Estimation of Large-Dimensional Covariance Matrices via Second-Order Stein-Type Regularization
This paper tackles the problem of estimating the covariance matrix in large-dimension and small-sample-size scenarios. Inspired by the well-known linear shrinkage estimation, we propose a novel second-order Stein-type regularization strategy to generate well-conditioned covariance matrix estimators....
Saved in:
Published in | Entropy (Basel, Switzerland) Vol. 25; no. 1; p. 53 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
27.12.2022
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper tackles the problem of estimating the covariance matrix in large-dimension and small-sample-size scenarios. Inspired by the well-known linear shrinkage estimation, we propose a novel second-order Stein-type regularization strategy to generate well-conditioned covariance matrix estimators. We model the second-order Stein-type regularization as a quadratic polynomial concerning the sample covariance matrix and a given target matrix, representing the prior information of the actual covariance structure. To obtain available covariance matrix estimators, we choose the spherical and diagonal target matrices and develop unbiased estimates of the theoretical mean squared errors, which measure the distances between the actual covariance matrix and its estimators. We formulate the second-order Stein-type regularization as a convex optimization problem, resulting in the optimal second-order Stein-type estimators. Numerical simulations reveal that the proposed estimators can significantly lower the Frobenius losses compared with the existing Stein-type estimators. Moreover, a real data analysis in portfolio selection verifies the performance of the proposed estimators. |
---|---|
AbstractList | This paper tackles the problem of estimating the covariance matrix in large-dimension and small-sample-size scenarios. Inspired by the well-known linear shrinkage estimation, we propose a novel second-order Stein-type regularization strategy to generate well-conditioned covariance matrix estimators. We model the second-order Stein-type regularization as a quadratic polynomial concerning the sample covariance matrix and a given target matrix, representing the prior information of the actual covariance structure. To obtain available covariance matrix estimators, we choose the spherical and diagonal target matrices and develop unbiased estimates of the theoretical mean squared errors, which measure the distances between the actual covariance matrix and its estimators. We formulate the second-order Stein-type regularization as a convex optimization problem, resulting in the optimal second-order Stein-type estimators. Numerical simulations reveal that the proposed estimators can significantly lower the Frobenius losses compared with the existing Stein-type estimators. Moreover, a real data analysis in portfolio selection verifies the performance of the proposed estimators.This paper tackles the problem of estimating the covariance matrix in large-dimension and small-sample-size scenarios. Inspired by the well-known linear shrinkage estimation, we propose a novel second-order Stein-type regularization strategy to generate well-conditioned covariance matrix estimators. We model the second-order Stein-type regularization as a quadratic polynomial concerning the sample covariance matrix and a given target matrix, representing the prior information of the actual covariance structure. To obtain available covariance matrix estimators, we choose the spherical and diagonal target matrices and develop unbiased estimates of the theoretical mean squared errors, which measure the distances between the actual covariance matrix and its estimators. We formulate the second-order Stein-type regularization as a convex optimization problem, resulting in the optimal second-order Stein-type estimators. Numerical simulations reveal that the proposed estimators can significantly lower the Frobenius losses compared with the existing Stein-type estimators. Moreover, a real data analysis in portfolio selection verifies the performance of the proposed estimators. This paper tackles the problem of estimating the covariance matrix in large-dimension and small-sample-size scenarios. Inspired by the well-known linear shrinkage estimation, we propose a novel second-order Stein-type regularization strategy to generate well-conditioned covariance matrix estimators. We model the second-order Stein-type regularization as a quadratic polynomial concerning the sample covariance matrix and a given target matrix, representing the prior information of the actual covariance structure. To obtain available covariance matrix estimators, we choose the spherical and diagonal target matrices and develop unbiased estimates of the theoretical mean squared errors, which measure the distances between the actual covariance matrix and its estimators. We formulate the second-order Stein-type regularization as a convex optimization problem, resulting in the optimal second-order Stein-type estimators. Numerical simulations reveal that the proposed estimators can significantly lower the Frobenius losses compared with the existing Stein-type estimators. Moreover, a real data analysis in portfolio selection verifies the performance of the proposed estimators. |
Author | Huang, Hengzhen Chen, Jianbin Zhang, Bin |
AuthorAffiliation | 1 College of Mathematics and Statistics, Guangxi Normal University, Guilin 541004, China 2 School of Mathematics and Statistics, Beijing Institute of Technology, Beijing 100081, China |
AuthorAffiliation_xml | – name: 1 College of Mathematics and Statistics, Guangxi Normal University, Guilin 541004, China – name: 2 School of Mathematics and Statistics, Beijing Institute of Technology, Beijing 100081, China |
Author_xml | – sequence: 1 givenname: Bin orcidid: 0000-0001-7654-5072 surname: Zhang fullname: Zhang, Bin – sequence: 2 givenname: Hengzhen orcidid: 0000-0003-0511-6902 surname: Huang fullname: Huang, Hengzhen – sequence: 3 givenname: Jianbin surname: Chen fullname: Chen, Jianbin |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36673194$$D View this record in MEDLINE/PubMed |
BookMark | eNptkl1rFDEUhoNU7Ide-AdkwBt7MTaZZPJxI8hatbBSsPXWkMmcrFlmk20ys1B_fdPdurTFq4ST57y8b845RgchBkDoLcEfKVX4DJoWE4xb-gIdEaxUzSjGB4_uh-g45yXGDW0If4UOKeeCEsWO0O_zPPqVGX0MVXTV3KQF1F_8CkIuJTNUs7gxyZtgofphxuQt5GrjTXUFNoa-vkw9pOpqBB_q69s1VD9hMQ2l4-9W8zV66cyQ4c3DeYJ-fT2_nn2v55ffLmaf57VlXI11T51qjJDFa8saIhuGhVDOEt7JrndWCNMWv66TpKXCMsxBCNsLYrGlBaIn6GKn20ez1OtUIqVbHY3X20JMC23S6O0AuidUGE6M6xrHuJVdxztmOThlVKeUKFqfdlrrqVtBbyGMyQxPRJ--BP9HL-JGK9kKRlgR-PAgkOLNBHnUK58tDIMJEKesG8FLQo7FPfr-GbqMUyr_vqVEg6XkslDvHjvaW_k3xgKc7gCbYs4J3B4hWN-viN6vSGHPnrHWj9thlTB--E_HHdtLvH8 |
CitedBy_id | crossref_primary_10_1016_j_eti_2024_103885 |
Cites_doi | 10.1016/j.jmva.2020.104608 10.1016/S0047-259X(03)00096-4 10.1109/TSP.2020.3037369 10.1080/01621459.2018.1442340 10.1007/s11590-013-0632-7 10.1016/j.csda.2010.12.006 10.1016/j.frl.2021.102019 10.1016/j.aeue.2017.06.026 10.1007/b98855 10.1109/TSP.2014.2364784 10.1016/j.sigpro.2018.02.026 10.1016/j.csda.2015.09.011 10.1007/978-1-4419-0661-8 10.1109/ACCESS.2017.2782208 10.1109/TSP.2008.929662 10.1016/j.jmva.2021.104826 10.1080/14697688.2010.534813 10.1109/TSP.2010.2053029 10.1016/j.jmva.2014.06.001 10.1109/TSP.2021.3118546 10.1214/18-AOS1798 10.14490/jjss.35.251 10.1155/S0161171200002398 10.1007/s00362-019-01148-1 10.1214/19-AOS1921 10.1016/j.jmva.2010.07.004 10.1214/17-AOS1588 10.1016/j.jmva.2021.104796 10.1111/rssb.12016 10.1007/s10959-010-0338-z 10.1214/12-AOS999 |
ContentType | Journal Article |
Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022 |
Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022 |
DBID | AAYXX CITATION NPM 7TB 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO FR3 HCIFZ KR7 L6V M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 5PM DOA |
DOI | 10.3390/e25010053 |
DatabaseName | CrossRef PubMed Mechanical & Transportation Engineering Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection (ProQuest) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database SciTech Premium Collection Civil Engineering Abstracts ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection (ProQuest) MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Civil Engineering Abstracts Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database CrossRef PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 1099-4300 |
ExternalDocumentID | oai_doaj_org_article_d137a61afb2f46c8bb6b4c6ef9a9b997 PMC9857414 36673194 10_3390_e25010053 |
Genre | Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 11861071 – fundername: Science and Technology Project of Guangxi grantid: Guike AD21220114 – fundername: National Natural Science Foundation of China grantid: 12261011 – fundername: Guangxi Science and Technology Planning Project grantid: 2022AC21276 – fundername: Science and Technology Project of Guangxi grantid: AD21220114 |
GroupedDBID | 29G 2WC 5GY 5VS 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABJCF ACIWK ACUHS ADBBV AEGXH AENEX AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR BGLVJ CCPQU CITATION CS3 DU5 E3Z ESX F5P GROUPED_DOAJ GX1 HCIFZ HH5 IAO ITC J9A KQ8 L6V M7S MODMG M~E OK1 OVT PGMZT PHGZM PHGZT PIMPY PROAC PTHSS RNS RPM TR2 TUS XSB ~8M NPM 7TB 8FD ABUWG AZQEC DWQXO FR3 KR7 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c469t-d3f92a7843054218240779fc16b8bdfc77a5319fb81537c406e77cd71c0c316b3 |
IEDL.DBID | BENPR |
ISSN | 1099-4300 |
IngestDate | Wed Aug 27 01:26:45 EDT 2025 Thu Aug 21 18:38:47 EDT 2025 Fri Jul 11 10:29:29 EDT 2025 Fri Jul 25 11:53:54 EDT 2025 Thu Jan 02 22:52:47 EST 2025 Tue Jul 01 01:58:20 EDT 2025 Thu Apr 24 23:09:39 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Stein-type regularization unbiased estimate covariance matrix estimation |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c469t-d3f92a7843054218240779fc16b8bdfc77a5319fb81537c406e77cd71c0c316b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-0511-6902 0000-0001-7654-5072 |
OpenAccessLink | https://www.proquest.com/docview/2767208868?pq-origsite=%requestingapplication% |
PMID | 36673194 |
PQID | 2767208868 |
PQPubID | 2032401 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_d137a61afb2f46c8bb6b4c6ef9a9b997 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9857414 proquest_miscellaneous_2768246074 proquest_journals_2767208868 pubmed_primary_36673194 crossref_primary_10_3390_e25010053 crossref_citationtrail_10_3390_e25010053 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20221227 |
PublicationDateYYYYMMDD | 2022-12-27 |
PublicationDate_xml | – month: 12 year: 2022 text: 20221227 day: 27 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Entropy (Basel, Switzerland) |
PublicationTitleAlternate | Entropy (Basel) |
PublicationYear | 2022 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Cai (ref_7) 2012; 40 Ledoit (ref_18) 2020; 48 Chen (ref_11) 2010; 58 Cabana (ref_22) 2021; 62 Vershynin (ref_3) 2012; 25 Bodnar (ref_9) 2021; 188 Cai (ref_4) 2020; 48 ref_30 Joo (ref_33) 2021; 43 Cao (ref_8) 2019; 114 Liu (ref_14) 2017; 81 Srivastava (ref_26) 2005; 35 Mestre (ref_19) 2008; 56 Fisher (ref_12) 2011; 55 Fisher (ref_28) 2010; 101 Ledoit (ref_23) 2021; 186 Markowitz (ref_31) 1952; 7 Fan (ref_1) 2013; 75 ref_25 Wu (ref_5) 2009; 19 Fan (ref_6) 2018; 46 Pantaleo (ref_32) 2010; 11 Hannart (ref_13) 2014; 131 Yuasa (ref_17) 2020; 178 ref_2 ref_29 Raninen (ref_10) 2021; 69 Tong (ref_16) 2018; 148 Ikeda (ref_21) 2016; 95 Tanaka (ref_24) 2014; 8 Lancewicki (ref_15) 2014; 62 Ledoit (ref_20) 2004; 88 Li (ref_27) 2018; 6 |
References_xml | – volume: 178 start-page: 104608 year: 2020 ident: ref_17 article-title: Ridge-type linear shrinkage estimation of the mean matrix of a high-dimensional normal distribution publication-title: J. Multivar. Anal. doi: 10.1016/j.jmva.2020.104608 – volume: 88 start-page: 365 year: 2004 ident: ref_20 article-title: A well-conditioned estimator for large-dimensional covariance matrices publication-title: J. Multivar. Anal. doi: 10.1016/S0047-259X(03)00096-4 – ident: ref_2 doi: 10.1109/TSP.2020.3037369 – volume: 114 start-page: 759 year: 2019 ident: ref_8 article-title: Large covariance estimation for compositional data via composition-adjusted thresholding publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.2018.1442340 – volume: 8 start-page: 939 year: 2014 ident: ref_24 article-title: Positive definite matrix approximation with condition number constraint publication-title: Optim. Lett. doi: 10.1007/s11590-013-0632-7 – volume: 55 start-page: 1909 year: 2011 ident: ref_12 article-title: Improved Stein-type shrinkage estimators for the high-dimensional multivariate normal covariance matrix publication-title: Comput. Stat. Data Anal. doi: 10.1016/j.csda.2010.12.006 – volume: 43 start-page: 102019 year: 2021 ident: ref_33 article-title: Optimal portfolio selection using a simple double-shrinkage selection rule publication-title: Financ. Res. Lett. doi: 10.1016/j.frl.2021.102019 – volume: 81 start-page: 50 year: 2017 ident: ref_14 article-title: A covariance matrix shrinkage method with Toeplitz rectified target for DOA estimation under the uniform linear array publication-title: Int. J. Electron. Commun. (AEÜ) doi: 10.1016/j.aeue.2017.06.026 – ident: ref_29 doi: 10.1007/b98855 – volume: 62 start-page: 6380 year: 2014 ident: ref_15 article-title: Multi-target shrinkage estimation for covariance matrices publication-title: Trans. Signal Process. doi: 10.1109/TSP.2014.2364784 – volume: 148 start-page: 223 year: 2018 ident: ref_16 article-title: Linear shrinkage estimation of covariance matrices using low-complexity cross-validation publication-title: Signal Process. doi: 10.1016/j.sigpro.2018.02.026 – volume: 95 start-page: 95 year: 2016 ident: ref_21 article-title: Comparison of linear shrinkage estimators of a large covariance matrix in normal and non-normal distributions publication-title: Comput. Stat. Data Anal. doi: 10.1016/j.csda.2015.09.011 – ident: ref_30 doi: 10.1007/978-1-4419-0661-8 – volume: 6 start-page: 2158 year: 2018 ident: ref_27 article-title: Estimation of large covariance matrices by shrinking to structured target in normal and non-normal distributions publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2782208 – volume: 56 start-page: 5353 year: 2008 ident: ref_19 article-title: On the asymptotic behavior of the sample estimates of eigenvalues and eigenvectors of covariance matrices publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2008.929662 – volume: 188 start-page: 104826 year: 2021 ident: ref_9 article-title: Recent advances in shrinkage-based high-dimensional inference publication-title: J. Multivar. Anal. doi: 10.1016/j.jmva.2021.104826 – volume: 11 start-page: 1067 year: 2010 ident: ref_32 article-title: When do improved covariance matrix estimators enhance portfolio optimization? An empirical comparative study of nine estimators publication-title: Quant. Financ. Pap. doi: 10.1080/14697688.2010.534813 – volume: 58 start-page: 5016 year: 2010 ident: ref_11 article-title: Shrinkage algorithms for MMSE covariance estimation publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2010.2053029 – volume: 131 start-page: 149 year: 2014 ident: ref_13 article-title: Estimating high dimensional covariance matrices: A new look at the Gaussian conjugate framework publication-title: J. Multivar. Anal. doi: 10.1016/j.jmva.2014.06.001 – volume: 69 start-page: 5681 year: 2021 ident: ref_10 article-title: Coupled regularized sample covariance matrix estimator for multiple classes publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2021.3118546 – volume: 48 start-page: 1255 year: 2020 ident: ref_4 article-title: Limiting laws for divergent spiked eigenvalues and largest nonspiked eigenvalue of sample covariance matrices publication-title: Ann. Stat. doi: 10.1214/18-AOS1798 – volume: 35 start-page: 251 year: 2005 ident: ref_26 article-title: Some tests concerning the covariance matrix in high dimensional data publication-title: J. Jpn. Stat. Soc. doi: 10.14490/jjss.35.251 – ident: ref_25 doi: 10.1155/S0161171200002398 – volume: 62 start-page: 1583 year: 2021 ident: ref_22 article-title: Multivariate outlier detection based on a robust Mahalanobis distance with shrinkage estimators publication-title: Stat. Pap. doi: 10.1007/s00362-019-01148-1 – volume: 48 start-page: 3043 year: 2020 ident: ref_18 article-title: Analytical nonlinear shrinkage of large-dimensional covariance matrices publication-title: Ann. Stat. doi: 10.1214/19-AOS1921 – volume: 101 start-page: 2554 year: 2010 ident: ref_28 article-title: A new test for sphericity of the covariance matrix for high dimensional data publication-title: J. Multivar. Anal. doi: 10.1016/j.jmva.2010.07.004 – volume: 19 start-page: 1755 year: 2009 ident: ref_5 article-title: Banding sample autocovariance matrices of stationary progress publication-title: Stat. Sin. – volume: 46 start-page: 1383 year: 2018 ident: ref_6 article-title: Large covariance estimation through elliptical factor models publication-title: Ann. Stat. doi: 10.1214/17-AOS1588 – volume: 7 start-page: 77 year: 1952 ident: ref_31 article-title: Portfolio selection publication-title: J. Financ. – volume: 186 start-page: 104796 year: 2021 ident: ref_23 article-title: Shrinkage estimation of large covariance matrices: Keep it simple, statistician? publication-title: J. Multivar. Anal. doi: 10.1016/j.jmva.2021.104796 – volume: 75 start-page: 603 year: 2013 ident: ref_1 article-title: Large covariance estimation by thresholding principal orthogonal complements publication-title: J. R. Stat. Soc. Ser. B (Stat. Methodol.) doi: 10.1111/rssb.12016 – volume: 25 start-page: 655 year: 2012 ident: ref_3 article-title: How close is the sample covariance matrix to the actual covariance matrix? publication-title: J. Theor. Probab. doi: 10.1007/s10959-010-0338-z – volume: 40 start-page: 2014 year: 2012 ident: ref_7 article-title: Adaptive covariance matrix estimation through block thresholding publication-title: Ann. Stat. doi: 10.1214/12-AOS999 |
SSID | ssj0023216 |
Score | 2.3091233 |
Snippet | This paper tackles the problem of estimating the covariance matrix in large-dimension and small-sample-size scenarios. Inspired by the well-known linear... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 53 |
SubjectTerms | Convexity Covariance matrix covariance matrix estimation Data analysis Eigenvalues Eigenvectors Estimation Estimators Mathematical analysis Mathematical models Normal distribution Optimization Polynomials Regularization Stein-type regularization unbiased estimate |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iyYsovuqLKB68BDdJN2mOPhHxAa6CJ0uSJihIV3T19zuTdsuuLHjx2swhnS_TmY9mviHkIBouKxEii0FHhhmaWUjMLPJehHTWlyKJPd_cqsvH_Oqp_zQx6gvvhDXywI3jjioutVXcRidirnzhnHK5VyEaa5wxqY8cct6YTLVUSwquGh0hCaT-KECi53jeprJPEumfVVn-viA5kXEulshiWyrS42aLy2Qu1Cvk-Rxismk3pMNIr_EiNztDif5GXoOeDr-B_iKW9CbJ74dP-v1q6QCZb8XuUGqTDnDGJUMOSu_TMPqPth1zlTxenD-cXrJ2RgLzQGxHrJLRCKsLVO7KUY0dCJo20XPlCldFr7XFKIuugE-b9pC-g9a-0tz3vAQjuUbm62EdNgjVHqpt7yqgyyrn0Rqfaw8AW5-7aL3IyOHYd6VvBcRxjsVbCUQC3Vx2bs7Ifmf63qhmzDI6QQA6AxS6Tg8A_rKFv_wL_oxsj-Er2-j7LIVWWsDnUxUZ2euWIW7wZ4itw_Ar2YCzFFRQGVlv0O52InEWKjewoqfOwdRWp1fq15ekzW2KPtRo-eZ_vNsWWRDYbMGxgWqbzI8-vsIOlEAjt5tO-w_DWAeA priority: 102 providerName: Directory of Open Access Journals |
Title | Estimation of Large-Dimensional Covariance Matrices via Second-Order Stein-Type Regularization |
URI | https://www.ncbi.nlm.nih.gov/pubmed/36673194 https://www.proquest.com/docview/2767208868 https://www.proquest.com/docview/2768246074 https://pubmed.ncbi.nlm.nih.gov/PMC9857414 https://doaj.org/article/d137a61afb2f46c8bb6b4c6ef9a9b997 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELbo9sIFgcojUFYGceBitY6zfpwQLbutEC2opdKeiGzHLpVQUna3_f3MON6URRWXHOI5WDOex-fHN4S8i4aLpgyRxaAiwwzNLCRmFvl-hHQ2EWUiez45lccX1ef5ZJ433Jb5WuU6JqZA3XQe98j3SiVVCS4h9Yfr3wy7RuHpam6hsUW2IQRrPSLbB9PTb2cD5BIllz2fkABwvxcg4XNcdxtZKJH131dh_ntR8q_MM3tMHuWSkX7sbfyEPAjtDvkxBd_snx3SLtIveKGbfUKq_p5mgx52twCD0ab0JNHwhyW9vbL0HBFww74i5SY9x16XDLEoPUtN6Rf5WeZTcjGbfj88ZrlXAvMAcFesEdGUVmlk8KqQlR2AmjLRc-m0a6JXyqK3RachxCkPaTwo5RvF_b4XICSekVHbteEFocpD1e1dA7BZVjxa4yvlwdDWVy5aXxbk_Vp3tc9E4tjP4lcNgALVXA9qLsjbQfS6Z8-4T-gADTAIIOF1-tEtLuvsP3XDhbKS2-jKWEmvnZOu8jJEY40zRhVkd22-Onvhsr5bMwV5MwyD_-ChiG1Dd5NkQFkSKqmCPO-tPcxEYE9UbmBEbayDjalujrRXPxNHt9ETqNWql_-f1ivysMTnFByfSO2S0WpxE15DkbNyY7KlZ0fjvJ7HaasAvkdz_gcGkQH4 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VcoALAvEVKGAQSFysrp2sHR8QgrbLlu4WibZST6S2Y5dKKCndbRF_it_ITJINLKq49RqPImv8xjOTzLwBeBmNSEsZIo9BR04emlt0zDyKQUR3NkxlQ_Y83VXjg-zj4fBwBX4temGorHJxJzYXdVl7-ka-LrXSEk1C5W9Pv3OaGkV_VxcjNFpY7ISfPzBlm73Z3sTzfSXlaGt_Y8y7qQLcYyo452UajbQ6J66rjPjLMaXRJnqhXO7K6LW2hMvocrwMtEeHF7T2pRZ-4FMUSvG91-B6lqInp8700Yc-wUulUC17ES4O1gOGF4JQvuTzmtEAl8Wz_5Zl_uXnRrfhVhegsnctou7ASqjuwpctvAnaJkdWRzah8nG-SYMBWlIPtlFfYNJNCGLThvQ_zNjFiWV7lG-X_BMRfLI9mqzJKfNln8Mx1b92TaD34OBKdHgfVqu6Cg-BaY8xvnclJukqE9Ean2mPsLI-c9F6mcDrhe4K39GW0_SMbwWmL6TmoldzAi960dOWq-Myofd0AL0A0Ws3D-qz46Kz1qIUqbZK2OhkzJTPnVMu8ypEY40zRiewtji-orP5WfEHoQk875fRWukXjK1Cfd7IoLIUxm0JPGhPu99JShNYhcEVvYSDpa0ur1QnXxtGcJMPMTLMHv1_W8_gxnh_Oikm27s7j-GmpEYOQc1Za7A6PzsPTzC8mrunDaYZHF21Ef0GsUk5DA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKVkJcEIhXaAGDQOJi7drO2vEBIdrdVUvbpWqp1BPBduxSqUpKd1vEX-PXMZNkA4sqbr3GVmSN5_UlM98Q8joaLgsRIotBR4YRmlkIzCzyQYRwNpSiJnvem6qto_Tj8fB4hfxa9MJgWeXCJ9aOuqg8fiPvC620AJNQWT-2ZRH7o8n78-8MJ0jhn9bFOI1GRXbCzx8A32bvtkdw12-EmIw_b26xdsIA8wAL56yQ0QirM-S9SpHLHOCNNtFz5TJXRK-1RR2NLgPHoD0Ev6C1LzT3Ay9hk4T33iKrGlFRj6xujKf7Bx3ck4KrhstISjPoB0g2OOr8UgSsBwVcl93-W6T5V9Sb3CN323SVfmj06z5ZCeUD8mUMfqFpeaRVpLtYTM5GOCagofigm9UVQHDUJ7pXjwAIM3p1aukhou-CfUK6T3qIczYZ4mB6EE6wGrZtCX1Ijm5Eio9Ir6zK8IRQ7SHj964AyK5SHq3xqfagZNanLlovEvJ2IbvctyTmOEvjLAcwg2LOOzEn5FW39bxh7rhu0wZeQLcBybbrB9XFSd7abl5wqa3iNjoRU-Uz55RLvQrRWOOM0QlZX1xf3nqAWf5HXxPyslsG28UfMrYM1WW9B4SlIItLyOPmtruTSJzHyg2s6CU9WDrq8kp5-q3mBzfZEPLE9On_j_WC3AYDyne3pztr5I7Arg6OnVrrpDe_uAzPINeau-etUlPy9abt6DdR8D6e |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimation+of+Large-Dimensional+Covariance+Matrices+via+Second-Order+Stein-Type+Regularization&rft.jtitle=Entropy+%28Basel%2C+Switzerland%29&rft.au=Zhang%2C+Bin&rft.au=Huang%2C+Hengzhen&rft.au=Chen%2C+Jianbin&rft.date=2022-12-27&rft.pub=MDPI&rft.eissn=1099-4300&rft.volume=25&rft.issue=1&rft_id=info:doi/10.3390%2Fe25010053&rft.externalDocID=PMC9857414 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1099-4300&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1099-4300&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1099-4300&client=summon |