Does inflation squeeze cosmological perturbations?

There seems to exist agreement about the fact that inflation squeezes the quantum state of cosmological perturbations and entangles modes with wavenumbers k⟶ and - k⟶ . Paradoxically, this result has been used to justify both the classicality as well as the quantumness of the primordial perturbation...

Full description

Saved in:
Bibliographic Details
Published inJournal of cosmology and astroparticle physics Vol. 2022; no. 9; pp. 32 - 64
Main Authors Agullo, Ivan, Bonga, Béatrice, Ribes Metidieri, Patricia
Format Journal Article
LanguageEnglish
Published Bristol IOP Publishing 01.09.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract There seems to exist agreement about the fact that inflation squeezes the quantum state of cosmological perturbations and entangles modes with wavenumbers k⟶ and - k⟶ . Paradoxically, this result has been used to justify both the classicality as well as the quantumness of the primordial perturbations at the end of inflation. We reexamine this question and point out that the definition of two-mode squeezing of the modes k⟶ and - k⟶ used in previous work rests on choices that are only justified for systems with time-independent Hamiltonians and finitely many degrees of freedom. We argue that for quantum fields propagating on generic time-dependent Friedmann-Lemaître-Robertson-Walker backgrounds, the notion of squeezed states is subject to ambiguities, which go hand in hand with the ambiguity in the definition of particles. In other words, we argue that the question “does the cosmic expansion squeeze and entangle modes with wavenumbers k⟶ and - k⟶ ?” contains the same ambiguity as the question “does the cosmic expansion create particles?”. When additional symmetries are present, like in the (quasi) de Sitter-like spacetimes used in inflationary models, one can resolve the ambiguities, and we find that the answer to the question in the title turns out to be in the negative. We further argue that this fact does not make the state of cosmological perturbations any less quantum, at least when deviations from Gaussianity can be neglected.
AbstractList There seems to exist agreement about the fact that inflation squeezes the quantum state of cosmological perturbations and entangles modes with wavenumbers k⟶ and - k⟶ . Paradoxically, this result has been used to justify both the classicality as well as the quantumness of the primordial perturbations at the end of inflation. We reexamine this question and point out that the definition of two-mode squeezing of the modes k⟶ and - k⟶ used in previous work rests on choices that are only justified for systems with time-independent Hamiltonians and finitely many degrees of freedom. We argue that for quantum fields propagating on generic time-dependent Friedmann-Lemaître-Robertson-Walker backgrounds, the notion of squeezed states is subject to ambiguities, which go hand in hand with the ambiguity in the definition of particles. In other words, we argue that the question “does the cosmic expansion squeeze and entangle modes with wavenumbers k⟶ and - k⟶ ?” contains the same ambiguity as the question “does the cosmic expansion create particles?”. When additional symmetries are present, like in the (quasi) de Sitter-like spacetimes used in inflationary models, one can resolve the ambiguities, and we find that the answer to the question in the title turns out to be in the negative. We further argue that this fact does not make the state of cosmological perturbations any less quantum, at least when deviations from Gaussianity can be neglected.
There seems to exist agreement about the fact that inflation squeezes the quantum state ofcosmological perturbations and entangles modes with wavenumbers k⟶ and -k⟶. Paradoxically, this result has been used to justify both the classicality as well as thequantumness of the primordial perturbations at the end of inflation. We reexamine this questionand point out that the definition of two-mode squeezing of the modes k⟶ and -k⟶ usedin previous work rests on choices that are only justified for systems with time-independentHamiltonians and finitely many degrees of freedom. We argue that for quantum fields propagating ongeneric time-dependent Friedmann-Lemaître-Robertson-Walker backgrounds, the notion of squeezedstates is subject to ambiguities, which go hand in hand with the ambiguity in the definition ofparticles. In other words, we argue that the question “does the cosmic expansion squeeze andentangle modes with wavenumbers k⟶ and -k⟶?” contains the same ambiguity as thequestion “does the cosmic expansion create particles?”. When additional symmetries are present,like in the (quasi) de Sitter-like spacetimes used in inflationary models, one can resolve theambiguities, and we find that the answer to the question in the title turns out to be in thenegative. We further argue that this fact does not make the state of cosmological perturbationsany less quantum, at least when deviations from Gaussianity can be neglected.
Author Ribes Metidieri, Patricia
Bonga, Béatrice
Agullo, Ivan
Author_xml – sequence: 1
  givenname: Ivan
  surname: Agullo
  fullname: Agullo, Ivan
  organization: Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803, U.S.A
– sequence: 2
  givenname: Béatrice
  surname: Bonga
  fullname: Bonga, Béatrice
  organization: Institute for Mathematics, Astrophysics and Particle Physics, Radboud University, Heyendaalseweg 135, Nijmegen, The Netherlands
– sequence: 3
  givenname: Patricia
  surname: Ribes Metidieri
  fullname: Ribes Metidieri, Patricia
  organization: Institute for Mathematics, Astrophysics and Particle Physics, Radboud University, Heyendaalseweg 135, Nijmegen, The Netherlands
BookMark eNqFkE9LxDAQxYOs4Lr6EYSCFy-1k6RpGjyIrH9hwYueQ5omkqXb1KR70E9vuyu6iOhphuH3Zua9QzRpfWsQOsFwjqEsM5xzlnKGi4wAIRmIDCjZQ9Ov-WSnP0CHMS4BSEFpOUXk2puYuNY2qne-TeLr2ph3k2gfV77xL06rJulM6Neh2hDx8gjtW9VEc_xZZ-j59uZpfp8uHu8e5leLVOeF6NO60GA5s8AB60pQxYSpMAauKl3THOdlVQllda2ogtIywNTWXAmhMWW2xHSGTrd7u-CHr2Ivl34d2uGkJBwTJkAMJmaIbSkdfIzBWNkFt1LhTWKQYzxytC5H63KMR4KQQzyD7uKHTrt-47APyjX_qs-2aue777eWWnW7mOxqO6D4F_Tv9R9pMYgr
CitedBy_id crossref_primary_10_1007_s10714_024_03242_8
crossref_primary_10_1103_PhysRevD_108_085005
crossref_primary_10_1209_0295_5075_acc3be
crossref_primary_10_1088_1475_7516_2023_04_007
crossref_primary_10_1103_PhysRevD_110_125023
crossref_primary_10_1103_PhysRevD_108_083520
crossref_primary_10_1103_PhysRevA_109_013305
crossref_primary_10_1103_PhysRevD_109_123520
crossref_primary_10_1088_1475_7516_2024_04_058
crossref_primary_10_1103_PhysRevD_108_123512
crossref_primary_10_1088_1475_7516_2023_11_030
crossref_primary_10_1103_PhysRevD_109_023503
Cites_doi 10.1103/PhysRevLett.92.060402
10.1051/0004-6361/201935891
10.1002/prop.201500097
10.1016/S0375-9601(97)00416-7
10.1098/rspa.1978.0060
10.1103/PhysRevD.14.870
10.1103/PhysRevD.79.064030
10.1088/0264-9381/13/3/006
10.1103/PhysRevLett.21.562
10.1166/asl.2009.1023
10.1103/PhysRevD.28.679
10.1103/PhysRevD.50.4807
10.1007/BF00756661
10.1016/0370-2693(82)90373-2
10.1103/PhysRevD.102.023512
10.1103/PhysRevD.96.101301
10.1142/S0218271811018937
10.1017/9781316995433
10.1103/PhysRevD.98.083535
10.1088/1475-7516/2021/10/036
10.1103/PhysRevD.81.043514
10.7208/chicago/9780226870373.001.0001
10.1103/PhysRevLett.124.251302
10.1103/PhysRevLett.84.2726
10.1016/0370-2693(82)90541-X
10.1088/0264-9381/15/10/002
10.1103/PhysRevD.103.043521
10.1103/PhysRevLett.77.1413
10.1088/1475-7516/2022/08/061
10.1142/S0218271898000292
10.1088/1475-7516/2022/07/037
10.1140/epjc/s10052-015-3860-4
10.1088/0264-9381/32/2/025004
10.1016/S0550-3213(97)00224-1
10.1140/epjc/s10052-020-08599-z
10.1103/PhysRevD.42.3413
10.1103/PhysRevD.102.043529
10.1088/0305-4470/8/4/022
10.1016/0003-4916(73)90047-X
10.1103/PhysRevD.91.124010
10.1103/PhysRevD.7.2850
10.3390/universe8010027
10.1103/PhysRevD.87.104024
10.1007/BF02345020
10.1103/PhysRev.106.205
10.1103/PhysRevLett.49.1110
10.1103/PhysRevD.93.023505
10.1103/PhysRevD.32.3136
10.1016/0375-9601(85)90093-3
10.1103/PhysRevD.98.023512
10.1103/PhysRevD.3.346
10.1103/PhysRevD.9.341
10.1088/1475-7516/2020/02/022
10.1103/PhysRev.183.1057
10.1103/RevModPhys.90.045003
10.1007/JHEP02(2013)038
ContentType Journal Article
Copyright 2022 IOP Publishing Ltd and Sissa Medialab
Copyright_xml – notice: 2022 IOP Publishing Ltd and Sissa Medialab
DBID AAYXX
CITATION
DOI 10.1088/1475-7516/2022/09/032
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
EISSN 1475-7516
ExternalDocumentID 10_1088_1475_7516_2022_09_032
JCAP_032P_0422
GroupedDBID 1JI
5B3
5PX
5VS
5ZH
7.M
7.Q
AAGCD
AAGID
AAJIO
AAJKP
AATNI
ABCXL
ABJNI
ABQJV
ABVAM
ACAFW
ACGFO
ACGFS
ACHIP
ADWVK
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CBCFC
CEBXE
CJUJL
CRLBU
DU5
EBS
EDWGO
EMSAF
EPQRW
EQZZN
ER.
HAK
IHE
IJHAN
IOP
IZVLO
J9A
KOT
LAP
M45
MV1
N5L
N9A
P2P
PJBAE
RIN
RO9
ROL
RPA
SY9
UCJ
VSI
W28
XPP
ZMT
AAYXX
ADEQX
CITATION
ID FETCH-LOGICAL-c469t-d6c0f75f0701cb93a59eb1107abcd34148bb9afcda3a08f5013fd7a99c135f813
IEDL.DBID IOP
ISSN 1475-7516
IngestDate Mon Jun 30 06:15:27 EDT 2025
Thu Apr 24 22:56:52 EDT 2025
Tue Jul 01 03:49:29 EDT 2025
Wed Aug 21 03:34:56 EDT 2024
Wed Jun 07 11:19:05 EDT 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License This article is available under the terms of the IOP-Standard License.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c469t-d6c0f75f0701cb93a59eb1107abcd34148bb9afcda3a08f5013fd7a99c135f813
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink http://hdl.handle.net/2066/283441
PQID 2712590926
PQPubID 2048024
PageCount 33
ParticipantIDs crossref_primary_10_1088_1475_7516_2022_09_032
proquest_journals_2712590926
iop_journals_10_1088_1475_7516_2022_09_032
crossref_citationtrail_10_1088_1475_7516_2022_09_032
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220901
2022-09-01
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 9
  year: 2022
  text: 20220901
  day: 01
PublicationDecade 2020
PublicationPlace Bristol
PublicationPlace_xml – name: Bristol
PublicationTitle Journal of cosmology and astroparticle physics
PublicationTitleAlternate J. Cosmol. Astropart. Phys
PublicationYear 2022
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Parker (bb69f47b1d56eaf2f681e0851b4127b7a) 1969; 183
Albrecht (bbde952424383df61e97cdde52bb250df) 1994; 50
Allen (b4277ee5f3b0b3f83c5c9e828512b4dac) 1985; 32
Kiefer (be7a051b5e7744409f972f5357ffffd78) 1998; 7
Mukhanov (bd8d829b8830e2e6324de0e4ea4cec69b) 1981; 33
Kiefer (be0dbac56058bcf220d4bfe7fa681fc44) 1998; 15
b8bff22d26b5be81bdc74b779e8c78100
Parker (bc587138db95506401a55497d997fc06b) 1974; 9
Brahma (b34faf3a76e3ae8039bb5a7193a4c910d) 2020; 102
b820f3b2f9919f3b7e62e1c94130c6392
Sudarsky (b853310e6979ef391223307e77998054c) 2011; 20
Parker (b8dd803549c55db430292702c1b565ac2) 2009
Polarski (b3ea4cb2431a48446bb932c1735ffbcb7) 1996; 13
Parker (bde27ef89822227777b0072838be8ee48) 1971; 3
Martin (b7adc2dd823802b71008fdd9ffffc3f8a) 2021; 10
Hawking (b8388265e8a26f2a502f6c9ca32d17c1b) 1975; 43
León (b3e2cf6a079e956956b0f568623092d42) 2016; 76
Hsiang (bf318968e610611c637e0ee0158dd7722) 2022; 8
Parker (b7e71f0afd30319dbd8e20d67b02ca88b) 1968; 21
Ashtekar (bf6a8e1f67eba9b44318e6873f4f6d0bc) 2015; 32
Horodecki (b2594f735f9f2479338bcdb8110ff3ba6) 1997; 232
Agullo (b6bd6fa2e8658d3322d4f70a649c0f20f) 2015; 91
Kulsrud (b3d962c50901e0bf99bed45699b0060fd) 1957; 106
Fulling (b3cdd4ff66db2eb57caded61f93a70177) 1979; 10
Ashtekar (bef8b6ef55e4c4ec71d286c98b5f1b5b5) 2009; 79
Brahma (bfefb9836d65a71c025d6a7775441b8a9) 2021
Tagirov (b6e44f8c14fd62d23ea04e2ec5a45f8e0) 1973; 76
Grain (bc01a42cd9d9100766a7f93892e8a7103) 2020; 02
Davies (b23019e3751fb340c382561d993c3eb2e) 1975; 8
Berjon (b148c3e96c030ec5663b26080f98c195e) 2021; 103
b3d407f901b620693954964d2a03770d6
Ashtekar (b82d7ba7ea655a2bbde5a4e2153a66dae) 2020; 102
Akrami (b111962c6c97d3a8874c9b721086c089a) 2020; 641
Maldacena (bc53cc12cd806b24166cd3dd9fc2bf28d) 2016; 64
bf34d0a4c6dbdaf5d0e997f8548febfe4
bfdcf72416b95d245ce6c01b0e66bcd7c
Lesgourgues (b6abc1a084c1813f4095fb719f49a2dce) 1997; 497
Shandera (b6e8e72a1e16b3bb27419e36805e746f1) 2018; 98
bd819b711916331184f83cc48135bfe15
Maldacena (bd5d98a88fb74d0364aab9f40c8e02bea) 2013; 02
b5c973849bb6486a72f544dd54cbc86fd
Hawking (b274da606be20044491c0d0a1209c80c5) 1982; 115
Witten (bdba5ffba189965e4efd5db56c8fc53c5) 2018; 90
Grishchuk (bb035141215887f8e72f4535efa930846) 1990; 42
Zanardi (bae004371a4fb0d864d0d0c88497d2923) 2004; 92
León (be47cfd8c1a2310c4a3816723f513d2af) 2017; 96
Bardeen (b16c4969245c978ed438798ff71f9775c) 1983; 28
Unruh (ba27e918a93c82090e745158d3b6b5a56) 1976; 14
Agullo (b6c2a82d7f25cfb32953fc0e2ce499ae1) 2010; 81
Baumann (b010967bf693477be5ebb61aad29d5b73) 2022; 08
Cañate (bc5c875acd3723603e13612f9ee34e69e) 2013; 87
Guth (b4eeed7d7b7b2a33e08fe58da0df54a19) 1982; 49
Starobinsky (b57c762b2df34818d7688b804f17d1480) 1982; 117
ba2ca428ead333c19219169d3ae9eabb4
Peres (b7f88862559c0e62157100cbcd845c9b7) 1996; 77
Fulling (b334986382ed92452353999a4ac8aaa90) 1973; 7
Green (b9cedae7bb70c67797dc7377e76189ea4) 2020; 124
Martin (b4ba91cd5e834941f56b1eb15a8af2979) 2016; 93
Simon (b74a2228979a09292be65e5d964dbdb67) 2000; 84
Bengochea (ba682e9e450532015a6f382f9d159aa51) 2020; 80
León (bd2fcd53c57d5529dcb9a8b6e18fe82fd) 2018; 98
Kiefer (bc5a83276640aae9bfb025d1a0ae50e39) 2009; 2
Espinosa-Portalés (b2d9ce72e31cf7ef6fd8cd14a6344037b) 2022; 07
ba5d0fa13e521bca80bcc760de4a6c8cc
bb62a8c3584870c3f97522ae43f158638
b05ef9b495b62fc4c2f4551e823c424f4
References_xml – volume: 92
  year: 2004
  ident: bae004371a4fb0d864d0d0c88497d2923
  article-title: Quantum tensor product structures are observable induced
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.92.060402
– volume: 641
  start-page: A9
  year: 2020
  ident: b111962c6c97d3a8874c9b721086c089a
  article-title: Planck 2018 results. IX. Constraints on primordial non-Gaussianity
  publication-title: Astron. Astrophys.
  doi: 10.1051/0004-6361/201935891
– volume: 64
  start-page: 10
  year: 2016
  ident: bc53cc12cd806b24166cd3dd9fc2bf28d
  article-title: A model with cosmological Bell inequalities
  publication-title: Fortsch. Phys.
  doi: 10.1002/prop.201500097
– volume: 232
  start-page: 333
  year: 1997
  ident: b2594f735f9f2479338bcdb8110ff3ba6
  article-title: Separability criterion and inseparable mixed states with positive partial transposition
  publication-title: Phys. Lett. A
  doi: 10.1016/S0375-9601(97)00416-7
– ident: b05ef9b495b62fc4c2f4551e823c424f4
  doi: 10.1098/rspa.1978.0060
– volume: 14
  start-page: 870
  year: 1976
  ident: ba27e918a93c82090e745158d3b6b5a56
  article-title: Notes on black hole evaporation
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.14.870
– volume: 79
  year: 2009
  ident: bef8b6ef55e4c4ec71d286c98b5f1b5b5
  article-title: Quantum field theory on a cosmological, quantum space-time
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.79.064030
– volume: 13
  start-page: 377
  year: 1996
  ident: b3ea4cb2431a48446bb932c1735ffbcb7
  article-title: Semiclassicality and decoherence of cosmological perturbations
  publication-title: Class. Quant. Grav.
  doi: 10.1088/0264-9381/13/3/006
– volume: 21
  start-page: 562
  year: 1968
  ident: b7e71f0afd30319dbd8e20d67b02ca88b
  article-title: Particle creation in expanding universes
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.21.562
– volume: 2
  start-page: 164
  year: 2009
  ident: bc5a83276640aae9bfb025d1a0ae50e39
  article-title: Why do cosmological perturbations look classical to us?
  publication-title: Adv. Sci. Lett.
  doi: 10.1166/asl.2009.1023
– volume: 28
  start-page: 679
  year: 1983
  ident: b16c4969245c978ed438798ff71f9775c
  article-title: Spontaneous Creation of Almost Scale - Free Density Perturbations in an Inflationary Universe
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.28.679
– volume: 50
  start-page: 4807
  year: 1994
  ident: bbde952424383df61e97cdde52bb250df
  article-title: Inflation and squeezed quantum states
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.50.4807
– year: 2009
  ident: b8dd803549c55db430292702c1b565ac2
– ident: bd819b711916331184f83cc48135bfe15
– volume: 10
  start-page: 807
  year: 1979
  ident: b3cdd4ff66db2eb57caded61f93a70177
  article-title: REMARKS ON POSITIVE FREQUENCY AND HAMILTONIANS IN EXPANDING UNIVERSES
  publication-title: Gen. Rel. Grav.
  doi: 10.1007/BF00756661
– volume: 115
  start-page: 295
  year: 1982
  ident: b274da606be20044491c0d0a1209c80c5
  article-title: The Development of Irregularities in a Single Bubble Inflationary Universe
  publication-title: Phys. Lett. B
  doi: 10.1016/0370-2693(82)90373-2
– volume: 102
  year: 2020
  ident: b82d7ba7ea655a2bbde5a4e2153a66dae
  article-title: Emergence of classical behavior in the early universe
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.102.023512
– volume: 96
  year: 2017
  ident: be47cfd8c1a2310c4a3816723f513d2af
  article-title: Reassessing the link between B-modes and inflation
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.96.101301
– volume: 20
  start-page: 509
  year: 2011
  ident: b853310e6979ef391223307e77998054c
  article-title: Shortcomings in the Understanding of Why Cosmological Perturbations Look Classical
  publication-title: Int. J. Mod. Phys. D
  doi: 10.1142/S0218271811018937
– ident: ba2ca428ead333c19219169d3ae9eabb4
  doi: 10.1017/9781316995433
– volume: 98
  year: 2018
  ident: b6e8e72a1e16b3bb27419e36805e746f1
  article-title: Open quantum cosmological system
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.98.083535
– volume: 10
  year: 2021
  ident: b7adc2dd823802b71008fdd9ffffc3f8a
  article-title: Real-space entanglement in the Cosmic Microwave Background
  publication-title: JCAP
  doi: 10.1088/1475-7516/2021/10/036
– volume: 81
  year: 2010
  ident: b6c2a82d7f25cfb32953fc0e2ce499ae1
  article-title: Revising the observable consequences of slow-roll inflation
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.81.043514
– year: 2021
  ident: bfefb9836d65a71c025d6a7775441b8a9
  article-title: Universal signature of quantum entanglement across cosmological distances
– ident: ba5d0fa13e521bca80bcc760de4a6c8cc
  doi: 10.7208/chicago/9780226870373.001.0001
– volume: 124
  year: 2020
  ident: b9cedae7bb70c67797dc7377e76189ea4
  article-title: Signals of a Quantum Universe
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.124.251302
– volume: 84
  start-page: 2726
  year: 2000
  ident: b74a2228979a09292be65e5d964dbdb67
  article-title: Peres-Horodecki Separability Criterion for Continuous Variable Systems
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.84.2726
– ident: b8bff22d26b5be81bdc74b779e8c78100
– volume: 117
  start-page: 175
  year: 1982
  ident: b57c762b2df34818d7688b804f17d1480
  article-title: Dynamics of Phase Transition in the New Inflationary Universe Scenario and Generation of Perturbations
  publication-title: Phys. Lett. B
  doi: 10.1016/0370-2693(82)90541-X
– ident: b820f3b2f9919f3b7e62e1c94130c6392
– volume: 15
  start-page: L67
  year: 1998
  ident: be0dbac56058bcf220d4bfe7fa681fc44
  article-title: The Coherence of primordial fluctuations produced during inflation
  publication-title: Class. Quant. Grav.
  doi: 10.1088/0264-9381/15/10/002
– volume: 103
  year: 2021
  ident: b148c3e96c030ec5663b26080f98c195e
  article-title: Critical review of prevailing explanations for the emergence of classicality in cosmology
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.103.043521
– volume: 77
  start-page: 1413
  year: 1996
  ident: b7f88862559c0e62157100cbcd845c9b7
  article-title: Separability criterion for density matrices
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.1413
– volume: 08
  year: 2022
  ident: b010967bf693477be5ebb61aad29d5b73
  article-title: The power of locality: primordial non-Gaussianity at the map level
  publication-title: JCAP
  doi: 10.1088/1475-7516/2022/08/061
– volume: 7
  start-page: 455
  year: 1998
  ident: be7a051b5e7744409f972f5357ffffd78
  article-title: Quantum to classical transition for fluctuations in the early universe
  publication-title: Int. J. Mod. Phys. D
  doi: 10.1142/S0218271898000292
– volume: 07
  year: 2022
  ident: b2d9ce72e31cf7ef6fd8cd14a6344037b
  article-title: Real-space Bell inequalities in de Sitter
  publication-title: JCAP
  doi: 10.1088/1475-7516/2022/07/037
– volume: 76
  start-page: 29
  year: 2016
  ident: b3e2cf6a079e956956b0f568623092d42
  article-title: Emergence of inflationary perturbations in the CSL model
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-015-3860-4
– volume: 32
  year: 2015
  ident: bf6a8e1f67eba9b44318e6873f4f6d0bc
  article-title: Asymptotics with a positive cosmological constant: I. Basic framework
  publication-title: Class. Quant. Grav.
  doi: 10.1088/0264-9381/32/2/025004
– volume: 497
  start-page: 479
  year: 1997
  ident: b6abc1a084c1813f4095fb719f49a2dce
  article-title: Quantum to classical transition of cosmological perturbations for nonvacuum initial states
  publication-title: Nucl. Phys. B
  doi: 10.1016/S0550-3213(97)00224-1
– volume: 80
  start-page: 1021
  year: 2020
  ident: ba682e9e450532015a6f382f9d159aa51
  article-title: Discussions about the landscape of possibilities for treatments of cosmic inflation involving continuous spontaneous localization models
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-020-08599-z
– volume: 42
  start-page: 3413
  year: 1990
  ident: bb035141215887f8e72f4535efa930846
  article-title: Squeezed quantum states of relic gravitons and primordial density fluctuations
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.42.3413
– volume: 102
  year: 2020
  ident: b34faf3a76e3ae8039bb5a7193a4c910d
  article-title: Entanglement entropy of cosmological perturbations
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.102.043529
– volume: 8
  start-page: 609
  year: 1975
  ident: b23019e3751fb340c382561d993c3eb2e
  article-title: Scalar particle production in Schwarzschild and Rindler metrics
  publication-title: J. Phys. A
  doi: 10.1088/0305-4470/8/4/022
– volume: 76
  start-page: 561
  year: 1973
  ident: b6e44f8c14fd62d23ea04e2ec5a45f8e0
  article-title: Consequences of field quantization in de Sitter type cosmological models
  publication-title: Annals Phys.
  doi: 10.1016/0003-4916(73)90047-X
– volume: 91
  year: 2015
  ident: b6bd6fa2e8658d3322d4f70a649c0f20f
  article-title: Unitarity and ultraviolet regularity in cosmology
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.91.124010
– volume: 7
  start-page: 2850
  year: 1973
  ident: b334986382ed92452353999a4ac8aaa90
  article-title: Nonuniqueness of canonical field quantization in Riemannian space-time
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.7.2850
– ident: bf34d0a4c6dbdaf5d0e997f8548febfe4
– volume: 8
  start-page: 27
  year: 2022
  ident: bf318968e610611c637e0ee0158dd7722
  article-title: No Intrinsic Decoherence of Inflationary Cosmological Perturbations
  publication-title: Universe
  doi: 10.3390/universe8010027
– volume: 87
  year: 2013
  ident: bc5c875acd3723603e13612f9ee34e69e
  article-title: Continuous spontaneous localization wave function collapse model as a mechanism for the emergence of cosmological asymmetries in inflation
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.87.104024
– volume: 33
  start-page: 532
  year: 1981
  ident: bd8d829b8830e2e6324de0e4ea4cec69b
  article-title: Quantum Fluctuations and a Nonsingular Universe
  publication-title: JETP Lett.
– volume: 43
  start-page: 199
  year: 1975
  ident: b8388265e8a26f2a502f6c9ca32d17c1b
  article-title: Particle Creation by Black Holes
  publication-title: Commun. Math. Phys.
  doi: 10.1007/BF02345020
– ident: bb62a8c3584870c3f97522ae43f158638
– volume: 106
  start-page: 205
  year: 1957
  ident: b3d962c50901e0bf99bed45699b0060fd
  article-title: Adiabatic Invariant of the Harmonic Oscillator
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.106.205
– ident: b5c973849bb6486a72f544dd54cbc86fd
– volume: 49
  start-page: 1110
  year: 1982
  ident: b4eeed7d7b7b2a33e08fe58da0df54a19
  article-title: Fluctuations in the New Inflationary Universe
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.49.1110
– volume: 93
  year: 2016
  ident: b4ba91cd5e834941f56b1eb15a8af2979
  article-title: Quantum Discord of Cosmic Inflation: Can we Show that CMB Anisotropies are of Quantum-Mechanical Origin?
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.93.023505
– volume: 32
  start-page: 3136
  year: 1985
  ident: b4277ee5f3b0b3f83c5c9e828512b4dac
  article-title: Vacuum States in de Sitter Space
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.32.3136
– ident: bfdcf72416b95d245ce6c01b0e66bcd7c
  doi: 10.1016/0375-9601(85)90093-3
– volume: 98
  year: 2018
  ident: bd2fcd53c57d5529dcb9a8b6e18fe82fd
  article-title: Expectation of primordial gravity waves generated during inflation
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.98.023512
– ident: b3d407f901b620693954964d2a03770d6
– volume: 3
  start-page: 346
  year: 1971
  ident: bde27ef89822227777b0072838be8ee48
  article-title: Quantized fields and particle creation in expanding universes. 2
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.3.346
– volume: 9
  start-page: 341
  year: 1974
  ident: bc587138db95506401a55497d997fc06b
  article-title: Adiabatic regularization of the energy momentum tensor of a quantized field in homogeneous spaces
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.9.341
– volume: 02
  year: 2020
  ident: bc01a42cd9d9100766a7f93892e8a7103
  article-title: Canonical transformations and squeezing formalism in cosmology
  publication-title: JCAP
  doi: 10.1088/1475-7516/2020/02/022
– volume: 183
  start-page: 1057
  year: 1969
  ident: bb69f47b1d56eaf2f681e0851b4127b7a
  article-title: Quantized fields and particle creation in expanding universes. 1
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.183.1057
– volume: 90
  year: 2018
  ident: bdba5ffba189965e4efd5db56c8fc53c5
  article-title: APS Medal for Exceptional Achievement in Research: Invited article on entanglement properties of quantum field theory
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.90.045003
– volume: 02
  start-page: 038
  year: 2013
  ident: bd5d98a88fb74d0364aab9f40c8e02bea
  article-title: Entanglement entropy in de Sitter space
  publication-title: JHEP
  doi: 10.1007/JHEP02(2013)038
SSID ssj0026338
Score 2.4183168
Snippet There seems to exist agreement about the fact that inflation squeezes the quantum state of cosmological perturbations and entangles modes with wavenumbers k⟶...
There seems to exist agreement about the fact that inflation squeezes the quantum state ofcosmological perturbations and entangles modes with wavenumbers k⟶...
SourceID proquest
crossref
iop
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 32
SubjectTerms Ambiguity
Expanding universe theory
Inflation (cosmology)
Perturbation
physics of the early universe
quantum cosmology
quantum field theory on curved space
Questions
Time dependence
Title Does inflation squeeze cosmological perturbations?
URI https://iopscience.iop.org/article/10.1088/1475-7516/2022/09/032
https://www.proquest.com/docview/2712590926
Volume 2022
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA66Xrz4FldXqSAehO62TZs0J1l8oIKPgwveQh4N-NhtsfXg_nonm1ZXRUS8pXRC2unkm5l0Hgjt2aaqVNHAjxOl_TjTsS8kZX4kMexLLLWRNsH58oqcDeKLu-RuKov_Pi9q6O_C0BUKdiysA-LSXhjTxKdJSKzjHvUC1gswgPAcTgmxPQzOr2_eXS4CHliTt_PT1E8aaRZW_QbLE11zuohE85QuxOSx-1LJrhp_KeD4n9dYQgu1Ier1Hf0ymslGK2ijX9qj8Xz46u17k7E7-ShXUXScZ6UH8uiC57zSusDjzFN5OWwA1CuyZ1Bh0p0CHq6hwenJ7dGZXzdc8BV4yZWviQoMTQzAQKgkwyJhAOXgIAqpNKi7OJWSCaO0wCJITQLmo9FUMKZCnJg0xOuoNcpH2QbyGDMRFUQa0IaxJFooEjGJlcWITErcRnHDdK7qauS2KcYTn_wVT1Nu-cMtf7jlDw8YB_60Ufd9WuHKcfw24QA-AK83Zvkb8e4n4gcliun7vNCmjTqNcHwQRhTsRBawiGz-Zb0tNG-vXMhaB7Wq55dsG2ycSu5MxPgNtjfuPw
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR3LTtwwcARUqnqhlLZieTWVqh4qZTeJYzs-IcSygj4ohyJxs_w80LKJyHKAr-94nWyBqkKoN0v2yMl4PC_PA-BDaKrKDc_Skhqbls6WqdJcpIUmeC-Jtl6HBOdvJ-zorPx8Ts-XYLzIhambjvUPcRgLBUcUdgFx1SgvOU05zVkw3ItRJkYZKUaN9cvwjBJGQgX94--nC7OLoRXW5-78C_yeVFrGnf9izXN5M3kJrv_SGGbyc3g900Nz-6CI4__-yhqsdgppsh9hXsGSm67Dxn4bXOT15U3yMZmPowekfQ3FuHZtgnQZg-iSNpjCty4xdXvZM9KkcVcoynT0Bu69gbPJ4Y-Do7RrvJAatJZnqWUm85x6ZAe50YIoKpClo6GotLEo9spKa6G8sYqorPIU1UhvuRLC5IT6KidvYWVaT90GJEL4giumPUrFUjOrDCuEJibwCqc1GUDZI16arip5aI7xS85fx6tKBhzJgCMZcCQzIRFHAxguwJpYluMxgE94CLK7oO1ji9_fW3xhVHN3XuIJDWC7J5A_CwuO-qLIRME2n7LfO3h-Op7Ir8cnX7bgRZiIUWzbsDK7unY7qPbM9O6cqn8D8S3zow
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Does+inflation+squeeze+cosmological+perturbations%3F&rft.jtitle=Journal+of+cosmology+and+astroparticle+physics&rft.au=Agullo%2C+Ivan&rft.au=Bonga%2C+B%C3%A9atrice&rft.au=Ribes+Metidieri%2C+Patricia&rft.date=2022-09-01&rft.issn=1475-7516&rft.eissn=1475-7516&rft.volume=2022&rft.issue=9&rft.spage=32&rft_id=info:doi/10.1088%2F1475-7516%2F2022%2F09%2F032&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1475_7516_2022_09_032
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1475-7516&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1475-7516&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1475-7516&client=summon