Hierarchical graph representations in digital pathology

•Hierarchical Cell-to-Tissue (HACT) representation: A novel multi-level hierarchical entity-graph representation of a histology image to model the hierarchical composition of the tissue by encoding comprehensible histological entities (cells and tissue-regions) as well as the intra- and inter-entity...

Full description

Saved in:
Bibliographic Details
Published inMedical image analysis Vol. 75; p. 102264
Main Authors Pati, Pushpak, Jaume, Guillaume, Foncubierta-Rodríguez, Antonio, Feroce, Florinda, Anniciello, Anna Maria, Scognamiglio, Giosue, Brancati, Nadia, Fiche, Maryse, Dubruc, Estelle, Riccio, Daniel, Di Bonito, Maurizio, De Pietro, Giuseppe, Botti, Gerardo, Thiran, Jean-Philippe, Frucci, Maria, Goksel, Orcun, Gabrani, Maria
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.01.2022
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Hierarchical Cell-to-Tissue (HACT) representation: A novel multi-level hierarchical entity-graph representation of a histology image to model the hierarchical composition of the tissue by encoding comprehensible histological entities (cells and tissue-regions) as well as the intra- and inter-entity level interactions.•HACT-Net: A hierarchical graph neural network to operate on the hierarchical entity-graph representation to map the tissue structure to tissue functionality.•BReAst Carcinoma Subtyping (BRACS) dataset: Introduce (BRACS) dataset, a large cohort of Haematoxylin & Eosin-stained breast tumor regions-of-interest.•Domain expert comparison: Benchmarking of the proposed methodology with three expert pathologists on the BRACS test set.•Quantitative evaluation: Experimentations on BRACS dataset and public BACH dataset to demonstrate the efficacy of the proposed methodology in breast cancer subtyping compared to state-of-the-art computer-aided diagnostic approaches.•Qualitative evaluation: Demonstration of salient regions in the histopathology image during the inference with HACT-Net. [Display omitted] Cancer diagnosis, prognosis, and therapy response predictions from tissue specimens highly depend on the phenotype and topological distribution of constituting histological entities. Thus, adequate tissue representations for encoding histological entities is imperative for computer aided cancer patient care. To this end, several approaches have leveraged cell-graphs, capturing the cell-microenvironment, to depict the tissue. These allow for utilizing graph theory and machine learning to map the tissue representation to tissue functionality, and quantify their relationship. Though cellular information is crucial, it is incomplete alone to comprehensively characterize complex tissue structure. We herein treat the tissue as a hierarchical composition of multiple types of histological entities from fine to coarse level, capturing multivariate tissue information at multiple levels. We propose a novel multi-level hierarchical entity-graph representation of tissue specimens to model the hierarchical compositions that encode histological entities as well as their intra- and inter-entity level interactions. Subsequently, a hierarchical graph neural network is proposed to operate on the hierarchical entity-graph and map the tissue structure to tissue functionality. Specifically, for input histology images, we utilize well-defined cells and tissue regions to build HierArchical Cell-to-Tissue (HACT) graph representations, and devise HACT-Net, a message passing graph neural network, to classify the HACT representations. As part of this work, we introduce the BReAst Carcinoma Subtyping (BRACS) dataset, a large cohort of Haematoxylin & Eosin stained breast tumor regions-of-interest, to evaluate and benchmark our proposed methodology against pathologists and state-of-the-art computer-aided diagnostic approaches. Through comparative assessment and ablation studies, our proposed method is demonstrated to yield superior classification results compared to alternative methods as well as individual pathologists. The code, data, and models can be accessed at https://github.com/histocartography/hact-net.
AbstractList Cancer diagnosis, prognosis, and therapy response predictions from tissue specimens highly depend on the phenotype and topological distribution of constituting histological entities. Thus, adequate tissue representations for encoding histological entities is imperative for computer aided cancer patient care. To this end, several approaches have leveraged cell-graphs, capturing the cell-microenvironment, to depict the tissue. These allow for utilizing graph theory and machine learning to map the tissue representation to tissue functionality, and quantify their relationship. Though cellular information is crucial, it is incomplete alone to comprehensively characterize complex tissue structure. We herein treat the tissue as a hierarchical composition of multiple types of histological entities from fine to coarse level, capturing multivariate tissue information at multiple levels. We propose a novel multi-level hierarchical entity-graph representation of tissue specimens to model the hierarchical compositions that encode histological entities as well as their intra- and inter-entity level interactions. Subsequently, a hierarchical graph neural network is proposed to operate on the hierarchical entity-graph and map the tissue structure to tissue functionality. Specifically, for input histology images, we utilize well-defined cells and tissue regions to build HierArchical Cell-to-Tissue (HACT) graph representations, and devise HACT-Net, a message passing graph neural network, to classify the HACT representations. As part of this work, we introduce the BReAst Carcinoma Subtyping (BRACS) dataset, a large cohort of Haematoxylin & Eosin stained breast tumor regions-of-interest, to evaluate and benchmark our proposed methodology against pathologists and state-of-the-art computer-aided diagnostic approaches. Through comparative assessment and ablation studies, our proposed method is demonstrated to yield superior classification results compared to alternative methods as well as individual pathologists. The code, data, and models can be accessed at https://github.com/histocartography/hact-net.
•Hierarchical Cell-to-Tissue (HACT) representation: A novel multi-level hierarchical entity-graph representation of a histology image to model the hierarchical composition of the tissue by encoding comprehensible histological entities (cells and tissue-regions) as well as the intra- and inter-entity level interactions.•HACT-Net: A hierarchical graph neural network to operate on the hierarchical entity-graph representation to map the tissue structure to tissue functionality.•BReAst Carcinoma Subtyping (BRACS) dataset: Introduce (BRACS) dataset, a large cohort of Haematoxylin & Eosin-stained breast tumor regions-of-interest.•Domain expert comparison: Benchmarking of the proposed methodology with three expert pathologists on the BRACS test set.•Quantitative evaluation: Experimentations on BRACS dataset and public BACH dataset to demonstrate the efficacy of the proposed methodology in breast cancer subtyping compared to state-of-the-art computer-aided diagnostic approaches.•Qualitative evaluation: Demonstration of salient regions in the histopathology image during the inference with HACT-Net. [Display omitted] Cancer diagnosis, prognosis, and therapy response predictions from tissue specimens highly depend on the phenotype and topological distribution of constituting histological entities. Thus, adequate tissue representations for encoding histological entities is imperative for computer aided cancer patient care. To this end, several approaches have leveraged cell-graphs, capturing the cell-microenvironment, to depict the tissue. These allow for utilizing graph theory and machine learning to map the tissue representation to tissue functionality, and quantify their relationship. Though cellular information is crucial, it is incomplete alone to comprehensively characterize complex tissue structure. We herein treat the tissue as a hierarchical composition of multiple types of histological entities from fine to coarse level, capturing multivariate tissue information at multiple levels. We propose a novel multi-level hierarchical entity-graph representation of tissue specimens to model the hierarchical compositions that encode histological entities as well as their intra- and inter-entity level interactions. Subsequently, a hierarchical graph neural network is proposed to operate on the hierarchical entity-graph and map the tissue structure to tissue functionality. Specifically, for input histology images, we utilize well-defined cells and tissue regions to build HierArchical Cell-to-Tissue (HACT) graph representations, and devise HACT-Net, a message passing graph neural network, to classify the HACT representations. As part of this work, we introduce the BReAst Carcinoma Subtyping (BRACS) dataset, a large cohort of Haematoxylin & Eosin stained breast tumor regions-of-interest, to evaluate and benchmark our proposed methodology against pathologists and state-of-the-art computer-aided diagnostic approaches. Through comparative assessment and ablation studies, our proposed method is demonstrated to yield superior classification results compared to alternative methods as well as individual pathologists. The code, data, and models can be accessed at https://github.com/histocartography/hact-net.
Cancer diagnosis, prognosis, and therapy response predictions from tissue specimens highly depend on the phenotype and topological distribution of constituting histological entities. Thus, adequate tissue representations for encoding histological entities is imperative for computer aided cancer patient care. To this end, several approaches have leveraged cell-graphs, capturing the cell-microenvironment, to depict the tissue. These allow for utilizing graph theory and machine learning to map the tissue representation to tissue functionality, and quantify their relationship. Though cellular information is crucial, it is incomplete alone to comprehensively characterize complex tissue structure. We herein treat the tissue as a hierarchical composition of multiple types of histological entities from fine to coarse level, capturing multivariate tissue information at multiple levels. We propose a novel multi-level hierarchical entity graph representation of tissue specimens to model the hierarchical compositions that encode histological entities as well as their intra-and inter-entity level interactions. Subsequently, a hierarchical graph neural network is proposed to operate on the hierarchical entity-graph and map the tissue structure to tissue functionality. Specifically, for input histology images, we utilize well-defined cells and tissue regions to build HierArchical Cell-to-Tissue ( HACT ) graph representations, and devise HACT-Net, a message passing graph neural network, to classify the HACT representations. As part of this work, we introduce the BReAst Carcinoma Subtyping (BRACS) dataset, a large cohort of Haematoxylin & Eosin stained breast tumor regions-of-interest, to evaluate and benchmark our proposed methodology against pathologists and state-of-the-art computer-aided diagnostic approaches. Through comparative assessment and ablation studies, our proposed method is demonstrated to yield superior classification results compared to alternative methods as well as individual pathologists. The code, data, and models can be accessed at https://github.com/histocartography/hact-net . (c) 2021 Elsevier B.V. All rights reserved.
ArticleNumber 102264
Author Gabrani, Maria
Goksel, Orcun
Frucci, Maria
De Pietro, Giuseppe
Feroce, Florinda
Botti, Gerardo
Pati, Pushpak
Thiran, Jean-Philippe
Foncubierta-Rodríguez, Antonio
Riccio, Daniel
Jaume, Guillaume
Fiche, Maryse
Anniciello, Anna Maria
Brancati, Nadia
Di Bonito, Maurizio
Scognamiglio, Giosue
Dubruc, Estelle
Author_xml – sequence: 1
  givenname: Pushpak
  surname: Pati
  fullname: Pati, Pushpak
  email: pus@zurich.ibm.com
  organization: IBM Zurich Research Lab, Zurich, Switzerland
– sequence: 2
  givenname: Guillaume
  surname: Jaume
  fullname: Jaume, Guillaume
  organization: IBM Zurich Research Lab, Zurich, Switzerland
– sequence: 3
  givenname: Antonio
  surname: Foncubierta-Rodríguez
  fullname: Foncubierta-Rodríguez, Antonio
  organization: IBM Zurich Research Lab, Zurich, Switzerland
– sequence: 4
  givenname: Florinda
  surname: Feroce
  fullname: Feroce, Florinda
  organization: National Cancer Institute - IRCCS-Fondazione Pascale, Naples, Italy
– sequence: 5
  givenname: Anna Maria
  surname: Anniciello
  fullname: Anniciello, Anna Maria
  organization: National Cancer Institute - IRCCS-Fondazione Pascale, Naples, Italy
– sequence: 6
  givenname: Giosue
  surname: Scognamiglio
  fullname: Scognamiglio, Giosue
  organization: National Cancer Institute - IRCCS-Fondazione Pascale, Naples, Italy
– sequence: 7
  givenname: Nadia
  surname: Brancati
  fullname: Brancati, Nadia
  organization: Institute for High Performance Computing and Networking - CNR, Naples, Italy
– sequence: 8
  givenname: Maryse
  surname: Fiche
  fullname: Fiche, Maryse
  organization: Aurigen- Centre de Pathologie, Lausanne, Switzerland
– sequence: 9
  givenname: Estelle
  surname: Dubruc
  fullname: Dubruc, Estelle
  organization: Lausanne University Hospital, Lausanne, Switzerland
– sequence: 10
  givenname: Daniel
  surname: Riccio
  fullname: Riccio, Daniel
  organization: Institute for High Performance Computing and Networking - CNR, Naples, Italy
– sequence: 11
  givenname: Maurizio
  surname: Di Bonito
  fullname: Di Bonito, Maurizio
  organization: National Cancer Institute - IRCCS-Fondazione Pascale, Naples, Italy
– sequence: 12
  givenname: Giuseppe
  surname: De Pietro
  fullname: De Pietro, Giuseppe
  organization: Institute for High Performance Computing and Networking - CNR, Naples, Italy
– sequence: 13
  givenname: Gerardo
  surname: Botti
  fullname: Botti, Gerardo
  organization: National Cancer Institute - IRCCS-Fondazione Pascale, Naples, Italy
– sequence: 14
  givenname: Jean-Philippe
  surname: Thiran
  fullname: Thiran, Jean-Philippe
  organization: Signal Processing Laboratory 5, EPFL, Lausanne, Switzerland
– sequence: 15
  givenname: Maria
  surname: Frucci
  fullname: Frucci, Maria
  organization: Institute for High Performance Computing and Networking - CNR, Naples, Italy
– sequence: 16
  givenname: Orcun
  surname: Goksel
  fullname: Goksel, Orcun
  organization: Computer-Assisted Applications in Medicine, ETH Zurich, Zurich, Switzerland
– sequence: 17
  givenname: Maria
  surname: Gabrani
  fullname: Gabrani, Maria
  organization: IBM Zurich Research Lab, Zurich, Switzerland
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34781160$$D View this record in MEDLINE/PubMed
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-466910$$DView record from Swedish Publication Index
BookMark eNp9kclOwzAQhi0EYn8CJFSJCwdaPN6SHDhU7BISF-BqOc60dZXGwU5AvD2GQA8cuNjW-Jt_ln-PbDa-QUKOgE6AgjpfTlZYOTNhlEGKMKbEBtkFrmCcC8Y312-QO2QvxiWlNBOCbpMdLrIcQNFdkt05DCbYhbOmHs2DaRejgG3AiE1nOuebOHLNqHJz1yWgNd3C137-cUC2ZqaOePhz75Pnm-uny7vxw-Pt_eX0YWyFKrqxBTSUzywFliMwyEFw5CUYQF5lSlYSpEynKIySZalEoaQpCguFMDORWb5Pzgbd-I5tX-o2uJUJH9obp6_cy1T7MNd9r4VSBdCEnw54G_xrj7HTKxct1rVp0PdRM1nkNNUVeUJP_qBL34cmDaOZ4lSyPJM8UXygbPAxBpytOwCqv2zQS_1tg_6yQQ82pKzjH-2-TL_rnN-9J-BiADDt7i1ZoKN12NikFNB2uvLu3wKft4qZOw
CitedBy_id crossref_primary_10_1016_j_media_2023_102915
crossref_primary_10_1016_j_yamp_2023_01_002
crossref_primary_10_1016_j_eswa_2023_120280
crossref_primary_10_1016_j_media_2023_102936
crossref_primary_10_1109_JBHI_2023_3317067
crossref_primary_10_3389_fbinf_2022_912809
crossref_primary_10_3390_cancers15245858
crossref_primary_10_1016_j_colsurfb_2024_114041
crossref_primary_10_1038_s44222_023_00096_8
crossref_primary_10_1007_s11760_023_02976_3
crossref_primary_10_1016_j_compbiomed_2023_107726
crossref_primary_10_1016_j_heliyon_2024_e26413
crossref_primary_10_47184_tp_2023_01_04
crossref_primary_10_1109_TMI_2023_3273236
crossref_primary_10_1007_s10586_022_03951_2
crossref_primary_10_1109_TMI_2023_3248559
crossref_primary_10_1007_s10278_024_01008_x
crossref_primary_10_1200_CCI_23_00038
crossref_primary_10_1109_TMI_2024_3368365
crossref_primary_10_3389_fmed_2023_1190429
crossref_primary_10_1109_TMI_2023_3313252
crossref_primary_10_1109_TMI_2023_3317132
crossref_primary_10_1016_j_cmpb_2023_107617
crossref_primary_10_1136_gutjnl_2023_329512
crossref_primary_10_1038_s41597_022_01692_w
crossref_primary_10_1109_ACCESS_2024_3359989
crossref_primary_10_1109_TMI_2023_3341846
crossref_primary_10_1186_s12859_022_05063_5
crossref_primary_10_1109_TGRS_2024_3408330
crossref_primary_10_1109_TMI_2023_3249343
crossref_primary_10_1093_bioinformatics_btac303
crossref_primary_10_1016_j_media_2024_103197
crossref_primary_10_1109_JBHI_2023_3280958
crossref_primary_10_1111_his_14820
crossref_primary_10_1016_j_jpi_2022_100158
crossref_primary_10_1038_s41379_021_00919_2
crossref_primary_10_1007_s11760_024_03034_2
crossref_primary_10_1016_j_xcrm_2023_101248
crossref_primary_10_1016_j_modpat_2022_100003
crossref_primary_10_1016_j_ebiom_2022_104067
Cites_doi 10.1016/S0140-6736(14)62038-9
10.1016/j.ymeth.2019.06.014
10.1001/jama.2015.1405
10.1109/TMI.2017.2677499
10.1007/s11684-020-0782-9
10.1016/j.media.2018.12.001
10.1038/s41598-020-62724-2
10.3389/fmed.2019.00173
10.1109/TBME.2015.2496264
10.1109/ACCESS.2018.2831280
10.1016/j.compmedimag.2018.11.003
10.1073/pnas.94.23.12258
10.1016/j.media.2017.07.005
10.1093/bioinformatics/bth933
10.1016/j.media.2019.101544
10.1109/TBME.2014.2303852
10.1016/j.media.2019.05.010
10.1016/j.media.2020.101859
10.1016/j.csbj.2018.01.001
10.1109/TMI.2020.2971006
10.1109/TPAMI.2012.120
10.1097/PAS.0000000000000948
10.1016/j.media.2020.101696
10.1016/j.media.2019.101563
10.1016/j.media.2016.06.037
ContentType Journal Article
Copyright 2021
Copyright © 2021. Published by Elsevier B.V.
Copyright Elsevier BV Jan 2022
Copyright_xml – notice: 2021
– notice: Copyright © 2021. Published by Elsevier B.V.
– notice: Copyright Elsevier BV Jan 2022
DBID 6I.
AAFTH
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QO
8FD
FR3
K9.
NAPCQ
P64
7X8
ACNBI
ADTPV
AOWAS
D8T
DF2
ZZAVC
DOI 10.1016/j.media.2021.102264
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
SWEPUB Uppsala universitet full text
SwePub
SwePub Articles
SWEPUB Freely available online
SWEPUB Uppsala universitet
SwePub Articles full text
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)
MEDLINE


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1361-8423
EndPage 102264
ExternalDocumentID oai_DiVA_org_uu_466910
10_1016_j_media_2021_102264
34781160
S1361841521003091
Genre Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
29M
4.4
457
4G.
53G
5GY
5VS
6I.
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABBQC
ABJNI
ABLVK
ABMAC
ABMZM
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACIWK
ACNNM
ACPRK
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJRQY
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
C45
CAG
COF
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HX~
HZ~
IHE
J1W
JJJVA
KOM
LCYCR
M41
MO0
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SST
SSV
SSZ
T5K
TEORI
UHS
~G-
AAXKI
ADVLN
AFJKZ
AKRWK
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QO
8FD
FR3
K9.
NAPCQ
P64
7X8
ACNBI
ADTPV
AOWAS
D8T
DF2
ZZAVC
ID FETCH-LOGICAL-c469t-c1ea03fc0128e1218143e3b1a1e3d765d51555d549a65bb64965a99c194af47c3
IEDL.DBID .~1
ISSN 1361-8415
1361-8423
IngestDate Tue Oct 01 22:48:47 EDT 2024
Fri Oct 25 08:05:07 EDT 2024
Thu Oct 10 23:05:27 EDT 2024
Thu Sep 26 19:04:47 EDT 2024
Sat Sep 28 08:26:01 EDT 2024
Fri Feb 23 02:39:56 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Digital pathology
Hierarchical graph neural network
Breast cancer classification
Cell graph representation
Breast cancer dataset
Tissue graph representation
Hierarchical tissue representation
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2021. Published by Elsevier B.V.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c469t-c1ea03fc0128e1218143e3b1a1e3d765d51555d549a65bb64965a99c194af47c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1361841521003091
PMID 34781160
PQID 2630528753
PQPubID 2045428
PageCount 1
ParticipantIDs swepub_primary_oai_DiVA_org_uu_466910
proquest_miscellaneous_2598076548
proquest_journals_2630528753
crossref_primary_10_1016_j_media_2021_102264
pubmed_primary_34781160
elsevier_sciencedirect_doi_10_1016_j_media_2021_102264
PublicationCentury 2000
PublicationDate January 2022
2022-01-00
20220101
2022
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: January 2022
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
– name: Amsterdam
PublicationTitle Medical image analysis
PublicationTitleAlternate Med Image Anal
PublicationYear 2022
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Litjens (bib0044) 2017; 42
Kipf, Welling (bib0041) 2017
Deng (bib0023) 2020
Tellez (bib0075) 2019; 58
Sharma (bib0067) 2017
Allemani (bib0003) 2015; 385
Dehmamy (bib0020) 2019
Gilmer (bib0027) 2017
Bejnordi (bib0013) 2019; 318 (22)
Aresta (bib0008) 2019; 56
Demir, Yener, Gultekin (bib0021) 2004; 20
Kumar (bib0043) 2017; 36 (7)
Chen (bib0017) 2020
Xu (bib0083) 2019
Jaume (bib0037) 2021
Bardou (bib0011) 2018; 6
Spanhol (bib0070) 2016; 63 (7)
Mercan (bib0052) 2019; 2
Pati (bib0059) 2021; 67
Sirinukunwattana (bib0069) 2018; 11071
Weisfeiler, Lehman (bib0081) 1968; 2
Graham (bib0029) 2019; 58
Yao (bib0085) 2021; 65
Hamilton (bib0032) 2017
Pope (bib0061) 2019
Dwivedi (bib0024) 2020
Campanella (bib0016) 2019; 25 (8)
Aresta (bib0007) 2018
Lu (bib0045) 2021
Veta (bib0079) 2014
Javed (bib0039) 2020; 63
Pati (bib0057) 2018
Xu (bib0082) 2018
Achanta (bib0001) 2012; 34 (11)
Komura, Ishikawa (bib0042) 2018
Anand (bib0004) 2020
Jaume (bib0038) 2021
Aygunes (bib0009) 2020
Velickovic (bib0077) 2018
Sharma (bib0065) 2015
Sharma (bib0066) 2016; 9791
Zhu (bib0088) 2017
Corso (bib0019) 2020
Mercan (bib0051) 2018
Paszke (bib0056) 2019
Verma (bib0078) 2020
Jaume (bib0035) 2019
Hagele (bib0031) 2020; 10
Yan (bib0084) 2020; 173
Roy (bib0063) 2019; 71
Francis, Palsson (bib0026) 1997; 94 (23)
He (bib0033) 2016
Mehta (bib0049) 2018
Sureka (bib0074) 2020
Brancati, Frucci, Riccio (bib0015) 2018
Graham (bib0030) 2019; 52
Shaban (bib0064) 2020; 39
Marami (bib0048) 2018
Araujo (bib0006) 2005; 12 (6)
Elmore (bib0025) 2015; 313 (11)
Macenko (bib0046) 2009
Stanisavljevic (bib0072) 2018
Kingma, Ba (bib0040) 2015
Siegel, Miller, Jemal (bib0068) 2020; 70
Binder (bib0014) 2019
Zhao (bib0086) 2020
Srinidhi (bib0071) 2021; 67
Mukhopadhyay (bib0054) 2017; 42
Parwani (bib0055) 2019; 14 (138)
Anklin (bib0005) 2021
Gomes (bib0028) 2014; 9 (121)
Potjer (bib0062) 1996; 5
Tellez (bib0076) 2019; 58
Wang (bib0080) 2019; abs/1909.01315
Sung (bib0073) 2021
Adnan (bib0002) 2020
Bejnordi (bib0012) 2017; 4 (4)
Jaume (bib0036) 2020
Deng (bib0022) 2009
Pinckaers, van Ginneken, Litjens (bib0060) 2020; 39 (5)
Chennamsetty, Safwan, Alex (bib0018) 2018
Jampani (bib0034) 2018
Madabhushi, Lee (bib0047) 2016; 33
Bankhead (bib0010) 2017; 7 (1)
Morris (bib0053) 2018; 33
Pati (bib0058) 2020
Zhou (bib0087) 2019
Mercan (bib0050) 2019
Madabhushi (10.1016/j.media.2021.102264_bib0047) 2016; 33
Hamilton (10.1016/j.media.2021.102264_bib0032) 2017
Macenko (10.1016/j.media.2021.102264_bib0046) 2009
Sharma (10.1016/j.media.2021.102264_bib0067) 2017
Jaume (10.1016/j.media.2021.102264_bib0035) 2019
Parwani (10.1016/j.media.2021.102264_bib0055) 2019; 14 (138)
Zhao (10.1016/j.media.2021.102264_bib0086) 2020
Sureka (10.1016/j.media.2021.102264_bib0074) 2020
Anand (10.1016/j.media.2021.102264_bib0004) 2020
Hagele (10.1016/j.media.2021.102264_bib0031) 2020; 10
Paszke (10.1016/j.media.2021.102264_bib0056) 2019
Potjer (10.1016/j.media.2021.102264_bib0062) 1996; 5
Spanhol (10.1016/j.media.2021.102264_bib0070) 2016; 63 (7)
Gomes (10.1016/j.media.2021.102264_bib0028) 2014; 9 (121)
Graham (10.1016/j.media.2021.102264_bib0030) 2019; 52
Shaban (10.1016/j.media.2021.102264_bib0064) 2020; 39
Aresta (10.1016/j.media.2021.102264_bib0008) 2019; 56
Francis (10.1016/j.media.2021.102264_bib0026) 1997; 94 (23)
Adnan (10.1016/j.media.2021.102264_bib0002) 2020
Mehta (10.1016/j.media.2021.102264_bib0049) 2018
Mercan (10.1016/j.media.2021.102264_bib0051) 2018
Velickovic (10.1016/j.media.2021.102264_bib0077) 2018
Bankhead (10.1016/j.media.2021.102264_bib0010) 2017; 7 (1)
Pati (10.1016/j.media.2021.102264_bib0059) 2021; 67
Yan (10.1016/j.media.2021.102264_bib0084) 2020; 173
Roy (10.1016/j.media.2021.102264_bib0063) 2019; 71
Elmore (10.1016/j.media.2021.102264_bib0025) 2015; 313 (11)
Javed (10.1016/j.media.2021.102264_bib0039) 2020; 63
Gilmer (10.1016/j.media.2021.102264_bib0027) 2017
Brancati (10.1016/j.media.2021.102264_bib0015) 2018
Corso (10.1016/j.media.2021.102264_bib0019) 2020
Wang (10.1016/j.media.2021.102264_bib0080) 2019; abs/1909.01315
Sharma (10.1016/j.media.2021.102264_bib0066) 2016; 9791
Kumar (10.1016/j.media.2021.102264_bib0043) 2017; 36 (7)
Mercan (10.1016/j.media.2021.102264_bib0052) 2019; 2
Jaume (10.1016/j.media.2021.102264_bib0036) 2020
Bardou (10.1016/j.media.2021.102264_bib0011) 2018; 6
Dehmamy (10.1016/j.media.2021.102264_bib0020) 2019
Deng (10.1016/j.media.2021.102264_bib0022) 2009
Pati (10.1016/j.media.2021.102264_bib0057) 2018
Siegel (10.1016/j.media.2021.102264_bib0068) 2020; 70
Sirinukunwattana (10.1016/j.media.2021.102264_bib0069) 2018; 11071
Kingma (10.1016/j.media.2021.102264_bib0040) 2015
Allemani (10.1016/j.media.2021.102264_bib0003) 2015; 385
Aresta (10.1016/j.media.2021.102264_bib0007) 2018
Bejnordi (10.1016/j.media.2021.102264_bib0013) 2019; 318 (22)
Sung (10.1016/j.media.2021.102264_bib0073) 2021
Mercan (10.1016/j.media.2021.102264_bib0050) 2019
Weisfeiler (10.1016/j.media.2021.102264_bib0081) 1968; 2
Morris (10.1016/j.media.2021.102264_bib0053) 2018; 33
Bejnordi (10.1016/j.media.2021.102264_bib0012) 2017; 4 (4)
Tellez (10.1016/j.media.2021.102264_bib0076) 2019; 58
Aygunes (10.1016/j.media.2021.102264_bib0009) 2020
Zhou (10.1016/j.media.2021.102264_bib0087) 2019
Xu (10.1016/j.media.2021.102264_bib0083) 2019
Achanta (10.1016/j.media.2021.102264_bib0001) 2012; 34 (11)
Mukhopadhyay (10.1016/j.media.2021.102264_bib0054) 2017; 42
Jaume (10.1016/j.media.2021.102264_bib0037) 2021
Yao (10.1016/j.media.2021.102264_bib0085) 2021; 65
Kipf (10.1016/j.media.2021.102264_bib0041) 2017
Komura (10.1016/j.media.2021.102264_bib0042) 2018
Binder (10.1016/j.media.2021.102264_bib0014) 2019
Demir (10.1016/j.media.2021.102264_bib0021) 2004; 20
Chennamsetty (10.1016/j.media.2021.102264_bib0018) 2018
Jampani (10.1016/j.media.2021.102264_bib0034) 2018
Sharma (10.1016/j.media.2021.102264_bib0065) 2015
Deng (10.1016/j.media.2021.102264_bib0023) 2020
Veta (10.1016/j.media.2021.102264_bib0079) 2014
Stanisavljevic (10.1016/j.media.2021.102264_bib0072) 2018
Xu (10.1016/j.media.2021.102264_bib0082) 2018
Jaume (10.1016/j.media.2021.102264_bib0038) 2021
Pati (10.1016/j.media.2021.102264_bib0058) 2020
Zhu (10.1016/j.media.2021.102264_bib0088) 2017
Dwivedi (10.1016/j.media.2021.102264_bib0024) 2020
Graham (10.1016/j.media.2021.102264_bib0029) 2019; 58
Litjens (10.1016/j.media.2021.102264_bib0044) 2017; 42
Campanella (10.1016/j.media.2021.102264_bib0016) 2019; 25 (8)
Chen (10.1016/j.media.2021.102264_bib0017) 2020
Pinckaers (10.1016/j.media.2021.102264_bib0060) 2020; 39 (5)
Tellez (10.1016/j.media.2021.102264_bib0075) 2019; 58
Pope (10.1016/j.media.2021.102264_bib0061) 2019
He (10.1016/j.media.2021.102264_bib0033) 2016
Srinidhi (10.1016/j.media.2021.102264_bib0071) 2021; 67
Anklin (10.1016/j.media.2021.102264_bib0005) 2021
Lu (10.1016/j.media.2021.102264_bib0045) 2021
Marami (10.1016/j.media.2021.102264_bib0048) 2018
Verma (10.1016/j.media.2021.102264_bib0078) 2020
Araujo (10.1016/j.media.2021.102264_bib0006) 2005; 12 (6)
References_xml – volume: 33
  start-page: 170
  year: 2016
  end-page: 175
  ident: bib0047
  article-title: Image analysis and machine learning in digital pathology: challenges and opportunities
  publication-title: Med. Image Anal.,
  contributor:
    fullname: Lee
– start-page: 61
  year: 2017
  end-page: 66
  ident: bib0067
  article-title: A comparative study of cell nuclei attributed relational graphs for knowledge description and categorization in histopathological gastric cancer whole slide images
  publication-title: IEEE Symposium on Computer-Based Medical Systems
  contributor:
    fullname: Sharma
– volume: 11071
  year: 2018
  ident: bib0069
  article-title: Improving whole slide segmentation through visual context - a systematic study
  publication-title: Medical Image Computing and Computer Assisted Intervention (MICCAI)
  contributor:
    fullname: Sirinukunwattana
– volume: 56
  start-page: 122
  year: 2019
  end-page: 139
  ident: bib0008
  article-title: Bach: grand challenge on breast cancer histology images
  publication-title: Med. Image Anal.,
  contributor:
    fullname: Aresta
– start-page: 1
  year: 2021
  end-page: 41
  ident: bib0073
  article-title: Global cancer statistics 2020: globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries
  publication-title: CA Cancer J. clinicians
  contributor:
    fullname: Sung
– year: 2017
  ident: bib0088
  article-title: Wsisa: Making survival prediction from whole slide pathology images
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
  contributor:
    fullname: Zhu
– start-page: 804
  year: 2018
  end-page: 811
  ident: bib0018
  article-title: Classification of breast cancer histology image using ensemble of pre-trained neural networks
  publication-title: International Conference Image Analysis and Recognition (ICIAR)
  contributor:
    fullname: Alex
– start-page: 15413
  year: 2019
  end-page: 15423
  ident: bib0020
  article-title: Understanding the representation power of graph neural networks in learning graph topology
  publication-title: Neural Information Processing Systems (NeurIPS)
  contributor:
    fullname: Dehmamy
– volume: abs/1909.01315
  year: 2019
  ident: bib0080
  article-title: Deep graph library: Towards efficient and scalable deep learning on graphs
  publication-title: CoRR
  contributor:
    fullname: Wang
– year: 2020
  ident: bib0009
  article-title: Graph convolutional networks for region of interest classification in breast histopathology
  publication-title: SPIE Medical Imaging
  contributor:
    fullname: Aygunes
– volume: 67
  year: 2021
  ident: bib0059
  article-title: Reducing annotation effort in digital pathology: aco-representation learning framework for classification tasks
  publication-title: Med. Image Anal.,
  contributor:
    fullname: Pati
– volume: 385
  start-page: 977
  year: 2015
  end-page: 1010
  ident: bib0003
  article-title: Global surveillance of cancer survival 1995–2009: analysis of individual data for 25,676,887 patients from 279 population-based registries in 67 countries (concord-2)
  publication-title: The Lancet,
  contributor:
    fullname: Allemani
– year: 2019
  ident: bib0050
  article-title: From patch-level to roi-level deep feature representations for breast histopathology classification
  publication-title: SPIE Medical Imaging
  contributor:
    fullname: Mercan
– volume: 39
  start-page: 2395
  year: 2020
  end-page: 2405
  ident: bib0064
  article-title: Context-aware convolutional neural network for grading of colorectal cancer histology images
  publication-title: IEEE Trans. Med. Imag.,
  contributor:
    fullname: Shaban
– year: 2018
  ident: bib0007
  article-title: Iciar 2018 grand challenge on breast cancer histology images
  contributor:
    fullname: Aresta
– volume: 42
  start-page: 60
  year: 2017
  end-page: 88
  ident: bib0044
  article-title: A survey on deep learning in medical image analysis
  publication-title: Med. Image Anal.,
  contributor:
    fullname: Litjens
– year: 2018
  ident: bib0057
  article-title: Deep positive-unlabeled learning for region of interest localization in breast tissue images
  publication-title: SPIE Medical Imaging
  contributor:
    fullname: Pati
– volume: 2
  start-page: 12
  year: 1968
  end-page: 16
  ident: bib0081
  article-title: A reduction of a graph to a canonical form and an algebra arising during this reduction
  publication-title: Nauchno-Technicheskaya Informatsia
  contributor:
    fullname: Lehman
– volume: 33
  year: 2018
  ident: bib0053
  article-title: Weisfeiler and leman go neural: Higher-order graph neural networks
  publication-title: Association for the Advancement of Artificial Intelligence (AAAI)
  contributor:
    fullname: Morris
– volume: 52
  start-page: 199
  year: 2019
  end-page: 211
  ident: bib0030
  article-title: Mild-net: minimal information loss dilated network for gland instance segmentation in colon histology images
  publication-title: Med. Image Anal.,
  contributor:
    fullname: Graham
– volume: 173
  start-page: 52
  year: 2020
  end-page: 60
  ident: bib0084
  article-title: Breast cancer histopathological image classification using a hybrid deep neural network
  publication-title: Methods,
  contributor:
    fullname: Yan
– volume: 65
  year: 2021
  ident: bib0085
  article-title: Whole slide images based cancer survival prediction using attention guided deep multiple instance learning networks
  publication-title: Med. Image Anal.,
  contributor:
    fullname: Yao
– volume: 36 (7)
  start-page: 1550
  year: 2017
  end-page: 1560
  ident: bib0043
  article-title: A dataset and a technique for generalized nuclear segmentation for computational pathology
  publication-title: IEEE Trans. Med. Imag.,
  contributor:
    fullname: Kumar
– year: 2018
  ident: bib0049
  article-title: Learning to segment breast biopsy whole slide images
  publication-title: IEEE Winter Conference on Applications of Computer Vision (WACV)
  contributor:
    fullname: Mehta
– volume: 9791
  year: 2016
  ident: bib0066
  article-title: Cell nuclei attributed relational graphs for efficient representation and classification of gastric cancer in digital histopathology
  publication-title: SPIE Medical Imaging
  contributor:
    fullname: Sharma
– volume: 318 (22)
  start-page: 21992210
  year: 2019
  ident: bib0013
  article-title: Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer
  publication-title: JAMA,
  contributor:
    fullname: Bejnordi
– volume: 10
  year: 2020
  ident: bib0031
  article-title: Resolving challenges in deep learning-based analyses of histopathological images using explanation methods
  publication-title: Sci. Rep.,
  contributor:
    fullname: Hagele
– start-page: 4837
  year: 2020
  end-page: 4846
  ident: bib0086
  article-title: Predicting lymph node metastasis using histopathological images based on multiple instance learning with deep graph convolution
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
  contributor:
    fullname: Zhao
– year: 2021
  ident: bib0045
  article-title: Data efficient and weakly supervised computational pathology on whole slide images
  publication-title: Nat Biomed Eng
  contributor:
    fullname: Lu
– start-page: 10764
  year: 2019
  end-page: 10773
  ident: bib0061
  article-title: Explainability methods for graph convolutional neural networks
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
  contributor:
    fullname: Pope
– volume: 20
  start-page: 145
  year: 2004
  end-page: 151
  ident: bib0021
  article-title: The cell graphs of cancer
  publication-title: Bioinformatics,
  contributor:
    fullname: Gultekin
– year: 2021
  ident: bib0005
  article-title: Learning whole-slide segmentation from inexact and incomplete labels using tissue graphs
  publication-title: Medical Image Computing and Computer Assisted Intervention (MICCAI)
  contributor:
    fullname: Anklin
– year: 2021
  ident: bib0038
  article-title: Quantifying explainers of graph neural networks in computational pathology
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
  contributor:
    fullname: Jaume
– start-page: 8024
  year: 2019
  end-page: 8035
  ident: bib0056
  article-title: Pytorch: An imperative style, high-performance deep learning library
  publication-title: Neural Information Processing Systems (NeurIPS)
  contributor:
    fullname: Paszke
– volume: 58
  year: 2019
  ident: bib0076
  article-title: Quantifying the effects of data augmentation and stain color normalization in convolutional neural networks for computational pathology
  publication-title: Med. Image Anal.,
  contributor:
    fullname: Tellez
– year: 2018
  ident: bib0034
  article-title: Superpixel sampling networks
  publication-title: European Conference on Computer Vision (ECCV)
  contributor:
    fullname: Jampani
– year: 2020
  ident: bib0078
  article-title: Multi-organ nuclei segmentation and classification challenge
  publication-title: IEEE Trans. Med. Imag
  contributor:
    fullname: Verma
– volume: 4 (4)
  year: 2017
  ident: bib0012
  article-title: Context-aware stacked convolutional neural networks for classification of breast carcinomas in whole-slide histopathology images
  publication-title: J. Med. Imaging,
  contributor:
    fullname: Bejnordi
– start-page: 1107
  year: 2009
  end-page: 1110
  ident: bib0046
  article-title: A method for normalizing histology slides for quantitative analysis
  publication-title: IEEE International Symposium on Biomedical Imaging (ISBI)
  contributor:
    fullname: Macenko
– volume: 67
  year: 2021
  ident: bib0071
  article-title: Deep neural network models for computational histopathology: A survey
  publication-title: Med. Image Anal.
  contributor:
    fullname: Srinidhi
– volume: 313 (11)
  start-page: 1122
  year: 2015
  end-page: 1132
  ident: bib0025
  article-title: Diagnostic concordance among pathologists interpreting breast biopsy specimens
  publication-title: JAMA,
  contributor:
    fullname: Elmore
– year: 2019
  ident: bib0014
  article-title: Multi-organ gland segmentation using deep learning
  publication-title: Front. Med
  contributor:
    fullname: Binder
– start-page: 770
  year: 2016
  end-page: 778
  ident: bib0033
  article-title: Deep residual learning for image recognition
  publication-title: IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR)
  contributor:
    fullname: He
– year: 2020
  ident: bib0074
  article-title: Visualization for histopathology images using graph convolutional neural networks
  publication-title: IEEE International Conference on Bioinformatics and Bioengineering (BIBE)
  contributor:
    fullname: Sureka
– volume: 63
  year: 2020
  ident: bib0039
  article-title: Cellular community detection for tissue phenotyping in colorectal cancer histology images
  publication-title: Med. Image Anal.,
  contributor:
    fullname: Javed
– year: 2019
  ident: bib0035
  article-title: edgnn: a simple and powerful gnn for directed labeled graphs
  publication-title: International Conference on Learning Representations (ICLR) Workshop on Representation Learning on Graphs and Manifolds
  contributor:
    fullname: Jaume
– year: 2017
  ident: bib0041
  article-title: Semi-supervised classification with graph convolutional networks
  publication-title: Int. Conf. Learning Representations (ICLR)
  contributor:
    fullname: Welling
– year: 2018
  ident: bib0072
  article-title: A fast and scalable pipeline for stain normalization of whole-slide images in histopathology
  publication-title: European Conference on Computer Vision (ECCV) Workshops
  contributor:
    fullname: Stanisavljevic
– year: 2020
  ident: bib0024
  article-title: Benchmarking graph neural networks
  publication-title: arXiv:2003.00982
  contributor:
    fullname: Dwivedi
– year: 2020
  ident: bib0017
  article-title: Pathomic fusion: an integrated framework for fusing histopathology and genomic features for cancer diagnosis and prognosis
  publication-title: IEEE Trans. Med. Imag
  contributor:
    fullname: Chen
– start-page: 771
  year: 2018
  end-page: 778
  ident: bib0015
  article-title: Multi-classification of breast cancer histology images by using a fine-tuning strategy
  publication-title: International Conference Image Analysis and Recognition (ICIAR)
  contributor:
    fullname: Riccio
– volume: 12 (6)
  year: 2005
  ident: bib0006
  article-title: Classification of breast cancer histology images using convolutional neural networks
  publication-title: PLoS One,
  contributor:
    fullname: Araujo
– year: 2018
  ident: bib0051
  article-title: Automated diagnosis of breast cancer and pre-invasive lesions on digital whole slide images
  publication-title: International Conference on Pattern Recognition Applications and Methods (ICPRAM)
  contributor:
    fullname: Mercan
– year: 2019
  ident: bib0083
  article-title: How powerful are graph neural networks?
  publication-title: International Conference on Learning Representations (ICLR)
  contributor:
    fullname: Xu
– volume: 34 (11)
  start-page: 2274
  year: 2012
  end-page: 2282
  ident: bib0001
  article-title: Slic superpixels compared to state-of-the-art superpixel methods
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.,
  contributor:
    fullname: Achanta
– start-page: 4254
  year: 2020
  end-page: 4261
  ident: bib0002
  article-title: Representation learning of histopathology images using graph neural networks
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops
  contributor:
    fullname: Adnan
– start-page: 248
  year: 2009
  end-page: 255
  ident: bib0022
  article-title: Imagenet: A large-scale hierarchical image database
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
  contributor:
    fullname: Deng
– volume: 5
  start-page: 11118
  year: 1996
  ident: bib0062
  article-title: Region adjacency graphs and connected morphological operators
  publication-title: Mathematical Morphology and its Applications to Image and Signal Processing. Computational Imaging and Vision,
  contributor:
    fullname: Potjer
– volume: 25 (8)
  start-page: 130109
  year: 2019
  ident: bib0016
  article-title: Clinical-grade computational pathology using weakly supervised deep learning on whole slide images
  publication-title: Nat. Med.,
  contributor:
    fullname: Campanella
– volume: 42
  start-page: 39
  year: 2017
  end-page: 52
  ident: bib0054
  article-title: Whole slide imaging versus microscopy for primary diagnosis in surgical pathology: a multicenter blinded randomized noninferiority study of 1992 cases (pivotal study)
  publication-title: Am J Surg Pathol,
  contributor:
    fullname: Mukhopadhyay
– volume: 58
  year: 2019
  ident: bib0075
  article-title: Neural image compression for gigapixel histopathology image analysis
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.,
  contributor:
    fullname: Tellez
– volume: 9 (121)
  year: 2014
  ident: bib0028
  article-title: Inter-observer variability between general pathologists and a specialist in breast pathology in the diagnosis of lobular neoplasia, columnar cell lesions, atypical ductal hyperplasia and ductal carcinoma in situ of the breast
  publication-title: Diagn Pathol,
  contributor:
    fullname: Gomes
– start-page: 34
  year: 2018
  end-page: 42
  ident: bib0042
  article-title: Machine learning methods for histopathological image analysis
  publication-title: Comput Struct Biotechnol J.,
  contributor:
    fullname: Ishikawa
– volume: 39 (5)
  start-page: 1306
  year: 2020
  end-page: 1315
  ident: bib0060
  article-title: Streaming convolutional neural networks for end-to-end learning with multi-megapixel images
  publication-title: IEEE Trans. Med. Imag.,
  contributor:
    fullname: Litjens
– volume: 70
  start-page: 7
  year: 2020
  end-page: 30
  ident: bib0068
  article-title: Cancer statistics, 2020
  publication-title: CA: A Cancer Journal for Clinicians,
  contributor:
    fullname: Jemal
– start-page: 1263
  year: 2017
  end-page: 1272
  ident: bib0027
  article-title: Neural message passing for quantum chemistry
  publication-title: International Conference on Machine Learning (ICML)
  contributor:
    fullname: Gilmer
– year: 2021
  ident: bib0037
  article-title: Histocartography: A toolkit for graph analytics in digital pathology
  publication-title: arXiv:2107.10073
  contributor:
    fullname: Jaume
– volume: 63 (7)
  start-page: 1455
  year: 2016
  end-page: 1462
  ident: bib0070
  article-title: A dataset for breast cancer histopathological image classification
  publication-title: IEEE Trans. Biomed. Eng.,
  contributor:
    fullname: Spanhol
– year: 2018
  ident: bib0082
  article-title: Representation learning on graphs with jumping knowledge networks
  publication-title: International Conference on Machine Learning (ICML)
  contributor:
    fullname: Xu
– year: 2015
  ident: bib0040
  article-title: Adam: A method for stochastic optimization
  publication-title: International Conference on Learning Representations (ICLR)
  contributor:
    fullname: Ba
– year: 2020
  ident: bib0058
  article-title: Hact-net: A hierarchical cell-to-tissue graph neural network for histopathological image classification
  publication-title: Medical Image Computing and Computer Assisted Intervention (MICCAI) Workshop on GRaphs in biomedicAl Image anaLysis
  contributor:
    fullname: Pati
– start-page: 861
  year: 2018
  end-page: 868
  ident: bib0048
  article-title: Ensemble network for region identification in breast histopathology slides
  publication-title: International Conference Image Analysis and Recognition (ICIAR)
  contributor:
    fullname: Marami
– year: 2015
  ident: bib0065
  article-title: A review of graph-based methods for image analysis in digital histopathology
  publication-title: Diagn Pathol
  contributor:
    fullname: Sharma
– year: 2020
  ident: bib0023
  article-title: Deep learning in digital pathology image analysis: asurvey
  publication-title: Front. Med
  contributor:
    fullname: Deng
– volume: 94 (23)
  start-page: 12258
  year: 1997
  end-page: 12262
  ident: bib0026
  article-title: Effective intercellular communication distances are determined by the relative time constants for cyto/chemokine secretion and diffusion
  publication-title: Proc Natl Acad Sci,
  contributor:
    fullname: Palsson
– volume: 58
  year: 2019
  ident: bib0029
  article-title: Hover-net: simultaneous segmentation and classification of nuclei in multi-tissue histology images
  publication-title: Med. Image Anal.,
  contributor:
    fullname: Graham
– volume: 2
  year: 2019
  ident: bib0052
  article-title: Assessment of machine learning of breast pathology structures for automated differentiation of breast cancer and high-risk proliferative lesions
  publication-title: JAMA Netw Open
  contributor:
    fullname: Mercan
– year: 2020
  ident: bib0036
  article-title: Towards explainable graph representations in digital pathology
  publication-title: International Conference on Machine Learning (ICML), Workshop on Computational Biology
  contributor:
    fullname: Jaume
– year: 2019
  ident: bib0087
  article-title: CGC-net: Cell graph convolutional network for grading of colorectal cancer histology images
  publication-title: IEEE International Conference on Computer Vision (ICCV) Workshops
  contributor:
    fullname: Zhou
– volume: 71
  start-page: 90
  year: 2019
  end-page: 103
  ident: bib0063
  article-title: Patch-based system for classification of breast histology images using deep learning
  publication-title: Comput Med Imaging Graph,
  contributor:
    fullname: Roy
– start-page: 1024
  year: 2017
  end-page: 1034
  ident: bib0032
  article-title: Inductive representation learning on large graphs
  publication-title: Neural Information Processing Systems (NeurIPS)
  contributor:
    fullname: Hamilton
– start-page: 1400
  year: 2014
  end-page: 1411
  ident: bib0079
  article-title: Breast cancer histopathology image analysis: areview
  publication-title: IEEE Trans. Biomed. Eng.
  contributor:
    fullname: Veta
– year: 2018
  ident: bib0077
  article-title: Graph attention networks
  publication-title: International Conference on Learning Representations (ICLR)
  contributor:
    fullname: Velickovic
– year: 2020
  ident: bib0004
  article-title: Histographs: graphs in histopathology
  publication-title: SPIE Medical Imaging
  contributor:
    fullname: Anand
– year: 2020
  ident: bib0019
  article-title: Principal neighbourhood aggregation for graph nets
  publication-title: Neural Information Processing Systems (NeurIPS)
  contributor:
    fullname: Corso
– volume: 6
  start-page: 24680
  year: 2018
  end-page: 24693
  ident: bib0011
  article-title: Classification of breast cancer based on histology images using convolutional neural networks
  publication-title: IEEE Access,
  contributor:
    fullname: Bardou
– volume: 7 (1)
  start-page: 1
  year: 2017
  end-page: 7
  ident: bib0010
  article-title: Qupath: open source software for digital pathology image analysis
  publication-title: Sci. Rep.,
  contributor:
    fullname: Bankhead
– volume: 14 (138)
  year: 2019
  ident: bib0055
  article-title: Next generation diagnostic pathology: use of digital pathology and artificial intelligence tools to augment a pathological diagnosis
  publication-title: Diagn Pathol,
  contributor:
    fullname: Parwani
– volume: 65
  issue: 473
  year: 2021
  ident: 10.1016/j.media.2021.102264_bib0085
  article-title: Whole slide images based cancer survival prediction using attention guided deep multiple instance learning networks
  publication-title: Med. Image Anal.,
  contributor:
    fullname: Yao
– volume: 385
  start-page: 977
  issue: 9972
  year: 2015
  ident: 10.1016/j.media.2021.102264_bib0003
  article-title: Global surveillance of cancer survival 1995–2009: analysis of individual data for 25,676,887 patients from 279 population-based registries in 67 countries (concord-2)
  publication-title: The Lancet,
  doi: 10.1016/S0140-6736(14)62038-9
  contributor:
    fullname: Allemani
– volume: 318 (22)
  start-page: 21992210
  year: 2019
  ident: 10.1016/j.media.2021.102264_bib0013
  article-title: Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer
  publication-title: JAMA,
  contributor:
    fullname: Bejnordi
– volume: 39 (5)
  start-page: 1306
  year: 2020
  ident: 10.1016/j.media.2021.102264_bib0060
  article-title: Streaming convolutional neural networks for end-to-end learning with multi-megapixel images
  publication-title: IEEE Trans. Med. Imag.,
  contributor:
    fullname: Pinckaers
– year: 2020
  ident: 10.1016/j.media.2021.102264_bib0078
  article-title: Multi-organ nuclei segmentation and classification challenge
  publication-title: IEEE Trans. Med. Imag
  contributor:
    fullname: Verma
– volume: 173
  start-page: 52
  year: 2020
  ident: 10.1016/j.media.2021.102264_bib0084
  article-title: Breast cancer histopathological image classification using a hybrid deep neural network
  publication-title: Methods,
  doi: 10.1016/j.ymeth.2019.06.014
  contributor:
    fullname: Yan
– volume: 7 (1)
  start-page: 1
  year: 2017
  ident: 10.1016/j.media.2021.102264_bib0010
  article-title: Qupath: open source software for digital pathology image analysis
  publication-title: Sci. Rep.,
  contributor:
    fullname: Bankhead
– volume: 313 (11)
  start-page: 1122
  year: 2015
  ident: 10.1016/j.media.2021.102264_bib0025
  article-title: Diagnostic concordance among pathologists interpreting breast biopsy specimens
  publication-title: JAMA,
  doi: 10.1001/jama.2015.1405
  contributor:
    fullname: Elmore
– year: 2019
  ident: 10.1016/j.media.2021.102264_bib0035
  article-title: edgnn: a simple and powerful gnn for directed labeled graphs
  contributor:
    fullname: Jaume
– year: 2021
  ident: 10.1016/j.media.2021.102264_bib0037
  article-title: Histocartography: A toolkit for graph analytics in digital pathology
  contributor:
    fullname: Jaume
– year: 2020
  ident: 10.1016/j.media.2021.102264_bib0074
  article-title: Visualization for histopathology images using graph convolutional neural networks
  contributor:
    fullname: Sureka
– start-page: 804
  year: 2018
  ident: 10.1016/j.media.2021.102264_bib0018
  article-title: Classification of breast cancer histology image using ensemble of pre-trained neural networks
  contributor:
    fullname: Chennamsetty
– volume: 9791
  year: 2016
  ident: 10.1016/j.media.2021.102264_bib0066
  article-title: Cell nuclei attributed relational graphs for efficient representation and classification of gastric cancer in digital histopathology
  contributor:
    fullname: Sharma
– start-page: 4254
  year: 2020
  ident: 10.1016/j.media.2021.102264_bib0002
  article-title: Representation learning of histopathology images using graph neural networks
  contributor:
    fullname: Adnan
– year: 2015
  ident: 10.1016/j.media.2021.102264_bib0065
  article-title: A review of graph-based methods for image analysis in digital histopathology
  contributor:
    fullname: Sharma
– year: 2018
  ident: 10.1016/j.media.2021.102264_bib0034
  article-title: Superpixel sampling networks
  contributor:
    fullname: Jampani
– start-page: 770
  year: 2016
  ident: 10.1016/j.media.2021.102264_bib0033
  article-title: Deep residual learning for image recognition
  contributor:
    fullname: He
– volume: 36 (7)
  start-page: 1550
  year: 2017
  ident: 10.1016/j.media.2021.102264_bib0043
  article-title: A dataset and a technique for generalized nuclear segmentation for computational pathology
  publication-title: IEEE Trans. Med. Imag.,
  doi: 10.1109/TMI.2017.2677499
  contributor:
    fullname: Kumar
– year: 2020
  ident: 10.1016/j.media.2021.102264_bib0023
  article-title: Deep learning in digital pathology image analysis: asurvey
  publication-title: Front. Med
  doi: 10.1007/s11684-020-0782-9
  contributor:
    fullname: Deng
– volume: 5
  start-page: 11118
  year: 1996
  ident: 10.1016/j.media.2021.102264_bib0062
  article-title: Region adjacency graphs and connected morphological operators
  publication-title: Mathematical Morphology and its Applications to Image and Signal Processing. Computational Imaging and Vision,
  contributor:
    fullname: Potjer
– year: 2019
  ident: 10.1016/j.media.2021.102264_bib0087
  article-title: CGC-net: Cell graph convolutional network for grading of colorectal cancer histology images
  contributor:
    fullname: Zhou
– volume: 12 (6)
  year: 2005
  ident: 10.1016/j.media.2021.102264_bib0006
  article-title: Classification of breast cancer histology images using convolutional neural networks
  publication-title: PLoS One,
  contributor:
    fullname: Araujo
– start-page: 1107
  year: 2009
  ident: 10.1016/j.media.2021.102264_bib0046
  article-title: A method for normalizing histology slides for quantitative analysis
  contributor:
    fullname: Macenko
– year: 2018
  ident: 10.1016/j.media.2021.102264_bib0057
  article-title: Deep positive-unlabeled learning for region of interest localization in breast tissue images
  contributor:
    fullname: Pati
– year: 2015
  ident: 10.1016/j.media.2021.102264_bib0040
  article-title: Adam: A method for stochastic optimization
  contributor:
    fullname: Kingma
– volume: 33
  year: 2018
  ident: 10.1016/j.media.2021.102264_bib0053
  article-title: Weisfeiler and leman go neural: Higher-order graph neural networks
  contributor:
    fullname: Morris
– volume: 52
  start-page: 199
  year: 2019
  ident: 10.1016/j.media.2021.102264_bib0030
  article-title: Mild-net: minimal information loss dilated network for gland instance segmentation in colon histology images
  publication-title: Med. Image Anal.,
  doi: 10.1016/j.media.2018.12.001
  contributor:
    fullname: Graham
– volume: 10
  year: 2020
  ident: 10.1016/j.media.2021.102264_bib0031
  article-title: Resolving challenges in deep learning-based analyses of histopathological images using explanation methods
  publication-title: Sci. Rep.,
  doi: 10.1038/s41598-020-62724-2
  contributor:
    fullname: Hagele
– year: 2020
  ident: 10.1016/j.media.2021.102264_bib0004
  article-title: Histographs: graphs in histopathology
  contributor:
    fullname: Anand
– volume: 14 (138)
  year: 2019
  ident: 10.1016/j.media.2021.102264_bib0055
  article-title: Next generation diagnostic pathology: use of digital pathology and artificial intelligence tools to augment a pathological diagnosis
  publication-title: Diagn Pathol,
  contributor:
    fullname: Parwani
– year: 2019
  ident: 10.1016/j.media.2021.102264_bib0014
  article-title: Multi-organ gland segmentation using deep learning
  publication-title: Front. Med
  doi: 10.3389/fmed.2019.00173
  contributor:
    fullname: Binder
– volume: 63 (7)
  start-page: 1455
  year: 2016
  ident: 10.1016/j.media.2021.102264_bib0070
  article-title: A dataset for breast cancer histopathological image classification
  publication-title: IEEE Trans. Biomed. Eng.,
  doi: 10.1109/TBME.2015.2496264
  contributor:
    fullname: Spanhol
– volume: 25 (8)
  start-page: 130109
  year: 2019
  ident: 10.1016/j.media.2021.102264_bib0016
  article-title: Clinical-grade computational pathology using weakly supervised deep learning on whole slide images
  publication-title: Nat. Med.,
  contributor:
    fullname: Campanella
– start-page: 1263
  year: 2017
  ident: 10.1016/j.media.2021.102264_bib0027
  article-title: Neural message passing for quantum chemistry
  contributor:
    fullname: Gilmer
– volume: 2
  start-page: 12
  year: 1968
  ident: 10.1016/j.media.2021.102264_bib0081
  article-title: A reduction of a graph to a canonical form and an algebra arising during this reduction
  contributor:
    fullname: Weisfeiler
– year: 2019
  ident: 10.1016/j.media.2021.102264_bib0050
  article-title: From patch-level to roi-level deep feature representations for breast histopathology classification
  contributor:
    fullname: Mercan
– year: 2021
  ident: 10.1016/j.media.2021.102264_bib0045
  article-title: Data efficient and weakly supervised computational pathology on whole slide images
  contributor:
    fullname: Lu
– start-page: 15413
  year: 2019
  ident: 10.1016/j.media.2021.102264_bib0020
  article-title: Understanding the representation power of graph neural networks in learning graph topology
  contributor:
    fullname: Dehmamy
– start-page: 248
  year: 2009
  ident: 10.1016/j.media.2021.102264_bib0022
  article-title: Imagenet: A large-scale hierarchical image database
  contributor:
    fullname: Deng
– year: 2020
  ident: 10.1016/j.media.2021.102264_bib0009
  article-title: Graph convolutional networks for region of interest classification in breast histopathology
  contributor:
    fullname: Aygunes
– volume: 6
  start-page: 24680
  year: 2018
  ident: 10.1016/j.media.2021.102264_bib0011
  article-title: Classification of breast cancer based on histology images using convolutional neural networks
  publication-title: IEEE Access,
  doi: 10.1109/ACCESS.2018.2831280
  contributor:
    fullname: Bardou
– year: 2017
  ident: 10.1016/j.media.2021.102264_bib0088
  article-title: Wsisa: Making survival prediction from whole slide pathology images
  contributor:
    fullname: Zhu
– year: 2018
  ident: 10.1016/j.media.2021.102264_bib0082
  article-title: Representation learning on graphs with jumping knowledge networks
  contributor:
    fullname: Xu
– start-page: 861
  year: 2018
  ident: 10.1016/j.media.2021.102264_bib0048
  article-title: Ensemble network for region identification in breast histopathology slides
  contributor:
    fullname: Marami
– volume: 11071
  year: 2018
  ident: 10.1016/j.media.2021.102264_bib0069
  article-title: Improving whole slide segmentation through visual context - a systematic study
  contributor:
    fullname: Sirinukunwattana
– start-page: 1
  year: 2021
  ident: 10.1016/j.media.2021.102264_bib0073
  article-title: Global cancer statistics 2020: globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries
  publication-title: CA Cancer J. clinicians
  contributor:
    fullname: Sung
– volume: 71
  start-page: 90
  year: 2019
  ident: 10.1016/j.media.2021.102264_bib0063
  article-title: Patch-based system for classification of breast histology images using deep learning
  publication-title: Comput Med Imaging Graph,
  doi: 10.1016/j.compmedimag.2018.11.003
  contributor:
    fullname: Roy
– year: 2020
  ident: 10.1016/j.media.2021.102264_bib0017
  article-title: Pathomic fusion: an integrated framework for fusing histopathology and genomic features for cancer diagnosis and prognosis
  publication-title: IEEE Trans. Med. Imag
  contributor:
    fullname: Chen
– year: 2018
  ident: 10.1016/j.media.2021.102264_bib0072
  article-title: A fast and scalable pipeline for stain normalization of whole-slide images in histopathology
  contributor:
    fullname: Stanisavljevic
– volume: 94 (23)
  start-page: 12258
  year: 1997
  ident: 10.1016/j.media.2021.102264_bib0026
  article-title: Effective intercellular communication distances are determined by the relative time constants for cyto/chemokine secretion and diffusion
  publication-title: Proc Natl Acad Sci,
  doi: 10.1073/pnas.94.23.12258
  contributor:
    fullname: Francis
– volume: 70
  start-page: 7
  year: 2020
  ident: 10.1016/j.media.2021.102264_bib0068
  article-title: Cancer statistics, 2020
  publication-title: CA: A Cancer Journal for Clinicians,
  contributor:
    fullname: Siegel
– year: 2019
  ident: 10.1016/j.media.2021.102264_bib0083
  article-title: How powerful are graph neural networks?
  contributor:
    fullname: Xu
– volume: 42
  start-page: 60
  year: 2017
  ident: 10.1016/j.media.2021.102264_bib0044
  article-title: A survey on deep learning in medical image analysis
  publication-title: Med. Image Anal.,
  doi: 10.1016/j.media.2017.07.005
  contributor:
    fullname: Litjens
– volume: 20
  start-page: 145
  year: 2004
  ident: 10.1016/j.media.2021.102264_bib0021
  article-title: The cell graphs of cancer
  publication-title: Bioinformatics,
  doi: 10.1093/bioinformatics/bth933
  contributor:
    fullname: Demir
– volume: 67
  year: 2021
  ident: 10.1016/j.media.2021.102264_bib0071
  article-title: Deep neural network models for computational histopathology: A survey
  contributor:
    fullname: Srinidhi
– volume: 58
  year: 2019
  ident: 10.1016/j.media.2021.102264_bib0076
  article-title: Quantifying the effects of data augmentation and stain color normalization in convolutional neural networks for computational pathology
  publication-title: Med. Image Anal.,
  doi: 10.1016/j.media.2019.101544
  contributor:
    fullname: Tellez
– start-page: 1400
  year: 2014
  ident: 10.1016/j.media.2021.102264_bib0079
  article-title: Breast cancer histopathology image analysis: areview
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2014.2303852
  contributor:
    fullname: Veta
– volume: 56
  start-page: 122
  year: 2019
  ident: 10.1016/j.media.2021.102264_bib0008
  article-title: Bach: grand challenge on breast cancer histology images
  publication-title: Med. Image Anal.,
  doi: 10.1016/j.media.2019.05.010
  contributor:
    fullname: Aresta
– year: 2020
  ident: 10.1016/j.media.2021.102264_bib0019
  article-title: Principal neighbourhood aggregation for graph nets
  contributor:
    fullname: Corso
– year: 2020
  ident: 10.1016/j.media.2021.102264_bib0036
  article-title: Towards explainable graph representations in digital pathology
  contributor:
    fullname: Jaume
– year: 2021
  ident: 10.1016/j.media.2021.102264_bib0038
  article-title: Quantifying explainers of graph neural networks in computational pathology
  contributor:
    fullname: Jaume
– volume: 67
  year: 2021
  ident: 10.1016/j.media.2021.102264_bib0059
  article-title: Reducing annotation effort in digital pathology: aco-representation learning framework for classification tasks
  publication-title: Med. Image Anal.,
  doi: 10.1016/j.media.2020.101859
  contributor:
    fullname: Pati
– year: 2021
  ident: 10.1016/j.media.2021.102264_bib0005
  article-title: Learning whole-slide segmentation from inexact and incomplete labels using tissue graphs
  contributor:
    fullname: Anklin
– start-page: 34
  year: 2018
  ident: 10.1016/j.media.2021.102264_bib0042
  article-title: Machine learning methods for histopathological image analysis
  publication-title: Comput Struct Biotechnol J.,
  doi: 10.1016/j.csbj.2018.01.001
  contributor:
    fullname: Komura
– volume: 39
  start-page: 2395
  year: 2020
  ident: 10.1016/j.media.2021.102264_bib0064
  article-title: Context-aware convolutional neural network for grading of colorectal cancer histology images
  publication-title: IEEE Trans. Med. Imag.,
  doi: 10.1109/TMI.2020.2971006
  contributor:
    fullname: Shaban
– volume: 34 (11)
  start-page: 2274
  year: 2012
  ident: 10.1016/j.media.2021.102264_bib0001
  article-title: Slic superpixels compared to state-of-the-art superpixel methods
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.,
  doi: 10.1109/TPAMI.2012.120
  contributor:
    fullname: Achanta
– volume: 42
  start-page: 39
  issue: 1
  year: 2017
  ident: 10.1016/j.media.2021.102264_bib0054
  article-title: Whole slide imaging versus microscopy for primary diagnosis in surgical pathology: a multicenter blinded randomized noninferiority study of 1992 cases (pivotal study)
  publication-title: Am J Surg Pathol,
  doi: 10.1097/PAS.0000000000000948
  contributor:
    fullname: Mukhopadhyay
– year: 2018
  ident: 10.1016/j.media.2021.102264_bib0007
  contributor:
    fullname: Aresta
– volume: 9 (121)
  year: 2014
  ident: 10.1016/j.media.2021.102264_bib0028
  article-title: Inter-observer variability between general pathologists and a specialist in breast pathology in the diagnosis of lobular neoplasia, columnar cell lesions, atypical ductal hyperplasia and ductal carcinoma in situ of the breast
  publication-title: Diagn Pathol,
  contributor:
    fullname: Gomes
– start-page: 61
  year: 2017
  ident: 10.1016/j.media.2021.102264_bib0067
  article-title: A comparative study of cell nuclei attributed relational graphs for knowledge description and categorization in histopathological gastric cancer whole slide images
  contributor:
    fullname: Sharma
– volume: 63
  year: 2020
  ident: 10.1016/j.media.2021.102264_bib0039
  article-title: Cellular community detection for tissue phenotyping in colorectal cancer histology images
  publication-title: Med. Image Anal.,
  doi: 10.1016/j.media.2020.101696
  contributor:
    fullname: Javed
– start-page: 4837
  year: 2020
  ident: 10.1016/j.media.2021.102264_bib0086
  article-title: Predicting lymph node metastasis using histopathological images based on multiple instance learning with deep graph convolution
  contributor:
    fullname: Zhao
– volume: 4 (4)
  year: 2017
  ident: 10.1016/j.media.2021.102264_bib0012
  article-title: Context-aware stacked convolutional neural networks for classification of breast carcinomas in whole-slide histopathology images
  publication-title: J. Med. Imaging,
  contributor:
    fullname: Bejnordi
– volume: 58
  year: 2019
  ident: 10.1016/j.media.2021.102264_bib0029
  article-title: Hover-net: simultaneous segmentation and classification of nuclei in multi-tissue histology images
  publication-title: Med. Image Anal.,
  doi: 10.1016/j.media.2019.101563
  contributor:
    fullname: Graham
– start-page: 771
  year: 2018
  ident: 10.1016/j.media.2021.102264_bib0015
  article-title: Multi-classification of breast cancer histology images by using a fine-tuning strategy
  contributor:
    fullname: Brancati
– volume: 58
  year: 2019
  ident: 10.1016/j.media.2021.102264_bib0075
  article-title: Neural image compression for gigapixel histopathology image analysis
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.,
  contributor:
    fullname: Tellez
– year: 2018
  ident: 10.1016/j.media.2021.102264_bib0049
  article-title: Learning to segment breast biopsy whole slide images
  contributor:
    fullname: Mehta
– start-page: 8024
  year: 2019
  ident: 10.1016/j.media.2021.102264_bib0056
  article-title: Pytorch: An imperative style, high-performance deep learning library
  contributor:
    fullname: Paszke
– year: 2017
  ident: 10.1016/j.media.2021.102264_bib0041
  article-title: Semi-supervised classification with graph convolutional networks
  contributor:
    fullname: Kipf
– year: 2018
  ident: 10.1016/j.media.2021.102264_bib0077
  article-title: Graph attention networks
  contributor:
    fullname: Velickovic
– volume: 2
  year: 2019
  ident: 10.1016/j.media.2021.102264_bib0052
  article-title: Assessment of machine learning of breast pathology structures for automated differentiation of breast cancer and high-risk proliferative lesions
  contributor:
    fullname: Mercan
– volume: abs/1909.01315
  year: 2019
  ident: 10.1016/j.media.2021.102264_bib0080
  article-title: Deep graph library: Towards efficient and scalable deep learning on graphs
  contributor:
    fullname: Wang
– volume: 33
  start-page: 170
  year: 2016
  ident: 10.1016/j.media.2021.102264_bib0047
  article-title: Image analysis and machine learning in digital pathology: challenges and opportunities
  publication-title: Med. Image Anal.,
  doi: 10.1016/j.media.2016.06.037
  contributor:
    fullname: Madabhushi
– start-page: 10764
  year: 2019
  ident: 10.1016/j.media.2021.102264_bib0061
  article-title: Explainability methods for graph convolutional neural networks
  contributor:
    fullname: Pope
– start-page: 1024
  year: 2017
  ident: 10.1016/j.media.2021.102264_bib0032
  article-title: Inductive representation learning on large graphs
  contributor:
    fullname: Hamilton
– year: 2020
  ident: 10.1016/j.media.2021.102264_bib0058
  article-title: Hact-net: A hierarchical cell-to-tissue graph neural network for histopathological image classification
  contributor:
    fullname: Pati
– year: 2020
  ident: 10.1016/j.media.2021.102264_bib0024
  article-title: Benchmarking graph neural networks
  contributor:
    fullname: Dwivedi
– year: 2018
  ident: 10.1016/j.media.2021.102264_bib0051
  article-title: Automated diagnosis of breast cancer and pre-invasive lesions on digital whole slide images
  contributor:
    fullname: Mercan
SSID ssj0007440
Score 2.6418035
Snippet •Hierarchical Cell-to-Tissue (HACT) representation: A novel multi-level hierarchical entity-graph representation of a histology image to model the hierarchical...
Cancer diagnosis, prognosis, and therapy response predictions from tissue specimens highly depend on the phenotype and topological distribution of constituting...
SourceID swepub
proquest
crossref
pubmed
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 102264
SubjectTerms Ablation
Benchmarking
Breast cancer
Breast cancer classification
Breast cancer dataset
Breast carcinoma
Cancer
Cell graph representation
Composition
Computerized Image Processing
Datoriserad bildbehandling
Digital pathology
Graph neural networks
Graph representations
Graph theory
Graphical representations
Hierarchical graph neural network
Hierarchical tissue representation
Histological Techniques
Histology
Humans
Learning algorithms
Machine learning
Message passing
Microenvironments
Neural networks
Neural Networks, Computer
Phenotypes
Prognosis
Tissue graph representation
Tissues
Tumors
Title Hierarchical graph representations in digital pathology
URI https://dx.doi.org/10.1016/j.media.2021.102264
https://www.ncbi.nlm.nih.gov/pubmed/34781160
https://www.proquest.com/docview/2630528753
https://search.proquest.com/docview/2598076548
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-466910
Volume 75
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB1VRUJwQOyETUGCG6F17DjNsSylrBco4mbFjlMFobTqcuXb8ThJ2QQHLokUO5I9tmc89rw3AIeEKE2Rs5VGaeAx43B4UoXSC3WM1t0sTYJo5Lt73u2x6-fguQZnFRYGwypL3V_odKutyy-NUpqNYZY1HgjFZCVof-x9nkWwG_Nn5vTJ20eYBxLgFdgr4mHtinnIxnhZdIZxEn2CFAY-Z79Zp5-7z2_UotYcdZZhqdxHuu2iqStQ0_kqLH5iF1yF-bvy3nwNwm6GQGOb9-TVtSTVrqWzrKBH-djNcjfJ-phDxMU0xfa4fR16nYvHs65XpkzwlPFzJ54iOm7SVKHZ0QTNN6OaShITTZOQBwlmdDFPFsU8kJIjW3wcRYpELE5ZqOgG1PNBrrfADVUQ-SmVQcIVS9OoxSVNpPJbzTSUKm06cFyJSgwLZgxRhYy9CCtZgZIVhWQd4JU4xZcBFkZ3__3jbiV8Ua6vsfC50VM--loOHMyKzcrA644414OpqRNErabpM2s5sFkM2qyh1CJsuenEUTGKsxKk2z7PntpiMOqL6VQwzs2Oavu_rd-BBR8BE_bQZhfqk9FU75ltzETu23m6D3Ptq5vuvXlfnt4-td8BjgjwMQ
link.rule.ids 230,315,783,787,888,4031,4509,24128,27935,27936,27937,45597,45691
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB0hkFgOiJ2yBgluhMax4zRHVKjKUi60iJsVO04VhNKqy5Vvx-MkZRMcuOSQOJI9tmex570BOCVEaYqcrTRKA5eZgMOVKpRuqGO07mZrEkQjdx54u8dun4PnOWhWWBhMqyx1f6HTrbYu39RLadaHWVZ_JBSLlaD9sfd5JgRaYOgfm0V98faR54EMeAX4irjYvKIeskleFp5hokSfIIeBz9lv5umn-_mNW9Tao9YarJaOpHNZ9HUd5nS-ASuf6AU3YLFTXpxvQtjOEGlsC5-8Opal2rF8lhX2KB87We4kWR-LiDhYp9iet29Br3XdbbbdsmaCq0ygO3EV0bFHU4V2RxO034xqKklMNE1CHiRY0sU8WRTzQEqOdPFxFCkSsThloaLbMJ8Pcr0LTqiCyE-pDBKuWJpGDS5pIpXf8NJQqtSrwXklKjEsqDFElTP2IqxkBUpWFJKtAa_EKb7MsDDK--8fDyrhi3KDjYXPjaLyMdiqwcnss9kaeN8R53owNW2CqOGZMbNGDXaKSZt1lFqILTeDOCtmcfYF-bavsqdLMRj1xXQqGOfGpdr7b--PYand7dyL-5uHu31Y9hE9YU9wDmB-MprqQ-PTTOSRXbPvrcLwOw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hierarchical+graph+representations+in+digital+pathology&rft.jtitle=Medical+image+analysis&rft.au=Pati%2C+Pushpak&rft.au=Jaume%2C+Guillaume&rft.au=Foncubierta-Rodriguez%2C+Antonio&rft.au=Feroce%2C+Florinda&rft.date=2022&rft.issn=1361-8415&rft.volume=75&rft_id=info:doi/10.1016%2Fj.media.2021.102264&rft.externalDocID=oai_DiVA_org_uu_466910
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1361-8415&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1361-8415&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1361-8415&client=summon