Low rank matrix completion by alternating steepest descent methods

Matrix completion involves recovering a matrix from a subset of its entries by utilizing interdependency between the entries, typically through low rank structure. Despite matrix completion requiring the global solution of a non-convex objective, there are many computationally efficient algorithms w...

Full description

Saved in:
Bibliographic Details
Published inApplied and computational harmonic analysis Vol. 40; no. 2; pp. 417 - 429
Main Authors Tanner, Jared, Wei, Ke
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.03.2016
Subjects
Online AccessGet full text
ISSN1063-5203
1096-603X
DOI10.1016/j.acha.2015.08.003

Cover

Loading…
Abstract Matrix completion involves recovering a matrix from a subset of its entries by utilizing interdependency between the entries, typically through low rank structure. Despite matrix completion requiring the global solution of a non-convex objective, there are many computationally efficient algorithms which are effective for a broad class of matrices. In this paper, we introduce an alternating steepest descent algorithm (ASD) and a scaled variant, ScaledASD, for the fixed-rank matrix completion problem. Empirical evaluation of ASD and ScaledASD on both image inpainting and random problems show they are competitive with other state-of-the-art matrix completion algorithms in terms of recoverable rank and overall computational time. In particular, their low per iteration computational complexity makes ASD and ScaledASD efficient for large size problems, especially when computing the solutions to moderate accuracy such as in the presence of model misfit, noise, and/or as an initialization strategy for higher order methods. A preliminary convergence analysis is also presented.
AbstractList Matrix completion involves recovering a matrix from a subset of its entries by utilizing interdependency between the entries, typically through low rank structure. Despite matrix completion requiring the global solution of a non-convex objective, there are many computationally efficient algorithms which are effective for a broad class of matrices. In this paper, we introduce an alternating steepest descent algorithm (ASD) and a scaled variant, ScaledASD, for the fixed-rank matrix completion problem. Empirical evaluation of ASD and ScaledASD on both image inpainting and random problems show they are competitive with other state-of-the-art matrix completion algorithms in terms of recoverable rank and overall computational time. In particular, their low per iteration computational complexity makes ASD and ScaledASD efficient for large size problems, especially when computing the solutions to moderate accuracy such as in the presence of model misfit, noise, and/or as an initialization strategy for higher order methods. A preliminary convergence analysis is also presented. MSC * 15A29 * 41A29 * 65F10 * 65J20 * 68Q25 * 90C26
Matrix completion involves recovering a matrix from a subset of its entries by utilizing interdependency between the entries, typically through low rank structure. Despite matrix completion requiring the global solution of a non-convex objective, there are many computationally efficient algorithms which are effective for a broad class of matrices. In this paper, we introduce an alternating steepest descent algorithm (ASD) and a scaled variant, ScaledASD, for the fixed-rank matrix completion problem. Empirical evaluation of ASD and ScaledASD on both image inpainting and random problems show they are competitive with other state-of-the-art matrix completion algorithms in terms of recoverable rank and overall computational time. In particular, their low per iteration computational complexity makes ASD and ScaledASD efficient for large size problems, especially when computing the solutions to moderate accuracy such as in the presence of model misfit, noise, and/or as an initialization strategy for higher order methods. A preliminary convergence analysis is also presented.
Author Tanner, Jared
Wei, Ke
Author_xml – sequence: 1
  givenname: Jared
  surname: Tanner
  fullname: Tanner, Jared
  email: tanner@maths.ox.ac.uk
  organization: Mathematical Institute, University of Oxford, Andrew Wiles Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford OX2 6GG, UK
– sequence: 2
  givenname: Ke
  orcidid: 0000-0003-1222-3044
  surname: Wei
  fullname: Wei, Ke
  email: makwei@ust.hk
  organization: Department of Mathematics, Hong Kong University of Science and Technology, Hong Kong, People's Republic of China
BookMark eNp9kLtOxDAQRS0EEs8foEpJkzCO85RoAPGSVqIBic4a27PgJbEX27z-nkRLRUE1U9wzunP22bbzjhg75lBw4M3pqkD9gkUJvC6gKwDEFtvj0Dd5A-Jpe94bkdcliF22H-MKgPOq7vfYxcJ_ZgHdazZiCvYr035cD5Ssd5n6znBIFBwm656zmIjWFFNmKGpyKRspvXgTD9nOEodIR7_zgD1eXz1c3uaL-5u7y_NFrqumT7lpTKVMr7RuBLWiUoiEql62HUDFUalW6VqLviuhRF5qge30mShr1fWmNY04YCebu-vg396nInK0U5FhQEf-PUre9qKsRF_BFC03UR18jIGWch3siOFbcpCzMLmSszA5C5PQyUnYBHV_IG0TziZSQDv8j55tUJr-_7AUZNSWnCZjA-kkjbf_4T8giYlJ
CitedBy_id crossref_primary_10_1186_s13660_018_1931_4
crossref_primary_10_1109_TCSVT_2022_3190818
crossref_primary_10_1007_s10915_024_02662_7
crossref_primary_10_1111_cgf_14053
crossref_primary_10_1016_j_amc_2017_07_024
crossref_primary_10_1016_j_jocs_2023_102062
crossref_primary_10_1186_s13634_023_01027_w
crossref_primary_10_1016_j_ins_2021_05_051
crossref_primary_10_1137_18M1227846
crossref_primary_10_1109_TNNLS_2023_3280086
crossref_primary_10_1364_OE_471663
crossref_primary_10_1109_TMM_2016_2638624
crossref_primary_10_1109_TGRS_2022_3166770
crossref_primary_10_1137_23M1570442
crossref_primary_10_1016_j_chemolab_2024_105193
crossref_primary_10_1016_j_envres_2016_03_034
crossref_primary_10_1088_1742_6596_1629_1_012003
crossref_primary_10_1016_j_laa_2020_04_017
crossref_primary_10_1155_2020_8812701
crossref_primary_10_1137_19M1264783
crossref_primary_10_1109_TNET_2017_2651116
crossref_primary_10_1007_s10208_019_09429_9
crossref_primary_10_1007_s10589_021_00276_5
crossref_primary_10_1109_TIP_2017_2781425
crossref_primary_10_1007_s10589_021_00328_w
crossref_primary_10_1109_TCSVT_2019_2890880
crossref_primary_10_1007_s10589_018_0010_6
crossref_primary_10_1016_j_ins_2021_07_035
crossref_primary_10_1137_15M1050525
crossref_primary_10_1089_cmb_2019_0013
crossref_primary_10_1016_j_camwa_2018_09_037
crossref_primary_10_1137_19M1294800
crossref_primary_10_1016_j_ipm_2022_102931
crossref_primary_10_1007_s13042_020_01121_7
crossref_primary_10_1016_j_neucom_2016_11_068
crossref_primary_10_3390_math11051155
crossref_primary_10_4108_eetsis_v10i3_2878
crossref_primary_10_1016_j_dsp_2021_103171
crossref_primary_10_1089_cmb_2019_0107
crossref_primary_10_1016_j_amc_2019_02_027
crossref_primary_10_1109_TSP_2019_2952057
crossref_primary_10_1016_j_neucom_2018_04_032
crossref_primary_10_1109_JSAC_2022_3155530
crossref_primary_10_1109_TGRS_2023_3282217
crossref_primary_10_1007_s11042_019_08430_2
crossref_primary_10_1109_TCYB_2021_3072896
crossref_primary_10_1109_ACCESS_2019_2928130
crossref_primary_10_1109_TGRS_2020_3033842
crossref_primary_10_1109_TSP_2021_3071560
crossref_primary_10_1007_s10898_017_0590_1
crossref_primary_10_1007_s10957_020_01731_9
crossref_primary_10_1137_23M1555387
crossref_primary_10_1186_s13660_020_02340_w
crossref_primary_10_1007_s11590_022_01959_6
crossref_primary_10_1088_2040_8986_aa8237
crossref_primary_10_1109_TSP_2023_3290353
crossref_primary_10_1177_0161734620910163
crossref_primary_10_1186_s13660_019_2033_7
crossref_primary_10_1109_TIT_2023_3345902
crossref_primary_10_1007_s40305_023_00520_1
crossref_primary_10_1109_TNNLS_2017_2766160
crossref_primary_10_1109_TIP_2017_2762595
crossref_primary_10_1109_ACCESS_2021_3125152
crossref_primary_10_1007_s10915_018_0857_9
crossref_primary_10_1137_17M1148712
crossref_primary_10_1137_21M1433812
crossref_primary_10_1109_TKDE_2018_2867533
crossref_primary_10_1137_20M1315294
crossref_primary_10_1016_j_patcog_2023_109637
crossref_primary_10_1109_ACCESS_2022_3204660
crossref_primary_10_3390_rs16020247
crossref_primary_10_1155_2022_6847850
Cites_doi 10.1109/TIT.2010.2046205
10.1137/080738970
10.1137/120887795
10.1109/TIT.2010.2044061
10.1007/s10208-009-9045-5
10.1109/LSP.2009.2018223
10.1007/s10851-013-0434-7
10.1137/090755436
10.1007/s12532-012-0044-1
10.1137/110845768
10.1137/120876459
10.1007/s00180-013-0464-z
10.1080/10556789908805730
10.1093/imaiai/iav011
ContentType Journal Article
Copyright 2015
Copyright_xml – notice: 2015
DBID AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.acha.2015.08.003
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1096-603X
EndPage 429
ExternalDocumentID 10_1016_j_acha_2015_08_003
S1063520315001062
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AASFE
AAXUO
ABAOU
ABFNM
ABJNI
ABMAC
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADFGL
ADMUD
AEBSH
AEKER
AENEX
AEXQZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CAG
COF
CS3
DM4
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
IXB
J1W
KOM
LG5
M26
M41
MCRUF
MHUIS
MO0
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSW
SSZ
T5K
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7SC
7SP
8FD
EFKBS
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c469t-d6d4bd9bcc63e734baaeab5f780041abb7bc5c398202a12c3a7016325b89d7d63
IEDL.DBID .~1
ISSN 1063-5203
IngestDate Thu Sep 04 22:20:59 EDT 2025
Tue Jul 01 03:49:05 EDT 2025
Thu Apr 24 23:08:56 EDT 2025
Fri Feb 23 02:28:03 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Exact line-search
68Q25
Gradient descent
65F10
Alternating minimization
90C26
65J20
15A29
41A29
Matrix completion
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c469t-d6d4bd9bcc63e734baaeab5f780041abb7bc5c398202a12c3a7016325b89d7d63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-1222-3044
PQID 1793243940
PQPubID 23500
PageCount 13
ParticipantIDs proquest_miscellaneous_1793243940
crossref_primary_10_1016_j_acha_2015_08_003
crossref_citationtrail_10_1016_j_acha_2015_08_003
elsevier_sciencedirect_doi_10_1016_j_acha_2015_08_003
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-03-01
PublicationDateYYYYMMDD 2016-03-01
PublicationDate_xml – month: 03
  year: 2016
  text: 2016-03-01
  day: 01
PublicationDecade 2010
PublicationTitle Applied and computational harmonic analysis
PublicationYear 2016
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Haldar, Hernando (br0120) 2009; 16
Jain, Meka, Dhillon (br0140) 2010
Mishra, Meyer, Bonnabel, Sepulchre (br0190) 2014; 29
Keshavan, Montanari, Oh (br0150) 2010; 56
Eldén (br0080) 2007
J. Tanner, K. Wei, Low rank matrix completion by alternating steepest descent methods, Numerical Analysis Group preprint (ID Code: 1838), University of Oxford, 2014.
Argyriou, Evgeniou, Pontil (br0020) 2007; 19
Tanner, Wei (br0210) 2013; 35
Candès, Recht (br0060) 2009; 9
Fazel (br0100) 2002
Boumal, Absil (br0040) 2011
Mishra, Apuroop, Sepulchre (br0180) 2013
Harvey, Karger, Yekhanin (br0130) 2006
Cai, Candès, Shen (br0050) 2010; 20
Escalante, Raydan (br0090) 2011
Kyrillidis, Cevher (br0160) 2014; 48
Grippo, Sciandrone (br0110) 1999; 10
Ngo, Saad (br0200) 2012
Vandereycken (br0230) 2013; 23
Xu, Yin (br0250) 2013; 6
Candès, Tao (br0070) 2009; 56
Amit, Fink, Srebro, Ullman (br0010) 2007
Wen, Yin, Zhang (br0240) 2012; 4
J. Blanchard, J. Tanner, K. Wei, CGIHT: conjugate gradient iterative hard thresholding for compressed sensing and matrix completion, University of Oxford, 2014, Numerical Analysis Group preprint 14/08.
Liu, Vandenberghe (br0170) 2009; 31
Eldén (10.1016/j.acha.2015.08.003_br0080) 2007
Ngo (10.1016/j.acha.2015.08.003_br0200) 2012
10.1016/j.acha.2015.08.003_br0030
Argyriou (10.1016/j.acha.2015.08.003_br0020) 2007; 19
Grippo (10.1016/j.acha.2015.08.003_br0110) 1999; 10
Vandereycken (10.1016/j.acha.2015.08.003_br0230) 2013; 23
Wen (10.1016/j.acha.2015.08.003_br0240) 2012; 4
Jain (10.1016/j.acha.2015.08.003_br0140) 2010
Mishra (10.1016/j.acha.2015.08.003_br0190) 2014; 29
Cai (10.1016/j.acha.2015.08.003_br0050) 2010; 20
Amit (10.1016/j.acha.2015.08.003_br0010) 2007
Xu (10.1016/j.acha.2015.08.003_br0250) 2013; 6
Haldar (10.1016/j.acha.2015.08.003_br0120) 2009; 16
10.1016/j.acha.2015.08.003_br0220
Keshavan (10.1016/j.acha.2015.08.003_br0150) 2010; 56
Candès (10.1016/j.acha.2015.08.003_br0070) 2009; 56
Mishra (10.1016/j.acha.2015.08.003_br0180)
Boumal (10.1016/j.acha.2015.08.003_br0040) 2011
Fazel (10.1016/j.acha.2015.08.003_br0100) 2002
Harvey (10.1016/j.acha.2015.08.003_br0130) 2006
Escalante (10.1016/j.acha.2015.08.003_br0090) 2011
Kyrillidis (10.1016/j.acha.2015.08.003_br0160) 2014; 48
Tanner (10.1016/j.acha.2015.08.003_br0210) 2013; 35
Candès (10.1016/j.acha.2015.08.003_br0060) 2009; 9
Liu (10.1016/j.acha.2015.08.003_br0170) 2009; 31
References_xml – volume: 29
  start-page: 591
  year: 2014
  end-page: 621
  ident: br0190
  article-title: Fixed-rank matrix factorizations and Riemannian low-rank optimization
  publication-title: Comput. Stat.
– year: 2013
  ident: br0180
  article-title: A Riemannian geometry for low-rank matrix completion
– volume: 56
  start-page: 2053
  year: 2009
  end-page: 2080
  ident: br0070
  article-title: The power of convex relaxation: near-optimal matrix completion
  publication-title: IEEE Trans. Inform. Theory
– volume: 19
  start-page: 41
  year: 2007
  end-page: 48
  ident: br0020
  article-title: Multi-task feature learning
  publication-title: Adv. Neural Inf. Process. Syst.
– reference: J. Tanner, K. Wei, Low rank matrix completion by alternating steepest descent methods, Numerical Analysis Group preprint (ID Code: 1838), University of Oxford, 2014.
– start-page: 17
  year: 2007
  end-page: 24
  ident: br0010
  article-title: Uncovering shared structures in multiclass classification
  publication-title: Proceedings of the 24th International Conference on Machine Learning
– year: 2002
  ident: br0100
  article-title: Matrix rank minimization with applications
– start-page: 1103
  year: 2006
  end-page: 1111
  ident: br0130
  article-title: The complexity of matrix completion
  publication-title: Proceedings of the Seventeenth Annual ACM–SIAM symposium on Discrete Algorithms
– volume: 23
  start-page: 1214
  year: 2013
  end-page: 1236
  ident: br0230
  article-title: Low rank matrix completion by Riemannian optimization
  publication-title: SIAM J. Control Optim.
– volume: 16
  start-page: 584
  year: 2009
  end-page: 587
  ident: br0120
  article-title: Rank-constrained solutions to linear matrix equations using PowerFactorization
  publication-title: IEEE Signal Process. Lett.
– volume: 9
  start-page: 717
  year: 2009
  end-page: 772
  ident: br0060
  article-title: Exact matrix completion via convex optimization
  publication-title: Found. Comput. Math.
– volume: 10
  start-page: 587
  year: 1999
  end-page: 637
  ident: br0110
  article-title: Globally convergence block-coordinate techniques for unconstrained optimization
  publication-title: Optim. Methods Softw.
– volume: 6
  start-page: 1758
  year: 2013
  end-page: 1789
  ident: br0250
  article-title: A block coordinate descent method for regularized multi-convex optimization with applications to nonnegative tensor factorization and completion
  publication-title: SIAM J. Imaging Sci.
– volume: 31
  start-page: 1235
  year: 2009
  end-page: 1256
  ident: br0170
  article-title: Interior-point method for nuclear norm approximation with application to system identification
  publication-title: SIAM J. Matrix Anal. Appl.
– start-page: 406
  year: 2011
  end-page: 414
  ident: br0040
  article-title: RTRMC: a Riemannian trust-region method for low-rank matrix completion
  publication-title: Advances in Neural Inf. Processing Systems, vol. 24
– volume: 48
  start-page: 235
  year: 2014
  end-page: 265
  ident: br0160
  article-title: Matrix recipes for hard thresholding methods
  publication-title: J. Math. Imaging Vision
– year: 2007
  ident: br0080
  article-title: Matrix Methods in Data Mining and Pattern Recognization
– volume: 56
  start-page: 2980
  year: 2010
  end-page: 2998
  ident: br0150
  article-title: Matrix completion from a few entries
  publication-title: IEEE Trans. Inform. Theory
– volume: 35
  start-page: S104
  year: 2013
  end-page: S125
  ident: br0210
  article-title: Normalized iterative hard thresholding for matrix completion
  publication-title: SIAM J. Sci. Comput.
– volume: 4
  start-page: 333
  year: 2012
  end-page: 361
  ident: br0240
  article-title: Solving a low-rank factorization model for matrix completion by a non-linear successive over-relaxation algorithm
  publication-title: Math. Program. Comput.
– year: 2011
  ident: br0090
  article-title: Alternating Projection Methods
– start-page: 937
  year: 2010
  end-page: 945
  ident: br0140
  article-title: Guaranteed rank minimization via singular value projection
  publication-title: Proceedings of the Neural Information Processing Systems Conf.
– volume: 20
  start-page: 1956
  year: 2010
  end-page: 1982
  ident: br0050
  article-title: A singular value thresholding algorithm for matrix completion
  publication-title: SIAM J. Control Optim.
– reference: J. Blanchard, J. Tanner, K. Wei, CGIHT: conjugate gradient iterative hard thresholding for compressed sensing and matrix completion, University of Oxford, 2014, Numerical Analysis Group preprint 14/08.
– year: 2012
  ident: br0200
  article-title: Scaled gradients on Grassmann manifolds for matrix completion
  publication-title: Advances in Neural Information Processing Systems
– volume: 56
  start-page: 2980
  issue: 6
  year: 2010
  ident: 10.1016/j.acha.2015.08.003_br0150
  article-title: Matrix completion from a few entries
  publication-title: IEEE Trans. Inform. Theory
  doi: 10.1109/TIT.2010.2046205
– ident: 10.1016/j.acha.2015.08.003_br0180
– volume: 20
  start-page: 1956
  issue: 4
  year: 2010
  ident: 10.1016/j.acha.2015.08.003_br0050
  article-title: A singular value thresholding algorithm for matrix completion
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/080738970
– start-page: 1103
  year: 2006
  ident: 10.1016/j.acha.2015.08.003_br0130
  article-title: The complexity of matrix completion
– start-page: 406
  year: 2011
  ident: 10.1016/j.acha.2015.08.003_br0040
  article-title: RTRMC: a Riemannian trust-region method for low-rank matrix completion
– volume: 19
  start-page: 41
  year: 2007
  ident: 10.1016/j.acha.2015.08.003_br0020
  article-title: Multi-task feature learning
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 6
  start-page: 1758
  issue: 3
  year: 2013
  ident: 10.1016/j.acha.2015.08.003_br0250
  article-title: A block coordinate descent method for regularized multi-convex optimization with applications to nonnegative tensor factorization and completion
  publication-title: SIAM J. Imaging Sci.
  doi: 10.1137/120887795
– volume: 56
  start-page: 2053
  issue: 5
  year: 2009
  ident: 10.1016/j.acha.2015.08.003_br0070
  article-title: The power of convex relaxation: near-optimal matrix completion
  publication-title: IEEE Trans. Inform. Theory
  doi: 10.1109/TIT.2010.2044061
– year: 2007
  ident: 10.1016/j.acha.2015.08.003_br0080
– ident: 10.1016/j.acha.2015.08.003_br0220
– volume: 9
  start-page: 717
  issue: 6
  year: 2009
  ident: 10.1016/j.acha.2015.08.003_br0060
  article-title: Exact matrix completion via convex optimization
  publication-title: Found. Comput. Math.
  doi: 10.1007/s10208-009-9045-5
– volume: 16
  start-page: 584
  issue: 7
  year: 2009
  ident: 10.1016/j.acha.2015.08.003_br0120
  article-title: Rank-constrained solutions to linear matrix equations using PowerFactorization
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2009.2018223
– volume: 48
  start-page: 235
  issue: 2
  year: 2014
  ident: 10.1016/j.acha.2015.08.003_br0160
  article-title: Matrix recipes for hard thresholding methods
  publication-title: J. Math. Imaging Vision
  doi: 10.1007/s10851-013-0434-7
– volume: 31
  start-page: 1235
  year: 2009
  ident: 10.1016/j.acha.2015.08.003_br0170
  article-title: Interior-point method for nuclear norm approximation with application to system identification
  publication-title: SIAM J. Matrix Anal. Appl.
  doi: 10.1137/090755436
– year: 2011
  ident: 10.1016/j.acha.2015.08.003_br0090
– volume: 4
  start-page: 333
  year: 2012
  ident: 10.1016/j.acha.2015.08.003_br0240
  article-title: Solving a low-rank factorization model for matrix completion by a non-linear successive over-relaxation algorithm
  publication-title: Math. Program. Comput.
  doi: 10.1007/s12532-012-0044-1
– volume: 23
  start-page: 1214
  issue: 2
  year: 2013
  ident: 10.1016/j.acha.2015.08.003_br0230
  article-title: Low rank matrix completion by Riemannian optimization
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/110845768
– year: 2002
  ident: 10.1016/j.acha.2015.08.003_br0100
– volume: 35
  start-page: S104
  issue: 5
  year: 2013
  ident: 10.1016/j.acha.2015.08.003_br0210
  article-title: Normalized iterative hard thresholding for matrix completion
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/120876459
– start-page: 17
  year: 2007
  ident: 10.1016/j.acha.2015.08.003_br0010
  article-title: Uncovering shared structures in multiclass classification
– volume: 29
  start-page: 591
  year: 2014
  ident: 10.1016/j.acha.2015.08.003_br0190
  article-title: Fixed-rank matrix factorizations and Riemannian low-rank optimization
  publication-title: Comput. Stat.
  doi: 10.1007/s00180-013-0464-z
– year: 2012
  ident: 10.1016/j.acha.2015.08.003_br0200
  article-title: Scaled gradients on Grassmann manifolds for matrix completion
– volume: 10
  start-page: 587
  issue: 4
  year: 1999
  ident: 10.1016/j.acha.2015.08.003_br0110
  article-title: Globally convergence block-coordinate techniques for unconstrained optimization
  publication-title: Optim. Methods Softw.
  doi: 10.1080/10556789908805730
– ident: 10.1016/j.acha.2015.08.003_br0030
  doi: 10.1093/imaiai/iav011
– start-page: 937
  year: 2010
  ident: 10.1016/j.acha.2015.08.003_br0140
  article-title: Guaranteed rank minimization via singular value projection
SSID ssj0011459
Score 2.4866
Snippet Matrix completion involves recovering a matrix from a subset of its entries by utilizing interdependency between the entries, typically through low rank...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 417
SubjectTerms Algorithms
Alternating minimization
Computation
Computational efficiency
Exact line-search
Gradient descent
Harmonic analysis
Mathematical models
Matrix completion
State of the art
Strategy
Title Low rank matrix completion by alternating steepest descent methods
URI https://dx.doi.org/10.1016/j.acha.2015.08.003
https://www.proquest.com/docview/1793243940
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELWqcoEDYhVlk5G4odA0TuLkWBCopbQHoKI3y1ugCNKKtgIufDszWSoWqQdOkS07icbOLPHMe4Qcg1FIvMh4jkmUQVDtyJEmaThSRwwcaB5HFquRu72w1fevBsGgQs7LWhhMqyx0f67TM21d9NQLadbHw2H9FoIZ8B6QpSALbFAP-z5H_PzTz3maB7j7GWEaDnZwdFE4k-d4Sf2I2EONIIPxLImz_hqnX2o6sz2Xa2S1cBppM3-vdVKx6QZZ-QYlCK3uHH91sknOrkdvFOnY6QtC8L_TLHPc4iJQ9UGzI3L8DZg-UFhlO4ZnUpMDO9GcU3qyRfqXF3fnLadgS3A0hLhTx4TGVyZWWofMcuYrKa1UQcIjxNSSSnGlA81iMPmebHiaSQ5CYF6gothwE7JtUk1Hqd0hlHHOII4xmnvK56ErZYD1upZzlbixDmqkUYpJ6AJKHBktnkWZM_YkULQCRSuQ5tJlNXIynzPOgTQWjg5K6Ysf20GApl8476hcKgHfCR5-yNSOZhOBisjDMmB395_33iPL0ArzBLR9Up2-zuwBeCRTdZhtuUOy1Gx3Wj28dm7uO9DbHpx9AYdl4eM
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYQDMCAeIo3RmJDoWkcx8kICFSg7UKR2Cy_AkWQVrQIWPjt3DlJxUNiYExyTqKzc4_47vsIOQCnkEepjQKba4ug2mmgbN4MlEkZBNAiSx12I3e6Sesmvrzlt1PktO6FwbLKyvaXNt1b6-pMo9JmY9jvN64hmYHoAVkKfGIDdngm5kzg0j76mNR5QLzvGdNQOkDxqnOmLPJS5h7Bh5rc43jWzFm_vdMPO-2dz_kiWaiiRnpcvtgSmXLFMpn_giUIR50JAOtohZy0B68U-djpE2Lwv1FfOu5wFqh-p36PHP8DFncUptkN4ZnUlshOtCSVHq2Sm_Oz3mkrqOgSAgM57jiwiY21zbQxCXOCxVoppzTPRYqgWkproQ03LAOfH6lmZJgSoAQWcZ1mVtiErZHpYlC4dUKZEAwSGWtEpGORhEpxbNh1Qug8zAzfIM1aTdJUWOJIafEo66KxB4mqlahaiTyXIdsgh5MxwxJJ409pXmtfflsPEkz9n-P266mS8KHg7ocq3OBlJNESRdgHHG7-8957ZLbV67Rl-6J7tUXm4EpSVqNtk-nx84vbgfBkrHf98vsEiMXg0g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Low+rank+matrix+completion+by+alternating+steepest+descent+methods&rft.jtitle=Applied+and+computational+harmonic+analysis&rft.au=Tanner%2C+Jared&rft.au=Wei%2C+Ke&rft.date=2016-03-01&rft.issn=1063-5203&rft.volume=40&rft.issue=2&rft.spage=417&rft.epage=429&rft_id=info:doi/10.1016%2Fj.acha.2015.08.003&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_acha_2015_08_003
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-5203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-5203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-5203&client=summon