A Deep Reinforcement Learning Strategy for Surrounding Vehicles-Based Lane-Keeping Control

As autonomous vehicles (AVs) are advancing to higher levels of autonomy and performance, the associated technologies are becoming increasingly diverse. Lane-keeping systems (LKS), corresponding to a key functionality of AVs, considerably enhance driver convenience. With drivers increasingly relying...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 23; no. 24; p. 9843
Main Authors Kim, Jihun, Park, Sanghoon, Kim, Jeesu, Yoo, Jinwoo
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 15.12.2023
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:As autonomous vehicles (AVs) are advancing to higher levels of autonomy and performance, the associated technologies are becoming increasingly diverse. Lane-keeping systems (LKS), corresponding to a key functionality of AVs, considerably enhance driver convenience. With drivers increasingly relying on autonomous driving technologies, the importance of safety features, such as fail-safe mechanisms in the event of sensor failures, has gained prominence. Therefore, this paper proposes a reinforcement learning (RL) control method for lane-keeping, which uses surrounding object information derived through LiDAR sensors instead of camera sensors for LKS. This approach uses surrounding vehicle and object information as observations for the RL framework to maintain the vehicle's current lane. The learning environment is established by integrating simulation tools, such as IPG CarMaker, which incorporates vehicle dynamics, and MATLAB Simulink for data analysis and RL model creation. To further validate the applicability of the LiDAR sensor data in real-world settings, Gaussian noise is introduced in the virtual simulation environment to mimic sensor noise in actual operational conditions.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1424-8220
1424-8220
DOI:10.3390/s23249843