Low rank matrix completion by alternating steepest descent methods
Matrix completion involves recovering a matrix from a subset of its entries by utilizing interdependency between the entries, typically through low rank structure. Despite matrix completion requiring the global solution of a non-convex objective, there are many computationally efficient algorithms w...
Saved in:
Published in | Applied and computational harmonic analysis Vol. 40; no. 2; pp. 417 - 429 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
01.03.2016
|
Subjects | |
Online Access | Get full text |
ISSN | 1063-5203 1096-603X |
DOI | 10.1016/j.acha.2015.08.003 |
Cover
Loading…
Abstract | Matrix completion involves recovering a matrix from a subset of its entries by utilizing interdependency between the entries, typically through low rank structure. Despite matrix completion requiring the global solution of a non-convex objective, there are many computationally efficient algorithms which are effective for a broad class of matrices. In this paper, we introduce an alternating steepest descent algorithm (ASD) and a scaled variant, ScaledASD, for the fixed-rank matrix completion problem. Empirical evaluation of ASD and ScaledASD on both image inpainting and random problems show they are competitive with other state-of-the-art matrix completion algorithms in terms of recoverable rank and overall computational time. In particular, their low per iteration computational complexity makes ASD and ScaledASD efficient for large size problems, especially when computing the solutions to moderate accuracy such as in the presence of model misfit, noise, and/or as an initialization strategy for higher order methods. A preliminary convergence analysis is also presented. |
---|---|
AbstractList | Matrix completion involves recovering a matrix from a subset of its entries by utilizing interdependency between the entries, typically through low rank structure. Despite matrix completion requiring the global solution of a non-convex objective, there are many computationally efficient algorithms which are effective for a broad class of matrices. In this paper, we introduce an alternating steepest descent algorithm (ASD) and a scaled variant, ScaledASD, for the fixed-rank matrix completion problem. Empirical evaluation of ASD and ScaledASD on both image inpainting and random problems show they are competitive with other state-of-the-art matrix completion algorithms in terms of recoverable rank and overall computational time. In particular, their low per iteration computational complexity makes ASD and ScaledASD efficient for large size problems, especially when computing the solutions to moderate accuracy such as in the presence of model misfit, noise, and/or as an initialization strategy for higher order methods. A preliminary convergence analysis is also presented. MSC * 15A29 * 41A29 * 65F10 * 65J20 * 68Q25 * 90C26 Matrix completion involves recovering a matrix from a subset of its entries by utilizing interdependency between the entries, typically through low rank structure. Despite matrix completion requiring the global solution of a non-convex objective, there are many computationally efficient algorithms which are effective for a broad class of matrices. In this paper, we introduce an alternating steepest descent algorithm (ASD) and a scaled variant, ScaledASD, for the fixed-rank matrix completion problem. Empirical evaluation of ASD and ScaledASD on both image inpainting and random problems show they are competitive with other state-of-the-art matrix completion algorithms in terms of recoverable rank and overall computational time. In particular, their low per iteration computational complexity makes ASD and ScaledASD efficient for large size problems, especially when computing the solutions to moderate accuracy such as in the presence of model misfit, noise, and/or as an initialization strategy for higher order methods. A preliminary convergence analysis is also presented. |
Author | Tanner, Jared Wei, Ke |
Author_xml | – sequence: 1 givenname: Jared surname: Tanner fullname: Tanner, Jared email: tanner@maths.ox.ac.uk organization: Mathematical Institute, University of Oxford, Andrew Wiles Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford OX2 6GG, UK – sequence: 2 givenname: Ke orcidid: 0000-0003-1222-3044 surname: Wei fullname: Wei, Ke email: makwei@ust.hk organization: Department of Mathematics, Hong Kong University of Science and Technology, Hong Kong, People's Republic of China |
BookMark | eNp9kLtOxDAQRS0EEs8foEpJkzCO85RoAPGSVqIBic4a27PgJbEX27z-nkRLRUE1U9wzunP22bbzjhg75lBw4M3pqkD9gkUJvC6gKwDEFtvj0Dd5A-Jpe94bkdcliF22H-MKgPOq7vfYxcJ_ZgHdazZiCvYr035cD5Ssd5n6znBIFBwm656zmIjWFFNmKGpyKRspvXgTD9nOEodIR7_zgD1eXz1c3uaL-5u7y_NFrqumT7lpTKVMr7RuBLWiUoiEql62HUDFUalW6VqLviuhRF5qge30mShr1fWmNY04YCebu-vg396nInK0U5FhQEf-PUre9qKsRF_BFC03UR18jIGWch3siOFbcpCzMLmSszA5C5PQyUnYBHV_IG0TziZSQDv8j55tUJr-_7AUZNSWnCZjA-kkjbf_4T8giYlJ |
CitedBy_id | crossref_primary_10_1186_s13660_018_1931_4 crossref_primary_10_1109_TCSVT_2022_3190818 crossref_primary_10_1007_s10915_024_02662_7 crossref_primary_10_1111_cgf_14053 crossref_primary_10_1016_j_amc_2017_07_024 crossref_primary_10_1016_j_jocs_2023_102062 crossref_primary_10_1186_s13634_023_01027_w crossref_primary_10_1016_j_ins_2021_05_051 crossref_primary_10_1137_18M1227846 crossref_primary_10_1109_TNNLS_2023_3280086 crossref_primary_10_1364_OE_471663 crossref_primary_10_1109_TMM_2016_2638624 crossref_primary_10_1109_TGRS_2022_3166770 crossref_primary_10_1137_23M1570442 crossref_primary_10_1016_j_chemolab_2024_105193 crossref_primary_10_1016_j_envres_2016_03_034 crossref_primary_10_1088_1742_6596_1629_1_012003 crossref_primary_10_1016_j_laa_2020_04_017 crossref_primary_10_1155_2020_8812701 crossref_primary_10_1137_19M1264783 crossref_primary_10_1109_TNET_2017_2651116 crossref_primary_10_1007_s10208_019_09429_9 crossref_primary_10_1007_s10589_021_00276_5 crossref_primary_10_1109_TIP_2017_2781425 crossref_primary_10_1007_s10589_021_00328_w crossref_primary_10_1109_TCSVT_2019_2890880 crossref_primary_10_1007_s10589_018_0010_6 crossref_primary_10_1016_j_ins_2021_07_035 crossref_primary_10_1137_15M1050525 crossref_primary_10_1089_cmb_2019_0013 crossref_primary_10_1016_j_camwa_2018_09_037 crossref_primary_10_1137_19M1294800 crossref_primary_10_1016_j_ipm_2022_102931 crossref_primary_10_1007_s13042_020_01121_7 crossref_primary_10_1016_j_neucom_2016_11_068 crossref_primary_10_3390_math11051155 crossref_primary_10_4108_eetsis_v10i3_2878 crossref_primary_10_1016_j_dsp_2021_103171 crossref_primary_10_1089_cmb_2019_0107 crossref_primary_10_1016_j_amc_2019_02_027 crossref_primary_10_1109_TSP_2019_2952057 crossref_primary_10_1016_j_neucom_2018_04_032 crossref_primary_10_1109_JSAC_2022_3155530 crossref_primary_10_1109_TGRS_2023_3282217 crossref_primary_10_1007_s11042_019_08430_2 crossref_primary_10_1109_TCYB_2021_3072896 crossref_primary_10_1109_ACCESS_2019_2928130 crossref_primary_10_1109_TGRS_2020_3033842 crossref_primary_10_1109_TSP_2021_3071560 crossref_primary_10_1007_s10898_017_0590_1 crossref_primary_10_1007_s10957_020_01731_9 crossref_primary_10_1137_23M1555387 crossref_primary_10_1186_s13660_020_02340_w crossref_primary_10_1007_s11590_022_01959_6 crossref_primary_10_1088_2040_8986_aa8237 crossref_primary_10_1109_TSP_2023_3290353 crossref_primary_10_1177_0161734620910163 crossref_primary_10_1186_s13660_019_2033_7 crossref_primary_10_1109_TIT_2023_3345902 crossref_primary_10_1007_s40305_023_00520_1 crossref_primary_10_1109_TNNLS_2017_2766160 crossref_primary_10_1109_TIP_2017_2762595 crossref_primary_10_1109_ACCESS_2021_3125152 crossref_primary_10_1007_s10915_018_0857_9 crossref_primary_10_1137_17M1148712 crossref_primary_10_1137_21M1433812 crossref_primary_10_1109_TKDE_2018_2867533 crossref_primary_10_1137_20M1315294 crossref_primary_10_1016_j_patcog_2023_109637 crossref_primary_10_1109_ACCESS_2022_3204660 crossref_primary_10_3390_rs16020247 crossref_primary_10_1155_2022_6847850 |
Cites_doi | 10.1109/TIT.2010.2046205 10.1137/080738970 10.1137/120887795 10.1109/TIT.2010.2044061 10.1007/s10208-009-9045-5 10.1109/LSP.2009.2018223 10.1007/s10851-013-0434-7 10.1137/090755436 10.1007/s12532-012-0044-1 10.1137/110845768 10.1137/120876459 10.1007/s00180-013-0464-z 10.1080/10556789908805730 10.1093/imaiai/iav011 |
ContentType | Journal Article |
Copyright | 2015 |
Copyright_xml | – notice: 2015 |
DBID | AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1016/j.acha.2015.08.003 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Mathematics |
EISSN | 1096-603X |
EndPage | 429 |
ExternalDocumentID | 10_1016_j_acha_2015_08_003 S1063520315001062 |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AASFE AAXUO ABAOU ABFNM ABJNI ABMAC ABVKL ABXDB ABYKQ ACAZW ACDAQ ACGFS ACRLP ADBBV ADEZE ADFGL ADMUD AEBSH AEKER AENEX AEXQZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CAG COF CS3 DM4 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE IXB J1W KOM LG5 M26 M41 MCRUF MHUIS MO0 N9A NCXOZ O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSW SSZ T5K WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7SC 7SP 8FD EFKBS JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c469t-d6d4bd9bcc63e734baaeab5f780041abb7bc5c398202a12c3a7016325b89d7d63 |
IEDL.DBID | .~1 |
ISSN | 1063-5203 |
IngestDate | Thu Sep 04 22:20:59 EDT 2025 Tue Jul 01 03:49:05 EDT 2025 Thu Apr 24 23:08:56 EDT 2025 Fri Feb 23 02:28:03 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Exact line-search 68Q25 Gradient descent 65F10 Alternating minimization 90C26 65J20 15A29 41A29 Matrix completion |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c469t-d6d4bd9bcc63e734baaeab5f780041abb7bc5c398202a12c3a7016325b89d7d63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-1222-3044 |
PQID | 1793243940 |
PQPubID | 23500 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_1793243940 crossref_primary_10_1016_j_acha_2015_08_003 crossref_citationtrail_10_1016_j_acha_2015_08_003 elsevier_sciencedirect_doi_10_1016_j_acha_2015_08_003 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-03-01 |
PublicationDateYYYYMMDD | 2016-03-01 |
PublicationDate_xml | – month: 03 year: 2016 text: 2016-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Applied and computational harmonic analysis |
PublicationYear | 2016 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Haldar, Hernando (br0120) 2009; 16 Jain, Meka, Dhillon (br0140) 2010 Mishra, Meyer, Bonnabel, Sepulchre (br0190) 2014; 29 Keshavan, Montanari, Oh (br0150) 2010; 56 Eldén (br0080) 2007 J. Tanner, K. Wei, Low rank matrix completion by alternating steepest descent methods, Numerical Analysis Group preprint (ID Code: 1838), University of Oxford, 2014. Argyriou, Evgeniou, Pontil (br0020) 2007; 19 Tanner, Wei (br0210) 2013; 35 Candès, Recht (br0060) 2009; 9 Fazel (br0100) 2002 Boumal, Absil (br0040) 2011 Mishra, Apuroop, Sepulchre (br0180) 2013 Harvey, Karger, Yekhanin (br0130) 2006 Cai, Candès, Shen (br0050) 2010; 20 Escalante, Raydan (br0090) 2011 Kyrillidis, Cevher (br0160) 2014; 48 Grippo, Sciandrone (br0110) 1999; 10 Ngo, Saad (br0200) 2012 Vandereycken (br0230) 2013; 23 Xu, Yin (br0250) 2013; 6 Candès, Tao (br0070) 2009; 56 Amit, Fink, Srebro, Ullman (br0010) 2007 Wen, Yin, Zhang (br0240) 2012; 4 J. Blanchard, J. Tanner, K. Wei, CGIHT: conjugate gradient iterative hard thresholding for compressed sensing and matrix completion, University of Oxford, 2014, Numerical Analysis Group preprint 14/08. Liu, Vandenberghe (br0170) 2009; 31 Eldén (10.1016/j.acha.2015.08.003_br0080) 2007 Ngo (10.1016/j.acha.2015.08.003_br0200) 2012 10.1016/j.acha.2015.08.003_br0030 Argyriou (10.1016/j.acha.2015.08.003_br0020) 2007; 19 Grippo (10.1016/j.acha.2015.08.003_br0110) 1999; 10 Vandereycken (10.1016/j.acha.2015.08.003_br0230) 2013; 23 Wen (10.1016/j.acha.2015.08.003_br0240) 2012; 4 Jain (10.1016/j.acha.2015.08.003_br0140) 2010 Mishra (10.1016/j.acha.2015.08.003_br0190) 2014; 29 Cai (10.1016/j.acha.2015.08.003_br0050) 2010; 20 Amit (10.1016/j.acha.2015.08.003_br0010) 2007 Xu (10.1016/j.acha.2015.08.003_br0250) 2013; 6 Haldar (10.1016/j.acha.2015.08.003_br0120) 2009; 16 10.1016/j.acha.2015.08.003_br0220 Keshavan (10.1016/j.acha.2015.08.003_br0150) 2010; 56 Candès (10.1016/j.acha.2015.08.003_br0070) 2009; 56 Mishra (10.1016/j.acha.2015.08.003_br0180) Boumal (10.1016/j.acha.2015.08.003_br0040) 2011 Fazel (10.1016/j.acha.2015.08.003_br0100) 2002 Harvey (10.1016/j.acha.2015.08.003_br0130) 2006 Escalante (10.1016/j.acha.2015.08.003_br0090) 2011 Kyrillidis (10.1016/j.acha.2015.08.003_br0160) 2014; 48 Tanner (10.1016/j.acha.2015.08.003_br0210) 2013; 35 Candès (10.1016/j.acha.2015.08.003_br0060) 2009; 9 Liu (10.1016/j.acha.2015.08.003_br0170) 2009; 31 |
References_xml | – volume: 29 start-page: 591 year: 2014 end-page: 621 ident: br0190 article-title: Fixed-rank matrix factorizations and Riemannian low-rank optimization publication-title: Comput. Stat. – year: 2013 ident: br0180 article-title: A Riemannian geometry for low-rank matrix completion – volume: 56 start-page: 2053 year: 2009 end-page: 2080 ident: br0070 article-title: The power of convex relaxation: near-optimal matrix completion publication-title: IEEE Trans. Inform. Theory – volume: 19 start-page: 41 year: 2007 end-page: 48 ident: br0020 article-title: Multi-task feature learning publication-title: Adv. Neural Inf. Process. Syst. – reference: J. Tanner, K. Wei, Low rank matrix completion by alternating steepest descent methods, Numerical Analysis Group preprint (ID Code: 1838), University of Oxford, 2014. – start-page: 17 year: 2007 end-page: 24 ident: br0010 article-title: Uncovering shared structures in multiclass classification publication-title: Proceedings of the 24th International Conference on Machine Learning – year: 2002 ident: br0100 article-title: Matrix rank minimization with applications – start-page: 1103 year: 2006 end-page: 1111 ident: br0130 article-title: The complexity of matrix completion publication-title: Proceedings of the Seventeenth Annual ACM–SIAM symposium on Discrete Algorithms – volume: 23 start-page: 1214 year: 2013 end-page: 1236 ident: br0230 article-title: Low rank matrix completion by Riemannian optimization publication-title: SIAM J. Control Optim. – volume: 16 start-page: 584 year: 2009 end-page: 587 ident: br0120 article-title: Rank-constrained solutions to linear matrix equations using PowerFactorization publication-title: IEEE Signal Process. Lett. – volume: 9 start-page: 717 year: 2009 end-page: 772 ident: br0060 article-title: Exact matrix completion via convex optimization publication-title: Found. Comput. Math. – volume: 10 start-page: 587 year: 1999 end-page: 637 ident: br0110 article-title: Globally convergence block-coordinate techniques for unconstrained optimization publication-title: Optim. Methods Softw. – volume: 6 start-page: 1758 year: 2013 end-page: 1789 ident: br0250 article-title: A block coordinate descent method for regularized multi-convex optimization with applications to nonnegative tensor factorization and completion publication-title: SIAM J. Imaging Sci. – volume: 31 start-page: 1235 year: 2009 end-page: 1256 ident: br0170 article-title: Interior-point method for nuclear norm approximation with application to system identification publication-title: SIAM J. Matrix Anal. Appl. – start-page: 406 year: 2011 end-page: 414 ident: br0040 article-title: RTRMC: a Riemannian trust-region method for low-rank matrix completion publication-title: Advances in Neural Inf. Processing Systems, vol. 24 – volume: 48 start-page: 235 year: 2014 end-page: 265 ident: br0160 article-title: Matrix recipes for hard thresholding methods publication-title: J. Math. Imaging Vision – year: 2007 ident: br0080 article-title: Matrix Methods in Data Mining and Pattern Recognization – volume: 56 start-page: 2980 year: 2010 end-page: 2998 ident: br0150 article-title: Matrix completion from a few entries publication-title: IEEE Trans. Inform. Theory – volume: 35 start-page: S104 year: 2013 end-page: S125 ident: br0210 article-title: Normalized iterative hard thresholding for matrix completion publication-title: SIAM J. Sci. Comput. – volume: 4 start-page: 333 year: 2012 end-page: 361 ident: br0240 article-title: Solving a low-rank factorization model for matrix completion by a non-linear successive over-relaxation algorithm publication-title: Math. Program. Comput. – year: 2011 ident: br0090 article-title: Alternating Projection Methods – start-page: 937 year: 2010 end-page: 945 ident: br0140 article-title: Guaranteed rank minimization via singular value projection publication-title: Proceedings of the Neural Information Processing Systems Conf. – volume: 20 start-page: 1956 year: 2010 end-page: 1982 ident: br0050 article-title: A singular value thresholding algorithm for matrix completion publication-title: SIAM J. Control Optim. – reference: J. Blanchard, J. Tanner, K. Wei, CGIHT: conjugate gradient iterative hard thresholding for compressed sensing and matrix completion, University of Oxford, 2014, Numerical Analysis Group preprint 14/08. – year: 2012 ident: br0200 article-title: Scaled gradients on Grassmann manifolds for matrix completion publication-title: Advances in Neural Information Processing Systems – volume: 56 start-page: 2980 issue: 6 year: 2010 ident: 10.1016/j.acha.2015.08.003_br0150 article-title: Matrix completion from a few entries publication-title: IEEE Trans. Inform. Theory doi: 10.1109/TIT.2010.2046205 – ident: 10.1016/j.acha.2015.08.003_br0180 – volume: 20 start-page: 1956 issue: 4 year: 2010 ident: 10.1016/j.acha.2015.08.003_br0050 article-title: A singular value thresholding algorithm for matrix completion publication-title: SIAM J. Control Optim. doi: 10.1137/080738970 – start-page: 1103 year: 2006 ident: 10.1016/j.acha.2015.08.003_br0130 article-title: The complexity of matrix completion – start-page: 406 year: 2011 ident: 10.1016/j.acha.2015.08.003_br0040 article-title: RTRMC: a Riemannian trust-region method for low-rank matrix completion – volume: 19 start-page: 41 year: 2007 ident: 10.1016/j.acha.2015.08.003_br0020 article-title: Multi-task feature learning publication-title: Adv. Neural Inf. Process. Syst. – volume: 6 start-page: 1758 issue: 3 year: 2013 ident: 10.1016/j.acha.2015.08.003_br0250 article-title: A block coordinate descent method for regularized multi-convex optimization with applications to nonnegative tensor factorization and completion publication-title: SIAM J. Imaging Sci. doi: 10.1137/120887795 – volume: 56 start-page: 2053 issue: 5 year: 2009 ident: 10.1016/j.acha.2015.08.003_br0070 article-title: The power of convex relaxation: near-optimal matrix completion publication-title: IEEE Trans. Inform. Theory doi: 10.1109/TIT.2010.2044061 – year: 2007 ident: 10.1016/j.acha.2015.08.003_br0080 – ident: 10.1016/j.acha.2015.08.003_br0220 – volume: 9 start-page: 717 issue: 6 year: 2009 ident: 10.1016/j.acha.2015.08.003_br0060 article-title: Exact matrix completion via convex optimization publication-title: Found. Comput. Math. doi: 10.1007/s10208-009-9045-5 – volume: 16 start-page: 584 issue: 7 year: 2009 ident: 10.1016/j.acha.2015.08.003_br0120 article-title: Rank-constrained solutions to linear matrix equations using PowerFactorization publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2009.2018223 – volume: 48 start-page: 235 issue: 2 year: 2014 ident: 10.1016/j.acha.2015.08.003_br0160 article-title: Matrix recipes for hard thresholding methods publication-title: J. Math. Imaging Vision doi: 10.1007/s10851-013-0434-7 – volume: 31 start-page: 1235 year: 2009 ident: 10.1016/j.acha.2015.08.003_br0170 article-title: Interior-point method for nuclear norm approximation with application to system identification publication-title: SIAM J. Matrix Anal. Appl. doi: 10.1137/090755436 – year: 2011 ident: 10.1016/j.acha.2015.08.003_br0090 – volume: 4 start-page: 333 year: 2012 ident: 10.1016/j.acha.2015.08.003_br0240 article-title: Solving a low-rank factorization model for matrix completion by a non-linear successive over-relaxation algorithm publication-title: Math. Program. Comput. doi: 10.1007/s12532-012-0044-1 – volume: 23 start-page: 1214 issue: 2 year: 2013 ident: 10.1016/j.acha.2015.08.003_br0230 article-title: Low rank matrix completion by Riemannian optimization publication-title: SIAM J. Control Optim. doi: 10.1137/110845768 – year: 2002 ident: 10.1016/j.acha.2015.08.003_br0100 – volume: 35 start-page: S104 issue: 5 year: 2013 ident: 10.1016/j.acha.2015.08.003_br0210 article-title: Normalized iterative hard thresholding for matrix completion publication-title: SIAM J. Sci. Comput. doi: 10.1137/120876459 – start-page: 17 year: 2007 ident: 10.1016/j.acha.2015.08.003_br0010 article-title: Uncovering shared structures in multiclass classification – volume: 29 start-page: 591 year: 2014 ident: 10.1016/j.acha.2015.08.003_br0190 article-title: Fixed-rank matrix factorizations and Riemannian low-rank optimization publication-title: Comput. Stat. doi: 10.1007/s00180-013-0464-z – year: 2012 ident: 10.1016/j.acha.2015.08.003_br0200 article-title: Scaled gradients on Grassmann manifolds for matrix completion – volume: 10 start-page: 587 issue: 4 year: 1999 ident: 10.1016/j.acha.2015.08.003_br0110 article-title: Globally convergence block-coordinate techniques for unconstrained optimization publication-title: Optim. Methods Softw. doi: 10.1080/10556789908805730 – ident: 10.1016/j.acha.2015.08.003_br0030 doi: 10.1093/imaiai/iav011 – start-page: 937 year: 2010 ident: 10.1016/j.acha.2015.08.003_br0140 article-title: Guaranteed rank minimization via singular value projection |
SSID | ssj0011459 |
Score | 2.4866 |
Snippet | Matrix completion involves recovering a matrix from a subset of its entries by utilizing interdependency between the entries, typically through low rank... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 417 |
SubjectTerms | Algorithms Alternating minimization Computation Computational efficiency Exact line-search Gradient descent Harmonic analysis Mathematical models Matrix completion State of the art Strategy |
Title | Low rank matrix completion by alternating steepest descent methods |
URI | https://dx.doi.org/10.1016/j.acha.2015.08.003 https://www.proquest.com/docview/1793243940 |
Volume | 40 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELWqcoEDYhVlk5G4odA0TuLkWBCopbQHoKI3y1ugCNKKtgIufDszWSoWqQdOkS07icbOLPHMe4Qcg1FIvMh4jkmUQVDtyJEmaThSRwwcaB5HFquRu72w1fevBsGgQs7LWhhMqyx0f67TM21d9NQLadbHw2H9FoIZ8B6QpSALbFAP-z5H_PzTz3maB7j7GWEaDnZwdFE4k-d4Sf2I2EONIIPxLImz_hqnX2o6sz2Xa2S1cBppM3-vdVKx6QZZ-QYlCK3uHH91sknOrkdvFOnY6QtC8L_TLHPc4iJQ9UGzI3L8DZg-UFhlO4ZnUpMDO9GcU3qyRfqXF3fnLadgS3A0hLhTx4TGVyZWWofMcuYrKa1UQcIjxNSSSnGlA81iMPmebHiaSQ5CYF6gothwE7JtUk1Hqd0hlHHOII4xmnvK56ErZYD1upZzlbixDmqkUYpJ6AJKHBktnkWZM_YkULQCRSuQ5tJlNXIynzPOgTQWjg5K6Ysf20GApl8476hcKgHfCR5-yNSOZhOBisjDMmB395_33iPL0ArzBLR9Up2-zuwBeCRTdZhtuUOy1Gx3Wj28dm7uO9DbHpx9AYdl4eM |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYQDMCAeIo3RmJDoWkcx8kICFSg7UKR2Cy_AkWQVrQIWPjt3DlJxUNiYExyTqKzc4_47vsIOQCnkEepjQKba4ug2mmgbN4MlEkZBNAiSx12I3e6Sesmvrzlt1PktO6FwbLKyvaXNt1b6-pMo9JmY9jvN64hmYHoAVkKfGIDdngm5kzg0j76mNR5QLzvGdNQOkDxqnOmLPJS5h7Bh5rc43jWzFm_vdMPO-2dz_kiWaiiRnpcvtgSmXLFMpn_giUIR50JAOtohZy0B68U-djpE2Lwv1FfOu5wFqh-p36PHP8DFncUptkN4ZnUlshOtCSVHq2Sm_Oz3mkrqOgSAgM57jiwiY21zbQxCXOCxVoppzTPRYqgWkproQ03LAOfH6lmZJgSoAQWcZ1mVtiErZHpYlC4dUKZEAwSGWtEpGORhEpxbNh1Qug8zAzfIM1aTdJUWOJIafEo66KxB4mqlahaiTyXIdsgh5MxwxJJ409pXmtfflsPEkz9n-P266mS8KHg7ocq3OBlJNESRdgHHG7-8957ZLbV67Rl-6J7tUXm4EpSVqNtk-nx84vbgfBkrHf98vsEiMXg0g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Low+rank+matrix+completion+by+alternating+steepest+descent+methods&rft.jtitle=Applied+and+computational+harmonic+analysis&rft.au=Tanner%2C+Jared&rft.au=Wei%2C+Ke&rft.date=2016-03-01&rft.issn=1063-5203&rft.volume=40&rft.issue=2&rft.spage=417&rft.epage=429&rft_id=info:doi/10.1016%2Fj.acha.2015.08.003&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_acha_2015_08_003 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-5203&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-5203&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-5203&client=summon |