Multi-Classifier Fusion Based on MI–SFFS for Cross-Subject Emotion Recognition
With the widespread use of emotion recognition, cross-subject emotion recognition based on EEG signals has become a hot topic in affective computing. Electroencephalography (EEG) can be used to detect the brain’s electrical activity associated with different emotions. The aim of this research is to...
Saved in:
Published in | Entropy (Basel, Switzerland) Vol. 24; no. 5; p. 705 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
16.05.2022
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | With the widespread use of emotion recognition, cross-subject emotion recognition based on EEG signals has become a hot topic in affective computing. Electroencephalography (EEG) can be used to detect the brain’s electrical activity associated with different emotions. The aim of this research is to improve the accuracy by enhancing the generalization of features. A Multi-Classifier Fusion method based on mutual information with sequential forward floating selection (MI_SFFS) is proposed. The dataset used in this paper is DEAP, which is a multi-modal open dataset containing 32 EEG channels and multiple other physiological signals. First, high-dimensional features are extracted from 15 EEG channels of DEAP after using a 10 s time window for data slicing. Second, MI and SFFS are integrated as a novel feature-selection method. Then, support vector machine (SVM), k-nearest neighbor (KNN) and random forest (RF) are employed to classify positive and negative emotions to obtain the output probabilities of classifiers as weighted features for further classification. To evaluate the model performance, leave-one-out cross-validation is adopted. Finally, cross-subject classification accuracies of 0.7089, 0.7106 and 0.7361 are achieved by the SVM, KNN and RF classifiers, respectively. The results demonstrate the feasibility of the model by splicing different classifiers’ output probabilities as a portion of the weighted features. |
---|---|
AbstractList | With the widespread use of emotion recognition, cross-subject emotion recognition based on EEG signals has become a hot topic in affective computing. Electroencephalography (EEG) can be used to detect the brain's electrical activity associated with different emotions. The aim of this research is to improve the accuracy by enhancing the generalization of features. A Multi-Classifier Fusion method based on mutual information with sequential forward floating selection (MI_SFFS) is proposed. The dataset used in this paper is DEAP, which is a multi-modal open dataset containing 32 EEG channels and multiple other physiological signals. First, high-dimensional features are extracted from 15 EEG channels of DEAP after using a 10 s time window for data slicing. Second, MI and SFFS are integrated as a novel feature-selection method. Then, support vector machine (SVM), k-nearest neighbor (KNN) and random forest (RF) are employed to classify positive and negative emotions to obtain the output probabilities of classifiers as weighted features for further classification. To evaluate the model performance, leave-one-out cross-validation is adopted. Finally, cross-subject classification accuracies of 0.7089, 0.7106 and 0.7361 are achieved by the SVM, KNN and RF classifiers, respectively. The results demonstrate the feasibility of the model by splicing different classifiers' output probabilities as a portion of the weighted features.With the widespread use of emotion recognition, cross-subject emotion recognition based on EEG signals has become a hot topic in affective computing. Electroencephalography (EEG) can be used to detect the brain's electrical activity associated with different emotions. The aim of this research is to improve the accuracy by enhancing the generalization of features. A Multi-Classifier Fusion method based on mutual information with sequential forward floating selection (MI_SFFS) is proposed. The dataset used in this paper is DEAP, which is a multi-modal open dataset containing 32 EEG channels and multiple other physiological signals. First, high-dimensional features are extracted from 15 EEG channels of DEAP after using a 10 s time window for data slicing. Second, MI and SFFS are integrated as a novel feature-selection method. Then, support vector machine (SVM), k-nearest neighbor (KNN) and random forest (RF) are employed to classify positive and negative emotions to obtain the output probabilities of classifiers as weighted features for further classification. To evaluate the model performance, leave-one-out cross-validation is adopted. Finally, cross-subject classification accuracies of 0.7089, 0.7106 and 0.7361 are achieved by the SVM, KNN and RF classifiers, respectively. The results demonstrate the feasibility of the model by splicing different classifiers' output probabilities as a portion of the weighted features. With the widespread use of emotion recognition, cross-subject emotion recognition based on EEG signals has become a hot topic in affective computing. Electroencephalography (EEG) can be used to detect the brain’s electrical activity associated with different emotions. The aim of this research is to improve the accuracy by enhancing the generalization of features. A Multi-Classifier Fusion method based on mutual information with sequential forward floating selection (MI_SFFS) is proposed. The dataset used in this paper is DEAP, which is a multi-modal open dataset containing 32 EEG channels and multiple other physiological signals. First, high-dimensional features are extracted from 15 EEG channels of DEAP after using a 10 s time window for data slicing. Second, MI and SFFS are integrated as a novel feature-selection method. Then, support vector machine (SVM), k-nearest neighbor (KNN) and random forest (RF) are employed to classify positive and negative emotions to obtain the output probabilities of classifiers as weighted features for further classification. To evaluate the model performance, leave-one-out cross-validation is adopted. Finally, cross-subject classification accuracies of 0.7089, 0.7106 and 0.7361 are achieved by the SVM, KNN and RF classifiers, respectively. The results demonstrate the feasibility of the model by splicing different classifiers’ output probabilities as a portion of the weighted features. |
Author | Yang, Haihui Sun, Guobing Guo, Shengwei Huang, Shiguo |
AuthorAffiliation | 2 Key Laboratory of Information Fusion Estimation and Detection, Harbin 150080, China 1 College of Electronic Engineering, Heilongjiang University, Harbin 150080, China; 2201678@s.hlju.edu.cn (H.Y.); 2201766@s.hlju.edu.cn (S.H.); 2211849@s.hlju.edu.cn (S.G.) |
AuthorAffiliation_xml | – name: 1 College of Electronic Engineering, Heilongjiang University, Harbin 150080, China; 2201678@s.hlju.edu.cn (H.Y.); 2201766@s.hlju.edu.cn (S.H.); 2211849@s.hlju.edu.cn (S.G.) – name: 2 Key Laboratory of Information Fusion Estimation and Detection, Harbin 150080, China |
Author_xml | – sequence: 1 givenname: Haihui orcidid: 0000-0002-9014-685X surname: Yang fullname: Yang, Haihui – sequence: 2 givenname: Shiguo surname: Huang fullname: Huang, Shiguo – sequence: 3 givenname: Shengwei surname: Guo fullname: Guo, Shengwei – sequence: 4 givenname: Guobing surname: Sun fullname: Sun, Guobing |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35626587$$D View this record in MEDLINE/PubMed |
BookMark | eNplkktuFDEQhi0URB6w4AKoJTawaFJ-tB8bJBhlYKREIAbWlu12Dx71tBO7G4kdd-CGnAQ3k0RJ2Ngl-6u_frvqGB0McfAIPcfwhlIFp54waEBA8wgdYVCqZhTg4E58iI5z3gIQSjB_gg5pwwlvpDhCny-mfgz1ojc5hy74VC2nHOJQvTfZt1UJLlZ_fv1eL5frqoupWqSYc72e7Na7sTrbxXGGv3gXN0OY46focWf67J9d7yfo2_Ls6-Jjff7pw2rx7rx2jKuxdtAIipV1HEtupBC8Iy1WlBkLtiwdbh0XlpMGE6YMB9WQ1gIH4TCTxtATtNrrttFs9WUKO5N-6miC_ncQ00abNAbXe11qdAp7bloqmGuFlBgMs6Uiw5YLVrTe7rUuJ7vzrfPDmEx_T_T-zRC-6038oRVmGEtaBF5dC6R4Nfk86l3Izve9GXycsiZcYCIBqCroywfoNk5pKF81U1Aex0EW6sVdR7dWbhpXgNM94OaGJN9pF0YzN6AYDL3GoOfR0LejUTJeP8i4Ef2f_QtOqLZ2 |
CitedBy_id | crossref_primary_10_3390_f15020288 crossref_primary_10_1109_ACCESS_2023_3264845 crossref_primary_10_3390_e24091187 crossref_primary_10_1007_s10462_023_10690_2 crossref_primary_10_1038_s41598_023_40786_2 crossref_primary_10_1007_s11571_024_10193_y crossref_primary_10_1007_s40815_023_01666_z crossref_primary_10_3390_s23031255 |
Cites_doi | 10.1016/j.compbiomed.2021.104757 10.1016/B978-0-12-803304-3.00002-8 10.1109/T-AFFC.2011.15 10.1109/IEMBS.2009.5334139 10.1109/TMM.2015.2477044 10.1109/TAFFC.2018.2887385 10.1016/j.neulet.2016.09.037 10.3390/s20185083 10.3390/s21062026 10.1109/TCBB.2020.3018137 10.1109/JSEN.2018.2883497 10.1007/978-3-319-19387-8_288 10.1016/j.measurement.2020.108047 10.1016/j.knosys.2020.105684 10.1007/s12652-019-01196-3 10.1007/s10044-016-0567-6 10.1016/j.biopsycho.2018.06.008 10.1109/TAFFC.2017.2712143 10.1186/s40537-020-00289-7 10.1109/TAMD.2015.2431497 10.1016/j.jretconser.2021.102551 10.1038/s41598-021-99998-z 10.1109/ICMIC.2015.7409485 10.1142/S0129065718500442 10.3389/fncom.2019.00053 10.1109/ACCESS.2020.3035539 10.1016/j.future.2021.01.010 10.3233/THC-174836 10.1109/ICBME.2018.8703559 10.1016/j.bbe.2020.04.005 10.1109/TCDS.2018.2868121 10.1002/int.22295 10.1109/TAFFC.2014.2339834 10.9746/jcmsi.4.332 10.1016/j.eswa.2017.09.062 10.1109/34.954607 10.3390/e23010116 10.1016/j.patcog.2020.107525 10.1007/s12559-020-09789-3 10.1016/j.ynirp.2021.100054 10.1007/s10339-019-00924-z 10.32604/csse.2021.015222 10.1109/EMBC.2015.7320065 10.1016/j.eswa.2020.113768 10.1016/0167-8655(94)90127-9 10.1109/ICASSP.2009.4959627 10.1016/j.knosys.2015.08.004 10.1109/TAFFC.2018.2890636 10.1155/2017/8317357 10.1016/j.compbiomed.2021.104696 10.1002/047174882X 10.3390/s19030522 10.1109/TAFFC.2018.2879343 10.1016/j.inffus.2020.01.011 10.1016/j.compbiomed.2015.09.019 10.1016/j.neucom.2021.03.105 10.1016/j.yebeh.2019.02.024 10.1016/j.chaos.2018.07.035 10.1109/ICUFN49451.2021.9528706 10.1109/ACCESS.2021.3051281 10.1007/s12555-009-0521-0 10.1007/s11571-014-9287-z |
ContentType | Journal Article |
Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022 |
Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022 |
DBID | AAYXX CITATION NPM 7TB 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO FR3 HCIFZ KR7 L6V M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS 7X8 5PM DOA |
DOI | 10.3390/e24050705 |
DatabaseName | CrossRef PubMed Mechanical & Transportation Engineering Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database ProQuest SciTech Premium Collection Civil Engineering Abstracts ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Civil Engineering Abstracts Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database CrossRef PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 1099-4300 |
ExternalDocumentID | oai_doaj_org_article_c61f91e6ad374cd78810a4b6f241b674 PMC9141183 35626587 10_3390_e24050705 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Basic Institution Scientific Research Operating Foundation of Heilongjiang Province grantid: 2018002 – fundername: HLJU Heilongjiang University grantid: JM201911 |
GroupedDBID | 29G 2WC 5GY 5VS 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABJCF ACIWK ACUHS ADBBV AEGXH AENEX AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR BGLVJ CCPQU CITATION CS3 DU5 E3Z ESX F5P GROUPED_DOAJ GX1 HCIFZ HH5 IAO ITC J9A KQ8 L6V M7S MODMG M~E OK1 OVT PGMZT PHGZM PHGZT PIMPY PROAC PTHSS RNS RPM TR2 TUS XSB ~8M NPM PQGLB 7TB 8FD ABUWG AZQEC DWQXO FR3 KR7 PKEHL PQEST PQQKQ PQUKI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c469t-c057319bc6186a8776f2d1934ab0b4abf1dc67b6251249a60952db0607c148aa3 |
IEDL.DBID | BENPR |
ISSN | 1099-4300 |
IngestDate | Wed Aug 27 01:26:26 EDT 2025 Thu Aug 21 14:40:05 EDT 2025 Fri Jul 11 09:29:55 EDT 2025 Fri Jul 25 12:03:34 EDT 2025 Mon Jul 21 06:02:41 EDT 2025 Tue Jul 01 01:58:12 EDT 2025 Thu Apr 24 23:09:39 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Multi-Classifier Fusion mutual information cross-subject emotion recognition SFFS |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c469t-c057319bc6186a8776f2d1934ab0b4abf1dc67b6251249a60952db0607c148aa3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-9014-685X |
OpenAccessLink | https://www.proquest.com/docview/2670148608?pq-origsite=%requestingapplication% |
PMID | 35626587 |
PQID | 2670148608 |
PQPubID | 2032401 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_c61f91e6ad374cd78810a4b6f241b674 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9141183 proquest_miscellaneous_2671280039 proquest_journals_2670148608 pubmed_primary_35626587 crossref_citationtrail_10_3390_e24050705 crossref_primary_10_3390_e24050705 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220516 |
PublicationDateYYYYMMDD | 2022-05-16 |
PublicationDate_xml | – month: 5 year: 2022 text: 20220516 day: 16 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Entropy (Basel, Switzerland) |
PublicationTitleAlternate | Entropy (Basel) |
PublicationYear | 2022 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Doma (ref_60) 2020; 7 Ma (ref_56) 2021; 1 Zhuang (ref_17) 2017; 2017 Nakisa (ref_35) 2018; 93 Mukul (ref_49) 2011; 4 Koelstra (ref_29) 2012; 3 ref_55 ref_53 Liu (ref_11) 2021; 119 Liu (ref_13) 2021; 18 ref_18 Kameyama (ref_47) 2019; 94 Torres (ref_46) 2020; 8 ref_16 Liu (ref_33) 2019; 11 Rahman (ref_5) 2021; 136 Chen (ref_10) 2020; 164 Chuah (ref_1) 2021; 61 Greco (ref_44) 2021; 12 Acharya (ref_25) 2015; 88 Bhattacharyya (ref_9) 2021; 11 Zhang (ref_54) 2016; 633 Kim (ref_15) 2007; 265 Mert (ref_19) 2016; 21 ref_24 Mohamed (ref_8) 2021; 37 ref_23 ref_21 ref_20 Zheng (ref_27) 2015; 7 Kara (ref_52) 2015; 67 ref_62 Khateeb (ref_50) 2021; 9 Pudil (ref_66) 1994; 15 Huang (ref_48) 2021; 448 Zheng (ref_32) 2021; 36 Ko (ref_43) 2009; 7 Puviani (ref_64) 2021; 12 Ircio (ref_59) 2020; 108 Qian (ref_26) 2020; 195 Cho (ref_63) 2015; 17 Poulose (ref_7) 2021; 21 AlZoubi (ref_2) 2021; 12 Zhang (ref_39) 2020; 59 Islam (ref_31) 2021; 136 ref_37 Picard (ref_12) 2001; 23 Li (ref_58) 2018; 12 Yang (ref_28) 2019; 13 Seo (ref_61) 2019; 10 Nawaz (ref_30) 2020; 40 Gupta (ref_38) 2019; 19 Li (ref_36) 2018; 26 Zunino (ref_34) 2021; 13 ref_45 Yuan (ref_14) 2014; 8 Pane (ref_40) 2019; 20 ref_41 Zheng (ref_22) 2017; 10 Sorinas (ref_42) 2019; 29 Yin (ref_3) 2020; 162 Goshvarpour (ref_4) 2018; 114 Alcaraz (ref_51) 2021; 12 Padial (ref_57) 2018; 137 Jenke (ref_65) 2014; 5 ref_6 |
References_xml | – volume: 136 start-page: 104757 year: 2021 ident: ref_31 article-title: EEG Channel Correlation Based Model for Emotion Recognition publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2021.104757 – volume: 12 start-page: 1 year: 2021 ident: ref_2 article-title: Detecting naturalistic expression of emotions using physiological signals while playing video games publication-title: J. Ambient. Intell. Humaniz. Comput. – ident: ref_24 doi: 10.1016/B978-0-12-803304-3.00002-8 – volume: 3 start-page: 18 year: 2012 ident: ref_29 article-title: DEAP: A Database for Emotion Analysis; Using Physiological Signals publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/T-AFFC.2011.15 – ident: ref_20 doi: 10.1109/IEMBS.2009.5334139 – volume: 17 start-page: 1875 year: 2015 ident: ref_63 article-title: Describing Multimedia Content Using Attention-Based Encoder-Decoder Networks publication-title: IEEE Trans. Multimed. doi: 10.1109/TMM.2015.2477044 – volume: 12 start-page: 692 year: 2021 ident: ref_64 article-title: A Mathematical Description of Emotional Processes and Its Potential Applications to Affective Computing publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/TAFFC.2018.2887385 – volume: 633 start-page: 152 year: 2016 ident: ref_54 article-title: An approach to EEG-based emotion recognition using combined feature extraction method publication-title: Neurosci. Lett. doi: 10.1016/j.neulet.2016.09.037 – volume: 12 start-page: 15 year: 2018 ident: ref_58 article-title: Exploring EEG Features in Cross-Subject Emotion Recognition publication-title: Front. Neurosci. – ident: ref_41 doi: 10.3390/s20185083 – volume: 21 start-page: 2026 year: 2021 ident: ref_7 article-title: The Extensive Usage of the Facial Image Threshing Machine for Facial Emotion Recognition Performance publication-title: Sensors doi: 10.3390/s21062026 – volume: 18 start-page: 1710 year: 2021 ident: ref_13 article-title: Subject-Independent Emotion Recognition of EEG Signals Based on Dynamic Empirical Convolutional Neural Network publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform. doi: 10.1109/TCBB.2020.3018137 – volume: 19 start-page: 2266 year: 2019 ident: ref_38 article-title: Cross-Subject Emotion Recognition Using Flexible Analytic Wavelet Transform from EEG Signals publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2018.2883497 – ident: ref_16 doi: 10.1007/978-3-319-19387-8_288 – volume: 164 start-page: 108047 year: 2020 ident: ref_10 article-title: EEG emotion recognition model based on the LIBSVM classifier publication-title: Measurement doi: 10.1016/j.measurement.2020.108047 – volume: 195 start-page: 105684 year: 2020 ident: ref_26 article-title: Mutual information-based label distribution feature selection for multi-label learning publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2020.105684 – volume: 10 start-page: 3831 year: 2019 ident: ref_61 article-title: Machine learning approaches for boredom classification using EEG publication-title: J. Ambient Intell. Humaniz. Comput. doi: 10.1007/s12652-019-01196-3 – volume: 21 start-page: 81 year: 2016 ident: ref_19 article-title: Emotion recognition from EEG signals by using multivariate empirical mode decomposition publication-title: Pattern Anal. Appl. doi: 10.1007/s10044-016-0567-6 – volume: 137 start-page: 42 year: 2018 ident: ref_57 article-title: Fractal Dimension of EEG Signals and Heart Dynamics in Discrete Emotional States publication-title: Biol. Psychol. doi: 10.1016/j.biopsycho.2018.06.008 – volume: 10 start-page: 417 year: 2017 ident: ref_22 article-title: Identifying Stable Patterns over Time for Emotion Recognition from EEG publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/TAFFC.2017.2712143 – volume: 7 start-page: 18 year: 2020 ident: ref_60 article-title: A comparative analysis of machine learning methods for emotion recognition using EEG and peripheral physiological signals publication-title: J. Big Data doi: 10.1186/s40537-020-00289-7 – volume: 7 start-page: 162 year: 2015 ident: ref_27 article-title: Investigating Critical Frequency Bands and Channels for EEG-Based Emotion Recognition with Deep Neural Networks publication-title: IEEE Trans. Auton. Ment. Dev. doi: 10.1109/TAMD.2015.2431497 – volume: 61 start-page: 102551 year: 2021 ident: ref_1 article-title: The future of service: The power of emotion in human-robot interaction publication-title: J. Retail. Consum. Serv. doi: 10.1016/j.jretconser.2021.102551 – volume: 11 start-page: 20696 year: 2021 ident: ref_9 article-title: A deep learning model for classifying human facial expressions from infrared thermal images publication-title: Sci. Rep. doi: 10.1038/s41598-021-99998-z – ident: ref_62 – ident: ref_55 doi: 10.1109/ICMIC.2015.7409485 – volume: 29 start-page: 14 year: 2019 ident: ref_42 article-title: Identifying Suitable Brain Regions and Trial Size Segmentation for Positive/Negative Emotion Recognition publication-title: Int. J. Neural Syst. doi: 10.1142/S0129065718500442 – volume: 13 start-page: 11 year: 2019 ident: ref_28 article-title: Multi-method Fusion of Cross-Subject Emotion Recognition Based on High-Dimensional EEG Features publication-title: Front. Comput. Neurosci. doi: 10.3389/fncom.2019.00053 – volume: 8 start-page: 199719 year: 2020 ident: ref_46 article-title: Emotion Recognition Related to Stock Trading Using Machine Learning Algorithms with Feature Selection publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3035539 – volume: 119 start-page: 1 year: 2021 ident: ref_11 article-title: Emotion recognition by deeply learned multi-channel textual and EEG features publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2021.01.010 – volume: 26 start-page: S509 year: 2018 ident: ref_36 article-title: Emotion recognition from multichannel EEG signals using K-nearest neighbor classification publication-title: Technol. Health Care doi: 10.3233/THC-174836 – ident: ref_37 doi: 10.1109/ICBME.2018.8703559 – volume: 40 start-page: 910 year: 2020 ident: ref_30 article-title: Comparison of different feature extraction methods for EEG-based emotion recognition publication-title: Biocybern. Biomed. Eng. doi: 10.1016/j.bbe.2020.04.005 – volume: 11 start-page: 517 year: 2019 ident: ref_33 article-title: Electroencephalogram Emotion Recognition Based on Empirical Mode Decomposition and Optimal Feature Selection publication-title: IEEE Trans. Cogn. Dev. Syst. doi: 10.1109/TCDS.2018.2868121 – volume: 36 start-page: 152 year: 2021 ident: ref_32 article-title: A portable HCI system-oriented EEG feature extraction and channel selection for emotion recognition publication-title: Int. J. Intell. Syst. doi: 10.1002/int.22295 – volume: 5 start-page: 327 year: 2014 ident: ref_65 article-title: Feature Extraction and Selection for Emotion Recognition from EEG publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/TAFFC.2014.2339834 – volume: 4 start-page: 332 year: 2011 ident: ref_49 article-title: Feature Extraction from Subband Brain Signals and Its Classification publication-title: SICE J. Control Meas. Syst. Integr. doi: 10.9746/jcmsi.4.332 – volume: 93 start-page: 143 year: 2018 ident: ref_35 article-title: Evolutionary computation algorithms for feature selection of EEG-based emotion recognition using mobile sensors publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2017.09.062 – volume: 23 start-page: 1175 year: 2001 ident: ref_12 article-title: Toward machine emotional intelligence: Analysis of affective physiological state publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.954607 – ident: ref_53 doi: 10.3390/e23010116 – volume: 108 start-page: 107525 year: 2020 ident: ref_59 article-title: Mutual information based feature subset selection in multivariate time series classification publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2020.107525 – volume: 13 start-page: 403 year: 2021 ident: ref_34 article-title: Recognition of Emotional States from EEG Signals with Nonlinear Regularity- and Predictability-Based Entropy Metrics publication-title: Cogn. Comput. doi: 10.1007/s12559-020-09789-3 – volume: 1 start-page: 100054 year: 2021 ident: ref_56 article-title: Regularity and randomness in ageing: Differences in resting-state EEG complexity measured by largest Lyapunov exponent publication-title: Neuroimage Rep. doi: 10.1016/j.ynirp.2021.100054 – volume: 20 start-page: 405 year: 2019 ident: ref_40 article-title: Improving the accuracy of EEG emotion recognition by combining valence lateralization and ensemble learning with tuning parameters publication-title: Cogn. Process. doi: 10.1007/s10339-019-00924-z – volume: 37 start-page: 47 year: 2021 ident: ref_8 article-title: Affective State Recognition Using Thermal-Based Imaging: A Survey publication-title: Comput. Syst. Sci. Eng. doi: 10.32604/csse.2021.015222 – ident: ref_18 doi: 10.1109/EMBC.2015.7320065 – volume: 162 start-page: 113768 year: 2020 ident: ref_3 article-title: Locally robust EEG feature selection for individual-independent emotion recognition publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.113768 – volume: 15 start-page: 1119 year: 1994 ident: ref_66 article-title: Floating Search Methods in Feature Selection publication-title: Pattern Recognit. Lett. doi: 10.1016/0167-8655(94)90127-9 – ident: ref_21 doi: 10.1109/ICASSP.2009.4959627 – volume: 88 start-page: 85 year: 2015 ident: ref_25 article-title: Application of entropies for automated diagnosis of epilepsy using EEG signals: A review publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2015.08.004 – volume: 12 start-page: 801 year: 2021 ident: ref_51 article-title: A Review on Nonlinear Methods Using Electroencephalographic Recordings for Emotion Recognition publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/TAFFC.2018.2890636 – volume: 2017 start-page: 8317357 year: 2017 ident: ref_17 article-title: Emotion Recognition from EEG Signals Using Multidimensional Information in EMD Domain publication-title: BioMed Res. Int. doi: 10.1155/2017/8317357 – volume: 136 start-page: 104696 year: 2021 ident: ref_5 article-title: Recognition of human emotions using EEG signals: A review publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2021.104696 – ident: ref_23 doi: 10.1002/047174882X – ident: ref_45 doi: 10.3390/s19030522 – volume: 12 start-page: 417 year: 2021 ident: ref_44 article-title: Brain Dynamics During Arousal-Dependent Pleasant/Unpleasant Visual Elicitation: An Electroencephalographic Study on the Circumplex Model of Affect publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/TAFFC.2018.2879343 – volume: 59 start-page: 103 year: 2020 ident: ref_39 article-title: Emotion recognition using multi-modal data and machine learning techniques: A tutorial and review publication-title: Inf. Fusion doi: 10.1016/j.inffus.2020.01.011 – volume: 67 start-page: 49 year: 2015 ident: ref_52 article-title: Nonlinear analysis of EEGs of patients with major depression during different emotional states publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2015.09.019 – volume: 265 start-page: 280 year: 2007 ident: ref_15 article-title: Bimodal Emotion Recognition using Speech and Physiological Changes publication-title: Robust Speech Recognit. Underst. – volume: 448 start-page: 140 year: 2021 ident: ref_48 article-title: Differences first in asymmetric brain: A bi-hemisphere discrepancy convolutional neural network for EEG emotion recognition publication-title: Neurocomputing doi: 10.1016/j.neucom.2021.03.105 – volume: 94 start-page: 35 year: 2019 ident: ref_47 article-title: Asymmetric gelastic seizure as a lateralizing sign in patients with hypothalamic hamartoma publication-title: Epilepsy Behav. doi: 10.1016/j.yebeh.2019.02.024 – volume: 114 start-page: 400 year: 2018 ident: ref_4 article-title: Poincaré’s section analysis for PPG-based automatic emotion recognition publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2018.07.035 – ident: ref_6 doi: 10.1109/ICUFN49451.2021.9528706 – volume: 9 start-page: 12134 year: 2021 ident: ref_50 article-title: Multi-Domain Feature Fusion for Emotion Classification Using DEAP Dataset publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3051281 – volume: 7 start-page: 865 year: 2009 ident: ref_43 article-title: Emotion recognition using EEG signals with relative power values and Bayesian network publication-title: Int. J. Control. Autom. Syst. doi: 10.1007/s12555-009-0521-0 – volume: 8 start-page: 517 year: 2014 ident: ref_14 article-title: Different patterns of puberty effect in neural oscillation to negative stimuli: Sex differences publication-title: Cogn. Neurodyn. doi: 10.1007/s11571-014-9287-z |
SSID | ssj0023216 |
Score | 2.3354409 |
Snippet | With the widespread use of emotion recognition, cross-subject emotion recognition based on EEG signals has become a hot topic in affective computing.... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 705 |
SubjectTerms | Accuracy Affective computing Algorithms Artificial intelligence Asymmetry Brain research Channels Classification Classifiers cross-subject Datasets Discriminant analysis Electroencephalography Emotion recognition Emotions Entropy Experiments Feature extraction Information theory Machine learning Multi-Classifier Fusion mutual information Physiology Researchers SFFS Splicing Support vector machines |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kJy-i-IpWWcWDl9Aku91tjrY0VKEi1kJvYV_BgqSi7d3_4D_0lziTF60IXryEkMxhMpPNfDOZ_YaQq64OYhsq4xvhjM-7sOa0y7hvu9iAYU0cZljQH9-L0ZTfzbqztVFf2BNW0gOXhusYEWZx6ISyTHJjkf08UFyLDEKPFrJgAoWYVydTVarFolCUPEIMkvqOg7gFwAdn1K1Fn4Kk_zdk-bNBci3iJLtkp4KK9KZUcY9suXyfPBQ7Zv1iluU8g5hGkxUWvGgfwpGlcDK-_fr4nCTJhAIepQPUw4fPA9Zb6LAc2kMf67ahRX5ApsnwaTDyq6kIvoFUdukbpDAMY22Q6V71pARTWIBhXOlAwyEDCwupBQIXHisklIusDkQgDaQ-SrFD0soXuTsmNIsyDnhGxZppznE8nxXC9CTTLNAusB65rq2VmooyHCdXvKSQOqBh08awHrlsRF9LnozfhPpo8kYAqa2LC-DwtHJ4-pfDPdKuHZZW6-09jYTE0qgIeh65aG7DSsHfHyp3i1UhA8EYNyN75Kj0b6MJAxgIWEx6RG54fkPVzTv5_Llg445DDkkaO_mPZzsl2xFur0B2WNEmreXbyp0B6Fnq8-L9_gbRsf9c priority: 102 providerName: Directory of Open Access Journals |
Title | Multi-Classifier Fusion Based on MI–SFFS for Cross-Subject Emotion Recognition |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35626587 https://www.proquest.com/docview/2670148608 https://www.proquest.com/docview/2671280039 https://pubmed.ncbi.nlm.nih.gov/PMC9141183 https://doaj.org/article/c61f91e6ad374cd78810a4b6f241b674 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NbtQwEB7R7YULAvEXKCuDOHCxmsReOzkhttq0ILWqWirtLfJfaCWUlHb3zjvwhjwJM4k3dFHFxYpiH-wZ2_PN2P4G4P3MpqXPjONOBcflDNecDY3kfkYXMLwrs4YC-scn6uhCflnOljHgdhuvVW72xH6j9p2jGPl-rjQFv1RafLz-wSlrFJ2uxhQaO7CLW3BRTGB3vjg5PRtdLpFnauATEujc7we0XwiAKFfdHSvUk_XfhzD_vSh5x_JUj-FRhIzs06DjJ_AgtE_htH85y_ucllcN2jZWrSnwxeZoljzDj-PPv3_-Oq-qc4a4lB1QPzhuExR3YYsheQ8721wf6tpncFEtvh4c8ZgdgTt0aVfcEZVhVlpHjPem0Fo1uUc4Jo1NLRYNSlppqwjAyNIQsVzubapS7VCOxojnMGm7NrwE1uSNRFxjSiuslJSmzyvlCi2sSG1IfQIfNtKqXaQOpwwW32t0IUiw9SjYBN6NTa8Hvoz7Gs1J5GMDorjuf3Q33-q4YmocV1NmQRkvtHSeaO9TIy2OUmZWaZnA3kZhdVx3t_XfWZLA27EaVwwdg5g2dOu-Dc4VepScwItBv2NPBMJBxGQ6Ab2l-a2ubte0V5c9K3eZSXTWxKv_d-s1PMzpAQXxv6o9mKxu1uENwpqVncJOUR1O4wye9sEBLA-X2R-j4ftS |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VcoALAvEXKGAQSFyiOrHX3hwQoqVhl3YrRFupt9R_gUooKe2uEDfegffgoXgSZvJHF1XcellFayuZ2B7PNxPPNwDPR5ZnPjEudiq4WI5Q52woZexHdADDuywpKaA_21WTA_n-cHS4Ar_6XBg6Vtnvic1G7WtHMfL1VGkKfik-fn3yNaaqUfR1tS-h0S6L7fD9G7psZ6-mb3F-X6RpvrW_OYm7qgKxQ1dwHjuiAEwy64gp3oy1VmXqEcZIY7nFnxIlVNoqMvwyM0TIlnrLFdcOn2-MwPtegatSoCWnzPT83eDgiTRRLXsRNvL1gNYS4RZVxjtn85rSABfh2X-PZZ6zc_lNuNEBVPamXVG3YCVUt-FDk6cbNxU0j0u0pCxfUJiNbaAR9AwvZtPfP37u5fkeQxTMNkmOGDclivKwrbZUEPvYH1aqqztwcCmjdhdWq7oK94GVaSkRRZnMCislFQX0SrmxFlZwG7iP4GU_WoXriMqpXsaXAh0WGthiGNgIng1dT1p2jos6bdCQDx2IULv5oz79VHT6WeB7lVkSlPFCS-eJZJ8bafEtZWKVlhGs9RNWdFp-VvxdkxE8HZpRP-mji6lCvWj6IASgFOgI7rXzO0giEHwiAtQR6KWZXxJ1uaU6_txwgGeJRNdQPPi_WE_g2mR_tlPsTHe3H8L1lFI3iHlWrcHq_HQRHiGgmtvHzSpmcHTZavMH8tgyow |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEB6VVEJcEIg_Q4EFgcTFiu3d7MYHhEgbq6E0iloq9Wb2z1AJ2aVNhLjxDrwNj8OTMOM_GlRx6yWy4pU1nt3Z-WY8-w3Ai5GJUhdrG1rpbShGaHPGFyJ0IyrAcDaNC0ro78_l7pF4dzw63oBf3VkYKqvs9sR6o3aVpRz5MJGKkl8yGg-LtixisZO9Of0aUgcp-tLatdNolsie__4Nw7fz17MdnOuXSZJNP2zvhm2HgdBiWLgMLdEBxqmxxBqvx0rJInEIaYQ2kcGfAqWVykgCASLVRM6WOBPJSFmURWuOz70Gm4qiogFsTqbzxUEf7vEklg2XEedpNPToOxF8UZ-8Cx6wbhRwGbr9t0jzgtfLbsHNFq6yt836ug0bvrwDi_rUblj30zwp0K-ybEVJNzZBl-gYXuzPfv_4eZhlhwwxMdsmOULcoijnw6ZN4yB20JUuVeVdOLoSvd2DQVmV_gGwIikEYiqdGm6EoBaBTko7VtzwyPjIBfCq01ZuW9py6p7xJcfwhRSb94oN4Hk_9LTh6rhs0IRU3g8geu36j-rsU95aa47vVaSxl9pxJawjyv1IC4NvKWIjlQhgq5uwvLX58_zvCg3gWX8brZU-wejSV6t6DAICOhAdwP1mfntJOEJRxIMqALU282uirt8pTz7XjOBpLDBQ5A__L9ZTuI4mk7-fzfcewY2EznEQDa3cgsHybOUfI7pamiftMmbw8aot5w9M-Tg1 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Classifier+Fusion+Based+on+MI%E2%80%93SFFS+for+Cross-Subject+Emotion+Recognition&rft.jtitle=Entropy+%28Basel%2C+Switzerland%29&rft.au=Yang%2C+Haihui&rft.au=Huang%2C+Shiguo&rft.au=Guo%2C+Shengwei&rft.au=Sun%2C+Guobing&rft.date=2022-05-16&rft.pub=MDPI+AG&rft.eissn=1099-4300&rft.volume=24&rft.issue=5&rft.spage=705&rft_id=info:doi/10.3390%2Fe24050705&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1099-4300&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1099-4300&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1099-4300&client=summon |