Joint Beamforming, Power Allocation, and Splitting Control for SWIPT-Enabled IoT Networks with Deep Reinforcement Learning and Game Theory

Future wireless networks promise immense increases on data rate and energy efficiency while overcoming the difficulties of charging the wireless stations or devices in the Internet of Things (IoT) with the capability of simultaneous wireless information and power transfer (SWIPT). For such networks,...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 22; no. 6; p. 2328
Main Authors Liu, JainShing, Lin, Chun-Hung Richard, Hu, Yu-Chen, Donta, Praveen Kumar
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 17.03.2022
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Future wireless networks promise immense increases on data rate and energy efficiency while overcoming the difficulties of charging the wireless stations or devices in the Internet of Things (IoT) with the capability of simultaneous wireless information and power transfer (SWIPT). For such networks, jointly optimizing beamforming, power control, and energy harvesting to enhance the communication performance from the base stations (BSs) (or access points (APs)) to the mobile nodes (MNs) served would be a real challenge. In this work, we formulate the joint optimization as a mixed integer nonlinear programming (MINLP) problem, which can be also realized as a complex multiple resource allocation (MRA) optimization problem subject to different allocation constraints. By means of deep reinforcement learning to estimate future rewards of actions based on the reported information from the users served by the networks, we introduce single-layer MRA algorithms based on deep Q-learning (DQN) and deep deterministic policy gradient (DDPG), respectively, as the basis for the downlink wireless transmissions. Moreover, by incorporating the capability of data-driven DQN technique and the strength of noncooperative game theory model, we propose a two-layer iterative approach to resolve the NP-hard MRA problem, which can further improve the communication performance in terms of data rate, energy harvesting, and power consumption. For the two-layer approach, we also introduce a pricing strategy for BSs or APs to determine their power costs on the basis of social utility maximization to control the transmit power. Finally, with the simulated environment based on realistic wireless networks, our numerical results show that the two-layer MRA algorithm proposed can achieve up to 2.3 times higher value than the single-layer counterparts which represent the data-driven deep reinforcement learning-based algorithms extended to resolve the problem, in terms of the utilities designed to reflect the trade-off among the performance metrics considered.
AbstractList Future wireless networks promise immense increases on data rate and energy efficiency while overcoming the difficulties of charging the wireless stations or devices in the Internet of Things (IoT) with the capability of simultaneous wireless information and power transfer (SWIPT). For such networks, jointly optimizing beamforming, power control, and energy harvesting to enhance the communication performance from the base stations (BSs) (or access points (APs)) to the mobile nodes (MNs) served would be a real challenge. In this work, we formulate the joint optimization as a mixed integer nonlinear programming (MINLP) problem, which can be also realized as a complex multiple resource allocation (MRA) optimization problem subject to different allocation constraints. By means of deep reinforcement learning to estimate future rewards of actions based on the reported information from the users served by the networks, we introduce single-layer MRA algorithms based on deep Q-learning (DQN) and deep deterministic policy gradient (DDPG), respectively, as the basis for the downlink wireless transmissions. Moreover, by incorporating the capability of data-driven DQN technique and the strength of noncooperative game theory model, we propose a two-layer iterative approach to resolve the NP-hard MRA problem, which can further improve the communication performance in terms of data rate, energy harvesting, and power consumption. For the two-layer approach, we also introduce a pricing strategy for BSs or APs to determine their power costs on the basis of social utility maximization to control the transmit power. Finally, with the simulated environment based on realistic wireless networks, our numerical results show that the two-layer MRA algorithm proposed can achieve up to 2.3 times higher value than the single-layer counterparts which represent the data-driven deep reinforcement learning-based algorithms extended to resolve the problem, in terms of the utilities designed to reflect the trade-off among the performance metrics considered.
Future wireless networks promise immense increases on data rate and energy efficiency while overcoming the difficulties of charging the wireless stations or devices in the Internet of Things (IoT) with the capability of simultaneous wireless information and power transfer (SWIPT). For such networks, jointly optimizing beamforming, power control, and energy harvesting to enhance the communication performance from the base stations (BSs) (or access points (APs)) to the mobile nodes (MNs) served would be a real challenge. In this work, we formulate the joint optimization as a mixed integer nonlinear programming (MINLP) problem, which can be also realized as a complex multiple resource allocation (MRA) optimization problem subject to different allocation constraints. By means of deep reinforcement learning to estimate future rewards of actions based on the reported information from the users served by the networks, we introduce single-layer MRA algorithms based on deep Q-learning (DQN) and deep deterministic policy gradient (DDPG), respectively, as the basis for the downlink wireless transmissions. Moreover, by incorporating the capability of data-driven DQN technique and the strength of noncooperative game theory model, we propose a two-layer iterative approach to resolve the NP-hard MRA problem, which can further improve the communication performance in terms of data rate, energy harvesting, and power consumption. For the two-layer approach, we also introduce a pricing strategy for BSs or APs to determine their power costs on the basis of social utility maximization to control the transmit power. Finally, with the simulated environment based on realistic wireless networks, our numerical results show that the two-layer MRA algorithm proposed can achieve up to 2.3 times higher value than the single-layer counterparts which represent the data-driven deep reinforcement learning-based algorithms extended to resolve the problem, in terms of the utilities designed to reflect the trade-off among the performance metrics considered.Future wireless networks promise immense increases on data rate and energy efficiency while overcoming the difficulties of charging the wireless stations or devices in the Internet of Things (IoT) with the capability of simultaneous wireless information and power transfer (SWIPT). For such networks, jointly optimizing beamforming, power control, and energy harvesting to enhance the communication performance from the base stations (BSs) (or access points (APs)) to the mobile nodes (MNs) served would be a real challenge. In this work, we formulate the joint optimization as a mixed integer nonlinear programming (MINLP) problem, which can be also realized as a complex multiple resource allocation (MRA) optimization problem subject to different allocation constraints. By means of deep reinforcement learning to estimate future rewards of actions based on the reported information from the users served by the networks, we introduce single-layer MRA algorithms based on deep Q-learning (DQN) and deep deterministic policy gradient (DDPG), respectively, as the basis for the downlink wireless transmissions. Moreover, by incorporating the capability of data-driven DQN technique and the strength of noncooperative game theory model, we propose a two-layer iterative approach to resolve the NP-hard MRA problem, which can further improve the communication performance in terms of data rate, energy harvesting, and power consumption. For the two-layer approach, we also introduce a pricing strategy for BSs or APs to determine their power costs on the basis of social utility maximization to control the transmit power. Finally, with the simulated environment based on realistic wireless networks, our numerical results show that the two-layer MRA algorithm proposed can achieve up to 2.3 times higher value than the single-layer counterparts which represent the data-driven deep reinforcement learning-based algorithms extended to resolve the problem, in terms of the utilities designed to reflect the trade-off among the performance metrics considered.
Author Donta, Praveen Kumar
Hu, Yu-Chen
Lin, Chun-Hung Richard
Liu, JainShing
AuthorAffiliation 4 Research Unit of Distributed Systems, TU Wien, 1040 Vienna, Austria; pdonta@dsg.tuwien.ac.at
1 Department of Computer Science and Information Engineering, Providence University, Taichung 43301, Taiwan; chhliu@pu.edu.tw
2 Department of Computer Science and Engineering, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
3 Department of Computer Science and Information Management, Providence University, Taichung 43301, Taiwan; ychu@pu.edu.tw
AuthorAffiliation_xml – name: 1 Department of Computer Science and Information Engineering, Providence University, Taichung 43301, Taiwan; chhliu@pu.edu.tw
– name: 4 Research Unit of Distributed Systems, TU Wien, 1040 Vienna, Austria; pdonta@dsg.tuwien.ac.at
– name: 2 Department of Computer Science and Engineering, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
– name: 3 Department of Computer Science and Information Management, Providence University, Taichung 43301, Taiwan; ychu@pu.edu.tw
Author_xml – sequence: 1
  givenname: JainShing
  orcidid: 0000-0001-5603-5200
  surname: Liu
  fullname: Liu, JainShing
– sequence: 2
  givenname: Chun-Hung Richard
  orcidid: 0000-0003-0840-394X
  surname: Lin
  fullname: Lin, Chun-Hung Richard
– sequence: 3
  givenname: Yu-Chen
  orcidid: 0000-0002-5055-3645
  surname: Hu
  fullname: Hu, Yu-Chen
– sequence: 4
  givenname: Praveen Kumar
  orcidid: 0000-0002-8233-6071
  surname: Donta
  fullname: Donta, Praveen Kumar
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35336499$$D View this record in MEDLINE/PubMed
BookMark eNplks1uEzEQgFeoiP7AgRdAlriA1FD_x3tBKqGUoAgqGsTR8tqzicOuHbwbor4CT423aau2nGzZ33wz9sxhsRdigKJ4SfA7xkp80lGKJWVUPSkOCKd8pPLB3r39fnHYdSuMKWNMPSv2mWBM8rI8KP5-iT706AOYto6p9WFxjC7iFhI6bZpoTe9jOEYmOHS5bnzfZwBNYuhTbFAOQJc_pxfz0VkwVQMOTeMcfYV-G9OvDm19v0QfAdboO_iQYQst5FwzMCkMnsF6blpA8yXEdPW8eFqbpoMXN-tR8ePT2XzyeTT7dj6dnM5GlsuyH1nKuZAUG-MIJo6Pq5oYYseyrIl0pQAhBDXK0ko4cHKsytoIACahxiWuKnZUTHdeF81Kr5NvTbrS0Xh9fRDTQpvUe9uAdgoEEFXbuhqS00opYU1NpZQKU1dm1_uda72pWnA2vy-Z5oH04U3wS72If7QqhVCcZMGbG0GKvzfQ9br1nYWmMQHiptNUco7JWHGW0deP0FXcpJC_aqCoZJjzoaJX9yu6K-W25Rk42QE2xa5LUGvr--s-5wJ9ownWw1Dpu6HKEW8fRdxK_2f_AUbvzFU
CitedBy_id crossref_primary_10_1007_s11277_023_10307_5
crossref_primary_10_1007_s11036_024_02358_0
crossref_primary_10_1145_3678011
crossref_primary_10_1109_ACCESS_2023_3282729
crossref_primary_10_1109_ACCESS_2024_3352749
crossref_primary_10_1016_j_cosrev_2023_100549
crossref_primary_10_1155_2022_5046074
crossref_primary_10_1016_j_comcom_2022_09_013
crossref_primary_10_1109_TCE_2023_3279138
crossref_primary_10_3390_systems11060308
crossref_primary_10_1109_ACCESS_2024_3525263
crossref_primary_10_3390_s23115117
crossref_primary_10_1007_s11276_022_03067_w
crossref_primary_10_1109_JSAC_2023_3240713
crossref_primary_10_1109_JSEN_2024_3470798
crossref_primary_10_1109_ACCESS_2023_3266443
Cites_doi 10.1109/JSTSP.2007.914876
10.1109/ACSSC.2014.7094443
10.3390/s21144798
10.1109/TCOMM.2013.071013.120787
10.1109/TVT.2015.2472995
10.1109/TCOMM.2019.2936813
10.1109/TCOMM.2019.2961332
10.1109/TVT.2014.2374237
10.1109/WCNC.2017.7925545
10.1109/TVT.2011.2176356
10.1109/MCOM.2018.1701031
10.1109/TWC.2019.2900890
10.1109/TMC.2012.178
10.1049/iet-com.2015.0153
10.1109/TWC.2017.2769644
10.1109/ICC.2017.7997440
10.1109/ACCESS.2018.2831240
10.1109/COMST.2017.2783901
10.1109/COMSNETS.2017.7945411
10.1109/COMST.2015.2499783
10.1109/VTCFall.2019.8891448
10.1109/TVT.2013.2280617
10.1109/TWC.2020.3001736
10.1109/VTCFall.2018.8690757
10.1109/TVT.2016.2525821
10.1109/GLOBECOM42002.2020.9348125
10.1109/JIOT.2019.2941897
10.1109/ACCESS.2016.2597169
10.1109/ACCESS.2019.2930115
10.1109/ACCESS.2018.2850226
10.1109/ACCESS.2018.2810216
10.1038/nature14236
10.3390/s21237857
10.1109/WCNC.2016.7565103
10.1109/GLOCOM.2017.8254131
10.1109/MCOM.2014.6736746
10.1109/VTCSpring.2016.7504311
10.1109/ACCESS.2017.2657221
10.1109/JSTSP.2014.2334278
10.1109/JSAC.2021.3118397
10.1109/TVT.2015.2436334
10.1109/TWC.2021.3107866
10.1109/ACCESS.2016.2645704
10.1109/JIOT.2018.2825334
10.1109/TAP.2012.2235056
10.1109/LWC.2014.2315039
10.1038/s41598-021-94691-7
10.1109/JSTSP.2016.2523924
10.1109/TWC.2017.2786255
10.1109/TVT.2017.2661698
10.3390/s21041101
10.1109/JIOT.2019.2921159
10.1109/GLOCOMW.2016.7849073
10.1109/TVT.2017.2673245
10.1145/1868447.1868464
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
7X8
5PM
DOA
DOI 10.3390/s22062328
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database
MEDLINE - Academic

CrossRef
PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_d8e5e18fcfbc4692b885caf2666802d9
PMC8955841
35336499
10_3390_s22062328
Genre Journal Article
GrantInformation_xml – fundername: Ministry of Science and Technology, Republic of China
  grantid: MOST 110-2221-E-126-001
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
ABJCF
ARAPS
HCIFZ
KB.
M7S
NPM
PDBOC
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c469t-c2445620aad101d47bf1a1c769f16d95e5552a8c2b5ded6789fa5ee36ef090bb3
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 01:32:05 EDT 2025
Thu Aug 21 18:19:52 EDT 2025
Fri Jul 11 07:56:51 EDT 2025
Fri Jul 25 20:20:57 EDT 2025
Wed Feb 19 02:26:48 EST 2025
Thu Apr 24 23:00:26 EDT 2025
Tue Jul 01 02:41:48 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords joint optimization
multi-resource allocation
game theory
energy harvesting
power control
deep reinforcement learning
beamforming
IoT
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c469t-c2445620aad101d47bf1a1c769f16d95e5552a8c2b5ded6789fa5ee36ef090bb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8233-6071
0000-0002-5055-3645
0000-0001-5603-5200
0000-0003-0840-394X
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s22062328
PMID 35336499
PQID 2642630449
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_d8e5e18fcfbc4692b885caf2666802d9
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8955841
proquest_miscellaneous_2644017843
proquest_journals_2642630449
pubmed_primary_35336499
crossref_citationtrail_10_3390_s22062328
crossref_primary_10_3390_s22062328
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220317
PublicationDateYYYYMMDD 2022-03-17
PublicationDate_xml – month: 3
  year: 2022
  text: 20220317
  day: 17
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Xu (ref_44) 2019; 6
Wei (ref_41) 2017; 17
ref_56
Chang (ref_59) 2016; 65
ref_11
ref_10
ref_54
Li (ref_62) 2018; 6
Choi (ref_30) 2014; 3
Rappaport (ref_55) 2013; 61
ref_17
Alkhateeb (ref_52) 2014; 8
ref_16
Liu (ref_6) 2017; 5
ref_61
Luo (ref_8) 2008; 2
ref_60
Omidkar (ref_46) 2022; 7
ref_23
ref_66
ref_64
ref_63
ref_29
Chen (ref_19) 2012; 12
Alkhateeb (ref_65) 2018; 6
Zhang (ref_22) 2016; 15
Lu (ref_43) 2021; 21
Mismar (ref_51) 2019; 68
ref_36
Liang (ref_42) 2011; 61
Heath (ref_53) 2016; 10
ref_33
Chae (ref_4) 2018; 5
ref_31
Le (ref_15) 2019; 67
Nguyen (ref_28) 2019; 7
Zhang (ref_18) 2017; 17
Xu (ref_20) 2013; 63
Zhang (ref_1) 2016; 4
Saeed (ref_12) 2016; 10
Liu (ref_14) 2018; 6
ref_38
Lu (ref_57) 2015; 18
Song (ref_35) 2017; 5
Kim (ref_34) 2019; 18
Mnih (ref_26) 2015; 518
Calabrese (ref_39) 2018; 56
ref_47
Jiang (ref_25) 2016; 65
ref_40
Ng (ref_58) 2016; 65
ref_3
ref_2
Feng (ref_24) 2013; 61
Qiu (ref_32) 2019; 6
Zhang (ref_45) 2021; 40
ref_49
ref_48
Simsek (ref_37) 2014; 64
Boccardi (ref_9) 2014; 52
Coskun (ref_13) 2017; 66
Perera (ref_50) 2017; 20
Jiang (ref_21) 2017; 66
Meng (ref_27) 2020; 19
ref_5
ref_7
References_xml – ident: ref_49
– volume: 2
  start-page: 57
  year: 2008
  ident: ref_8
  article-title: Dynamic Spectrum Management: Complexity and Duality
  publication-title: IEEE J. Sel. Top. Signal Process.
  doi: 10.1109/JSTSP.2007.914876
– ident: ref_54
  doi: 10.1109/ACSSC.2014.7094443
– ident: ref_3
  doi: 10.3390/s21144798
– volume: 61
  start-page: 3541
  year: 2013
  ident: ref_24
  article-title: Device-to-device communications underlaying cellular networks
  publication-title: IEEE Trans. Commun.
  doi: 10.1109/TCOMM.2013.071013.120787
– volume: 65
  start-page: 6119
  year: 2016
  ident: ref_25
  article-title: Energy-Efficient Joint Resource Allocation and Power Control for D2D Communications
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2015.2472995
– volume: 67
  start-page: 7043
  year: 2019
  ident: ref_15
  article-title: Energy-Efficient Resource Allocation for OFDMA Heterogeneous Networks
  publication-title: IEEE Trans. Commun.
  doi: 10.1109/TCOMM.2019.2936813
– volume: 68
  start-page: 1581
  year: 2019
  ident: ref_51
  article-title: Deep Reinforcement Learning for 5G Networks: Joint Beamforming, Power Control, and Interference Coordination
  publication-title: IEEE Trans. Commun.
  doi: 10.1109/TCOMM.2019.2961332
– volume: 64
  start-page: 4589
  year: 2014
  ident: ref_37
  article-title: Learning Based Frequency- and Time-Domain Inter-Cell Interference Coordination in HetNets
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2014.2374237
– ident: ref_10
  doi: 10.1109/WCNC.2017.7925545
– volume: 61
  start-page: 321
  year: 2011
  ident: ref_42
  article-title: A Game-Theoretic Framework for Interference Coordination in OFDMA Relay Networks
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2011.2176356
– volume: 56
  start-page: 138
  year: 2018
  ident: ref_39
  article-title: Learning Radio Resource Management in RANs: Framework, Opportunities, and Challenges
  publication-title: IEEE Commun. Mag.
  doi: 10.1109/MCOM.2018.1701031
– volume: 18
  start-page: 2200
  year: 2019
  ident: ref_34
  article-title: Online Learning-Based Downlink Transmission Coordination in Ultra-Dense Millimeter Wave Heterogeneous Networks
  publication-title: IEEE Trans. Wirel. Commun.
  doi: 10.1109/TWC.2019.2900890
– volume: 12
  start-page: 2155
  year: 2012
  ident: ref_19
  article-title: Stochastic Power Adaptation with Multiagent Reinforcement Learning for Cognitive Wireless Mesh Networks
  publication-title: IEEE Trans. Mob. Comput.
  doi: 10.1109/TMC.2012.178
– volume: 10
  start-page: 641
  year: 2016
  ident: ref_12
  article-title: Dynamic femtocell resource allocation for managing inter-tier interference in downlink of heterogeneous networks
  publication-title: IET Commun.
  doi: 10.1049/iet-com.2015.0153
– volume: 17
  start-page: 680
  year: 2017
  ident: ref_41
  article-title: User Scheduling and Resource Allocation in HetNets With Hybrid Energy Supply: An Actor-Critic Reinforcement Learning Approach
  publication-title: IEEE Trans. Wirel. Commun.
  doi: 10.1109/TWC.2017.2769644
– ident: ref_61
– ident: ref_38
  doi: 10.1109/ICC.2017.7997440
– ident: ref_23
– volume: 6
  start-page: 25463
  year: 2018
  ident: ref_62
  article-title: Intelligent Power Control for Spectrum Sharing in Cognitive Radios: A Deep Reinforcement Learning Approach
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2831240
– volume: 20
  start-page: 264
  year: 2017
  ident: ref_50
  article-title: Simultaneous Wireless Information and Power Transfer (SWIPT): Recent Advances and Future Challenges
  publication-title: IEEE Commun. Surv. Tutor.
  doi: 10.1109/COMST.2017.2783901
– ident: ref_56
– ident: ref_48
– ident: ref_40
  doi: 10.1109/COMSNETS.2017.7945411
– volume: 18
  start-page: 1413
  year: 2015
  ident: ref_57
  article-title: Wireless charging technologies: Fundamentals, standards, and network applications
  publication-title: IEEE Commun. Surv. Tutor.
  doi: 10.1109/COMST.2015.2499783
– ident: ref_31
  doi: 10.1109/VTCFall.2019.8891448
– volume: 7
  start-page: 4387
  year: 2022
  ident: ref_46
  article-title: Reinforcement Learning Based Resource Allocation for Energy-Harvesting-Aided D2D Communications in IoT Networks
  publication-title: IEEE Internet Things J.
– ident: ref_66
– volume: 63
  start-page: 2336
  year: 2013
  ident: ref_20
  article-title: Pricing-Based Multiresource Allocation in OFDMA Cognitive Radio Networks: An Energy Efficiency Perspective
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2013.2280617
– volume: 19
  start-page: 6255
  year: 2020
  ident: ref_27
  article-title: Power Allocation in Multi-User Cellular Networks: Deep Reinforcement Learning Approaches
  publication-title: IEEE Trans. Wirel. Commun.
  doi: 10.1109/TWC.2020.3001736
– ident: ref_29
  doi: 10.1109/VTCFall.2018.8690757
– volume: 65
  start-page: 9834
  year: 2016
  ident: ref_59
  article-title: Energy-Efficient Resource Allocation and User Scheduling for Collaborative Mobile Clouds With Hybrid Receivers
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2016.2525821
– ident: ref_2
  doi: 10.1109/GLOBECOM42002.2020.9348125
– volume: 6
  start-page: 10799
  year: 2019
  ident: ref_44
  article-title: Robust Resource Allocation and Power Splitting in SWIPT Enabled Heterogeneous Networks: A Robust Minimax Approach
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2019.2941897
– volume: 4
  start-page: 5896
  year: 2016
  ident: ref_1
  article-title: Energy-Efficient Offloading for Mobile Edge Computing in 5G Heterogeneous Networks
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2016.2597169
– volume: 7
  start-page: 100480
  year: 2019
  ident: ref_28
  article-title: Non-Cooperative Energy Efficient Power Allocation Game in D2D Communication: A Multi-Agent Deep Reinforcement Learning Approach
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2930115
– volume: 6
  start-page: 37328
  year: 2018
  ident: ref_65
  article-title: Deep Learning Coordinated Beamforming for Highly-Mobile Millimeter Wave Systems
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2850226
– volume: 6
  start-page: 14591
  year: 2018
  ident: ref_14
  article-title: Energy-Efficient Resource Allocation for Heterogeneous Wireless Network With Multi-Homed User Equipments
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2810216
– volume: 518
  start-page: 529
  year: 2015
  ident: ref_26
  article-title: Human-level control through deep reinforcement learning
  publication-title: Nature
  doi: 10.1038/nature14236
– ident: ref_5
  doi: 10.3390/s21237857
– ident: ref_16
  doi: 10.1109/WCNC.2016.7565103
– ident: ref_36
  doi: 10.1109/GLOCOM.2017.8254131
– ident: ref_63
– volume: 52
  start-page: 74
  year: 2014
  ident: ref_9
  article-title: Five disruptive technology directions for 5G
  publication-title: IEEE Commun. Mag.
  doi: 10.1109/MCOM.2014.6736746
– ident: ref_17
  doi: 10.1109/VTCSpring.2016.7504311
– volume: 5
  start-page: 2152
  year: 2017
  ident: ref_35
  article-title: An Interference Coordination-Based Distributed Resource Allocation Scheme in Heterogeneous Cellular Networks
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2657221
– volume: 8
  start-page: 831
  year: 2014
  ident: ref_52
  article-title: Channel Estimation and Hybrid Precoding for Millimeter Wave Cellular Systems
  publication-title: IEEE J. Sel. Top. Signal Process.
  doi: 10.1109/JSTSP.2014.2334278
– volume: 40
  start-page: 677
  year: 2021
  ident: ref_45
  article-title: Joint Coordinated Beamforming and Power Splitting Ratio Optimization in MU-MISO SWIPT-Enabled HetNets: A Multi-Agent DDQN-Based Approach
  publication-title: IEEE J. Sel. Areas Commun.
  doi: 10.1109/JSAC.2021.3118397
– volume: 65
  start-page: 3166
  year: 2016
  ident: ref_58
  article-title: Multiobjective Resource Allocation for Secure Communication in Cognitive Radio Networks With Wireless Information and Power Transfer
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2015.2436334
– volume: 21
  start-page: 1870
  year: 2021
  ident: ref_43
  article-title: Worst-Case Energy Efficiency in Secure SWIPT Networks with Rate-Splitting ID and Power-Splitting EH Receivers
  publication-title: IEEE Trans. Wirel. Commun.
  doi: 10.1109/TWC.2021.3107866
– volume: 5
  start-page: 544
  year: 2017
  ident: ref_6
  article-title: Delay and energy trade-off in energy harvesting multi-hop wireless networks with inter-session network coding and successive interference cancellation
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2016.2645704
– volume: 5
  start-page: 2829
  year: 2018
  ident: ref_4
  article-title: Simultaneous Wireless Information and Power Transfer for Internet of Things Sensor Networks
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2018.2825334
– ident: ref_33
– volume: 61
  start-page: 1850
  year: 2013
  ident: ref_55
  article-title: Broadband Millimeter-Wave Propagation Measurements and Models Using Adaptive-Beam Antennas for Outdoor Urban Cellular Communications
  publication-title: IEEE Trans. Antennas Propag.
  doi: 10.1109/TAP.2012.2235056
– volume: 15
  start-page: 1
  year: 2016
  ident: ref_22
  article-title: Radio Resource Allocation for Device-to-Device Underlay Communication Using Hypergraph Theory
  publication-title: IEEE Trans. Wirel. Commun.
– volume: 3
  start-page: 329
  year: 2014
  ident: ref_30
  article-title: Massive MIMO With Joint Power Control
  publication-title: IEEE Wirel. Commun. Lett.
  doi: 10.1109/LWC.2014.2315039
– ident: ref_47
  doi: 10.1038/s41598-021-94691-7
– volume: 10
  start-page: 436
  year: 2016
  ident: ref_53
  article-title: An Overview of Signal Processing Techniques for Millimeter Wave MIMO Systems
  publication-title: IEEE J. Sel. Top. Signal Process.
  doi: 10.1109/JSTSP.2016.2523924
– volume: 17
  start-page: 1882
  year: 2017
  ident: ref_18
  article-title: Incomplete CSI Based Resource Optimization in SWIPT Enabled Heterogeneous Networks: A Non-Cooperative Game Theoretic Approach
  publication-title: IEEE Trans. Wirel. Commun.
  doi: 10.1109/TWC.2017.2786255
– volume: 66
  start-page: 6942
  year: 2017
  ident: ref_13
  article-title: Three-Stage Resource Allocation Algorithm for Energy-Efficient Heterogeneous Networks
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2017.2661698
– ident: ref_7
  doi: 10.3390/s21041101
– volume: 6
  start-page: 8577
  year: 2019
  ident: ref_32
  article-title: Deep Deterministic Policy Gradient (DDPG)-Based Energy Harvesting Wireless Communications
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2019.2921159
– ident: ref_64
– ident: ref_11
  doi: 10.1109/GLOCOMW.2016.7849073
– volume: 66
  start-page: 7540
  year: 2017
  ident: ref_21
  article-title: Energy-Efficient Noncooperative Power Control in Small-Cell Networks
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2017.2673245
– ident: ref_60
  doi: 10.1145/1868447.1868464
SSID ssj0023338
Score 2.452235
Snippet Future wireless networks promise immense increases on data rate and energy efficiency while overcoming the difficulties of charging the wireless stations or...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 2328
SubjectTerms Algorithms
beamforming
Business metrics
Communication
Convex analysis
Deep learning
deep reinforcement learning
Energy consumption
Game theory
Internet of Things
joint optimization
Methods
multi-resource allocation
Optimization
power control
Wireless networks
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYQp3Ko-qBtWlq5qIceiEj8SOwjUCggFaGyqNwiP8YUCbKou_yJ_uqO7Wy0WyH10mvsWI5nrO8bZ_wNIZ8kt6YSrS2dA1-KmJRjlQ9lBTwEhCxdJ7Hqb2fN8aU4vZJXS6W-Yk5YlgfOC7frFUioVXDBOgzlmFVKOhMQVxpVMZ-u7iHmLYKpIdTiGHllHSGOQf3ujLEKcT6WXF9CnyTS_xiz_DtBcglxjp6RpwNVpHt5is_JGvQvyMaSgOBL8vt0etPP6T6Yu0g-8dkOPY91z-jebUSpuOo71PSeXiDZTCnO9CAnp1N8gV78ODmflIfp_pSnJ9MJPctp4TMaD2jpF4B7-h2SuqpLB4l0EGS9TqN-NXdA8_X-TXJ5dDg5OC6H6gplXMd56RDYkfxUxnjclh7tFWpTu7bRoW68liClZEY5ZqUHj5img5EAvIFQ6cpa_oqs99Me3hAqWhGCMFrjEMIA08JJG7RhXDdMtLognxer3rlBejxWwLjtMASJBupGAxVke-x6n_U2Huu0H003dogS2ekBOk43OE73L8cpyNbC8N2wb2cd0kPW8EoIbP44NuOOi79RTA_Th9QHg9JWCV6Q19lPxplwZM8NBpEFaVc8aGWqqy39zc-k6q20RDJYv_0f3_aOPGHxmkbMO2y3yPr81wO8R_I0tx_SPvkDuZ8axg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwELZaemkPqPQZHpVb9dADEYljJ_apAsrykIpQWVRukR9jigTJwi5_or-6Yyeb7laoV9uxHI_H34w9_oaQz6IwOuOVSa0Fl_IQlGOk82kGhfcIWSqPZNXfT8ujC35yKS77A7dpH1Y53xPjRu1aG87IdxC4WYm-N1dfJ3dpyBoVblf7FBpPybMckSaEdMnR4eBwFeh_dWxCBbr2O1PGMkT7kHh9AYMiVf9j9uW_YZILuDN6SVZ7g5HudhJeI0-geUVeLNAIvia_T9rrZkb3QN8GExTLtulZyH5Gd28CVoW536a6cfQcTc4Y6Ez3uxB1ih_Q85_HZ-P0IL6icvS4HdPTLjh8SsMxLf0GMKE_IHKs2nicSHta1qvY66G-Bdo98n9DLkYH4_2jtM-xkFp0jGepRXhHEyjT2qFyOpSaz3Vuq1L5vHRKgBCCaWmZEQ4cIpvyWgAUJfhMZcYUb8lK0zbwnlBece-5Vgq74BqY4lYYrzQrVMl4pRLyZT7rte0JyEMejJsaHZEgoHoQUEI-DU0nHevGY432guiGBoEoOxa091d1r3e1kyAgl956E36YGSmF1R4XSykz5nBQm3PB1732Tuu_ay0hH4dq1LtwmaIbaB9iG3RNK8mLhLzr1skwkgJt6BJdyYRUSytoaajLNc31r8jtLZVAkzBf__-wNshzFp5hhLjCapOszO4fYAuNo5n5EDXgD5zNEZw
  priority: 102
  providerName: ProQuest
Title Joint Beamforming, Power Allocation, and Splitting Control for SWIPT-Enabled IoT Networks with Deep Reinforcement Learning and Game Theory
URI https://www.ncbi.nlm.nih.gov/pubmed/35336499
https://www.proquest.com/docview/2642630449
https://www.proquest.com/docview/2644017843
https://pubmed.ncbi.nlm.nih.gov/PMC8955841
https://doaj.org/article/d8e5e18fcfbc4692b885caf2666802d9
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JbtswECWyXNpD0b1uUoMteughaiWKlMhDUcSpnQWIYSQ26pvANQ3gSIntAO0v9Ks7pGQhLnzoRQeRkigNB-8NNXyD0EeWKhnTXEVaWxNRn5SjuHFRbFPnALJEEsSqz4fZyYSeTdl0C61qbDYfcLExtPP1pCbz2edfd7-_gcN_9REnhOxfFoTEgOKEb6NdAKTcFzI4p-3PBJKmoaC139MVAR7GtcDQ-qVrsBTU-zdRzn8zJx9A0eApetJwSHxYG_0Z2rLlc_T4gbLgC_TnrLoul7hn5Y1npXDuAI98QTR8OPPw5c1xgGVp8CWw0JD7jI_qrHUMF-DLH6ejcdQPG6sMPq3GeFjniy-wX7nF3629xRc2yK7qsMKIG6XWq3DXY3ljcb3v_yWaDPrjo5OoKbsQaYiVl5EGxAdWFEtpwF8NGNIlMtF5JlySGcEsY4xIrolixhoAO-EkszbNrItFrFT6Cu2UVWnfIExz6hyVQsAtqLREUM2UE5KkIiM0Fx30afXVC91okvvSGLMCYhNvoKI1UAd9aLve1kIcmzr1vOnaDl47O5yo5ldF44qF4ZbZhDvtlH9hojhnWjpgKhmPiYFB7a8MX6zmYwG8kWRpTCk0v2-bwRX9_xVZ2uo-9IFoNec07aDX9TxpR5ICrc4guuygfG0GrQ11vaW8_hnkvrlgwBKTt__x3D30iPjtGT7fMN9HO8v5vX0HpGmpumg7n-Zw5IPjLtrt9Yeji25YgOgGZ_kLvYIbPQ
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQAHxJuUAgaBxKFRE8dO4gNCfW13-1hVdKv2FvxsK7XJ0t0K8Rf4MfxGxs6DXVRx6zV2rElm7PnGHn-D0AeWSBHRTIZKGR1Sl5Qjc23DyCTWgsvisSer3h-m_SO6c8JOFtDv9i6MS6ts10S_UOtKuT3yVXDcJIXYm_Iv4--hqxrlTlfbEhq1Weyanz8gZJt8HmyCfj8S0tsabfTDpqpAqCAUnIYKHBo4_UgIDeaoQU4bi1hlKbdxqjkzjDEickUk00bDWs6tYMYkqbERj6RMYNw76C5NwJO7m-m97S7ASyDeq9mLoDFanRASAbpwhd5nfJ4vDXATnv03LXPGz_UeoYcNQMVrtUU9RgumfIIezNAWPkW_dqrzcorXjbh0kBeereADV20Nr1043-h0vYJFqfEhQFyfWI036pR4DC_gw-PBwSjc8re2NB5UIzysk9En2G0L401jxvir8Zyuym9f4oYG9tSPui0uDa5JBZ6ho1v5-8_RYlmV5iXCNKPWUsE5DEGFIZwqJi0XJOEpoRkP0Kf2rxeqITx3dTcuCgh8nIKKTkEBet91HdcsHzd1Wneq6zo4Ym7_oLo6LZp5XujcMBPnVlnpPpjIPGdKWIBBaR4RDUItt4ovmtViUvy17QC965phnrvDG1Ga6tr3gVA4y2kSoBe1nXSSJIDZUwhdA5TNWdCcqPMt5fmZ5xLPOQMIGi_9X6y36F5_tL9X7A2Gu6_QfeKugLicxmwZLU6vrs1rAGZT-cbPBoy-3fb0-wN8gU8O
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGJyF4QHwTGMMgkHhY1MSxk_gBoXVtWTeoqq0TewuOP8akLSlrJ8S_wJ_EX7ez80GLJt72mjjWJXfn-51z_h1Cb1mUi4AmuS-lVj61RTl5qowf6MgYCFk8dGTVX8bx7hHdO2bHa-hPcxbGllU2a6JbqFUp7R55FwI3iSH3prxr6rKISX_4cfbDtx2k7J_Wpp1GZSL7-tdPSN_mH0Z90PU7QoaD6c6uX3cY8CWkhQtfQnADABAIocA0FchsQhHKJOYmjBVnmjFGRCpJzpRWsK5zI5jWUaxNwIM8j2DeW2g9sVlRB633BuPJQZvuRZD9VVxGUcSD7pyQALCGbfu-FAFdo4Dr0O2_RZpLUW94H92r4SreruzrAVrTxUN0d4nE8BH6vVeeFgvc0-LcAmC4toUntvca3j6zkdJqfguLQuFDALyuzBrvVAXyGB7Ah19Hk6k_cGe4FB6VUzyuStPn2G4S477WM3ygHcOrdJuZuCaFPXGzfhLnGlcUA4_R0Y18_yeoU5SFfoYwTagxVHAOU1ChCaeS5YYLEvGY0IR76H3z1TNZ05_bLhxnGaRBVkFZqyAPvWmHzirOj-sG9azq2gGWpttdKC9OstrrM5VqpsPUSJPbFyZ5mjIpDICiOA2IAqE2GsVn9doxz_5auodet7fB6-2vHFHo8tKNgcQ4SWnkoaeVnbSSRIDgY0hkPZSsWNCKqKt3itPvjlk85QwAafj8_2K9QrfB9bLPo_H-C3SH2PMgtsAx2UCdxcWlfgkobZFv1u6A0beb9sAravBUoA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Joint+Beamforming%2C+Power+Allocation%2C+and+Splitting+Control+for+SWIPT-Enabled+IoT+Networks+with+Deep+Reinforcement+Learning+and+Game+Theory&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Liu%2C+JainShing&rft.au=Lin%2C+Chun-Hung+Richard&rft.au=Hu%2C+Yu-Chen&rft.au=Donta%2C+Praveen+Kumar&rft.date=2022-03-17&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=22&rft.issue=6&rft_id=info:doi/10.3390%2Fs22062328&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon