Recent Surge Behavior of Walsh Glacier Revealed by Remote Sensing Data

Many surge-type glaciers are present on the St. Elias Mountains, but a detailed study on the surge behavior of the glaciers is still missing. In this study, we used remote sensing data to reveal detailed glacier surge behavior, focusing on the recent surge at Walsh Glacier, which was reported to hav...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 20; no. 3; p. 716
Main Authors Fu, Xiyou, Zhou, Jianmin
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 28.01.2020
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Many surge-type glaciers are present on the St. Elias Mountains, but a detailed study on the surge behavior of the glaciers is still missing. In this study, we used remote sensing data to reveal detailed glacier surge behavior, focusing on the recent surge at Walsh Glacier, which was reported to have surged once in the 1960s. Glacial velocities were derived using a cross-correlation algorithm, and changes in the medial moraines were interpreted based on Landsat images. The digital elevation model (DEM) difference method was applied to Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) DEMs to evaluate the surface elevation of the glacier. The results showed that the surge initiated near the conjunction of the eastern and northern branches, and then quickly spread downward. The surge period was almost three years, with an active phase of less than two years. The advancing speed of the surge front was much large than the maximum ice velocity of ≈14 m/d observed during the active phase. Summer speed-ups and a winter speed-up in ice velocity were observed from velocity data, with the speed-ups being more obvious during the active phase. Changes in the glacier velocity and the medial moraines suggested that the eastern branch was more affected by the surge. The DEM differencing results showed that the receiving zone thickened up to about 140 m, and the upstream reservoir zone became thinner. These surge behaviors, as characterized by remote sensing data, gave us more detailed insights into the surge dynamics of Walsh Glacier.
AbstractList Many surge-type glaciers are present on the St. Elias Mountains, but a detailed study on the surge behavior of the glaciers is still missing. In this study, we used remote sensing data to reveal detailed glacier surge behavior, focusing on the recent surge at Walsh Glacier, which was reported to have surged once in the 1960s. Glacial velocities were derived using a cross-correlation algorithm, and changes in the medial moraines were interpreted based on Landsat images. The digital elevation model (DEM) difference method was applied to Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) DEMs to evaluate the surface elevation of the glacier. The results showed that the surge initiated near the conjunction of the eastern and northern branches, and then quickly spread downward. The surge period was almost three years, with an active phase of less than two years. The advancing speed of the surge front was much large than the maximum ice velocity of ≈14 m/d observed during the active phase. Summer speed-ups and a winter speed-up in ice velocity were observed from velocity data, with the speed-ups being more obvious during the active phase. Changes in the glacier velocity and the medial moraines suggested that the eastern branch was more affected by the surge. The DEM differencing results showed that the receiving zone thickened up to about 140 m, and the upstream reservoir zone became thinner. These surge behaviors, as characterized by remote sensing data, gave us more detailed insights into the surge dynamics of Walsh Glacier.
Many surge-type glaciers are present on the St. Elias Mountains, but a detailed study on the surge behavior of the glaciers is still missing. In this study, we used remote sensing data to reveal detailed glacier surge behavior, focusing on the recent surge at Walsh Glacier, which was reported to have surged once in the 1960s. Glacial velocities were derived using a cross-correlation algorithm, and changes in the medial moraines were interpreted based on Landsat images. The digital elevation model (DEM) difference method was applied to Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) DEMs to evaluate the surface elevation of the glacier. The results showed that the surge initiated near the conjunction of the eastern and northern branches, and then quickly spread downward. The surge period was almost three years, with an active phase of less than two years. The advancing speed of the surge front was much large than the maximum ice velocity of ≈14 m/d observed during the active phase. Summer speed-ups and a winter speed-up in ice velocity were observed from velocity data, with the speed-ups being more obvious during the active phase. Changes in the glacier velocity and the medial moraines suggested that the eastern branch was more affected by the surge. The DEM differencing results showed that the receiving zone thickened up to about 140 m, and the upstream reservoir zone became thinner. These surge behaviors, as characterized by remote sensing data, gave us more detailed insights into the surge dynamics of Walsh Glacier.Many surge-type glaciers are present on the St. Elias Mountains, but a detailed study on the surge behavior of the glaciers is still missing. In this study, we used remote sensing data to reveal detailed glacier surge behavior, focusing on the recent surge at Walsh Glacier, which was reported to have surged once in the 1960s. Glacial velocities were derived using a cross-correlation algorithm, and changes in the medial moraines were interpreted based on Landsat images. The digital elevation model (DEM) difference method was applied to Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) DEMs to evaluate the surface elevation of the glacier. The results showed that the surge initiated near the conjunction of the eastern and northern branches, and then quickly spread downward. The surge period was almost three years, with an active phase of less than two years. The advancing speed of the surge front was much large than the maximum ice velocity of ≈14 m/d observed during the active phase. Summer speed-ups and a winter speed-up in ice velocity were observed from velocity data, with the speed-ups being more obvious during the active phase. Changes in the glacier velocity and the medial moraines suggested that the eastern branch was more affected by the surge. The DEM differencing results showed that the receiving zone thickened up to about 140 m, and the upstream reservoir zone became thinner. These surge behaviors, as characterized by remote sensing data, gave us more detailed insights into the surge dynamics of Walsh Glacier.
Author Zhou, Jianmin
Fu, Xiyou
AuthorAffiliation 1 Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100094, China; fuxy@radi.ac.cn
2 College of Resoures and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
AuthorAffiliation_xml – name: 2 College of Resoures and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
– name: 1 Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100094, China; fuxy@radi.ac.cn
Author_xml – sequence: 1
  givenname: Xiyou
  orcidid: 0000-0003-2936-2681
  surname: Fu
  fullname: Fu, Xiyou
– sequence: 2
  givenname: Jianmin
  surname: Zhou
  fullname: Zhou, Jianmin
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32012918$$D View this record in MEDLINE/PubMed
BookMark eNplkk1r3DAQhkVJab566B8ohl7awyajL9u6FNq0-YBAIGnpUYzk8a4Wr5VI9kL-fb3dJCTpSYP0zMPLaPbZTh97YuwDhyMpDRxnASCh4uUbtseVULNaCNh5Vu-y_ZyXAEJKWb9ju1IAF4bXe-z0mjz1Q3EzpjkV32mB6xBTEdviD3Z5UZx16AOl4prWhB01hbuf6lUcqLihPod-XvzAAQ_Z23bi6f3DecB-n_78dXI-u7w6uzj5djnzqjTDrKmFrzRWgpfQkK81egTeloAOpYSSvIa21aC08mUDtabKN6VTSiqFlWvkAbvYepuIS3ubwgrTvY0Y7L-LmOYW0xB8R9Z44tx54ZwDhbqtDZDjDaCpVIvYTq6vW9ft6FbUbMaQsHshffnSh4Wdx7WtQNaqMpPg84MgxbuR8mBXIXvqOuwpjtkKqcFwEGKDfnqFLuOY-mlUVmgN0hgj-ER9fJ7oKcrjd03A8RbwKeacqLU-DDiEuAkYOsvBbhbCPi3E1PHlVcej9H_2L6vRs7Q
CitedBy_id crossref_primary_10_1007_s11356_023_26441_3
crossref_primary_10_1007_s11069_021_04708_7
crossref_primary_10_5194_tc_15_4221_2021
crossref_primary_10_1029_2022JF006977
crossref_primary_10_1016_j_rse_2021_112343
Cites_doi 10.1002/2014JF003148
10.3189/2012JoG11J096
10.1016/j.isprsjprs.2009.02.003
10.1126/science.227.4686.469
10.5194/tc-10-1427-2016
10.1016/S0924-2716(02)00164-8
10.3189/172756505781829250
10.1016/j.rse.2011.11.024
10.1016/j.gloplacha.2014.11.014
10.1017/jog.2018.34
10.1109/TGRS.2006.888937
10.1016/j.rse.2004.11.003
10.1017/jog.2016.81
10.3189/172756505781829557
10.1038/s41598-017-15473-8
10.3189/2013AoG63A495
10.1016/j.rse.2015.08.023
10.1029/JB092iB09p09121
10.1002/2015JF003515
10.3189/2014JoG13J182
10.1017/jog.2017.4
10.1016/j.rse.2015.01.031
10.1017/jog.2019.62
10.5194/tc-11-723-2017
10.1017/jog.2018.94
10.1139/e69-081
10.3390/rs9040388
10.3390/rs61111127
10.5194/tc-5-271-2011
10.5194/tc-9-703-2015
10.1002/2015JF003511
10.3390/rs8070598
10.1029/2006JF000475
10.3189/172756403781816185
10.1016/j.gloplacha.2019.05.004
10.3390/rs8110937
10.1659/0276-4741(2004)024[0078:TSKGCI]2.0.CO;2
10.1657/1938-4246-43.4.503
10.3390/rs9101064
10.3390/rs70202208
10.1016/j.rse.2008.05.018
10.3189/S0022143000019481
10.1080/01431160701408477
10.1016/j.rse.2012.11.020
10.1038/ngeo2204
10.1016/j.rse.2015.11.023
10.3189/S0022143000031221
10.3189/2014JoG13J134
10.3390/rs9090888
10.5194/tc-9-1183-2015
10.5194/tc-9-197-2015
10.1002/2015JF003522
10.1017/jog.2019.2
10.3189/2014JoG13J176
10.1109/TGRS.2008.2000627
10.1038/nature09398
10.1038/s41467-019-10506-4
10.3189/2013AoG63A341
ContentType Journal Article
Copyright 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2020 by the authors. 2020
Copyright_xml – notice: 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2020 by the authors. 2020
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s20030716
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central (New)
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
CrossRef
PubMed

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_9ce11bc2bbb04a5f890eb1d0a974faaf
PMC7038479
32012918
10_3390_s20030716
Genre Journal Article
GeographicLocations United States--US
Alaska
GeographicLocations_xml – name: Alaska
– name: United States--US
GrantInformation_xml – fundername: National Key Research and Development Program of China
  grantid: 2016YFB0501501 and 2016YFA0600304
– fundername: Strategic Priority Research Program of the Chinese Academy of Sciences
  grantid: XDA19070202
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
ABJCF
ARAPS
HCIFZ
KB.
M7S
NPM
PDBOC
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c469t-d82c75a72160dec85aca01f60aba3306ec50ff50454c6d085e7cd6b44344a7bd3
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 01:14:02 EDT 2025
Thu Aug 21 14:10:32 EDT 2025
Tue Aug 05 09:29:55 EDT 2025
Fri Jul 25 20:46:07 EDT 2025
Wed Feb 19 02:31:38 EST 2025
Tue Jul 01 00:42:17 EDT 2025
Thu Apr 24 22:52:30 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Walsh Glacier
remote sensing
glacier velocity
surge behavior
surface elevation changes
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c469t-d82c75a72160dec85aca01f60aba3306ec50ff50454c6d085e7cd6b44344a7bd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2936-2681
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s20030716
PMID 32012918
PQID 2550399921
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_9ce11bc2bbb04a5f890eb1d0a974faaf
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7038479
proquest_miscellaneous_2350910229
proquest_journals_2550399921
pubmed_primary_32012918
crossref_citationtrail_10_3390_s20030716
crossref_primary_10_3390_s20030716
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200128
PublicationDateYYYYMMDD 2020-01-28
PublicationDate_xml – month: 1
  year: 2020
  text: 20200128
  day: 28
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2020
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Fahnestock (ref_23) 2016; 185
Gilbert (ref_18) 2019; 10
Round (ref_43) 2017; 11
Kotlyakov (ref_4) 2004; 24
Nuth (ref_44) 2011; 5
Scherler (ref_35) 2008; 112
Kamb (ref_51) 1985; 227
ref_56
ref_11
Shangguan (ref_6) 2016; 62
Pfeffer (ref_24) 2014; 60
Motyka (ref_5) 2007; 112
Harper (ref_52) 2010; 467
Guo (ref_9) 2013; 54
Eisen (ref_3) 2005; 51
Yasuda (ref_7) 2015; 120
Dunse (ref_20) 2015; 9
Harrison (ref_8) 2003; 36
Bevington (ref_13) 2017; 60
Dehecq (ref_49) 2015; 162
Liu (ref_41) 2017; 63
Post (ref_25) 1969; 8
Zhang (ref_57) 2018; 64
Toutin (ref_32) 2008; 29
Rivera (ref_58) 2017; 51
Bhambri (ref_17) 2019; 180
Turrin (ref_26) 2013; 54
(ref_48) 2009; 64
Meier (ref_1) 1969; 6
ref_28
Fu (ref_14) 2019; 65
Morfitt (ref_22) 2015; 7
Storey (ref_29) 2014; 6
Quincey (ref_10) 2015; 120
Jeong (ref_21) 2015; 170
Shangguan (ref_45) 2015; 9
James (ref_55) 2014; 7
Abe (ref_12) 2016; 10
ref_38
Abe (ref_53) 2015; 9
Bhambri (ref_15) 2017; 7
Benn (ref_19) 2019; 65
Leprince (ref_33) 2007; 45
Raymond (ref_50) 1987; 92
(ref_36) 2005; 94
Heid (ref_37) 2012; 118
Pieczonka (ref_46) 2015; 128
Pieczonka (ref_47) 2013; 130
Copland (ref_2) 2011; 43
ref_42
Hirano (ref_30) 2003; 57
ref_40
Scherler (ref_34) 2012; 58
Post (ref_27) 1966; 6
Turrin (ref_54) 2017; 60
Pitte (ref_16) 2016; 121
Kaab (ref_31) 2008; 46
Sakakibara (ref_39) 2014; 119
References_xml – volume: 119
  start-page: 2541
  year: 2014
  ident: ref_39
  article-title: Ice-front variations and speed changes of calving glaciers in the Southern Patagonia Icefield from 1984 to 2011
  publication-title: J. Geophys. Res. Earth Surf.
  doi: 10.1002/2014JF003148
– volume: 58
  start-page: 569
  year: 2012
  ident: ref_34
  article-title: Large surface velocity fluctuations of Biafo Glacier, central Karakoram, at high spatial and temporal resolution from optical satellite images
  publication-title: J. Glaciol.
  doi: 10.3189/2012JoG11J096
– volume: 64
  start-page: 398
  year: 2009
  ident: ref_48
  article-title: Accuracy assessment of digital elevation models by means of robust statistical methods
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2009.02.003
– volume: 227
  start-page: 469
  year: 1985
  ident: ref_51
  article-title: Glacier Surge Mechanism: 1982–1983 Surge of Variegated Glacier, Alaska
  publication-title: Science
  doi: 10.1126/science.227.4686.469
– volume: 10
  start-page: 1427
  year: 2016
  ident: ref_12
  article-title: Brief Communication: Twelve-year cyclic surging episodes at Donjek Glacier in Yukon, Canada
  publication-title: Cryosphere
  doi: 10.5194/tc-10-1427-2016
– volume: 57
  start-page: 356
  year: 2003
  ident: ref_30
  article-title: Mapping from ASTER stereo image data: DEM validation and accuracy assessment
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/S0924-2716(02)00164-8
– volume: 51
  start-page: 399
  year: 2005
  ident: ref_3
  article-title: Variegated Glacier, Alaska, USA: A century of surges
  publication-title: J. Glaciol.
  doi: 10.3189/172756505781829250
– volume: 118
  start-page: 339
  year: 2012
  ident: ref_37
  article-title: Evaluation of existing image matching methods for deriving glacier surface displacements globally from optical satellite imagery
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.11.024
– volume: 128
  start-page: 1
  year: 2015
  ident: ref_46
  article-title: Region-wide glacier mass budgets and area changes for the Central Tien Shan between ≈1975 and 1999 using Hexagon KH-9 imagery
  publication-title: Glob. Planet. Chang.
  doi: 10.1016/j.gloplacha.2014.11.014
– volume: 64
  start-page: 397
  year: 2018
  ident: ref_57
  article-title: Glacier variations at Aru Co in western Tibet from 1971 to 2016 derived from remote-sensing data
  publication-title: J. Glaciol.
  doi: 10.1017/jog.2018.34
– volume: 45
  start-page: 1529
  year: 2007
  ident: ref_33
  article-title: Automatic and precise orthorectification, coregistration, and subpixel correlation of satellite images, application to ground deformation measurements
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2006.888937
– volume: 94
  start-page: 463
  year: 2005
  ident: ref_36
  article-title: Combination of SRTM3 and repeat ASTER data for deriving alpine glacier flow velocities in the Bhutan Himalaya
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2004.11.003
– volume: 62
  start-page: 944
  year: 2016
  ident: ref_6
  article-title: Characterizing the May 2015 Karayaylak Glacier surge in the eastern Pamir Plateau using remote sensing
  publication-title: J. Glaciol.
  doi: 10.1017/jog.2016.81
– volume: 51
  start-page: 105
  year: 2017
  ident: ref_58
  article-title: Ice-elevation changes of Glaciar Chico, southern Patagonia, using ASTER DEMs, aerial photographs and GPS data
  publication-title: J. Glaciol.
  doi: 10.3189/172756505781829557
– volume: 7
  start-page: 15391
  year: 2017
  ident: ref_15
  article-title: Surge-type and surge-modified glaciers in the Karakoram
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-15473-8
– volume: 54
  start-page: 299
  year: 2013
  ident: ref_9
  article-title: The 2008/09 surge of central Yulinchuan glacier, northern Tibetan Plateau, as monitored by remote sensing
  publication-title: Ann. Glaciol.
  doi: 10.3189/2013AoG63A495
– volume: 170
  start-page: 90
  year: 2015
  ident: ref_21
  article-title: Performance of Landsat 8 Operational Land Imager for mapping ice sheet velocity
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.08.023
– volume: 92
  start-page: 9121
  year: 1987
  ident: ref_50
  article-title: How do glaciers surge? A review
  publication-title: J. Geophys. Res. Solid Earth
  doi: 10.1029/JB092iB09p09121
– volume: 120
  start-page: 1288
  year: 2015
  ident: ref_10
  article-title: Heterogeneity in Karakoram glacier surges
  publication-title: J. Geophys. Res. Earth Surf.
  doi: 10.1002/2015JF003515
– volume: 60
  start-page: 771
  year: 2017
  ident: ref_54
  article-title: Effects of bedrock lithology and subglacial till on the motion of Ruth Glacier, Alaska, deduced from five pulses from 1973 to 2012
  publication-title: J. Glaciol.
  doi: 10.3189/2014JoG13J182
– volume: 63
  start-page: 382
  year: 2017
  ident: ref_41
  article-title: Revealing the surge behaviour of the Yangtze River headwater glacier during 1989–2015 with TanDEM-X and Landsat images
  publication-title: J. Glaciol.
  doi: 10.1017/jog.2017.4
– volume: 162
  start-page: 55
  year: 2015
  ident: ref_49
  article-title: Deriving large-scale glacier velocities from a complete satellite archive: Application to the Pamir–Karakoram–Himalaya
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.01.031
– volume: 65
  start-page: 701
  year: 2019
  ident: ref_19
  article-title: A general theory of glacier surges
  publication-title: J. Glaciol.
  doi: 10.1017/jog.2019.62
– volume: 11
  start-page: 723
  year: 2017
  ident: ref_43
  article-title: Surge dynamics and lake outbursts of Kyagar Glacier, Karakoram
  publication-title: Cryosphere
  doi: 10.5194/tc-11-723-2017
– ident: ref_11
  doi: 10.1017/jog.2018.94
– volume: 6
  start-page: 807
  year: 1969
  ident: ref_1
  article-title: What are glacier surges?
  publication-title: Can. J. Earth Sci.
  doi: 10.1139/e69-081
– ident: ref_42
  doi: 10.3390/rs9040388
– volume: 6
  start-page: 11127
  year: 2014
  ident: ref_29
  article-title: Landsat 8 Operational Land Imager on-orbit geometric calibration and performance
  publication-title: Remote Sens.
  doi: 10.3390/rs61111127
– volume: 5
  start-page: 271
  year: 2011
  ident: ref_44
  article-title: Co-registration and bias corrections of satellite elevation data sets for quantifying glacier thickness change
  publication-title: Cryosphere
  doi: 10.5194/tc-5-271-2011
– volume: 9
  start-page: 703
  year: 2015
  ident: ref_45
  article-title: Mass changes of Southern and Northern Inylchek Glacier, Central Tian Shan, Kyrgyzstan, during ∼1975 and 2007 derived from remote sensing data
  publication-title: Cryosphere
  doi: 10.5194/tc-9-703-2015
– volume: 120
  start-page: 2393
  year: 2015
  ident: ref_7
  article-title: Dynamics of surge-type glaciers in West Kunlun Shan, Northwestern Tibet
  publication-title: J. Geophys. Res. Earth Surf.
  doi: 10.1002/2015JF003511
– ident: ref_40
  doi: 10.3390/rs8070598
– volume: 112
  start-page: F02004
  year: 2007
  ident: ref_5
  article-title: Hubbard Glacier, Alaska: 2002 closure of Russell Fjord and implications for future dams
  publication-title: J. Geophys. Res.
  doi: 10.1029/2006JF000475
– volume: 36
  start-page: 1
  year: 2003
  ident: ref_8
  article-title: How much do we really know about glacier surging?
  publication-title: Ann. Glaciol.
  doi: 10.3189/172756403781816185
– volume: 180
  start-page: 100
  year: 2019
  ident: ref_17
  article-title: Ice-dams, outburst floods, and movement heterogeneity of glaciers, Karakoram
  publication-title: Glob. Planet. Chang.
  doi: 10.1016/j.gloplacha.2019.05.004
– ident: ref_28
  doi: 10.3390/rs8110937
– volume: 24
  start-page: 78
  year: 2004
  ident: ref_4
  article-title: The September 2002 Kolka glacier catastrophe in North Ossetia, Russian Federation: Evidence and analysis
  publication-title: Mt. Res. Dev.
  doi: 10.1659/0276-4741(2004)024[0078:TSKGCI]2.0.CO;2
– volume: 43
  start-page: 503
  year: 2011
  ident: ref_2
  article-title: Expanded and recently increased glacier surging in the Karakoram
  publication-title: Arct. Antarct. Alp. Res.
  doi: 10.1657/1938-4246-43.4.503
– ident: ref_56
  doi: 10.3390/rs9101064
– volume: 7
  start-page: 2208
  year: 2015
  ident: ref_22
  article-title: Landsat-8 Operational Land Imager (OLI) radiometric performance on-orbit
  publication-title: Remote Sens.
  doi: 10.3390/rs70202208
– volume: 112
  start-page: 3806
  year: 2008
  ident: ref_35
  article-title: Glacier-surface velocities in alpine terrain from optical satellite imagery—Accuracy improvement and quality assessment
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2008.05.018
– volume: 6
  start-page: 375
  year: 1966
  ident: ref_27
  article-title: The recent surge of Walsh glacier, Yukon and Alaska
  publication-title: J. Glaciol.
  doi: 10.3189/S0022143000019481
– volume: 29
  start-page: 1855
  year: 2008
  ident: ref_32
  article-title: ASTER DEMs for geomatic and geoscientific applications: A review
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160701408477
– volume: 130
  start-page: 233
  year: 2013
  ident: ref_47
  article-title: Heterogeneous mass loss of glaciers in the Aksu-Tarim Catchment (Central Tien Shan) revealed by 1976 KH-9 Hexagon and 2009 SPOT-5 stereo imagery
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2012.11.020
– volume: 7
  start-page: 593
  year: 2014
  ident: ref_55
  article-title: Buoyant flexure and basal crevassing in dynamic mass loss at Helheim Glacier
  publication-title: Nat. Geosci.
  doi: 10.1038/ngeo2204
– volume: 185
  start-page: 84
  year: 2016
  ident: ref_23
  article-title: Rapid large-area mapping of ice flow using Landsat 8
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.11.023
– volume: 8
  start-page: 229
  year: 1969
  ident: ref_25
  article-title: Distribution of Surging Glaciers in Western North America
  publication-title: J. Glaciol.
  doi: 10.3189/S0022143000031221
– volume: 60
  start-page: 113
  year: 2017
  ident: ref_13
  article-title: Characteristics of the last five surges of Lowell Glacier, Yukon, Canada, since 1948
  publication-title: J. Glaciol.
  doi: 10.3189/2014JoG13J134
– ident: ref_38
  doi: 10.3390/rs9090888
– volume: 9
  start-page: 1183
  year: 2015
  ident: ref_53
  article-title: Winter speed-up of quiescent surge-type glaciers in Yukon, Canada
  publication-title: Cryosphere
  doi: 10.5194/tc-9-1183-2015
– volume: 9
  start-page: 197
  year: 2015
  ident: ref_20
  article-title: Glacier-surge mechanisms promoted by a hydro-thermodynamic feedback to summer melt
  publication-title: Cryosphere
  doi: 10.5194/tc-9-197-2015
– volume: 121
  start-page: 111
  year: 2016
  ident: ref_16
  article-title: Geometric evolution of the Horcones Inferior Glacier (Mount Aconcagua, Central Andes) during the 2002–2006 surge
  publication-title: J. Geophys. Res. Earth Surf.
  doi: 10.1002/2015JF003522
– volume: 65
  start-page: 168
  year: 2019
  ident: ref_14
  article-title: Characterizing the surge behavior of Alakesayi Glacier in the West Kunlun Shan, Northwestern Tibetan Plateau, from remote-sensing data between 2013 and 2018
  publication-title: J. Glaciol.
  doi: 10.1017/jog.2019.2
– volume: 60
  start-page: 537
  year: 2014
  ident: ref_24
  article-title: The Randolph Glacier Inventory: A globally complete inventory of glaciers
  publication-title: J. Glaciol.
  doi: 10.3189/2014JoG13J176
– volume: 46
  start-page: 2823
  year: 2008
  ident: ref_31
  article-title: Glacier Volume Changes Using ASTER Satellite Stereo and ICESat GLAS Laser Altimetry. A Test Study on EdgeØya, Eastern Svalbard
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2008.2000627
– volume: 467
  start-page: 579
  year: 2010
  ident: ref_52
  article-title: Vertical extension of the subglacial drainage system into basal crevasses
  publication-title: Nature
  doi: 10.1038/nature09398
– volume: 10
  start-page: 2823
  year: 2019
  ident: ref_18
  article-title: Rate-and-state friction explains glacier surge propagation
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-10506-4
– volume: 54
  start-page: 221
  year: 2013
  ident: ref_26
  article-title: The propagation of a surge front on Bering Glacier, Alaska, 2001–2011
  publication-title: Ann. Glaciol.
  doi: 10.3189/2013AoG63A341
SSID ssj0023338
Score 2.317011
Snippet Many surge-type glaciers are present on the St. Elias Mountains, but a detailed study on the surge behavior of the glaciers is still missing. In this study, we...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 716
SubjectTerms Accuracy
Algorithms
glacier velocity
Glaciers
Remote sensing
Sensors
Software
surface elevation changes
surge behavior
Velocity
walsh glacier
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA7iSQ_ib6tTonjwUpYmbdYc_TVF0IM63K28pIkTRidzCv73vrRd2WTgxVtpE0jey8v7vvb1CyGnWlqdah2FMnUixHzLQlDGhJjafTQlipVVlfcP8rYX3_WT_sxRX74mrJIHrgzXVsZGkTZca81iSFyqGG4vOQMEwg7A-d0Xc96UTNVUSyDzqnSEBJL69gcvF7M_1Hwm-5Qi_YuQ5e8CyZmM010nazVUpOfVEDfIki02yeqMgOAW6SLqw870yf_cTGutwzEdOfqCy2pAb4aAsTumj_bLA8Kc6m-8Ru9Y-uQr14tXegUT2Ca97vXz5W1Yn4wQGqSzkzBPuekk4IV3WG5NmoABFjnJQINAEmBNwpxLvLyekTmiKtsxudRxLOIYOjoXO2S5GBV2j1DDhJVCSgspciut0FEgnFDY20qkxwE5m1osM7VsuD-9YpghffDGzRrjBuSkafpeaWUsanThzd408PLW5Q10elY7PfvL6QFpTZ2W1TH3kSE5Ygi3FI8Cctw8xmjxn0CgsKNPbCNKgMS5Cshu5eNmJIL7l3IRzrgz5_25oc4_Kd4GpSI3bpuY5dX-f8ztgKxwz-lZFPK0RZYn4097iMBnoo_KNf4DghoDTA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB619NIeEPQZXnKrHnqxcOzEG58QfSyoUnsoReUW2Y4NlVACuwsS_56ZrDfdrRC3KLYlZ8bjmc-efAPw0engKudyrquoOPpbwa3xnqNrJ2sqjeizKn_81Menxfez8iwduE1TWuViT-w36qbzdEa-j6GvQGdqZH5wdc2pahTdrqYSGk_hWY6ehlK6qvHRALgU4q85m5BCaL8_lf2SptLmSz6op-p_KL78P01yye-MN2A9BYzscK7hTXgS2pfwYolG8BWMMfbDweyEfnFmifFwwrrI_uDiumBHlxYteMJ-hVsKCxvm7vAZdRTYCeWvt-fsq53Z13A6_vb7yzFP9RG4R1A7400l_ai0RL8jmuCr0nor8qiFdVYhFAi-FDGWRLLndYOxVRj5RruiUEVhR65Rb2Ct7drwDpgXKmildbAVIixnUF1WRWVwdNAIkjP4tJBY7RN5ONWwuKwRRJBw60G4GXwYul7NGTMe6vSZxD50IJLr_kU3Oa-TzdTGhzx3XjrnRGHLWBmBnqURFjFQtDZmsLNQWp0sb1r_WycZvB-a0WboIsS2obvBPqoPk6Q0Gbyd63iYiZJ0NJfjF49WtL8y1dWW9u9Fz8uNmyf6erP1-LS24bkkzC5yLqsdWJtNbsIuBjYzt9ev3nst6_jv
  priority: 102
  providerName: ProQuest
Title Recent Surge Behavior of Walsh Glacier Revealed by Remote Sensing Data
URI https://www.ncbi.nlm.nih.gov/pubmed/32012918
https://www.proquest.com/docview/2550399921
https://www.proquest.com/docview/2350910229
https://pubmed.ncbi.nlm.nih.gov/PMC7038479
https://doaj.org/article/9ce11bc2bbb04a5f890eb1d0a974faaf
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB71cYED4t1AuzKIA5eAYydOfKiqFrqtkFqhlhV7i8aO3SKtspBuEf33jLPZqEErLlEUTyR7xpOZz3a-AXhnlDOFMUmsCi9jirc8Rm1tTKE9eFOmeXuq8uxcnU7SL9NsugGrGpudAm_WQrtQT2rSzD78-XV3QA6_HxAnQfaPN6KdqonahG0KSHkoZHCW9psJQhIMW5IKDcUHoahl7F-XZv57WvJe-Bk_hkdd3sgOl4Z-AhuufgoP77EJPoMxpYD0MrsMfzqzjviwYXPPvtNYr9nJDMmRG3bhfofssGLmju7JVI5dhmPs9RX7jAt8DpPx8bdPp3FXJiG2hG0XcVUIm2cYWHh45WyRoUWeeMXRoCRE4GzGvc8C155VFaVYLreVMmkq0xRzU8kXsFXPa7cDzHLplFTKYUFAy2iyGkovNb3tFGHlCN6vNFbajkM8lLKYlYQlgnLLXrkRvO1Ffy6JM9YJHQW19wKB67p9MG-uys51Sm1dkhgrjDE8xcwXmlOAqTgSFPKIPoLdldHK1fwpCSlxyr20SCJ40zeT64T9EKzd_JZkZJstCaEjeLm0cd8TKcIKXUIjzgfWH3R12FL_uG7puekbSiFfv_p_t17DAxGgO09iUezC1qK5dXuU3yzMCDbzaU7XYnwygu2j4_OvF6N2rWDUzuu_7hj-qA
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcoAeUHmHFjAIJC5RHTvxxocKAWW7pY8DbUVvqe04baUqaXe3oP4pfiMzebGLKm69rdbOyjue8XyfY38D8M4qb1Nro1ClhQwx3_LQaOdCTO0UTYnm9anK3T01Ooy_HSVHC_C7uwtDxyq7NbFeqPPK0R75GkJfjslUi-jjxWVIVaPo7WpXQqNxi21__Qsp22R9awPn970Qw68HX0ZhW1UgdEgFp2GeCjdIDInW8Ny7NDHO8KhQ3FiD5F55l_CiSEiazqkcEYkfuFzZOJZxbAY2l_i7d-BuLDGT08304WZP8CTyvUa9CBv52kTUIUSl1GdyXl0a4CY8---xzJk8N1yGBy1AZZ8aj3oIC758BEszsoWPYYhYEx9m-3SlmrUKi2NWFewHOvMp2zw3uGKM2Xf_k2Bozuw1fkaf8GyfzsuXJ2zDTM0TOLwVyz2FxbIq_XNgjkuvpFLepMjorEb3MLKQGp_2Ckl5AB86i2WuFSunmhnnGZIWMm7WGzeAt33Xi0ah46ZOn8nsfQcS1a6_qMYnWRujmXY-iqwT1loem6RINcdMlnODnKswpghgtZu0rI30SfbXLwN40zdjjNKLF1P66gr7yBqWCaEDeNbMcT8SKWgrMMJ_PJib_bmhzreUZ6e1Djgu1ogt9Iv_D-s13Bsd7O5kO1t72ytwX9B-AY9Cka7C4nR85V8iqJraV7UnMzi-7dD5A5WONkI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED6NTkLwgPhNxgCDQOIlqmMnTvyAEKMrG4Nq2pi2t2A79jZpSkbbgfav8ddxzi9aNPG2t6pxKvd85_s-5_IdwGstrM60jkKROR5ivqWhksaEmNp9NCWS1lWVXydi6yD-fJQcrcDv7l0YX1bZ7Yn1Rl1Uxp-RDxH6UkymkkVD15ZF7I7G789_hL6DlH_S2rXTaFxkx17-Qvo2e7c9wrV-w9h489vHrbDtMBAapIXzsMiYSRPlBWxoYU2WKKNo5ARVWiHRF9Yk1LnEy9QZUSA6sakphI5jHscq1QXH370Bq6lnRQNY3dic7O71dI8j-2u0jDiXdDhjdUD5xuoLGbBuFHAVuv23SHMh643vwp0WrpIPjX_dgxVb3ofbCyKGD2CMyBNvJvv-BWvS6i1OSeXIIbr2Cfl0pnD_mJI9-9OD0oLoS_yMHmLJvq-eL4_JSM3VQzi4Fts9gkFZlfYJEEO5FVwIqzLkd1qisyjuuMS7rUCKHsDbzmK5aaXLfQeNsxwpjDdu3hs3gFf90PNGr-OqQRve7P0AL7Fdf1FNj_M2YnNpbBRpw7TWNFaJyyTFvFZQhQzMKeUCWO8WLW_jfpb_9dIAXvaXMWL9YxhV2uoCx_AapDEmA3jcrHE_E878wWCE_zhdWv2lqS5fKU9PalVw3LoRaci1_0_rBdzEsMm_bE92nsIt5g8PaBSybB0G8-mFfYYIa66ft65M4Pt1R88fBus71A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+Surge+Behavior+of+Walsh+Glacier+Revealed+by+Remote+Sensing+Data&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Fu%2C+Xiyou&rft.au=Zhou%2C+Jianmin&rft.date=2020-01-28&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=20&rft.issue=3&rft.spage=716&rft_id=info:doi/10.3390%2Fs20030716&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon