Multi-Classifier Fusion Based on MI–SFFS for Cross-Subject Emotion Recognition

With the widespread use of emotion recognition, cross-subject emotion recognition based on EEG signals has become a hot topic in affective computing. Electroencephalography (EEG) can be used to detect the brain’s electrical activity associated with different emotions. The aim of this research is to...

Full description

Saved in:
Bibliographic Details
Published inEntropy (Basel, Switzerland) Vol. 24; no. 5; p. 705
Main Authors Yang, Haihui, Huang, Shiguo, Guo, Shengwei, Sun, Guobing
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 16.05.2022
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract With the widespread use of emotion recognition, cross-subject emotion recognition based on EEG signals has become a hot topic in affective computing. Electroencephalography (EEG) can be used to detect the brain’s electrical activity associated with different emotions. The aim of this research is to improve the accuracy by enhancing the generalization of features. A Multi-Classifier Fusion method based on mutual information with sequential forward floating selection (MI_SFFS) is proposed. The dataset used in this paper is DEAP, which is a multi-modal open dataset containing 32 EEG channels and multiple other physiological signals. First, high-dimensional features are extracted from 15 EEG channels of DEAP after using a 10 s time window for data slicing. Second, MI and SFFS are integrated as a novel feature-selection method. Then, support vector machine (SVM), k-nearest neighbor (KNN) and random forest (RF) are employed to classify positive and negative emotions to obtain the output probabilities of classifiers as weighted features for further classification. To evaluate the model performance, leave-one-out cross-validation is adopted. Finally, cross-subject classification accuracies of 0.7089, 0.7106 and 0.7361 are achieved by the SVM, KNN and RF classifiers, respectively. The results demonstrate the feasibility of the model by splicing different classifiers’ output probabilities as a portion of the weighted features.
AbstractList With the widespread use of emotion recognition, cross-subject emotion recognition based on EEG signals has become a hot topic in affective computing. Electroencephalography (EEG) can be used to detect the brain's electrical activity associated with different emotions. The aim of this research is to improve the accuracy by enhancing the generalization of features. A Multi-Classifier Fusion method based on mutual information with sequential forward floating selection (MI_SFFS) is proposed. The dataset used in this paper is DEAP, which is a multi-modal open dataset containing 32 EEG channels and multiple other physiological signals. First, high-dimensional features are extracted from 15 EEG channels of DEAP after using a 10 s time window for data slicing. Second, MI and SFFS are integrated as a novel feature-selection method. Then, support vector machine (SVM), k-nearest neighbor (KNN) and random forest (RF) are employed to classify positive and negative emotions to obtain the output probabilities of classifiers as weighted features for further classification. To evaluate the model performance, leave-one-out cross-validation is adopted. Finally, cross-subject classification accuracies of 0.7089, 0.7106 and 0.7361 are achieved by the SVM, KNN and RF classifiers, respectively. The results demonstrate the feasibility of the model by splicing different classifiers' output probabilities as a portion of the weighted features.With the widespread use of emotion recognition, cross-subject emotion recognition based on EEG signals has become a hot topic in affective computing. Electroencephalography (EEG) can be used to detect the brain's electrical activity associated with different emotions. The aim of this research is to improve the accuracy by enhancing the generalization of features. A Multi-Classifier Fusion method based on mutual information with sequential forward floating selection (MI_SFFS) is proposed. The dataset used in this paper is DEAP, which is a multi-modal open dataset containing 32 EEG channels and multiple other physiological signals. First, high-dimensional features are extracted from 15 EEG channels of DEAP after using a 10 s time window for data slicing. Second, MI and SFFS are integrated as a novel feature-selection method. Then, support vector machine (SVM), k-nearest neighbor (KNN) and random forest (RF) are employed to classify positive and negative emotions to obtain the output probabilities of classifiers as weighted features for further classification. To evaluate the model performance, leave-one-out cross-validation is adopted. Finally, cross-subject classification accuracies of 0.7089, 0.7106 and 0.7361 are achieved by the SVM, KNN and RF classifiers, respectively. The results demonstrate the feasibility of the model by splicing different classifiers' output probabilities as a portion of the weighted features.
With the widespread use of emotion recognition, cross-subject emotion recognition based on EEG signals has become a hot topic in affective computing. Electroencephalography (EEG) can be used to detect the brain’s electrical activity associated with different emotions. The aim of this research is to improve the accuracy by enhancing the generalization of features. A Multi-Classifier Fusion method based on mutual information with sequential forward floating selection (MI_SFFS) is proposed. The dataset used in this paper is DEAP, which is a multi-modal open dataset containing 32 EEG channels and multiple other physiological signals. First, high-dimensional features are extracted from 15 EEG channels of DEAP after using a 10 s time window for data slicing. Second, MI and SFFS are integrated as a novel feature-selection method. Then, support vector machine (SVM), k-nearest neighbor (KNN) and random forest (RF) are employed to classify positive and negative emotions to obtain the output probabilities of classifiers as weighted features for further classification. To evaluate the model performance, leave-one-out cross-validation is adopted. Finally, cross-subject classification accuracies of 0.7089, 0.7106 and 0.7361 are achieved by the SVM, KNN and RF classifiers, respectively. The results demonstrate the feasibility of the model by splicing different classifiers’ output probabilities as a portion of the weighted features.
Author Yang, Haihui
Sun, Guobing
Guo, Shengwei
Huang, Shiguo
AuthorAffiliation 2 Key Laboratory of Information Fusion Estimation and Detection, Harbin 150080, China
1 College of Electronic Engineering, Heilongjiang University, Harbin 150080, China; 2201678@s.hlju.edu.cn (H.Y.); 2201766@s.hlju.edu.cn (S.H.); 2211849@s.hlju.edu.cn (S.G.)
AuthorAffiliation_xml – name: 1 College of Electronic Engineering, Heilongjiang University, Harbin 150080, China; 2201678@s.hlju.edu.cn (H.Y.); 2201766@s.hlju.edu.cn (S.H.); 2211849@s.hlju.edu.cn (S.G.)
– name: 2 Key Laboratory of Information Fusion Estimation and Detection, Harbin 150080, China
Author_xml – sequence: 1
  givenname: Haihui
  orcidid: 0000-0002-9014-685X
  surname: Yang
  fullname: Yang, Haihui
– sequence: 2
  givenname: Shiguo
  surname: Huang
  fullname: Huang, Shiguo
– sequence: 3
  givenname: Shengwei
  surname: Guo
  fullname: Guo, Shengwei
– sequence: 4
  givenname: Guobing
  surname: Sun
  fullname: Sun, Guobing
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35626587$$D View this record in MEDLINE/PubMed
BookMark eNplkktuFDEQhi0URB6w4AKoJTawaFJ-tB8bJBhlYKREIAbWlu12Dx71tBO7G4kdd-CGnAQ3k0RJ2Ngl-6u_frvqGB0McfAIPcfwhlIFp54waEBA8wgdYVCqZhTg4E58iI5z3gIQSjB_gg5pwwlvpDhCny-mfgz1ojc5hy74VC2nHOJQvTfZt1UJLlZ_fv1eL5frqoupWqSYc72e7Na7sTrbxXGGv3gXN0OY46focWf67J9d7yfo2_Ls6-Jjff7pw2rx7rx2jKuxdtAIipV1HEtupBC8Iy1WlBkLtiwdbh0XlpMGE6YMB9WQ1gIH4TCTxtATtNrrttFs9WUKO5N-6miC_ncQ00abNAbXe11qdAp7bloqmGuFlBgMs6Uiw5YLVrTe7rUuJ7vzrfPDmEx_T_T-zRC-6038oRVmGEtaBF5dC6R4Nfk86l3Izve9GXycsiZcYCIBqCroywfoNk5pKF81U1Aex0EW6sVdR7dWbhpXgNM94OaGJN9pF0YzN6AYDL3GoOfR0LejUTJeP8i4Ef2f_QtOqLZ2
CitedBy_id crossref_primary_10_3390_f15020288
crossref_primary_10_1109_ACCESS_2023_3264845
crossref_primary_10_3390_e24091187
crossref_primary_10_1007_s10462_023_10690_2
crossref_primary_10_1038_s41598_023_40786_2
crossref_primary_10_1007_s11571_024_10193_y
crossref_primary_10_1007_s40815_023_01666_z
crossref_primary_10_3390_s23031255
Cites_doi 10.1016/j.compbiomed.2021.104757
10.1016/B978-0-12-803304-3.00002-8
10.1109/T-AFFC.2011.15
10.1109/IEMBS.2009.5334139
10.1109/TMM.2015.2477044
10.1109/TAFFC.2018.2887385
10.1016/j.neulet.2016.09.037
10.3390/s20185083
10.3390/s21062026
10.1109/TCBB.2020.3018137
10.1109/JSEN.2018.2883497
10.1007/978-3-319-19387-8_288
10.1016/j.measurement.2020.108047
10.1016/j.knosys.2020.105684
10.1007/s12652-019-01196-3
10.1007/s10044-016-0567-6
10.1016/j.biopsycho.2018.06.008
10.1109/TAFFC.2017.2712143
10.1186/s40537-020-00289-7
10.1109/TAMD.2015.2431497
10.1016/j.jretconser.2021.102551
10.1038/s41598-021-99998-z
10.1109/ICMIC.2015.7409485
10.1142/S0129065718500442
10.3389/fncom.2019.00053
10.1109/ACCESS.2020.3035539
10.1016/j.future.2021.01.010
10.3233/THC-174836
10.1109/ICBME.2018.8703559
10.1016/j.bbe.2020.04.005
10.1109/TCDS.2018.2868121
10.1002/int.22295
10.1109/TAFFC.2014.2339834
10.9746/jcmsi.4.332
10.1016/j.eswa.2017.09.062
10.1109/34.954607
10.3390/e23010116
10.1016/j.patcog.2020.107525
10.1007/s12559-020-09789-3
10.1016/j.ynirp.2021.100054
10.1007/s10339-019-00924-z
10.32604/csse.2021.015222
10.1109/EMBC.2015.7320065
10.1016/j.eswa.2020.113768
10.1016/0167-8655(94)90127-9
10.1109/ICASSP.2009.4959627
10.1016/j.knosys.2015.08.004
10.1109/TAFFC.2018.2890636
10.1155/2017/8317357
10.1016/j.compbiomed.2021.104696
10.1002/047174882X
10.3390/s19030522
10.1109/TAFFC.2018.2879343
10.1016/j.inffus.2020.01.011
10.1016/j.compbiomed.2015.09.019
10.1016/j.neucom.2021.03.105
10.1016/j.yebeh.2019.02.024
10.1016/j.chaos.2018.07.035
10.1109/ICUFN49451.2021.9528706
10.1109/ACCESS.2021.3051281
10.1007/s12555-009-0521-0
10.1007/s11571-014-9287-z
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
NPM
7TB
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
HCIFZ
KR7
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
7X8
5PM
DOA
DOI 10.3390/e24050705
DatabaseName CrossRef
PubMed
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
ProQuest SciTech Premium Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Civil Engineering Abstracts
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Publicly Available Content Database
CrossRef
PubMed

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 1099-4300
ExternalDocumentID oai_doaj_org_article_c61f91e6ad374cd78810a4b6f241b674
PMC9141183
35626587
10_3390_e24050705
Genre Journal Article
GrantInformation_xml – fundername: Basic Institution Scientific Research Operating Foundation of Heilongjiang Province
  grantid: 2018002
– fundername: HLJU Heilongjiang University
  grantid: JM201911
GroupedDBID 29G
2WC
5GY
5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ACIWK
ACUHS
ADBBV
AEGXH
AENEX
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
CS3
DU5
E3Z
ESX
F5P
GROUPED_DOAJ
GX1
HCIFZ
HH5
IAO
ITC
J9A
KQ8
L6V
M7S
MODMG
M~E
OK1
OVT
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
RNS
RPM
TR2
TUS
XSB
~8M
NPM
PQGLB
7TB
8FD
ABUWG
AZQEC
DWQXO
FR3
KR7
PKEHL
PQEST
PQQKQ
PQUKI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c469t-c057319bc6186a8776f2d1934ab0b4abf1dc67b6251249a60952db0607c148aa3
IEDL.DBID BENPR
ISSN 1099-4300
IngestDate Wed Aug 27 01:26:26 EDT 2025
Thu Aug 21 14:40:05 EDT 2025
Fri Jul 11 09:29:55 EDT 2025
Fri Jul 25 12:03:34 EDT 2025
Mon Jul 21 06:02:41 EDT 2025
Tue Jul 01 01:58:12 EDT 2025
Thu Apr 24 23:09:39 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Multi-Classifier Fusion
mutual information
cross-subject
emotion recognition
SFFS
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c469t-c057319bc6186a8776f2d1934ab0b4abf1dc67b6251249a60952db0607c148aa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9014-685X
OpenAccessLink https://www.proquest.com/docview/2670148608?pq-origsite=%requestingapplication%
PMID 35626587
PQID 2670148608
PQPubID 2032401
ParticipantIDs doaj_primary_oai_doaj_org_article_c61f91e6ad374cd78810a4b6f241b674
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9141183
proquest_miscellaneous_2671280039
proquest_journals_2670148608
pubmed_primary_35626587
crossref_citationtrail_10_3390_e24050705
crossref_primary_10_3390_e24050705
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220516
PublicationDateYYYYMMDD 2022-05-16
PublicationDate_xml – month: 5
  year: 2022
  text: 20220516
  day: 16
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Entropy (Basel, Switzerland)
PublicationTitleAlternate Entropy (Basel)
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Doma (ref_60) 2020; 7
Ma (ref_56) 2021; 1
Zhuang (ref_17) 2017; 2017
Nakisa (ref_35) 2018; 93
Mukul (ref_49) 2011; 4
Koelstra (ref_29) 2012; 3
ref_55
ref_53
Liu (ref_11) 2021; 119
Liu (ref_13) 2021; 18
ref_18
Kameyama (ref_47) 2019; 94
Torres (ref_46) 2020; 8
ref_16
Liu (ref_33) 2019; 11
Rahman (ref_5) 2021; 136
Chen (ref_10) 2020; 164
Chuah (ref_1) 2021; 61
Greco (ref_44) 2021; 12
Acharya (ref_25) 2015; 88
Bhattacharyya (ref_9) 2021; 11
Zhang (ref_54) 2016; 633
Kim (ref_15) 2007; 265
Mert (ref_19) 2016; 21
ref_24
Mohamed (ref_8) 2021; 37
ref_23
ref_21
ref_20
Zheng (ref_27) 2015; 7
Kara (ref_52) 2015; 67
ref_62
Khateeb (ref_50) 2021; 9
Pudil (ref_66) 1994; 15
Huang (ref_48) 2021; 448
Zheng (ref_32) 2021; 36
Ko (ref_43) 2009; 7
Puviani (ref_64) 2021; 12
Ircio (ref_59) 2020; 108
Qian (ref_26) 2020; 195
Cho (ref_63) 2015; 17
Poulose (ref_7) 2021; 21
AlZoubi (ref_2) 2021; 12
Zhang (ref_39) 2020; 59
Islam (ref_31) 2021; 136
ref_37
Picard (ref_12) 2001; 23
Li (ref_58) 2018; 12
Yang (ref_28) 2019; 13
Seo (ref_61) 2019; 10
Nawaz (ref_30) 2020; 40
Gupta (ref_38) 2019; 19
Li (ref_36) 2018; 26
Zunino (ref_34) 2021; 13
ref_45
Yuan (ref_14) 2014; 8
Pane (ref_40) 2019; 20
ref_41
Zheng (ref_22) 2017; 10
Sorinas (ref_42) 2019; 29
Yin (ref_3) 2020; 162
Goshvarpour (ref_4) 2018; 114
Alcaraz (ref_51) 2021; 12
Padial (ref_57) 2018; 137
Jenke (ref_65) 2014; 5
ref_6
References_xml – volume: 136
  start-page: 104757
  year: 2021
  ident: ref_31
  article-title: EEG Channel Correlation Based Model for Emotion Recognition
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2021.104757
– volume: 12
  start-page: 1
  year: 2021
  ident: ref_2
  article-title: Detecting naturalistic expression of emotions using physiological signals while playing video games
  publication-title: J. Ambient. Intell. Humaniz. Comput.
– ident: ref_24
  doi: 10.1016/B978-0-12-803304-3.00002-8
– volume: 3
  start-page: 18
  year: 2012
  ident: ref_29
  article-title: DEAP: A Database for Emotion Analysis; Using Physiological Signals
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/T-AFFC.2011.15
– ident: ref_20
  doi: 10.1109/IEMBS.2009.5334139
– volume: 17
  start-page: 1875
  year: 2015
  ident: ref_63
  article-title: Describing Multimedia Content Using Attention-Based Encoder-Decoder Networks
  publication-title: IEEE Trans. Multimed.
  doi: 10.1109/TMM.2015.2477044
– volume: 12
  start-page: 692
  year: 2021
  ident: ref_64
  article-title: A Mathematical Description of Emotional Processes and Its Potential Applications to Affective Computing
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/TAFFC.2018.2887385
– volume: 633
  start-page: 152
  year: 2016
  ident: ref_54
  article-title: An approach to EEG-based emotion recognition using combined feature extraction method
  publication-title: Neurosci. Lett.
  doi: 10.1016/j.neulet.2016.09.037
– volume: 12
  start-page: 15
  year: 2018
  ident: ref_58
  article-title: Exploring EEG Features in Cross-Subject Emotion Recognition
  publication-title: Front. Neurosci.
– ident: ref_41
  doi: 10.3390/s20185083
– volume: 21
  start-page: 2026
  year: 2021
  ident: ref_7
  article-title: The Extensive Usage of the Facial Image Threshing Machine for Facial Emotion Recognition Performance
  publication-title: Sensors
  doi: 10.3390/s21062026
– volume: 18
  start-page: 1710
  year: 2021
  ident: ref_13
  article-title: Subject-Independent Emotion Recognition of EEG Signals Based on Dynamic Empirical Convolutional Neural Network
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform.
  doi: 10.1109/TCBB.2020.3018137
– volume: 19
  start-page: 2266
  year: 2019
  ident: ref_38
  article-title: Cross-Subject Emotion Recognition Using Flexible Analytic Wavelet Transform from EEG Signals
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2018.2883497
– ident: ref_16
  doi: 10.1007/978-3-319-19387-8_288
– volume: 164
  start-page: 108047
  year: 2020
  ident: ref_10
  article-title: EEG emotion recognition model based on the LIBSVM classifier
  publication-title: Measurement
  doi: 10.1016/j.measurement.2020.108047
– volume: 195
  start-page: 105684
  year: 2020
  ident: ref_26
  article-title: Mutual information-based label distribution feature selection for multi-label learning
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2020.105684
– volume: 10
  start-page: 3831
  year: 2019
  ident: ref_61
  article-title: Machine learning approaches for boredom classification using EEG
  publication-title: J. Ambient Intell. Humaniz. Comput.
  doi: 10.1007/s12652-019-01196-3
– volume: 21
  start-page: 81
  year: 2016
  ident: ref_19
  article-title: Emotion recognition from EEG signals by using multivariate empirical mode decomposition
  publication-title: Pattern Anal. Appl.
  doi: 10.1007/s10044-016-0567-6
– volume: 137
  start-page: 42
  year: 2018
  ident: ref_57
  article-title: Fractal Dimension of EEG Signals and Heart Dynamics in Discrete Emotional States
  publication-title: Biol. Psychol.
  doi: 10.1016/j.biopsycho.2018.06.008
– volume: 10
  start-page: 417
  year: 2017
  ident: ref_22
  article-title: Identifying Stable Patterns over Time for Emotion Recognition from EEG
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/TAFFC.2017.2712143
– volume: 7
  start-page: 18
  year: 2020
  ident: ref_60
  article-title: A comparative analysis of machine learning methods for emotion recognition using EEG and peripheral physiological signals
  publication-title: J. Big Data
  doi: 10.1186/s40537-020-00289-7
– volume: 7
  start-page: 162
  year: 2015
  ident: ref_27
  article-title: Investigating Critical Frequency Bands and Channels for EEG-Based Emotion Recognition with Deep Neural Networks
  publication-title: IEEE Trans. Auton. Ment. Dev.
  doi: 10.1109/TAMD.2015.2431497
– volume: 61
  start-page: 102551
  year: 2021
  ident: ref_1
  article-title: The future of service: The power of emotion in human-robot interaction
  publication-title: J. Retail. Consum. Serv.
  doi: 10.1016/j.jretconser.2021.102551
– volume: 11
  start-page: 20696
  year: 2021
  ident: ref_9
  article-title: A deep learning model for classifying human facial expressions from infrared thermal images
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-99998-z
– ident: ref_62
– ident: ref_55
  doi: 10.1109/ICMIC.2015.7409485
– volume: 29
  start-page: 14
  year: 2019
  ident: ref_42
  article-title: Identifying Suitable Brain Regions and Trial Size Segmentation for Positive/Negative Emotion Recognition
  publication-title: Int. J. Neural Syst.
  doi: 10.1142/S0129065718500442
– volume: 13
  start-page: 11
  year: 2019
  ident: ref_28
  article-title: Multi-method Fusion of Cross-Subject Emotion Recognition Based on High-Dimensional EEG Features
  publication-title: Front. Comput. Neurosci.
  doi: 10.3389/fncom.2019.00053
– volume: 8
  start-page: 199719
  year: 2020
  ident: ref_46
  article-title: Emotion Recognition Related to Stock Trading Using Machine Learning Algorithms with Feature Selection
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3035539
– volume: 119
  start-page: 1
  year: 2021
  ident: ref_11
  article-title: Emotion recognition by deeply learned multi-channel textual and EEG features
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2021.01.010
– volume: 26
  start-page: S509
  year: 2018
  ident: ref_36
  article-title: Emotion recognition from multichannel EEG signals using K-nearest neighbor classification
  publication-title: Technol. Health Care
  doi: 10.3233/THC-174836
– ident: ref_37
  doi: 10.1109/ICBME.2018.8703559
– volume: 40
  start-page: 910
  year: 2020
  ident: ref_30
  article-title: Comparison of different feature extraction methods for EEG-based emotion recognition
  publication-title: Biocybern. Biomed. Eng.
  doi: 10.1016/j.bbe.2020.04.005
– volume: 11
  start-page: 517
  year: 2019
  ident: ref_33
  article-title: Electroencephalogram Emotion Recognition Based on Empirical Mode Decomposition and Optimal Feature Selection
  publication-title: IEEE Trans. Cogn. Dev. Syst.
  doi: 10.1109/TCDS.2018.2868121
– volume: 36
  start-page: 152
  year: 2021
  ident: ref_32
  article-title: A portable HCI system-oriented EEG feature extraction and channel selection for emotion recognition
  publication-title: Int. J. Intell. Syst.
  doi: 10.1002/int.22295
– volume: 5
  start-page: 327
  year: 2014
  ident: ref_65
  article-title: Feature Extraction and Selection for Emotion Recognition from EEG
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/TAFFC.2014.2339834
– volume: 4
  start-page: 332
  year: 2011
  ident: ref_49
  article-title: Feature Extraction from Subband Brain Signals and Its Classification
  publication-title: SICE J. Control Meas. Syst. Integr.
  doi: 10.9746/jcmsi.4.332
– volume: 93
  start-page: 143
  year: 2018
  ident: ref_35
  article-title: Evolutionary computation algorithms for feature selection of EEG-based emotion recognition using mobile sensors
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2017.09.062
– volume: 23
  start-page: 1175
  year: 2001
  ident: ref_12
  article-title: Toward machine emotional intelligence: Analysis of affective physiological state
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.954607
– ident: ref_53
  doi: 10.3390/e23010116
– volume: 108
  start-page: 107525
  year: 2020
  ident: ref_59
  article-title: Mutual information based feature subset selection in multivariate time series classification
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2020.107525
– volume: 13
  start-page: 403
  year: 2021
  ident: ref_34
  article-title: Recognition of Emotional States from EEG Signals with Nonlinear Regularity- and Predictability-Based Entropy Metrics
  publication-title: Cogn. Comput.
  doi: 10.1007/s12559-020-09789-3
– volume: 1
  start-page: 100054
  year: 2021
  ident: ref_56
  article-title: Regularity and randomness in ageing: Differences in resting-state EEG complexity measured by largest Lyapunov exponent
  publication-title: Neuroimage Rep.
  doi: 10.1016/j.ynirp.2021.100054
– volume: 20
  start-page: 405
  year: 2019
  ident: ref_40
  article-title: Improving the accuracy of EEG emotion recognition by combining valence lateralization and ensemble learning with tuning parameters
  publication-title: Cogn. Process.
  doi: 10.1007/s10339-019-00924-z
– volume: 37
  start-page: 47
  year: 2021
  ident: ref_8
  article-title: Affective State Recognition Using Thermal-Based Imaging: A Survey
  publication-title: Comput. Syst. Sci. Eng.
  doi: 10.32604/csse.2021.015222
– ident: ref_18
  doi: 10.1109/EMBC.2015.7320065
– volume: 162
  start-page: 113768
  year: 2020
  ident: ref_3
  article-title: Locally robust EEG feature selection for individual-independent emotion recognition
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.113768
– volume: 15
  start-page: 1119
  year: 1994
  ident: ref_66
  article-title: Floating Search Methods in Feature Selection
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/0167-8655(94)90127-9
– ident: ref_21
  doi: 10.1109/ICASSP.2009.4959627
– volume: 88
  start-page: 85
  year: 2015
  ident: ref_25
  article-title: Application of entropies for automated diagnosis of epilepsy using EEG signals: A review
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2015.08.004
– volume: 12
  start-page: 801
  year: 2021
  ident: ref_51
  article-title: A Review on Nonlinear Methods Using Electroencephalographic Recordings for Emotion Recognition
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/TAFFC.2018.2890636
– volume: 2017
  start-page: 8317357
  year: 2017
  ident: ref_17
  article-title: Emotion Recognition from EEG Signals Using Multidimensional Information in EMD Domain
  publication-title: BioMed Res. Int.
  doi: 10.1155/2017/8317357
– volume: 136
  start-page: 104696
  year: 2021
  ident: ref_5
  article-title: Recognition of human emotions using EEG signals: A review
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2021.104696
– ident: ref_23
  doi: 10.1002/047174882X
– ident: ref_45
  doi: 10.3390/s19030522
– volume: 12
  start-page: 417
  year: 2021
  ident: ref_44
  article-title: Brain Dynamics During Arousal-Dependent Pleasant/Unpleasant Visual Elicitation: An Electroencephalographic Study on the Circumplex Model of Affect
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/TAFFC.2018.2879343
– volume: 59
  start-page: 103
  year: 2020
  ident: ref_39
  article-title: Emotion recognition using multi-modal data and machine learning techniques: A tutorial and review
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2020.01.011
– volume: 67
  start-page: 49
  year: 2015
  ident: ref_52
  article-title: Nonlinear analysis of EEGs of patients with major depression during different emotional states
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2015.09.019
– volume: 265
  start-page: 280
  year: 2007
  ident: ref_15
  article-title: Bimodal Emotion Recognition using Speech and Physiological Changes
  publication-title: Robust Speech Recognit. Underst.
– volume: 448
  start-page: 140
  year: 2021
  ident: ref_48
  article-title: Differences first in asymmetric brain: A bi-hemisphere discrepancy convolutional neural network for EEG emotion recognition
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.03.105
– volume: 94
  start-page: 35
  year: 2019
  ident: ref_47
  article-title: Asymmetric gelastic seizure as a lateralizing sign in patients with hypothalamic hamartoma
  publication-title: Epilepsy Behav.
  doi: 10.1016/j.yebeh.2019.02.024
– volume: 114
  start-page: 400
  year: 2018
  ident: ref_4
  article-title: Poincaré’s section analysis for PPG-based automatic emotion recognition
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2018.07.035
– ident: ref_6
  doi: 10.1109/ICUFN49451.2021.9528706
– volume: 9
  start-page: 12134
  year: 2021
  ident: ref_50
  article-title: Multi-Domain Feature Fusion for Emotion Classification Using DEAP Dataset
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3051281
– volume: 7
  start-page: 865
  year: 2009
  ident: ref_43
  article-title: Emotion recognition using EEG signals with relative power values and Bayesian network
  publication-title: Int. J. Control. Autom. Syst.
  doi: 10.1007/s12555-009-0521-0
– volume: 8
  start-page: 517
  year: 2014
  ident: ref_14
  article-title: Different patterns of puberty effect in neural oscillation to negative stimuli: Sex differences
  publication-title: Cogn. Neurodyn.
  doi: 10.1007/s11571-014-9287-z
SSID ssj0023216
Score 2.3354409
Snippet With the widespread use of emotion recognition, cross-subject emotion recognition based on EEG signals has become a hot topic in affective computing....
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 705
SubjectTerms Accuracy
Affective computing
Algorithms
Artificial intelligence
Asymmetry
Brain research
Channels
Classification
Classifiers
cross-subject
Datasets
Discriminant analysis
Electroencephalography
Emotion recognition
Emotions
Entropy
Experiments
Feature extraction
Information theory
Machine learning
Multi-Classifier Fusion
mutual information
Physiology
Researchers
SFFS
Splicing
Support vector machines
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kJy-i-IpWWcWDl9Aku91tjrY0VKEi1kJvYV_BgqSi7d3_4D_0lziTF60IXryEkMxhMpPNfDOZ_YaQq64OYhsq4xvhjM-7sOa0y7hvu9iAYU0cZljQH9-L0ZTfzbqztVFf2BNW0gOXhusYEWZx6ISyTHJjkf08UFyLDEKPFrJgAoWYVydTVarFolCUPEIMkvqOg7gFwAdn1K1Fn4Kk_zdk-bNBci3iJLtkp4KK9KZUcY9suXyfPBQ7Zv1iluU8g5hGkxUWvGgfwpGlcDK-_fr4nCTJhAIepQPUw4fPA9Zb6LAc2kMf67ahRX5ApsnwaTDyq6kIvoFUdukbpDAMY22Q6V71pARTWIBhXOlAwyEDCwupBQIXHisklIusDkQgDaQ-SrFD0soXuTsmNIsyDnhGxZppznE8nxXC9CTTLNAusB65rq2VmooyHCdXvKSQOqBh08awHrlsRF9LnozfhPpo8kYAqa2LC-DwtHJ4-pfDPdKuHZZW6-09jYTE0qgIeh65aG7DSsHfHyp3i1UhA8EYNyN75Kj0b6MJAxgIWEx6RG54fkPVzTv5_Llg445DDkkaO_mPZzsl2xFur0B2WNEmreXbyp0B6Fnq8-L9_gbRsf9c
  priority: 102
  providerName: Directory of Open Access Journals
Title Multi-Classifier Fusion Based on MI–SFFS for Cross-Subject Emotion Recognition
URI https://www.ncbi.nlm.nih.gov/pubmed/35626587
https://www.proquest.com/docview/2670148608
https://www.proquest.com/docview/2671280039
https://pubmed.ncbi.nlm.nih.gov/PMC9141183
https://doaj.org/article/c61f91e6ad374cd78810a4b6f241b674
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NbtQwEB7R7YULAvEXKCuDOHCxmsReOzkhttq0ILWqWirtLfJfaCWUlHb3zjvwhjwJM4k3dFHFxYpiH-wZ2_PN2P4G4P3MpqXPjONOBcflDNecDY3kfkYXMLwrs4YC-scn6uhCflnOljHgdhuvVW72xH6j9p2jGPl-rjQFv1RafLz-wSlrFJ2uxhQaO7CLW3BRTGB3vjg5PRtdLpFnauATEujc7we0XwiAKFfdHSvUk_XfhzD_vSh5x_JUj-FRhIzs06DjJ_AgtE_htH85y_ucllcN2jZWrSnwxeZoljzDj-PPv3_-Oq-qc4a4lB1QPzhuExR3YYsheQ8721wf6tpncFEtvh4c8ZgdgTt0aVfcEZVhVlpHjPem0Fo1uUc4Jo1NLRYNSlppqwjAyNIQsVzubapS7VCOxojnMGm7NrwE1uSNRFxjSiuslJSmzyvlCi2sSG1IfQIfNtKqXaQOpwwW32t0IUiw9SjYBN6NTa8Hvoz7Gs1J5GMDorjuf3Q33-q4YmocV1NmQRkvtHSeaO9TIy2OUmZWaZnA3kZhdVx3t_XfWZLA27EaVwwdg5g2dOu-Dc4VepScwItBv2NPBMJBxGQ6Ab2l-a2ubte0V5c9K3eZSXTWxKv_d-s1PMzpAQXxv6o9mKxu1uENwpqVncJOUR1O4wye9sEBLA-X2R-j4ftS
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VcoALAvEXKGAQSFyiOrHX3hwQoqVhl3YrRFupt9R_gUooKe2uEDfegffgoXgSZvJHF1XcellFayuZ2B7PNxPPNwDPR5ZnPjEudiq4WI5Q52woZexHdADDuywpKaA_21WTA_n-cHS4Ar_6XBg6Vtnvic1G7WtHMfL1VGkKfik-fn3yNaaqUfR1tS-h0S6L7fD9G7psZ6-mb3F-X6RpvrW_OYm7qgKxQ1dwHjuiAEwy64gp3oy1VmXqEcZIY7nFnxIlVNoqMvwyM0TIlnrLFdcOn2-MwPtegatSoCWnzPT83eDgiTRRLXsRNvL1gNYS4RZVxjtn85rSABfh2X-PZZ6zc_lNuNEBVPamXVG3YCVUt-FDk6cbNxU0j0u0pCxfUJiNbaAR9AwvZtPfP37u5fkeQxTMNkmOGDclivKwrbZUEPvYH1aqqztwcCmjdhdWq7oK94GVaSkRRZnMCislFQX0SrmxFlZwG7iP4GU_WoXriMqpXsaXAh0WGthiGNgIng1dT1p2jos6bdCQDx2IULv5oz79VHT6WeB7lVkSlPFCS-eJZJ8bafEtZWKVlhGs9RNWdFp-VvxdkxE8HZpRP-mji6lCvWj6IASgFOgI7rXzO0giEHwiAtQR6KWZXxJ1uaU6_txwgGeJRNdQPPi_WE_g2mR_tlPsTHe3H8L1lFI3iHlWrcHq_HQRHiGgmtvHzSpmcHTZavMH8tgyow
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEB6VVEJcEIg_Q4EFgcTFiu3d7MYHhEgbq6E0iloq9Wb2z1AJ2aVNhLjxDrwNj8OTMOM_GlRx6yWy4pU1nt3Z-WY8-w3Ai5GJUhdrG1rpbShGaHPGFyJ0IyrAcDaNC0ro78_l7pF4dzw63oBf3VkYKqvs9sR6o3aVpRz5MJGKkl8yGg-LtixisZO9Of0aUgcp-tLatdNolsie__4Nw7fz17MdnOuXSZJNP2zvhm2HgdBiWLgMLdEBxqmxxBqvx0rJInEIaYQ2kcGfAqWVykgCASLVRM6WOBPJSFmURWuOz70Gm4qiogFsTqbzxUEf7vEklg2XEedpNPToOxF8UZ-8Cx6wbhRwGbr9t0jzgtfLbsHNFq6yt836ug0bvrwDi_rUblj30zwp0K-ybEVJNzZBl-gYXuzPfv_4eZhlhwwxMdsmOULcoijnw6ZN4yB20JUuVeVdOLoSvd2DQVmV_gGwIikEYiqdGm6EoBaBTko7VtzwyPjIBfCq01ZuW9py6p7xJcfwhRSb94oN4Hk_9LTh6rhs0IRU3g8geu36j-rsU95aa47vVaSxl9pxJawjyv1IC4NvKWIjlQhgq5uwvLX58_zvCg3gWX8brZU-wejSV6t6DAICOhAdwP1mfntJOEJRxIMqALU282uirt8pTz7XjOBpLDBQ5A__L9ZTuI4mk7-fzfcewY2EznEQDa3cgsHybOUfI7pamiftMmbw8aot5w9M-Tg1
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Classifier+Fusion+Based+on+MI%E2%80%93SFFS+for+Cross-Subject+Emotion+Recognition&rft.jtitle=Entropy+%28Basel%2C+Switzerland%29&rft.au=Yang%2C+Haihui&rft.au=Huang%2C+Shiguo&rft.au=Guo%2C+Shengwei&rft.au=Sun%2C+Guobing&rft.date=2022-05-16&rft.pub=MDPI+AG&rft.eissn=1099-4300&rft.volume=24&rft.issue=5&rft.spage=705&rft_id=info:doi/10.3390%2Fe24050705&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1099-4300&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1099-4300&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1099-4300&client=summon