performance evaluation Plant Leaves - growth & development Plant Roots - growth & development Processing speed Regression analysis |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LTxsxEB5VnOgBAYWyPCoX9cDFgthe23skEAqVyKECCamHlV_bILUbRILy9xl7N0tSReqFyx7sOXjn4ZlPHn8G-Fb1bFHhHGVSCSq0ZdS4QuJH5N5YfyZ8PNG9Hcrre_HjIX9YeOor9oQ19MCN4k6dNDbRzAUTiWSYdUEbn-vgMLlZn8i2MefNwVQLtTgir4ZHiCOoP50wFvNmInh9yz6JpH9VZflvg-RCxrnahI22VCTnzRK34EOot-HjAoHgJ_g1wAhtLh-ScUVSE80IsXwg8ZoOWg2HxrPpiNzUPu4IpI9JyxOUNuRuNqZYav4O5GI4JKl1gPz83qeX5OYvjk524P5qcHdxTdvnEqhDjDulvtCeB6ZkZYUSRnNpA6uEx6i1Wmjuncotr_CnlMBiVTotgpCac6Yq1gua78JaPa7DHhDjcm-5Q7jCC2HQZrIwKvRMMDxUuWIZnMzVWLqWSzw-afGnREwRNV52Gs_guBN9agg0Vgn1oy06gch5nQbQE8rWE8r_eUIGh3NLlm0gTsp4ro77vRQqg6_dNIZQPBcxdUCTlEwWEZZiJZjB58bw3Up4rgusqUUGaskllpa6PFM_jhJNd8F5JFndf49_O4B1Fu9dnCnK-CGsTZ9fwhFWQ1P7JTn-K4rHCdk priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BucAB8SZQkEEcuFjt2o7tnBBbum2R2ANqpUocIr_SrQRJ6S7q32fGyaZdVHHJwfbB8Xg883nG3wB8aCa-arCPC20UV9YL7kKl8aPK6HzcVZEiut_m-vBEfT0tT4cLt-WQVrk-E_NBHbtAd-Q7FCBFxdXKfLr4zalqFEVXhxIad-HeBC0NpXTZ2cEIuCTir55NSCK031kKQdYz07xe26BM1X-bf_lvmuQNuzN7BA8Hh5F97iX8GO6k9gk8uEEj-BR-7KOe9k8QWdewnEqzQESfGD3WQdlhU3e1WrCjNtK5wKZouiLD0Y4dX3UcHc6zxPbmc5YTCNj3gyn_wo5-YevyGZzM9o_3DvlQNIEHRLorHisbZRJGN14Z5azUPolGRdRdb5WVMZjSywZ_yih0WXWwKiltpRSmEZNk5XPYars2vQTmQhm9DAhaZKUcSk5XzqSJS06mpjSigI_rZazDwChOhS1-1ogsaMXrccULeD8OvehpNG4bNCVZjAOI-To3dJdn9aBIddDOZ9rB5IhYSPiQrIulTQGdHR91AdtrSdaDOi7r681TwLuxGxWJoiOuTSiSWuiKwCn6gwW86AU_zkSWtkLPWhVgNrbExlQ3e9rzRSbrrqQkqtVX_5_Wa7gv6F3FruFCbsPW6vJPeoPezsq_zVv6L-pcAHU priority: 102 providerName: ProQuest |
Title | Estimation of Greenhouse Lettuce Growth Indices Based on a Two-Stage CNN Using RGB-D Images |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35898004 https://www.proquest.com/docview/2700762647 https://www.proquest.com/docview/2696010562 https://pubmed.ncbi.nlm.nih.gov/PMC9331482 https://doaj.org/article/c6ab03598ea04782bce8ad58ec078bd6 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1Lb9QwEB71IaFyQDxLoKwM4sAl0LUd2zkgxJbdtkhdoaorrcQh8itdpJK0u4sK_55xXmrQcvHBHkXOjCczX2x_A_A2H5o0x7GYCsljrgyNtU0FNjxx2rhD7sKO7tlUnMz413ky34K2xmajwNVGaBfqSc2WV-9_3_z5hA7_MSBOhOwfVpSGqJim27CLAUmGQgZnvNtMoAxhWE0q1Bffg3ssUSmmTLwXlSry_k0Z578HJ-9EoslDeNCkkORzbfNHsOWLx3D_DrHgE_g-Rs-tLyWSMifV4ZoFYnxPwvUdtCZ2lbfrBTktXPhSkBEGM0dQWpOL2zLGFPTSk6PplFRHCsj58Sj-Qk5_Yu_qKcwm44ujk7gpoxBbxL7r2KXKMU-lyA2XXCsmjKc5d-jNRnHFnJWJYTm-lOSYxAqruOdCMUZlTodesWewU5SFfw5E28QZZhHGsJRrtKVItfRD7TXzeSJpBO9aNWa24RgPpS6uMsQaQflZp_wI3nSi1zWxxiahUbBFJxC4sKuOcnmZNa6VWaFNRUTodaAaosZ6pV2ivMX0xzgRwUFryaxdX1nYb8c4ILiM4HU3jK4V9kt04dEkGRVpgKuYIUawXxu-m0m7cCKQvSXRm2p_pPixqOi7U8YC-eqL_z7zJezRcMniUMaUHcDOevnLv8LUZ20GsC3nEls1OR7A7mg8_XY-qH4jDKol_xc1XQYi |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VcgAOiDcLBQwCicuqie21vQeESNs0oW0OKJUqcVj82qZS2S1Nqog_xW9kvK82qOLWSw62tbLm4ZnJzHwD8D7vmzTHvZgKyWOuDI21TQX-8MRp43rchYzuwUSMDvnXo-RoDf60vTChrLJ9E6uH2pU2_Ee-GRKkqLiCy89nv-IwNSpkV9sRGrVY7PnfSwzZ5p_G28jfD5QOd6Zbo7iZKhBbDAUXsUuVY55KkRsuuVZMGE9z7lC4jeKKOSsTw3JnveTo0wmruOdCMUZlTvteMfzuLbjNGVry0Jk-3O0CPIbxXo1ehJu9zTmlwVpXsLKXNq8aDXCdP_tvWeYVOzd8APcbB5V8qSXqIaz54hHcuwJb-Bi-7-C7ULc8kjInVenOrLyYexKag1BWcKlcLmZkXLjwDpEBmkpH8LQm02UZo4N77MnWZEKqggXybXcQb5PxT1ydP4HDGyHnU1gvysI_B6Jt4gyzGCSxlGuUFJFq6fvaa-bzRNIIPrZkzGyDYB4GaZxmGMkEimcdxSN41x09q2E7rjs0CLzoDgSk7WqhPD_OGsXNrNCmgjn0OgAZUWO90i5R3qJzZZyIYKPlZNao_zy7FNYI3nbbqLghG6MLjyzJqEhDMIz-ZwTPasZ3N2GJStGT5xHIFZFYuerqTnEyq8DBU8YCtOuL_1_rDdwZTQ_2s_3xZO8l3KWhp6MnY8o2YH1xfuFfoae1MK8r8Sbw46b16S9aKT0R |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VVEJwQLxZKGAQSFxWSWyv7T0gRJqEhkJUVa1UqYfFr22QYLc0qSL-Gr-O8e5m26CKWy852NbKmvdkxt8AvMn7Js1xL6ZC8pgrQ2NtU4E_PHHauB53oaL7dSp2Dvnno-RoA_6s3sKEtsqVTawMtStt-I-8GwqkqLiCy27etEXsDccfTn_FYYJUqLSuxmnUIrLrfy8xfZu_nwyR128pHY8OtnfiZsJAbDEtXMQuVY55KkVuuORaMWE8zblDQTeKK-asTAzLnfWSY3wnrOKeC8UYlTnte8XwuzdgU4asqAObg9F0b79N9xhmfzWWEWNprzunNPjuCmT2wgNWgwKuim7_bdK85PXGd-FOE66Sj7V83YMNX9yH25dADB_A8QitRP0AkpQ5qRp5ZuX53JPwVAglB5fK5WJGJoULVokM0HE6gqc1OViWMYa7J55sT6ekal8g-58G8ZBMfuLq_CEcXgtBH0GnKAv_BIi2iTPMYsrEUq5RbkSqpe9rr5nPE0kjeLciY2YbPPMwVuNHhnlNoHjWUjyC1-3R0xrE46pDg8CL9kDA3a4WyrOTrFHjzAptKtBDrwOsETXWK-0S5S2GWsaJCLZWnMwaYzDPLkQ3glftNqpxqM3owiNLMirSkBpjNBrB45rx7U1YolKM63kEck0k1q66vlN8n1VQ4SljAej16f-v9RJuoi5lXybT3Wdwi4YHHj0ZU7YFncXZuX-OYdfCvGjkm8C361apv0e0QqM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimation+of+Greenhouse+Lettuce+Growth+Indices+Based+on+a+Two-Stage+CNN+Using+RGB-D+Images&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Gang%2C+Min-Seok&rft.au=Kim%2C+Hak-Jin&rft.au=Kim%2C+Dong-Wook&rft.date=2022-07-23&rft.eissn=1424-8220&rft.volume=22&rft.issue=15&rft_id=info:doi/10.3390%2Fs22155499&rft_id=info%3Apmid%2F35898004&rft.externalDocID=35898004 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |