Joint Beamforming, Power Allocation, and Splitting Control for SWIPT-Enabled IoT Networks with Deep Reinforcement Learning and Game Theory
Future wireless networks promise immense increases on data rate and energy efficiency while overcoming the difficulties of charging the wireless stations or devices in the Internet of Things (IoT) with the capability of simultaneous wireless information and power transfer (SWIPT). For such networks,...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 22; no. 6; p. 2328 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
17.03.2022
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Future wireless networks promise immense increases on data rate and energy efficiency while overcoming the difficulties of charging the wireless stations or devices in the Internet of Things (IoT) with the capability of simultaneous wireless information and power transfer (SWIPT). For such networks, jointly optimizing beamforming, power control, and energy harvesting to enhance the communication performance from the base stations (BSs) (or access points (APs)) to the mobile nodes (MNs) served would be a real challenge. In this work, we formulate the joint optimization as a mixed integer nonlinear programming (MINLP) problem, which can be also realized as a complex multiple resource allocation (MRA) optimization problem subject to different allocation constraints. By means of deep reinforcement learning to estimate future rewards of actions based on the reported information from the users served by the networks, we introduce single-layer MRA algorithms based on deep Q-learning (DQN) and deep deterministic policy gradient (DDPG), respectively, as the basis for the downlink wireless transmissions. Moreover, by incorporating the capability of data-driven DQN technique and the strength of noncooperative game theory model, we propose a two-layer iterative approach to resolve the NP-hard MRA problem, which can further improve the communication performance in terms of data rate, energy harvesting, and power consumption. For the two-layer approach, we also introduce a pricing strategy for BSs or APs to determine their power costs on the basis of social utility maximization to control the transmit power. Finally, with the simulated environment based on realistic wireless networks, our numerical results show that the two-layer MRA algorithm proposed can achieve up to 2.3 times higher value than the single-layer counterparts which represent the data-driven deep reinforcement learning-based algorithms extended to resolve the problem, in terms of the utilities designed to reflect the trade-off among the performance metrics considered. |
---|---|
AbstractList | Future wireless networks promise immense increases on data rate and energy efficiency while overcoming the difficulties of charging the wireless stations or devices in the Internet of Things (IoT) with the capability of simultaneous wireless information and power transfer (SWIPT). For such networks, jointly optimizing beamforming, power control, and energy harvesting to enhance the communication performance from the base stations (BSs) (or access points (APs)) to the mobile nodes (MNs) served would be a real challenge. In this work, we formulate the joint optimization as a mixed integer nonlinear programming (MINLP) problem, which can be also realized as a complex multiple resource allocation (MRA) optimization problem subject to different allocation constraints. By means of deep reinforcement learning to estimate future rewards of actions based on the reported information from the users served by the networks, we introduce single-layer MRA algorithms based on deep Q-learning (DQN) and deep deterministic policy gradient (DDPG), respectively, as the basis for the downlink wireless transmissions. Moreover, by incorporating the capability of data-driven DQN technique and the strength of noncooperative game theory model, we propose a two-layer iterative approach to resolve the NP-hard MRA problem, which can further improve the communication performance in terms of data rate, energy harvesting, and power consumption. For the two-layer approach, we also introduce a pricing strategy for BSs or APs to determine their power costs on the basis of social utility maximization to control the transmit power. Finally, with the simulated environment based on realistic wireless networks, our numerical results show that the two-layer MRA algorithm proposed can achieve up to 2.3 times higher value than the single-layer counterparts which represent the data-driven deep reinforcement learning-based algorithms extended to resolve the problem, in terms of the utilities designed to reflect the trade-off among the performance metrics considered. Future wireless networks promise immense increases on data rate and energy efficiency while overcoming the difficulties of charging the wireless stations or devices in the Internet of Things (IoT) with the capability of simultaneous wireless information and power transfer (SWIPT). For such networks, jointly optimizing beamforming, power control, and energy harvesting to enhance the communication performance from the base stations (BSs) (or access points (APs)) to the mobile nodes (MNs) served would be a real challenge. In this work, we formulate the joint optimization as a mixed integer nonlinear programming (MINLP) problem, which can be also realized as a complex multiple resource allocation (MRA) optimization problem subject to different allocation constraints. By means of deep reinforcement learning to estimate future rewards of actions based on the reported information from the users served by the networks, we introduce single-layer MRA algorithms based on deep Q-learning (DQN) and deep deterministic policy gradient (DDPG), respectively, as the basis for the downlink wireless transmissions. Moreover, by incorporating the capability of data-driven DQN technique and the strength of noncooperative game theory model, we propose a two-layer iterative approach to resolve the NP-hard MRA problem, which can further improve the communication performance in terms of data rate, energy harvesting, and power consumption. For the two-layer approach, we also introduce a pricing strategy for BSs or APs to determine their power costs on the basis of social utility maximization to control the transmit power. Finally, with the simulated environment based on realistic wireless networks, our numerical results show that the two-layer MRA algorithm proposed can achieve up to 2.3 times higher value than the single-layer counterparts which represent the data-driven deep reinforcement learning-based algorithms extended to resolve the problem, in terms of the utilities designed to reflect the trade-off among the performance metrics considered.Future wireless networks promise immense increases on data rate and energy efficiency while overcoming the difficulties of charging the wireless stations or devices in the Internet of Things (IoT) with the capability of simultaneous wireless information and power transfer (SWIPT). For such networks, jointly optimizing beamforming, power control, and energy harvesting to enhance the communication performance from the base stations (BSs) (or access points (APs)) to the mobile nodes (MNs) served would be a real challenge. In this work, we formulate the joint optimization as a mixed integer nonlinear programming (MINLP) problem, which can be also realized as a complex multiple resource allocation (MRA) optimization problem subject to different allocation constraints. By means of deep reinforcement learning to estimate future rewards of actions based on the reported information from the users served by the networks, we introduce single-layer MRA algorithms based on deep Q-learning (DQN) and deep deterministic policy gradient (DDPG), respectively, as the basis for the downlink wireless transmissions. Moreover, by incorporating the capability of data-driven DQN technique and the strength of noncooperative game theory model, we propose a two-layer iterative approach to resolve the NP-hard MRA problem, which can further improve the communication performance in terms of data rate, energy harvesting, and power consumption. For the two-layer approach, we also introduce a pricing strategy for BSs or APs to determine their power costs on the basis of social utility maximization to control the transmit power. Finally, with the simulated environment based on realistic wireless networks, our numerical results show that the two-layer MRA algorithm proposed can achieve up to 2.3 times higher value than the single-layer counterparts which represent the data-driven deep reinforcement learning-based algorithms extended to resolve the problem, in terms of the utilities designed to reflect the trade-off among the performance metrics considered. |
Author | Donta, Praveen Kumar Hu, Yu-Chen Lin, Chun-Hung Richard Liu, JainShing |
AuthorAffiliation | 4 Research Unit of Distributed Systems, TU Wien, 1040 Vienna, Austria; pdonta@dsg.tuwien.ac.at 1 Department of Computer Science and Information Engineering, Providence University, Taichung 43301, Taiwan; chhliu@pu.edu.tw 2 Department of Computer Science and Engineering, National Sun Yat-sen University, Kaohsiung 80424, Taiwan 3 Department of Computer Science and Information Management, Providence University, Taichung 43301, Taiwan; ychu@pu.edu.tw |
AuthorAffiliation_xml | – name: 1 Department of Computer Science and Information Engineering, Providence University, Taichung 43301, Taiwan; chhliu@pu.edu.tw – name: 4 Research Unit of Distributed Systems, TU Wien, 1040 Vienna, Austria; pdonta@dsg.tuwien.ac.at – name: 2 Department of Computer Science and Engineering, National Sun Yat-sen University, Kaohsiung 80424, Taiwan – name: 3 Department of Computer Science and Information Management, Providence University, Taichung 43301, Taiwan; ychu@pu.edu.tw |
Author_xml | – sequence: 1 givenname: JainShing orcidid: 0000-0001-5603-5200 surname: Liu fullname: Liu, JainShing – sequence: 2 givenname: Chun-Hung Richard orcidid: 0000-0003-0840-394X surname: Lin fullname: Lin, Chun-Hung Richard – sequence: 3 givenname: Yu-Chen orcidid: 0000-0002-5055-3645 surname: Hu fullname: Hu, Yu-Chen – sequence: 4 givenname: Praveen Kumar orcidid: 0000-0002-8233-6071 surname: Donta fullname: Donta, Praveen Kumar |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35336499$$D View this record in MEDLINE/PubMed |
BookMark | eNplks1uEzEQgFeoiP7AgRdAlriA1FD_x3tBKqGUoAgqGsTR8tqzicOuHbwbor4CT423aau2nGzZ33wz9sxhsRdigKJ4SfA7xkp80lGKJWVUPSkOCKd8pPLB3r39fnHYdSuMKWNMPSv2mWBM8rI8KP5-iT706AOYto6p9WFxjC7iFhI6bZpoTe9jOEYmOHS5bnzfZwBNYuhTbFAOQJc_pxfz0VkwVQMOTeMcfYV-G9OvDm19v0QfAdboO_iQYQst5FwzMCkMnsF6blpA8yXEdPW8eFqbpoMXN-tR8ePT2XzyeTT7dj6dnM5GlsuyH1nKuZAUG-MIJo6Pq5oYYseyrIl0pQAhBDXK0ko4cHKsytoIACahxiWuKnZUTHdeF81Kr5NvTbrS0Xh9fRDTQpvUe9uAdgoEEFXbuhqS00opYU1NpZQKU1dm1_uda72pWnA2vy-Z5oH04U3wS72If7QqhVCcZMGbG0GKvzfQ9br1nYWmMQHiptNUco7JWHGW0deP0FXcpJC_aqCoZJjzoaJX9yu6K-W25Rk42QE2xa5LUGvr--s-5wJ9ownWw1Dpu6HKEW8fRdxK_2f_AUbvzFU |
CitedBy_id | crossref_primary_10_1007_s11277_023_10307_5 crossref_primary_10_1007_s11036_024_02358_0 crossref_primary_10_1145_3678011 crossref_primary_10_1109_ACCESS_2023_3282729 crossref_primary_10_1109_ACCESS_2024_3352749 crossref_primary_10_1016_j_cosrev_2023_100549 crossref_primary_10_1155_2022_5046074 crossref_primary_10_1016_j_comcom_2022_09_013 crossref_primary_10_1109_TCE_2023_3279138 crossref_primary_10_3390_systems11060308 crossref_primary_10_1109_ACCESS_2024_3525263 crossref_primary_10_3390_s23115117 crossref_primary_10_1007_s11276_022_03067_w crossref_primary_10_1109_JSAC_2023_3240713 crossref_primary_10_1109_JSEN_2024_3470798 crossref_primary_10_1109_ACCESS_2023_3266443 |
Cites_doi | 10.1109/JSTSP.2007.914876 10.1109/ACSSC.2014.7094443 10.3390/s21144798 10.1109/TCOMM.2013.071013.120787 10.1109/TVT.2015.2472995 10.1109/TCOMM.2019.2936813 10.1109/TCOMM.2019.2961332 10.1109/TVT.2014.2374237 10.1109/WCNC.2017.7925545 10.1109/TVT.2011.2176356 10.1109/MCOM.2018.1701031 10.1109/TWC.2019.2900890 10.1109/TMC.2012.178 10.1049/iet-com.2015.0153 10.1109/TWC.2017.2769644 10.1109/ICC.2017.7997440 10.1109/ACCESS.2018.2831240 10.1109/COMST.2017.2783901 10.1109/COMSNETS.2017.7945411 10.1109/COMST.2015.2499783 10.1109/VTCFall.2019.8891448 10.1109/TVT.2013.2280617 10.1109/TWC.2020.3001736 10.1109/VTCFall.2018.8690757 10.1109/TVT.2016.2525821 10.1109/GLOBECOM42002.2020.9348125 10.1109/JIOT.2019.2941897 10.1109/ACCESS.2016.2597169 10.1109/ACCESS.2019.2930115 10.1109/ACCESS.2018.2850226 10.1109/ACCESS.2018.2810216 10.1038/nature14236 10.3390/s21237857 10.1109/WCNC.2016.7565103 10.1109/GLOCOM.2017.8254131 10.1109/MCOM.2014.6736746 10.1109/VTCSpring.2016.7504311 10.1109/ACCESS.2017.2657221 10.1109/JSTSP.2014.2334278 10.1109/JSAC.2021.3118397 10.1109/TVT.2015.2436334 10.1109/TWC.2021.3107866 10.1109/ACCESS.2016.2645704 10.1109/JIOT.2018.2825334 10.1109/TAP.2012.2235056 10.1109/LWC.2014.2315039 10.1038/s41598-021-94691-7 10.1109/JSTSP.2016.2523924 10.1109/TWC.2017.2786255 10.1109/TVT.2017.2661698 10.3390/s21041101 10.1109/JIOT.2019.2921159 10.1109/GLOCOMW.2016.7849073 10.1109/TVT.2017.2673245 10.1145/1868447.1868464 |
ContentType | Journal Article |
Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022 |
Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022 |
DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI 7X8 5PM DOA |
DOI | 10.3390/s22062328 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection PML(ProQuest Medical Library) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic CrossRef PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_d8e5e18fcfbc4692b885caf2666802d9 PMC8955841 35336499 10_3390_s22062328 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Ministry of Science and Technology, Republic of China grantid: MOST 110-2221-E-126-001 |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. ABJCF ARAPS HCIFZ KB. M7S NPM PDBOC 7XB 8FK AZQEC DWQXO K9. PJZUB PKEHL PPXIY PQEST PQUKI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c469t-c2445620aad101d47bf1a1c769f16d95e5552a8c2b5ded6789fa5ee36ef090bb3 |
IEDL.DBID | M48 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:32:05 EDT 2025 Thu Aug 21 18:19:52 EDT 2025 Fri Jul 11 07:56:51 EDT 2025 Fri Jul 25 20:20:57 EDT 2025 Wed Feb 19 02:26:48 EST 2025 Thu Apr 24 23:00:26 EDT 2025 Tue Jul 01 02:41:48 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | joint optimization multi-resource allocation game theory energy harvesting power control deep reinforcement learning beamforming IoT |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c469t-c2445620aad101d47bf1a1c769f16d95e5552a8c2b5ded6789fa5ee36ef090bb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-8233-6071 0000-0002-5055-3645 0000-0001-5603-5200 0000-0003-0840-394X |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s22062328 |
PMID | 35336499 |
PQID | 2642630449 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_d8e5e18fcfbc4692b885caf2666802d9 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8955841 proquest_miscellaneous_2644017843 proquest_journals_2642630449 pubmed_primary_35336499 crossref_citationtrail_10_3390_s22062328 crossref_primary_10_3390_s22062328 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220317 |
PublicationDateYYYYMMDD | 2022-03-17 |
PublicationDate_xml | – month: 3 year: 2022 text: 20220317 day: 17 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2022 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Xu (ref_44) 2019; 6 Wei (ref_41) 2017; 17 ref_56 Chang (ref_59) 2016; 65 ref_11 ref_10 ref_54 Li (ref_62) 2018; 6 Choi (ref_30) 2014; 3 Rappaport (ref_55) 2013; 61 ref_17 Alkhateeb (ref_52) 2014; 8 ref_16 Liu (ref_6) 2017; 5 ref_61 Luo (ref_8) 2008; 2 ref_60 Omidkar (ref_46) 2022; 7 ref_23 ref_66 ref_64 ref_63 ref_29 Chen (ref_19) 2012; 12 Alkhateeb (ref_65) 2018; 6 Zhang (ref_22) 2016; 15 Lu (ref_43) 2021; 21 Mismar (ref_51) 2019; 68 ref_36 Liang (ref_42) 2011; 61 Heath (ref_53) 2016; 10 ref_33 Chae (ref_4) 2018; 5 ref_31 Le (ref_15) 2019; 67 Nguyen (ref_28) 2019; 7 Zhang (ref_18) 2017; 17 Xu (ref_20) 2013; 63 Zhang (ref_1) 2016; 4 Saeed (ref_12) 2016; 10 Liu (ref_14) 2018; 6 ref_38 Lu (ref_57) 2015; 18 Song (ref_35) 2017; 5 Kim (ref_34) 2019; 18 Mnih (ref_26) 2015; 518 Calabrese (ref_39) 2018; 56 ref_47 Jiang (ref_25) 2016; 65 ref_40 Ng (ref_58) 2016; 65 ref_3 ref_2 Feng (ref_24) 2013; 61 Qiu (ref_32) 2019; 6 Zhang (ref_45) 2021; 40 ref_49 ref_48 Simsek (ref_37) 2014; 64 Boccardi (ref_9) 2014; 52 Coskun (ref_13) 2017; 66 Perera (ref_50) 2017; 20 Jiang (ref_21) 2017; 66 Meng (ref_27) 2020; 19 ref_5 ref_7 |
References_xml | – ident: ref_49 – volume: 2 start-page: 57 year: 2008 ident: ref_8 article-title: Dynamic Spectrum Management: Complexity and Duality publication-title: IEEE J. Sel. Top. Signal Process. doi: 10.1109/JSTSP.2007.914876 – ident: ref_54 doi: 10.1109/ACSSC.2014.7094443 – ident: ref_3 doi: 10.3390/s21144798 – volume: 61 start-page: 3541 year: 2013 ident: ref_24 article-title: Device-to-device communications underlaying cellular networks publication-title: IEEE Trans. Commun. doi: 10.1109/TCOMM.2013.071013.120787 – volume: 65 start-page: 6119 year: 2016 ident: ref_25 article-title: Energy-Efficient Joint Resource Allocation and Power Control for D2D Communications publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2015.2472995 – volume: 67 start-page: 7043 year: 2019 ident: ref_15 article-title: Energy-Efficient Resource Allocation for OFDMA Heterogeneous Networks publication-title: IEEE Trans. Commun. doi: 10.1109/TCOMM.2019.2936813 – volume: 68 start-page: 1581 year: 2019 ident: ref_51 article-title: Deep Reinforcement Learning for 5G Networks: Joint Beamforming, Power Control, and Interference Coordination publication-title: IEEE Trans. Commun. doi: 10.1109/TCOMM.2019.2961332 – volume: 64 start-page: 4589 year: 2014 ident: ref_37 article-title: Learning Based Frequency- and Time-Domain Inter-Cell Interference Coordination in HetNets publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2014.2374237 – ident: ref_10 doi: 10.1109/WCNC.2017.7925545 – volume: 61 start-page: 321 year: 2011 ident: ref_42 article-title: A Game-Theoretic Framework for Interference Coordination in OFDMA Relay Networks publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2011.2176356 – volume: 56 start-page: 138 year: 2018 ident: ref_39 article-title: Learning Radio Resource Management in RANs: Framework, Opportunities, and Challenges publication-title: IEEE Commun. Mag. doi: 10.1109/MCOM.2018.1701031 – volume: 18 start-page: 2200 year: 2019 ident: ref_34 article-title: Online Learning-Based Downlink Transmission Coordination in Ultra-Dense Millimeter Wave Heterogeneous Networks publication-title: IEEE Trans. Wirel. Commun. doi: 10.1109/TWC.2019.2900890 – volume: 12 start-page: 2155 year: 2012 ident: ref_19 article-title: Stochastic Power Adaptation with Multiagent Reinforcement Learning for Cognitive Wireless Mesh Networks publication-title: IEEE Trans. Mob. Comput. doi: 10.1109/TMC.2012.178 – volume: 10 start-page: 641 year: 2016 ident: ref_12 article-title: Dynamic femtocell resource allocation for managing inter-tier interference in downlink of heterogeneous networks publication-title: IET Commun. doi: 10.1049/iet-com.2015.0153 – volume: 17 start-page: 680 year: 2017 ident: ref_41 article-title: User Scheduling and Resource Allocation in HetNets With Hybrid Energy Supply: An Actor-Critic Reinforcement Learning Approach publication-title: IEEE Trans. Wirel. Commun. doi: 10.1109/TWC.2017.2769644 – ident: ref_61 – ident: ref_38 doi: 10.1109/ICC.2017.7997440 – ident: ref_23 – volume: 6 start-page: 25463 year: 2018 ident: ref_62 article-title: Intelligent Power Control for Spectrum Sharing in Cognitive Radios: A Deep Reinforcement Learning Approach publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2831240 – volume: 20 start-page: 264 year: 2017 ident: ref_50 article-title: Simultaneous Wireless Information and Power Transfer (SWIPT): Recent Advances and Future Challenges publication-title: IEEE Commun. Surv. Tutor. doi: 10.1109/COMST.2017.2783901 – ident: ref_56 – ident: ref_48 – ident: ref_40 doi: 10.1109/COMSNETS.2017.7945411 – volume: 18 start-page: 1413 year: 2015 ident: ref_57 article-title: Wireless charging technologies: Fundamentals, standards, and network applications publication-title: IEEE Commun. Surv. Tutor. doi: 10.1109/COMST.2015.2499783 – ident: ref_31 doi: 10.1109/VTCFall.2019.8891448 – volume: 7 start-page: 4387 year: 2022 ident: ref_46 article-title: Reinforcement Learning Based Resource Allocation for Energy-Harvesting-Aided D2D Communications in IoT Networks publication-title: IEEE Internet Things J. – ident: ref_66 – volume: 63 start-page: 2336 year: 2013 ident: ref_20 article-title: Pricing-Based Multiresource Allocation in OFDMA Cognitive Radio Networks: An Energy Efficiency Perspective publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2013.2280617 – volume: 19 start-page: 6255 year: 2020 ident: ref_27 article-title: Power Allocation in Multi-User Cellular Networks: Deep Reinforcement Learning Approaches publication-title: IEEE Trans. Wirel. Commun. doi: 10.1109/TWC.2020.3001736 – ident: ref_29 doi: 10.1109/VTCFall.2018.8690757 – volume: 65 start-page: 9834 year: 2016 ident: ref_59 article-title: Energy-Efficient Resource Allocation and User Scheduling for Collaborative Mobile Clouds With Hybrid Receivers publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2016.2525821 – ident: ref_2 doi: 10.1109/GLOBECOM42002.2020.9348125 – volume: 6 start-page: 10799 year: 2019 ident: ref_44 article-title: Robust Resource Allocation and Power Splitting in SWIPT Enabled Heterogeneous Networks: A Robust Minimax Approach publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2019.2941897 – volume: 4 start-page: 5896 year: 2016 ident: ref_1 article-title: Energy-Efficient Offloading for Mobile Edge Computing in 5G Heterogeneous Networks publication-title: IEEE Access doi: 10.1109/ACCESS.2016.2597169 – volume: 7 start-page: 100480 year: 2019 ident: ref_28 article-title: Non-Cooperative Energy Efficient Power Allocation Game in D2D Communication: A Multi-Agent Deep Reinforcement Learning Approach publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2930115 – volume: 6 start-page: 37328 year: 2018 ident: ref_65 article-title: Deep Learning Coordinated Beamforming for Highly-Mobile Millimeter Wave Systems publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2850226 – volume: 6 start-page: 14591 year: 2018 ident: ref_14 article-title: Energy-Efficient Resource Allocation for Heterogeneous Wireless Network With Multi-Homed User Equipments publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2810216 – volume: 518 start-page: 529 year: 2015 ident: ref_26 article-title: Human-level control through deep reinforcement learning publication-title: Nature doi: 10.1038/nature14236 – ident: ref_5 doi: 10.3390/s21237857 – ident: ref_16 doi: 10.1109/WCNC.2016.7565103 – ident: ref_36 doi: 10.1109/GLOCOM.2017.8254131 – ident: ref_63 – volume: 52 start-page: 74 year: 2014 ident: ref_9 article-title: Five disruptive technology directions for 5G publication-title: IEEE Commun. Mag. doi: 10.1109/MCOM.2014.6736746 – ident: ref_17 doi: 10.1109/VTCSpring.2016.7504311 – volume: 5 start-page: 2152 year: 2017 ident: ref_35 article-title: An Interference Coordination-Based Distributed Resource Allocation Scheme in Heterogeneous Cellular Networks publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2657221 – volume: 8 start-page: 831 year: 2014 ident: ref_52 article-title: Channel Estimation and Hybrid Precoding for Millimeter Wave Cellular Systems publication-title: IEEE J. Sel. Top. Signal Process. doi: 10.1109/JSTSP.2014.2334278 – volume: 40 start-page: 677 year: 2021 ident: ref_45 article-title: Joint Coordinated Beamforming and Power Splitting Ratio Optimization in MU-MISO SWIPT-Enabled HetNets: A Multi-Agent DDQN-Based Approach publication-title: IEEE J. Sel. Areas Commun. doi: 10.1109/JSAC.2021.3118397 – volume: 65 start-page: 3166 year: 2016 ident: ref_58 article-title: Multiobjective Resource Allocation for Secure Communication in Cognitive Radio Networks With Wireless Information and Power Transfer publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2015.2436334 – volume: 21 start-page: 1870 year: 2021 ident: ref_43 article-title: Worst-Case Energy Efficiency in Secure SWIPT Networks with Rate-Splitting ID and Power-Splitting EH Receivers publication-title: IEEE Trans. Wirel. Commun. doi: 10.1109/TWC.2021.3107866 – volume: 5 start-page: 544 year: 2017 ident: ref_6 article-title: Delay and energy trade-off in energy harvesting multi-hop wireless networks with inter-session network coding and successive interference cancellation publication-title: IEEE Access doi: 10.1109/ACCESS.2016.2645704 – volume: 5 start-page: 2829 year: 2018 ident: ref_4 article-title: Simultaneous Wireless Information and Power Transfer for Internet of Things Sensor Networks publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2018.2825334 – ident: ref_33 – volume: 61 start-page: 1850 year: 2013 ident: ref_55 article-title: Broadband Millimeter-Wave Propagation Measurements and Models Using Adaptive-Beam Antennas for Outdoor Urban Cellular Communications publication-title: IEEE Trans. Antennas Propag. doi: 10.1109/TAP.2012.2235056 – volume: 15 start-page: 1 year: 2016 ident: ref_22 article-title: Radio Resource Allocation for Device-to-Device Underlay Communication Using Hypergraph Theory publication-title: IEEE Trans. Wirel. Commun. – volume: 3 start-page: 329 year: 2014 ident: ref_30 article-title: Massive MIMO With Joint Power Control publication-title: IEEE Wirel. Commun. Lett. doi: 10.1109/LWC.2014.2315039 – ident: ref_47 doi: 10.1038/s41598-021-94691-7 – volume: 10 start-page: 436 year: 2016 ident: ref_53 article-title: An Overview of Signal Processing Techniques for Millimeter Wave MIMO Systems publication-title: IEEE J. Sel. Top. Signal Process. doi: 10.1109/JSTSP.2016.2523924 – volume: 17 start-page: 1882 year: 2017 ident: ref_18 article-title: Incomplete CSI Based Resource Optimization in SWIPT Enabled Heterogeneous Networks: A Non-Cooperative Game Theoretic Approach publication-title: IEEE Trans. Wirel. Commun. doi: 10.1109/TWC.2017.2786255 – volume: 66 start-page: 6942 year: 2017 ident: ref_13 article-title: Three-Stage Resource Allocation Algorithm for Energy-Efficient Heterogeneous Networks publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2017.2661698 – ident: ref_7 doi: 10.3390/s21041101 – volume: 6 start-page: 8577 year: 2019 ident: ref_32 article-title: Deep Deterministic Policy Gradient (DDPG)-Based Energy Harvesting Wireless Communications publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2019.2921159 – ident: ref_64 – ident: ref_11 doi: 10.1109/GLOCOMW.2016.7849073 – volume: 66 start-page: 7540 year: 2017 ident: ref_21 article-title: Energy-Efficient Noncooperative Power Control in Small-Cell Networks publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2017.2673245 – ident: ref_60 doi: 10.1145/1868447.1868464 |
SSID | ssj0023338 |
Score | 2.452235 |
Snippet | Future wireless networks promise immense increases on data rate and energy efficiency while overcoming the difficulties of charging the wireless stations or... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 2328 |
SubjectTerms | Algorithms beamforming Business metrics Communication Convex analysis Deep learning deep reinforcement learning Energy consumption Game theory Internet of Things joint optimization Methods multi-resource allocation Optimization power control Wireless networks |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYQp3Ko-qBtWlq5qIceiEj8SOwjUCggFaGyqNwiP8YUCbKou_yJ_uqO7Wy0WyH10mvsWI5nrO8bZ_wNIZ8kt6YSrS2dA1-KmJRjlQ9lBTwEhCxdJ7Hqb2fN8aU4vZJXS6W-Yk5YlgfOC7frFUioVXDBOgzlmFVKOhMQVxpVMZ-u7iHmLYKpIdTiGHllHSGOQf3ujLEKcT6WXF9CnyTS_xiz_DtBcglxjp6RpwNVpHt5is_JGvQvyMaSgOBL8vt0etPP6T6Yu0g-8dkOPY91z-jebUSpuOo71PSeXiDZTCnO9CAnp1N8gV78ODmflIfp_pSnJ9MJPctp4TMaD2jpF4B7-h2SuqpLB4l0EGS9TqN-NXdA8_X-TXJ5dDg5OC6H6gplXMd56RDYkfxUxnjclh7tFWpTu7bRoW68liClZEY5ZqUHj5img5EAvIFQ6cpa_oqs99Me3hAqWhGCMFrjEMIA08JJG7RhXDdMtLognxer3rlBejxWwLjtMASJBupGAxVke-x6n_U2Huu0H003dogS2ekBOk43OE73L8cpyNbC8N2wb2cd0kPW8EoIbP44NuOOi79RTA_Th9QHg9JWCV6Q19lPxplwZM8NBpEFaVc8aGWqqy39zc-k6q20RDJYv_0f3_aOPGHxmkbMO2y3yPr81wO8R_I0tx_SPvkDuZ8axg priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwELZaemkPqPQZHpVb9dADEYljJ_apAsrykIpQWVRukR9jigTJwi5_or-6Yyeb7laoV9uxHI_H34w9_oaQz6IwOuOVSa0Fl_IQlGOk82kGhfcIWSqPZNXfT8ujC35yKS77A7dpH1Y53xPjRu1aG87IdxC4WYm-N1dfJ3dpyBoVblf7FBpPybMckSaEdMnR4eBwFeh_dWxCBbr2O1PGMkT7kHh9AYMiVf9j9uW_YZILuDN6SVZ7g5HudhJeI0-geUVeLNAIvia_T9rrZkb3QN8GExTLtulZyH5Gd28CVoW536a6cfQcTc4Y6Ez3uxB1ih_Q85_HZ-P0IL6icvS4HdPTLjh8SsMxLf0GMKE_IHKs2nicSHta1qvY66G-Bdo98n9DLkYH4_2jtM-xkFp0jGepRXhHEyjT2qFyOpSaz3Vuq1L5vHRKgBCCaWmZEQ4cIpvyWgAUJfhMZcYUb8lK0zbwnlBece-5Vgq74BqY4lYYrzQrVMl4pRLyZT7rte0JyEMejJsaHZEgoHoQUEI-DU0nHevGY432guiGBoEoOxa091d1r3e1kyAgl956E36YGSmF1R4XSykz5nBQm3PB1732Tuu_ay0hH4dq1LtwmaIbaB9iG3RNK8mLhLzr1skwkgJt6BJdyYRUSytoaajLNc31r8jtLZVAkzBf__-wNshzFp5hhLjCapOszO4fYAuNo5n5EDXgD5zNEZw priority: 102 providerName: ProQuest |
Title | Joint Beamforming, Power Allocation, and Splitting Control for SWIPT-Enabled IoT Networks with Deep Reinforcement Learning and Game Theory |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35336499 https://www.proquest.com/docview/2642630449 https://www.proquest.com/docview/2644017843 https://pubmed.ncbi.nlm.nih.gov/PMC8955841 https://doaj.org/article/d8e5e18fcfbc4692b885caf2666802d9 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JbtswECWyXNpD0b1uUoMteughaiWKlMhDUcSpnQWIYSQ26pvANQ3gSIntAO0v9Ks7pGQhLnzoRQeRkigNB-8NNXyD0EeWKhnTXEVaWxNRn5SjuHFRbFPnALJEEsSqz4fZyYSeTdl0C61qbDYfcLExtPP1pCbz2edfd7-_gcN_9REnhOxfFoTEgOKEb6NdAKTcFzI4p-3PBJKmoaC139MVAR7GtcDQ-qVrsBTU-zdRzn8zJx9A0eApetJwSHxYG_0Z2rLlc_T4gbLgC_TnrLoul7hn5Y1npXDuAI98QTR8OPPw5c1xgGVp8CWw0JD7jI_qrHUMF-DLH6ejcdQPG6sMPq3GeFjniy-wX7nF3629xRc2yK7qsMKIG6XWq3DXY3ljcb3v_yWaDPrjo5OoKbsQaYiVl5EGxAdWFEtpwF8NGNIlMtF5JlySGcEsY4xIrolixhoAO-EkszbNrItFrFT6Cu2UVWnfIExz6hyVQsAtqLREUM2UE5KkIiM0Fx30afXVC91okvvSGLMCYhNvoKI1UAd9aLve1kIcmzr1vOnaDl47O5yo5ldF44qF4ZbZhDvtlH9hojhnWjpgKhmPiYFB7a8MX6zmYwG8kWRpTCk0v2-bwRX9_xVZ2uo-9IFoNec07aDX9TxpR5ICrc4guuygfG0GrQ11vaW8_hnkvrlgwBKTt__x3D30iPjtGT7fMN9HO8v5vX0HpGmpumg7n-Zw5IPjLtrt9Yeji25YgOgGZ_kLvYIbPQ |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQAHxJuUAgaBxKFRE8dO4gNCfW13-1hVdKv2FvxsK7XJ0t0K8Rf4MfxGxs6DXVRx6zV2rElm7PnGHn-D0AeWSBHRTIZKGR1Sl5Qjc23DyCTWgsvisSer3h-m_SO6c8JOFtDv9i6MS6ts10S_UOtKuT3yVXDcJIXYm_Iv4--hqxrlTlfbEhq1Weyanz8gZJt8HmyCfj8S0tsabfTDpqpAqCAUnIYKHBo4_UgIDeaoQU4bi1hlKbdxqjkzjDEickUk00bDWs6tYMYkqbERj6RMYNw76C5NwJO7m-m97S7ASyDeq9mLoDFanRASAbpwhd5nfJ4vDXATnv03LXPGz_UeoYcNQMVrtUU9RgumfIIezNAWPkW_dqrzcorXjbh0kBeereADV20Nr1043-h0vYJFqfEhQFyfWI036pR4DC_gw-PBwSjc8re2NB5UIzysk9En2G0L401jxvir8Zyuym9f4oYG9tSPui0uDa5JBZ6ho1v5-8_RYlmV5iXCNKPWUsE5DEGFIZwqJi0XJOEpoRkP0Kf2rxeqITx3dTcuCgh8nIKKTkEBet91HdcsHzd1Wneq6zo4Ym7_oLo6LZp5XujcMBPnVlnpPpjIPGdKWIBBaR4RDUItt4ovmtViUvy17QC965phnrvDG1Ga6tr3gVA4y2kSoBe1nXSSJIDZUwhdA5TNWdCcqPMt5fmZ5xLPOQMIGi_9X6y36F5_tL9X7A2Gu6_QfeKugLicxmwZLU6vrs1rAGZT-cbPBoy-3fb0-wN8gU8O |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGJyF4QHwTGMMgkHhY1MSxk_gBoXVtWTeoqq0TewuOP8akLSlrJ8S_wJ_EX7ez80GLJt72mjjWJXfn-51z_h1Cb1mUi4AmuS-lVj61RTl5qowf6MgYCFk8dGTVX8bx7hHdO2bHa-hPcxbGllU2a6JbqFUp7R55FwI3iSH3prxr6rKISX_4cfbDtx2k7J_Wpp1GZSL7-tdPSN_mH0Z90PU7QoaD6c6uX3cY8CWkhQtfQnADABAIocA0FchsQhHKJOYmjBVnmjFGRCpJzpRWsK5zI5jWUaxNwIM8j2DeW2g9sVlRB633BuPJQZvuRZD9VVxGUcSD7pyQALCGbfu-FAFdo4Dr0O2_RZpLUW94H92r4SreruzrAVrTxUN0d4nE8BH6vVeeFgvc0-LcAmC4toUntvca3j6zkdJqfguLQuFDALyuzBrvVAXyGB7Ah19Hk6k_cGe4FB6VUzyuStPn2G4S477WM3ygHcOrdJuZuCaFPXGzfhLnGlcUA4_R0Y18_yeoU5SFfoYwTagxVHAOU1ChCaeS5YYLEvGY0IR76H3z1TNZ05_bLhxnGaRBVkFZqyAPvWmHzirOj-sG9azq2gGWpttdKC9OstrrM5VqpsPUSJPbFyZ5mjIpDICiOA2IAqE2GsVn9doxz_5auodet7fB6-2vHFHo8tKNgcQ4SWnkoaeVnbSSRIDgY0hkPZSsWNCKqKt3itPvjlk85QwAafj8_2K9QrfB9bLPo_H-C3SH2PMgtsAx2UCdxcWlfgkobZFv1u6A0beb9sAravBUoA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Joint+Beamforming%2C+Power+Allocation%2C+and+Splitting+Control+for+SWIPT-Enabled+IoT+Networks+with+Deep+Reinforcement+Learning+and+Game+Theory&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Liu%2C+JainShing&rft.au=Lin%2C+Chun-Hung+Richard&rft.au=Hu%2C+Yu-Chen&rft.au=Donta%2C+Praveen+Kumar&rft.date=2022-03-17&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=22&rft.issue=6&rft_id=info:doi/10.3390%2Fs22062328&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |