Estimation of Large-Dimensional Covariance Matrices via Second-Order Stein-Type Regularization

This paper tackles the problem of estimating the covariance matrix in large-dimension and small-sample-size scenarios. Inspired by the well-known linear shrinkage estimation, we propose a novel second-order Stein-type regularization strategy to generate well-conditioned covariance matrix estimators....

Full description

Saved in:
Bibliographic Details
Published inEntropy (Basel, Switzerland) Vol. 25; no. 1; p. 53
Main Authors Zhang, Bin, Huang, Hengzhen, Chen, Jianbin
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 27.12.2022
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper tackles the problem of estimating the covariance matrix in large-dimension and small-sample-size scenarios. Inspired by the well-known linear shrinkage estimation, we propose a novel second-order Stein-type regularization strategy to generate well-conditioned covariance matrix estimators. We model the second-order Stein-type regularization as a quadratic polynomial concerning the sample covariance matrix and a given target matrix, representing the prior information of the actual covariance structure. To obtain available covariance matrix estimators, we choose the spherical and diagonal target matrices and develop unbiased estimates of the theoretical mean squared errors, which measure the distances between the actual covariance matrix and its estimators. We formulate the second-order Stein-type regularization as a convex optimization problem, resulting in the optimal second-order Stein-type estimators. Numerical simulations reveal that the proposed estimators can significantly lower the Frobenius losses compared with the existing Stein-type estimators. Moreover, a real data analysis in portfolio selection verifies the performance of the proposed estimators.
AbstractList This paper tackles the problem of estimating the covariance matrix in large-dimension and small-sample-size scenarios. Inspired by the well-known linear shrinkage estimation, we propose a novel second-order Stein-type regularization strategy to generate well-conditioned covariance matrix estimators. We model the second-order Stein-type regularization as a quadratic polynomial concerning the sample covariance matrix and a given target matrix, representing the prior information of the actual covariance structure. To obtain available covariance matrix estimators, we choose the spherical and diagonal target matrices and develop unbiased estimates of the theoretical mean squared errors, which measure the distances between the actual covariance matrix and its estimators. We formulate the second-order Stein-type regularization as a convex optimization problem, resulting in the optimal second-order Stein-type estimators. Numerical simulations reveal that the proposed estimators can significantly lower the Frobenius losses compared with the existing Stein-type estimators. Moreover, a real data analysis in portfolio selection verifies the performance of the proposed estimators.This paper tackles the problem of estimating the covariance matrix in large-dimension and small-sample-size scenarios. Inspired by the well-known linear shrinkage estimation, we propose a novel second-order Stein-type regularization strategy to generate well-conditioned covariance matrix estimators. We model the second-order Stein-type regularization as a quadratic polynomial concerning the sample covariance matrix and a given target matrix, representing the prior information of the actual covariance structure. To obtain available covariance matrix estimators, we choose the spherical and diagonal target matrices and develop unbiased estimates of the theoretical mean squared errors, which measure the distances between the actual covariance matrix and its estimators. We formulate the second-order Stein-type regularization as a convex optimization problem, resulting in the optimal second-order Stein-type estimators. Numerical simulations reveal that the proposed estimators can significantly lower the Frobenius losses compared with the existing Stein-type estimators. Moreover, a real data analysis in portfolio selection verifies the performance of the proposed estimators.
This paper tackles the problem of estimating the covariance matrix in large-dimension and small-sample-size scenarios. Inspired by the well-known linear shrinkage estimation, we propose a novel second-order Stein-type regularization strategy to generate well-conditioned covariance matrix estimators. We model the second-order Stein-type regularization as a quadratic polynomial concerning the sample covariance matrix and a given target matrix, representing the prior information of the actual covariance structure. To obtain available covariance matrix estimators, we choose the spherical and diagonal target matrices and develop unbiased estimates of the theoretical mean squared errors, which measure the distances between the actual covariance matrix and its estimators. We formulate the second-order Stein-type regularization as a convex optimization problem, resulting in the optimal second-order Stein-type estimators. Numerical simulations reveal that the proposed estimators can significantly lower the Frobenius losses compared with the existing Stein-type estimators. Moreover, a real data analysis in portfolio selection verifies the performance of the proposed estimators.
Author Huang, Hengzhen
Chen, Jianbin
Zhang, Bin
AuthorAffiliation 1 College of Mathematics and Statistics, Guangxi Normal University, Guilin 541004, China
2 School of Mathematics and Statistics, Beijing Institute of Technology, Beijing 100081, China
AuthorAffiliation_xml – name: 1 College of Mathematics and Statistics, Guangxi Normal University, Guilin 541004, China
– name: 2 School of Mathematics and Statistics, Beijing Institute of Technology, Beijing 100081, China
Author_xml – sequence: 1
  givenname: Bin
  orcidid: 0000-0001-7654-5072
  surname: Zhang
  fullname: Zhang, Bin
– sequence: 2
  givenname: Hengzhen
  orcidid: 0000-0003-0511-6902
  surname: Huang
  fullname: Huang, Hengzhen
– sequence: 3
  givenname: Jianbin
  surname: Chen
  fullname: Chen, Jianbin
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36673194$$D View this record in MEDLINE/PubMed
BookMark eNptkl1rFDEUhoNU7Ide-AdkwBt7MTaZZPJxI8hatbBSsPXWkMmcrFlmk20ys1B_fdPdurTFq4ST57y8b845RgchBkDoLcEfKVX4DJoWE4xb-gIdEaxUzSjGB4_uh-g45yXGDW0If4UOKeeCEsWO0O_zPPqVGX0MVXTV3KQF1F_8CkIuJTNUs7gxyZtgofphxuQt5GrjTXUFNoa-vkw9pOpqBB_q69s1VD9hMQ2l4-9W8zV66cyQ4c3DeYJ-fT2_nn2v55ffLmaf57VlXI11T51qjJDFa8saIhuGhVDOEt7JrndWCNMWv66TpKXCMsxBCNsLYrGlBaIn6GKn20ez1OtUIqVbHY3X20JMC23S6O0AuidUGE6M6xrHuJVdxztmOThlVKeUKFqfdlrrqVtBbyGMyQxPRJ--BP9HL-JGK9kKRlgR-PAgkOLNBHnUK58tDIMJEKesG8FLQo7FPfr-GbqMUyr_vqVEg6XkslDvHjvaW_k3xgKc7gCbYs4J3B4hWN-viN6vSGHPnrHWj9thlTB--E_HHdtLvH8
CitedBy_id crossref_primary_10_1016_j_eti_2024_103885
Cites_doi 10.1016/j.jmva.2020.104608
10.1016/S0047-259X(03)00096-4
10.1109/TSP.2020.3037369
10.1080/01621459.2018.1442340
10.1007/s11590-013-0632-7
10.1016/j.csda.2010.12.006
10.1016/j.frl.2021.102019
10.1016/j.aeue.2017.06.026
10.1007/b98855
10.1109/TSP.2014.2364784
10.1016/j.sigpro.2018.02.026
10.1016/j.csda.2015.09.011
10.1007/978-1-4419-0661-8
10.1109/ACCESS.2017.2782208
10.1109/TSP.2008.929662
10.1016/j.jmva.2021.104826
10.1080/14697688.2010.534813
10.1109/TSP.2010.2053029
10.1016/j.jmva.2014.06.001
10.1109/TSP.2021.3118546
10.1214/18-AOS1798
10.14490/jjss.35.251
10.1155/S0161171200002398
10.1007/s00362-019-01148-1
10.1214/19-AOS1921
10.1016/j.jmva.2010.07.004
10.1214/17-AOS1588
10.1016/j.jmva.2021.104796
10.1111/rssb.12016
10.1007/s10959-010-0338-z
10.1214/12-AOS999
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
NPM
7TB
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
HCIFZ
KR7
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
5PM
DOA
DOI 10.3390/e25010053
DatabaseName CrossRef
PubMed
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection (ProQuest)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
SciTech Premium Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection (ProQuest)
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Civil Engineering Abstracts
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Publicly Available Content Database

CrossRef

PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 1099-4300
ExternalDocumentID oai_doaj_org_article_d137a61afb2f46c8bb6b4c6ef9a9b997
PMC9857414
36673194
10_3390_e25010053
Genre Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 11861071
– fundername: Science and Technology Project of Guangxi
  grantid: Guike AD21220114
– fundername: National Natural Science Foundation of China
  grantid: 12261011
– fundername: Guangxi Science and Technology Planning Project
  grantid: 2022AC21276
– fundername: Science and Technology Project of Guangxi
  grantid: AD21220114
GroupedDBID 29G
2WC
5GY
5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ACIWK
ACUHS
ADBBV
AEGXH
AENEX
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
CS3
DU5
E3Z
ESX
F5P
GROUPED_DOAJ
GX1
HCIFZ
HH5
IAO
ITC
J9A
KQ8
L6V
M7S
MODMG
M~E
OK1
OVT
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
RNS
RPM
TR2
TUS
XSB
~8M
NPM
7TB
8FD
ABUWG
AZQEC
DWQXO
FR3
KR7
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c469t-d3f92a7843054218240779fc16b8bdfc77a5319fb81537c406e77cd71c0c316b3
IEDL.DBID BENPR
ISSN 1099-4300
IngestDate Wed Aug 27 01:26:45 EDT 2025
Thu Aug 21 18:38:47 EDT 2025
Fri Jul 11 10:29:29 EDT 2025
Fri Jul 25 11:53:54 EDT 2025
Thu Jan 02 22:52:47 EST 2025
Tue Jul 01 01:58:20 EDT 2025
Thu Apr 24 23:09:39 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Stein-type regularization
unbiased estimate
covariance matrix estimation
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c469t-d3f92a7843054218240779fc16b8bdfc77a5319fb81537c406e77cd71c0c316b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0511-6902
0000-0001-7654-5072
OpenAccessLink https://www.proquest.com/docview/2767208868?pq-origsite=%requestingapplication%
PMID 36673194
PQID 2767208868
PQPubID 2032401
ParticipantIDs doaj_primary_oai_doaj_org_article_d137a61afb2f46c8bb6b4c6ef9a9b997
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9857414
proquest_miscellaneous_2768246074
proquest_journals_2767208868
pubmed_primary_36673194
crossref_primary_10_3390_e25010053
crossref_citationtrail_10_3390_e25010053
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20221227
PublicationDateYYYYMMDD 2022-12-27
PublicationDate_xml – month: 12
  year: 2022
  text: 20221227
  day: 27
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Entropy (Basel, Switzerland)
PublicationTitleAlternate Entropy (Basel)
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Cai (ref_7) 2012; 40
Ledoit (ref_18) 2020; 48
Chen (ref_11) 2010; 58
Cabana (ref_22) 2021; 62
Vershynin (ref_3) 2012; 25
Bodnar (ref_9) 2021; 188
Cai (ref_4) 2020; 48
ref_30
Joo (ref_33) 2021; 43
Cao (ref_8) 2019; 114
Liu (ref_14) 2017; 81
Srivastava (ref_26) 2005; 35
Mestre (ref_19) 2008; 56
Fisher (ref_12) 2011; 55
Fisher (ref_28) 2010; 101
Ledoit (ref_23) 2021; 186
Markowitz (ref_31) 1952; 7
Fan (ref_1) 2013; 75
ref_25
Wu (ref_5) 2009; 19
Fan (ref_6) 2018; 46
Pantaleo (ref_32) 2010; 11
Hannart (ref_13) 2014; 131
Yuasa (ref_17) 2020; 178
ref_2
ref_29
Raninen (ref_10) 2021; 69
Tong (ref_16) 2018; 148
Ikeda (ref_21) 2016; 95
Tanaka (ref_24) 2014; 8
Lancewicki (ref_15) 2014; 62
Ledoit (ref_20) 2004; 88
Li (ref_27) 2018; 6
References_xml – volume: 178
  start-page: 104608
  year: 2020
  ident: ref_17
  article-title: Ridge-type linear shrinkage estimation of the mean matrix of a high-dimensional normal distribution
  publication-title: J. Multivar. Anal.
  doi: 10.1016/j.jmva.2020.104608
– volume: 88
  start-page: 365
  year: 2004
  ident: ref_20
  article-title: A well-conditioned estimator for large-dimensional covariance matrices
  publication-title: J. Multivar. Anal.
  doi: 10.1016/S0047-259X(03)00096-4
– ident: ref_2
  doi: 10.1109/TSP.2020.3037369
– volume: 114
  start-page: 759
  year: 2019
  ident: ref_8
  article-title: Large covariance estimation for compositional data via composition-adjusted thresholding
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.2018.1442340
– volume: 8
  start-page: 939
  year: 2014
  ident: ref_24
  article-title: Positive definite matrix approximation with condition number constraint
  publication-title: Optim. Lett.
  doi: 10.1007/s11590-013-0632-7
– volume: 55
  start-page: 1909
  year: 2011
  ident: ref_12
  article-title: Improved Stein-type shrinkage estimators for the high-dimensional multivariate normal covariance matrix
  publication-title: Comput. Stat. Data Anal.
  doi: 10.1016/j.csda.2010.12.006
– volume: 43
  start-page: 102019
  year: 2021
  ident: ref_33
  article-title: Optimal portfolio selection using a simple double-shrinkage selection rule
  publication-title: Financ. Res. Lett.
  doi: 10.1016/j.frl.2021.102019
– volume: 81
  start-page: 50
  year: 2017
  ident: ref_14
  article-title: A covariance matrix shrinkage method with Toeplitz rectified target for DOA estimation under the uniform linear array
  publication-title: Int. J. Electron. Commun. (AEÜ)
  doi: 10.1016/j.aeue.2017.06.026
– ident: ref_29
  doi: 10.1007/b98855
– volume: 62
  start-page: 6380
  year: 2014
  ident: ref_15
  article-title: Multi-target shrinkage estimation for covariance matrices
  publication-title: Trans. Signal Process.
  doi: 10.1109/TSP.2014.2364784
– volume: 148
  start-page: 223
  year: 2018
  ident: ref_16
  article-title: Linear shrinkage estimation of covariance matrices using low-complexity cross-validation
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2018.02.026
– volume: 95
  start-page: 95
  year: 2016
  ident: ref_21
  article-title: Comparison of linear shrinkage estimators of a large covariance matrix in normal and non-normal distributions
  publication-title: Comput. Stat. Data Anal.
  doi: 10.1016/j.csda.2015.09.011
– ident: ref_30
  doi: 10.1007/978-1-4419-0661-8
– volume: 6
  start-page: 2158
  year: 2018
  ident: ref_27
  article-title: Estimation of large covariance matrices by shrinking to structured target in normal and non-normal distributions
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2782208
– volume: 56
  start-page: 5353
  year: 2008
  ident: ref_19
  article-title: On the asymptotic behavior of the sample estimates of eigenvalues and eigenvectors of covariance matrices
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2008.929662
– volume: 188
  start-page: 104826
  year: 2021
  ident: ref_9
  article-title: Recent advances in shrinkage-based high-dimensional inference
  publication-title: J. Multivar. Anal.
  doi: 10.1016/j.jmva.2021.104826
– volume: 11
  start-page: 1067
  year: 2010
  ident: ref_32
  article-title: When do improved covariance matrix estimators enhance portfolio optimization? An empirical comparative study of nine estimators
  publication-title: Quant. Financ. Pap.
  doi: 10.1080/14697688.2010.534813
– volume: 58
  start-page: 5016
  year: 2010
  ident: ref_11
  article-title: Shrinkage algorithms for MMSE covariance estimation
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2010.2053029
– volume: 131
  start-page: 149
  year: 2014
  ident: ref_13
  article-title: Estimating high dimensional covariance matrices: A new look at the Gaussian conjugate framework
  publication-title: J. Multivar. Anal.
  doi: 10.1016/j.jmva.2014.06.001
– volume: 69
  start-page: 5681
  year: 2021
  ident: ref_10
  article-title: Coupled regularized sample covariance matrix estimator for multiple classes
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2021.3118546
– volume: 48
  start-page: 1255
  year: 2020
  ident: ref_4
  article-title: Limiting laws for divergent spiked eigenvalues and largest nonspiked eigenvalue of sample covariance matrices
  publication-title: Ann. Stat.
  doi: 10.1214/18-AOS1798
– volume: 35
  start-page: 251
  year: 2005
  ident: ref_26
  article-title: Some tests concerning the covariance matrix in high dimensional data
  publication-title: J. Jpn. Stat. Soc.
  doi: 10.14490/jjss.35.251
– ident: ref_25
  doi: 10.1155/S0161171200002398
– volume: 62
  start-page: 1583
  year: 2021
  ident: ref_22
  article-title: Multivariate outlier detection based on a robust Mahalanobis distance with shrinkage estimators
  publication-title: Stat. Pap.
  doi: 10.1007/s00362-019-01148-1
– volume: 48
  start-page: 3043
  year: 2020
  ident: ref_18
  article-title: Analytical nonlinear shrinkage of large-dimensional covariance matrices
  publication-title: Ann. Stat.
  doi: 10.1214/19-AOS1921
– volume: 101
  start-page: 2554
  year: 2010
  ident: ref_28
  article-title: A new test for sphericity of the covariance matrix for high dimensional data
  publication-title: J. Multivar. Anal.
  doi: 10.1016/j.jmva.2010.07.004
– volume: 19
  start-page: 1755
  year: 2009
  ident: ref_5
  article-title: Banding sample autocovariance matrices of stationary progress
  publication-title: Stat. Sin.
– volume: 46
  start-page: 1383
  year: 2018
  ident: ref_6
  article-title: Large covariance estimation through elliptical factor models
  publication-title: Ann. Stat.
  doi: 10.1214/17-AOS1588
– volume: 7
  start-page: 77
  year: 1952
  ident: ref_31
  article-title: Portfolio selection
  publication-title: J. Financ.
– volume: 186
  start-page: 104796
  year: 2021
  ident: ref_23
  article-title: Shrinkage estimation of large covariance matrices: Keep it simple, statistician?
  publication-title: J. Multivar. Anal.
  doi: 10.1016/j.jmva.2021.104796
– volume: 75
  start-page: 603
  year: 2013
  ident: ref_1
  article-title: Large covariance estimation by thresholding principal orthogonal complements
  publication-title: J. R. Stat. Soc. Ser. B (Stat. Methodol.)
  doi: 10.1111/rssb.12016
– volume: 25
  start-page: 655
  year: 2012
  ident: ref_3
  article-title: How close is the sample covariance matrix to the actual covariance matrix?
  publication-title: J. Theor. Probab.
  doi: 10.1007/s10959-010-0338-z
– volume: 40
  start-page: 2014
  year: 2012
  ident: ref_7
  article-title: Adaptive covariance matrix estimation through block thresholding
  publication-title: Ann. Stat.
  doi: 10.1214/12-AOS999
SSID ssj0023216
Score 2.3091233
Snippet This paper tackles the problem of estimating the covariance matrix in large-dimension and small-sample-size scenarios. Inspired by the well-known linear...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 53
SubjectTerms Convexity
Covariance matrix
covariance matrix estimation
Data analysis
Eigenvalues
Eigenvectors
Estimation
Estimators
Mathematical analysis
Mathematical models
Normal distribution
Optimization
Polynomials
Regularization
Stein-type regularization
unbiased estimate
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iyYsovuqLKB68BDdJN2mOPhHxAa6CJ0uSJihIV3T19zuTdsuuLHjx2swhnS_TmY9mviHkIBouKxEii0FHhhmaWUjMLPJehHTWlyKJPd_cqsvH_Oqp_zQx6gvvhDXywI3jjioutVXcRidirnzhnHK5VyEaa5wxqY8cct6YTLVUSwquGh0hCaT-KECi53jeprJPEumfVVn-viA5kXEulshiWyrS42aLy2Qu1Cvk-Rxismk3pMNIr_EiNztDif5GXoOeDr-B_iKW9CbJ74dP-v1q6QCZb8XuUGqTDnDGJUMOSu_TMPqPth1zlTxenD-cXrJ2RgLzQGxHrJLRCKsLVO7KUY0dCJo20XPlCldFr7XFKIuugE-b9pC-g9a-0tz3vAQjuUbm62EdNgjVHqpt7yqgyyrn0Rqfaw8AW5-7aL3IyOHYd6VvBcRxjsVbCUQC3Vx2bs7Ifmf63qhmzDI6QQA6AxS6Tg8A_rKFv_wL_oxsj-Er2-j7LIVWWsDnUxUZ2euWIW7wZ4itw_Ar2YCzFFRQGVlv0O52InEWKjewoqfOwdRWp1fq15ekzW2KPtRo-eZ_vNsWWRDYbMGxgWqbzI8-vsIOlEAjt5tO-w_DWAeA
  priority: 102
  providerName: Directory of Open Access Journals
Title Estimation of Large-Dimensional Covariance Matrices via Second-Order Stein-Type Regularization
URI https://www.ncbi.nlm.nih.gov/pubmed/36673194
https://www.proquest.com/docview/2767208868
https://www.proquest.com/docview/2768246074
https://pubmed.ncbi.nlm.nih.gov/PMC9857414
https://doaj.org/article/d137a61afb2f46c8bb6b4c6ef9a9b997
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELbo9sIFgcojUFYGceBitY6zfpwQLbutEC2opdKeiGzHLpVQUna3_f3MON6URRWXHOI5WDOex-fHN4S8i4aLpgyRxaAiwwzNLCRmFvl-hHQ2EWUiez45lccX1ef5ZJ433Jb5WuU6JqZA3XQe98j3SiVVCS4h9Yfr3wy7RuHpam6hsUW2IQRrPSLbB9PTb2cD5BIllz2fkABwvxcg4XNcdxtZKJH131dh_ntR8q_MM3tMHuWSkX7sbfyEPAjtDvkxBd_snx3SLtIveKGbfUKq_p5mgx52twCD0ab0JNHwhyW9vbL0HBFww74i5SY9x16XDLEoPUtN6Rf5WeZTcjGbfj88ZrlXAvMAcFesEdGUVmlk8KqQlR2AmjLRc-m0a6JXyqK3RachxCkPaTwo5RvF_b4XICSekVHbteEFocpD1e1dA7BZVjxa4yvlwdDWVy5aXxbk_Vp3tc9E4tjP4lcNgALVXA9qLsjbQfS6Z8-4T-gADTAIIOF1-tEtLuvsP3XDhbKS2-jKWEmvnZOu8jJEY40zRhVkd22-Onvhsr5bMwV5MwyD_-ChiG1Dd5NkQFkSKqmCPO-tPcxEYE9UbmBEbayDjalujrRXPxNHt9ETqNWql_-f1ivysMTnFByfSO2S0WpxE15DkbNyY7KlZ0fjvJ7HaasAvkdz_gcGkQH4
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VcoALAvEVKGAQSFysrp2sHR8QgrbLlu4WibZST6S2Y5dKKCndbRF_it_ITJINLKq49RqPImv8xjOTzLwBeBmNSEsZIo9BR04emlt0zDyKQUR3NkxlQ_Y83VXjg-zj4fBwBX4temGorHJxJzYXdVl7-ka-LrXSEk1C5W9Pv3OaGkV_VxcjNFpY7ISfPzBlm73Z3sTzfSXlaGt_Y8y7qQLcYyo452UajbQ6J66rjPjLMaXRJnqhXO7K6LW2hMvocrwMtEeHF7T2pRZ-4FMUSvG91-B6lqInp8700Yc-wUulUC17ES4O1gOGF4JQvuTzmtEAl8Wz_5Zl_uXnRrfhVhegsnctou7ASqjuwpctvAnaJkdWRzah8nG-SYMBWlIPtlFfYNJNCGLThvQ_zNjFiWV7lG-X_BMRfLI9mqzJKfNln8Mx1b92TaD34OBKdHgfVqu6Cg-BaY8xvnclJukqE9Ean2mPsLI-c9F6mcDrhe4K39GW0_SMbwWmL6TmoldzAi960dOWq-Myofd0AL0A0Ws3D-qz46Kz1qIUqbZK2OhkzJTPnVMu8ypEY40zRiewtji-orP5WfEHoQk875fRWukXjK1Cfd7IoLIUxm0JPGhPu99JShNYhcEVvYSDpa0ur1QnXxtGcJMPMTLMHv1_W8_gxnh_Oikm27s7j-GmpEYOQc1Za7A6PzsPTzC8mrunDaYZHF21Ef0GsUk5DA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKVkJcEIhXaAGDQOJi7drO2vEBIdrdVUvbpWqp1BPBduxSqUpKd1vEX-PXMZNkA4sqbr3GVmSN5_UlM98Q8joaLgsRIotBR4YRmlkIzCzyQYRwNpSiJnvem6qto_Tj8fB4hfxa9MJgWeXCJ9aOuqg8fiPvC620AJNQWT-2ZRH7o8n78-8MJ0jhn9bFOI1GRXbCzx8A32bvtkdw12-EmIw_b26xdsIA8wAL56yQ0QirM-S9SpHLHOCNNtFz5TJXRK-1RR2NLgPHoD0Ev6C1LzT3Ay9hk4T33iKrGlFRj6xujKf7Bx3ck4KrhstISjPoB0g2OOr8UgSsBwVcl93-W6T5V9Sb3CN323SVfmj06z5ZCeUD8mUMfqFpeaRVpLtYTM5GOCagofigm9UVQHDUJ7pXjwAIM3p1aukhou-CfUK6T3qIczYZ4mB6EE6wGrZtCX1Ijm5Eio9Ir6zK8IRQ7SHj964AyK5SHq3xqfagZNanLlovEvJ2IbvctyTmOEvjLAcwg2LOOzEn5FW39bxh7rhu0wZeQLcBybbrB9XFSd7abl5wqa3iNjoRU-Uz55RLvQrRWOOM0QlZX1xf3nqAWf5HXxPyslsG28UfMrYM1WW9B4SlIItLyOPmtruTSJzHyg2s6CU9WDrq8kp5-q3mBzfZEPLE9On_j_WC3AYDyne3pztr5I7Arg6OnVrrpDe_uAzPINeau-etUlPy9abt6DdR8D6e
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimation+of+Large-Dimensional+Covariance+Matrices+via+Second-Order+Stein-Type+Regularization&rft.jtitle=Entropy+%28Basel%2C+Switzerland%29&rft.au=Zhang%2C+Bin&rft.au=Huang%2C+Hengzhen&rft.au=Chen%2C+Jianbin&rft.date=2022-12-27&rft.pub=MDPI&rft.eissn=1099-4300&rft.volume=25&rft.issue=1&rft_id=info:doi/10.3390%2Fe25010053&rft.externalDocID=PMC9857414
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1099-4300&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1099-4300&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1099-4300&client=summon