Near-Surface Air Temperature Estimation Based on an Improved Conditional Generative Adversarial Network

To address the issue of missing near-surface air temperature data caused by the uneven distribution of ground meteorological observation stations, we propose a method for near-surface air temperature estimation based on an improved conditional generative adversarial network (CGAN) framework. Leverag...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 24; no. 18; p. 5972
Main Authors Zheng, Jiaqi, Wu, Xi, Li, Xiaojie, Peng, Jing
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 14.09.2024
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract To address the issue of missing near-surface air temperature data caused by the uneven distribution of ground meteorological observation stations, we propose a method for near-surface air temperature estimation based on an improved conditional generative adversarial network (CGAN) framework. Leveraging the all-weather coverage advantage of Fengyun meteorological satellites, Fengyun-4A (FY-4A) satellite remote sensing data are utilized as conditional guiding information for the CGAN, helping to direct and constrain the near-surface air temperature estimation process. In the proposed network model of the method based on the conditional generative adversarial network structure, the generator combining a self-attention mechanism and cascaded residual blocks is designed with U-Net as the backbone, which extracts implicit feature information and suppresses the irrelevant information in the Fengyun satellite data. Furthermore, a discriminator with multi-level and multi-scale spatial feature fusion is constructed to enhance the network’s perception of details and the global structure, enabling accurate air temperature estimation. The experimental results demonstrate that, compared with Attention U-Net, Pix2pix, and other deep learning models, the method presents significant improvements of 68.75% and 10.53%, respectively in the root mean square error (RMSE) and Pearson’s correlation coefficient (CC). These results indicate the superior performance of the proposed model for near-surface air temperature estimation.
AbstractList To address the issue of missing near-surface air temperature data caused by the uneven distribution of ground meteorological observation stations, we propose a method for near-surface air temperature estimation based on an improved conditional generative adversarial network (CGAN) framework. Leveraging the all-weather coverage advantage of Fengyun meteorological satellites, Fengyun-4A (FY-4A) satellite remote sensing data are utilized as conditional guiding information for the CGAN, helping to direct and constrain the near-surface air temperature estimation process. In the proposed network model of the method based on the conditional generative adversarial network structure, the generator combining a self-attention mechanism and cascaded residual blocks is designed with U-Net as the backbone, which extracts implicit feature information and suppresses the irrelevant information in the Fengyun satellite data. Furthermore, a discriminator with multi-level and multi-scale spatial feature fusion is constructed to enhance the network’s perception of details and the global structure, enabling accurate air temperature estimation. The experimental results demonstrate that, compared with Attention U-Net, Pix2pix, and other deep learning models, the method presents significant improvements of 68.75% and 10.53%, respectively in the root mean square error (RMSE) and Pearson’s correlation coefficient (CC). These results indicate the superior performance of the proposed model for near-surface air temperature estimation.
To address the issue of missing near-surface air temperature data caused by the uneven distribution of ground meteorological observation stations, we propose a method for near-surface air temperature estimation based on an improved conditional generative adversarial network (CGAN) framework. Leveraging the all-weather coverage advantage of Fengyun meteorological satellites, Fengyun-4A (FY-4A) satellite remote sensing data are utilized as conditional guiding information for the CGAN, helping to direct and constrain the near-surface air temperature estimation process. In the proposed network model of the method based on the conditional generative adversarial network structure, the generator combining a self-attention mechanism and cascaded residual blocks is designed with U-Net as the backbone, which extracts implicit feature information and suppresses the irrelevant information in the Fengyun satellite data. Furthermore, a discriminator with multi-level and multi-scale spatial feature fusion is constructed to enhance the network's perception of details and the global structure, enabling accurate air temperature estimation. The experimental results demonstrate that, compared with Attention U-Net, Pix2pix, and other deep learning models, the method presents significant improvements of 68.75% and 10.53%, respectively in the root mean square error (RMSE) and Pearson's correlation coefficient (CC). These results indicate the superior performance of the proposed model for near-surface air temperature estimation.To address the issue of missing near-surface air temperature data caused by the uneven distribution of ground meteorological observation stations, we propose a method for near-surface air temperature estimation based on an improved conditional generative adversarial network (CGAN) framework. Leveraging the all-weather coverage advantage of Fengyun meteorological satellites, Fengyun-4A (FY-4A) satellite remote sensing data are utilized as conditional guiding information for the CGAN, helping to direct and constrain the near-surface air temperature estimation process. In the proposed network model of the method based on the conditional generative adversarial network structure, the generator combining a self-attention mechanism and cascaded residual blocks is designed with U-Net as the backbone, which extracts implicit feature information and suppresses the irrelevant information in the Fengyun satellite data. Furthermore, a discriminator with multi-level and multi-scale spatial feature fusion is constructed to enhance the network's perception of details and the global structure, enabling accurate air temperature estimation. The experimental results demonstrate that, compared with Attention U-Net, Pix2pix, and other deep learning models, the method presents significant improvements of 68.75% and 10.53%, respectively in the root mean square error (RMSE) and Pearson's correlation coefficient (CC). These results indicate the superior performance of the proposed model for near-surface air temperature estimation.
Audience Academic
Author Wu, Xi
Peng, Jing
Zheng, Jiaqi
Li, Xiaojie
AuthorAffiliation Department of Computer Science, Chengdu University of Information Technology, Chengdu 610225, China; 3220608049@stu.cuit.edu.cn (J.Z.); wuxi@cuit.edu.cn (X.W.); lixj@cuit.edu.cn (X.L.)
AuthorAffiliation_xml – name: Department of Computer Science, Chengdu University of Information Technology, Chengdu 610225, China; 3220608049@stu.cuit.edu.cn (J.Z.); wuxi@cuit.edu.cn (X.W.); lixj@cuit.edu.cn (X.L.)
Author_xml – sequence: 1
  givenname: Jiaqi
  surname: Zheng
  fullname: Zheng, Jiaqi
– sequence: 2
  givenname: Xi
  surname: Wu
  fullname: Wu, Xi
– sequence: 3
  givenname: Xiaojie
  surname: Li
  fullname: Li, Xiaojie
– sequence: 4
  givenname: Jing
  surname: Peng
  fullname: Peng, Jing
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39338717$$D View this record in MEDLINE/PubMed
BookMark eNpdkktv1DAQxyNURB9w4AugSFzoIcWvOM4JbVdtWakqB_ZuTeLx4iWJFztZxLfH25RVi3yY8fjv3zw059nJ4AfMsveUXHFek8-RCarKumKvsjMqmCgUY-TkmX-ance4JYRxztWb7JTXyVa0Oss2Dwih-D4FCy3mCxfyNfY7DDBOAfObOLoeRueH_Boimjw5MOSrfhf8Pl2XfjDu8AxdfofD4ZvbJ4zZY4gQXAo_4Pjbh59vs9cWuojvnuxFtr69WS-_Fvff7lbLxX3RClmPRWNAoLWS0toyoNCUkslWgbDIK9FIWzXAARHqBhkaIU3TykZVBmxFhOQX2WrGGg9bvQup-vBHe3D6MeDDRkMYXduhhqY2SNIUCEk5DTSC2dKo5JYCqlIl1peZtZuaHk2LwxigewF9-TK4H3rj95pSwSVlIhE-PRGC_zVhHHXvYotdBwP6KWpOKakpZSVP0o__Sbd-Cmmus0rWnKpDSVezagOpAzdYnxK36RjsXZuWwroUXyhKKiXJI_bD8x6Oxf9bgCS4nAVt8DEGtEcJJfqwXPq4XPwvkMfCQw
Cites_doi 10.3354/cr030079
10.1007/s00376-023-2293-5
10.1145/3444370.3444550
10.1016/j.rse.2010.08.010
10.1175/JHM-D-15-0075.1
10.1175/JAMC-D-16-0188.1
10.1016/j.rse.2020.111692
10.1109/LGRS.2022.3200756
10.1016/j.rse.2016.11.011
10.1016/j.rse.2020.111791
10.1175/JHM-D-19-0110.1
10.1109/LGRS.2013.2293540
10.3390/rs12061023
10.1016/j.rse.2009.10.002
10.1360/TB-2024-0100
10.1109/CVPR.2016.90
10.1175/1520-0450(2000)039<1570:RBSTAA>2.0.CO;2
10.1016/j.rse.2017.04.008
10.1109/IJCNN55064.2022.9892376
10.1175/JHM-D-16-0176.1
10.1109/CVPR46437.2021.01402
10.1016/j.rse.2021.112665
10.1109/ICCV.2017.168
10.1016/S0034-4257(96)00216-7
10.1002/qj.3803
10.1155/2020/8887364
10.1080/014311699212885
10.1175/1520-0450(1989)028<0276:EORSRT>2.0.CO;2
10.5194/hess-6-85-2002
10.1109/CVPR.2017.632
10.3390/rs14122925
10.3390/s23218863
10.1109/CVPR46437.2021.01063
10.3390/rs10122013
10.3390/rs6020946
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2024 by the authors. 2024
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2024 by the authors. 2024
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
7X8
5PM
DOA
DOI 10.3390/s24185972
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Central
ProQuest Health & Medical Complete
Health Research Premium Collection
ProQuest Medical Library
ProQuest One Academic UKI Edition
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Medical Library (Alumni)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database

PubMed
CrossRef

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_ab9de087100a4edab42f5d84ed54a758
PMC11436124
A810786053
39338717
10_3390_s24185972
Genre Journal Article
GrantInformation_xml – fundername: CUIT Science and Technology Innovation Capacity Enhancement Program Project
  grantid: Grant No. KYTD202330
– fundername: National Science Foundation of China
  grantid: No. 42075142
– fundername: Sichuan Science and Technology program
  grantid: No. 24ZDYF0017
– fundername: the China Meteorological Administration through the FengYun Application Pioneering Project
  grantid: No. FY-APP-2022.0609
– fundername: Sichuan Science and Technology program
  grantid: 24ZDYF0017
– fundername: China Meteorological Administration through the FengYun Application Pioneering Project
  grantid: FY-APP-2022.0609
– fundername: CUIT Science and Technology Innovation Capacity Enhancement Program Project
  grantid: KYTD202330
– fundername: National Science Foundation of China
  grantid: 42075142
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
NPM
PJZUB
PPXIY
PMFND
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c469t-bda4eff6119f2a1ab5626c8a4fe374b6f7ba3aeea9be2ed46dbc6b87daf70463
IEDL.DBID DOA
ISSN 1424-8220
IngestDate Wed Aug 27 01:20:10 EDT 2025
Thu Aug 21 18:31:25 EDT 2025
Thu Jul 10 22:39:01 EDT 2025
Sat Jul 26 00:22:39 EDT 2025
Tue Jun 10 21:02:13 EDT 2025
Mon Jul 21 05:40:19 EDT 2025
Tue Jul 01 03:51:13 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 18
Keywords self-attention mechanism
deep learning
remote sensing
conditional generative adversarial network
multi-scale
near-surface air temperature
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c469t-bda4eff6119f2a1ab5626c8a4fe374b6f7ba3aeea9be2ed46dbc6b87daf70463
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/ab9de087100a4edab42f5d84ed54a758
PMID 39338717
PQID 3110693188
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_ab9de087100a4edab42f5d84ed54a758
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11436124
proquest_miscellaneous_3110911253
proquest_journals_3110693188
gale_infotracacademiconefile_A810786053
pubmed_primary_39338717
crossref_primary_10_3390_s24185972
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240914
PublicationDateYYYYMMDD 2024-09-14
PublicationDate_xml – month: 9
  year: 2024
  text: 20240914
  day: 14
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2024
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Chen (ref_30) 2021; 44
Su (ref_36) 2023; 40
ref_12
ref_11
Zhang (ref_40) 2022; 16
ref_53
ref_51
Sadeghi (ref_24) 2019; 20
Venter (ref_3) 2020; 242
Liu (ref_10) 2017; 56
Tao (ref_22) 2016; 17
ref_20
Bai (ref_14) 2017; 19
Prihodko (ref_2) 1997; 60
ref_26
Wang (ref_27) 2021; 265
Han (ref_9) 2012; 70
Deng (ref_31) 2021; 40
Zhu (ref_18) 2017; 189
ref_35
Yang (ref_38) 2023; 17
ref_33
Hersbach (ref_41) 2020; 146
ref_32
Ke (ref_5) 2011; 30
Willmott (ref_52) 2005; 30
Ma (ref_50) 2022; 19
Niclos (ref_6) 2013; 11
Yu (ref_39) 2022; 24
Nieto (ref_16) 2011; 115
Duan (ref_19) 2017; 195
Shen (ref_25) 2020; 240
ref_47
Williamson (ref_7) 2014; 6
ref_45
ref_44
Wang (ref_37) 2018; 40
ref_43
Wang (ref_34) 2021; 48
ref_42
Goodfellow (ref_29) 2014; 27
Vancutsem (ref_8) 2010; 114
Zhou (ref_4) 2020; 2020
Kawashima (ref_13) 2000; 39
Su (ref_17) 2002; 6
Cresswell (ref_1) 1999; 20
Nemani (ref_15) 1989; 28
Guo (ref_28) 2022; 16
ref_49
ref_48
Tao (ref_23) 2017; 18
Huang (ref_21) 2024; 69
Han (ref_46) 2021; 60
References_xml – volume: 30
  start-page: 79
  year: 2005
  ident: ref_52
  article-title: Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance
  publication-title: Clim. Res.
  doi: 10.3354/cr030079
– volume: 40
  start-page: 367
  year: 2021
  ident: ref_31
  article-title: Liver CT image segmentation based on generative adversarial network
  publication-title: Beijing Biomed. Eng.
– volume: 48
  start-page: 101
  year: 2021
  ident: ref_34
  article-title: Medical Image Deblur Using Generative Adversarial Networks with Channel Attention
  publication-title: Comput. Sci.
– volume: 27
  start-page: 1
  year: 2014
  ident: ref_29
  article-title: Generative adversarial nets
  publication-title: NeurIPS
– volume: 40
  start-page: 1844
  year: 2023
  ident: ref_36
  article-title: A multi-domain compression radiative transfer model for the Fengyun-4 Geosynchronous Interferometric Infrared Sounder (GIIRS)
  publication-title: Adv. Atmos. Sci.
  doi: 10.1007/s00376-023-2293-5
– ident: ref_26
  doi: 10.1145/3444370.3444550
– volume: 115
  start-page: 107
  year: 2011
  ident: ref_16
  article-title: Air temperature estimation with MSG-SEVIRI data: Calibration and validation of the TVX algorithm for the Iberian Peninsula
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2010.08.010
– volume: 17
  start-page: 931
  year: 2016
  ident: ref_22
  article-title: A Deep Neural Network Modeling Framework to Reduce Bias in Satellite Precipitation Products
  publication-title: J. Hydrometeorol.
  doi: 10.1175/JHM-D-15-0075.1
– ident: ref_35
– volume: 56
  start-page: 803
  year: 2017
  ident: ref_10
  article-title: Evaluating four remote sensing methods for estimating surface air temperature on a regional scale
  publication-title: J. Appl. Meteorol. Clim.
  doi: 10.1175/JAMC-D-16-0188.1
– volume: 16
  start-page: 321
  year: 2022
  ident: ref_28
  article-title: Correction of sea surface wind speed based on SAR rainfall grade classification using convolutional neural network
  publication-title: IEEE J.-Stars
– volume: 240
  start-page: 111692
  year: 2020
  ident: ref_25
  article-title: Deep-learning-based air temperature mapping by fusing remote sensing, station, simulation and socioeconomic data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2020.111692
– volume: 19
  start-page: 1006105
  year: 2022
  ident: ref_50
  article-title: Improvement of a near-real-time precipitation estimation algorithm using deep learning
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2022.3200756
– volume: 16
  start-page: 15
  year: 2022
  ident: ref_40
  article-title: Temperature Error Test of CMA Global Atmospheric Reanalysis Data in Xinjiang
  publication-title: Desert Oasis Met
– volume: 189
  start-page: 152
  year: 2017
  ident: ref_18
  article-title: Retrievals of all-weather daytime air temperature from MODIS products
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.11.011
– volume: 19
  start-page: 390
  year: 2017
  ident: ref_14
  article-title: Remote sensing inversion of near surface air temperature based on random forest
  publication-title: Int. J. Geogr. Inf. Sci.
– volume: 242
  start-page: 111791
  year: 2020
  ident: ref_3
  article-title: Hyperlocal mapping of urban air temperature using remote sensing and crowdsourced weather data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2020.111791
– ident: ref_45
– volume: 20
  start-page: 2273
  year: 2019
  ident: ref_24
  article-title: PERSIANN-CNN: Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks–Convolutional Neural Networks
  publication-title: J. Hydrometeorol.
  doi: 10.1175/JHM-D-19-0110.1
– volume: 11
  start-page: 1380
  year: 2013
  ident: ref_6
  article-title: Land surface air temperature retrieval from EOS-MODIS images
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2013.2293540
– ident: ref_11
  doi: 10.3390/rs12061023
– ident: ref_53
– volume: 114
  start-page: 449
  year: 2010
  ident: ref_8
  article-title: Evaluation of MODIS land surface temperature data to estimate air temperature in different ecosystems over Africa
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2009.10.002
– volume: 69
  start-page: 2336
  year: 2024
  ident: ref_21
  article-title: How artificial intelligence is transforming weather forecasting for the future
  publication-title: Chin. Sci. Bull.
  doi: 10.1360/TB-2024-0100
– ident: ref_47
– ident: ref_43
  doi: 10.1109/CVPR.2016.90
– volume: 39
  start-page: 1570
  year: 2000
  ident: ref_13
  article-title: Relations between surface temperature and air temperature on a local scale during winter nights
  publication-title: J. Appl. Meteorol. Clim.
  doi: 10.1175/1520-0450(2000)039<1570:RBSTAA>2.0.CO;2
– volume: 195
  start-page: 107
  year: 2017
  ident: ref_19
  article-title: A framework for the retrieval of all-weather land surface temperature at a high spatial resolution from polar-orbiting thermal infrared and passive microwave data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.04.008
– ident: ref_48
  doi: 10.1109/IJCNN55064.2022.9892376
– ident: ref_44
– volume: 24
  start-page: 750
  year: 2022
  ident: ref_39
  article-title: A downscaling method for land surface air temperature of ERA5 reanalysis dataset under complex terrain conditions in mountainous areas
  publication-title: J. Geosci.
– volume: 18
  start-page: 1271
  year: 2017
  ident: ref_23
  article-title: Precipitation Identification with Bispectral Satellite Information Using Deep Learning Approaches
  publication-title: J. Hydrometeorol.
  doi: 10.1175/JHM-D-16-0176.1
– ident: ref_33
  doi: 10.1109/CVPR46437.2021.01402
– volume: 265
  start-page: 112665
  year: 2021
  ident: ref_27
  article-title: A method for land surface temperature retrieval based on model-data-knowledge-driven and deep learning
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2021.112665
– ident: ref_51
  doi: 10.1109/ICCV.2017.168
– volume: 60
  start-page: 335
  year: 1997
  ident: ref_2
  article-title: Estimation of air temperature from remotely sensed surface observations
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(96)00216-7
– volume: 146
  start-page: 1999
  year: 2020
  ident: ref_41
  article-title: The ERA5 global reanalysis
  publication-title: Q. J. R. Meteorol. Soc.
  doi: 10.1002/qj.3803
– volume: 2020
  start-page: 8887364
  year: 2020
  ident: ref_4
  article-title: Comparison of Machine-Learning Algorithms for Near-Surface Air-Temperature Estimation from FY-4A AGRI Data
  publication-title: Adv. Meteorol.
  doi: 10.1155/2020/8887364
– volume: 44
  start-page: 347
  year: 2021
  ident: ref_30
  article-title: Research Review on Generative Adversarial Networks and Their Application to Image Generation
  publication-title: J. Chin. Comput.
– volume: 20
  start-page: 1125
  year: 1999
  ident: ref_1
  article-title: Estimating surface air temperatures, from Meteosat land surface temperatures, using an empirical solar zenith angle model
  publication-title: INT J. Remote Sens.
  doi: 10.1080/014311699212885
– volume: 28
  start-page: 276
  year: 1989
  ident: ref_15
  article-title: Estimation of regional surface resistance to evapotranspiration from NDVI and thermal-IR AVHRR data
  publication-title: J. Appl. Meteorol. Clim.
  doi: 10.1175/1520-0450(1989)028<0276:EORSRT>2.0.CO;2
– volume: 6
  start-page: 85
  year: 2002
  ident: ref_17
  article-title: The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-6-85-2002
– ident: ref_42
  doi: 10.1109/CVPR.2017.632
– volume: 60
  start-page: 4103508
  year: 2021
  ident: ref_46
  article-title: Convective precipitation nowcasting using U-Net model
  publication-title: IEEE Trans. Geosci. Remote Sens.
– ident: ref_49
  doi: 10.3390/rs14122925
– ident: ref_20
  doi: 10.3390/s23218863
– volume: 40
  start-page: 1
  year: 2018
  ident: ref_37
  article-title: The FY-4 radiometer imager and the application of its data in the satellite meteorology
  publication-title: Chin. J. Nat.
– volume: 70
  start-page: 1107
  year: 2012
  ident: ref_9
  article-title: Study of obtaining high resolution near-surface atmosphere temperature by using the land surface temperature from meteorological satellite data
  publication-title: Acta Meteorol. Sin.
– volume: 30
  start-page: 277
  year: 2011
  ident: ref_5
  article-title: Reconstruction of MODIS land surface temperature in northeast qinghai-xizang plateau and its comparison with air temperature
  publication-title: Plateau Meteorol.
– ident: ref_32
  doi: 10.1109/CVPR46437.2021.01063
– ident: ref_12
  doi: 10.3390/rs10122013
– volume: 6
  start-page: 946
  year: 2014
  ident: ref_7
  article-title: Estimating temperature fields from MODIS land surface temperature and air temperature observations in a sub-arctic alpine environment
  publication-title: Remote Sens.
  doi: 10.3390/rs6020946
– volume: 17
  start-page: 13108
  year: 2023
  ident: ref_38
  article-title: Deep Learning for Near-Surface Air Temperature Estimation from FY-4A Satellite Data
  publication-title: IEEE J.-Stars
SSID ssj0023338
Score 2.4277253
Snippet To address the issue of missing near-surface air temperature data caused by the uneven distribution of ground meteorological observation stations, we propose a...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 5972
SubjectTerms Accuracy
Analysis
Artificial satellites in remote sensing
conditional generative adversarial network
Deep learning
Meteorological research
Meteorological satellites
Methods
multi-scale
near-surface air temperature
Precipitation
Remote sensing
Satellites
self-attention mechanism
Temperature
Vegetation
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BucAB8SZQkEFInKJuEsdxTmhbtaqQ2AuLtDfLj3HpJSn7-P_MxNntRkjcskkUecfz-uzxNwBfpFczZJbPsvDcwgxj7sjt5Vi4UvraRTnwzP5YqOtf8vuqXo0LbpuxrHLvEwdHHXrPa-RnFcUp1ZIG6m93f3LuGsW7q2MLjYfwiKnLuKSrWd0DrorwV2ITqgjan21KZmppm3ISgwaq_n8d8lFEmlZLHoWfq2fwdMwbxTxN9HN4gN0LeHLEJvgSbhaktfnP3Tpaj2J-uxZLpKQ4kSaLS7LldExRnFPkCoIubCfSogL9vOh583pYGBSJi5odoRgaNm8sq6lYpJLxV7C8ulxeXOdjH4XcE_jd5i5YiTEqElEsbWEd5TzKaysjVo10KjbOVhbRtg5LDFIF55XTTbCxYUKx13DS9R2-BUHZVDvzceZCgVIjtlE5y-cXbO04scng816w5i6xZRhCGSx9c5B-Bucs8sMLTHA93OjXN2a0F2NdG3CmmXuIBh8sKVCsg6bLWlrCOBl85QkzbIY0K96OpwlonExoZeaacK0mrFZlcLqfUzPa58bca1MGnw6PybJ4u8R22O_SOxQKSv7Em6QChzFXLakWIeEM9EQ5Jn9q-qS7_T2wdxMArSitlO_-P6738Lik_IlLUwp5Cifb9Q4_UP6zdR8HJf8LSr8JAw
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELaqcoEDKu9AQQYhcQpsEsdJDghtq1YVUvfCVurNGtvjUgllIbsrlX_PTJyNNoIjNyexImc8ry-2vxHivXJ6hszymWeOS5hhSC25vRQzmytX2qB6ntnLhb64Ul-vy-sDsauxOQhw_U9ox_WkrrofH-9-_f5CBv-ZESdB9k_rnBlYmoo88T1qVmyfl2pcTMgLgmGRVGjafRKKesb-v_3yXmCabprci0LnR-LhkD7KeZzvR-IA28fiwR6p4BNxsyDlTb9tuwAO5fy2k0uk3DhyJ8szMul4WlGeUADzkhrQyvhvgS5PV7yG3f8flJGSmv2h7Os2r4G1VS7izvGnYnl-tjy9SIdyCqkjDLxJrQeFIegsa0IOGVhKfbSrQQUsKmV1qCwUgAiNxRy90t46bevKQ6iYV-yZOGxXLb4QkpKqZubCzPoMVY3YBG2BjzFAaTm_ScS7nWDNz0iaYQhssPTNKP1EnLDIxw7Mc93fWHU3ZjAbA7bxOKuZgogG74H0KJS-pmapgKBOIj7whBnWD5oVB8OhAhon81qZeU3wtibIViTieDenZqdlpqDkRzfk1uhFb8fHZGC8agItrraxD0WEnF_xPKrAOOaiIdUiQJyIeqIck4-aPmlvv_ck3oRDC8ou1cv_IYZX4n5OyRbvY8nUsTjcdFt8TcnSxr7pTeEPZ_YX4A
  priority: 102
  providerName: Scholars Portal
Title Near-Surface Air Temperature Estimation Based on an Improved Conditional Generative Adversarial Network
URI https://www.ncbi.nlm.nih.gov/pubmed/39338717
https://www.proquest.com/docview/3110693188
https://www.proquest.com/docview/3110911253
https://pubmed.ncbi.nlm.nih.gov/PMC11436124
https://doaj.org/article/ab9de087100a4edab42f5d84ed54a758
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZg9wIHBMsrsFQGIXGKtkkcxzm2q3ZXK22FoEi9RWN7DHtJUR__n5k4rRpx4MIlSpvIcubh-b7E_izEZ-X0GFnlM88cb2GGIbU07KWY2Vy50gbV6czeL_TtD3W3KlcnW33xnLAoDxwNdwW29jg2LEIDCj1QS6H0hk5LBQR2efSlmncgUz3VKoh5RR2hgkj91TZnjZa6ygfVpxPp_3soPqlFw3mSJ4Vn_lw86xGjnMSevhCPsL0QT090BF-KnwuK1_T7fhPAoZw8bOQSCQ5HuWQ5oyyOCxTllGqWl3QCrYyvE-jn9Zo_W3evBGVUoeYhUHZbNW-BA1Qu4mTxV2I5ny2vb9N-B4XUEe3dpdaTzULQWVaHHDKwhHa0M6ACFpWyOlQWCkCE2mKOXmlvnbam8hAqlhJ7Lc7adYtvhSQcVY9dGFufoTKIddAWeOUClJYhTSI-HQzb_I46GQ3xC7Z-c7R-IqZs8uMNLG3d_UEOb3qHN_9yeCK-sMMaTkDyioN-HQH1k6WsmokhRmuIpRWJuDz4tOkzc9sUhHd0TSMZNfTxeJlyij-UQIvrfbyHikDOTbyJIXDsc1FTaBEHToQZBMfgoYZX2odfnW43Uc-CAKV69z_M8F48yQlf8dSVTF2Ks91mjx8IH-3sSDyuVhUdzfxmJM6ns8XXb6MuPeh4r8wf5ucWlQ
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbtRAEC2FcAAOiB1DgAaBOFmx2z1eDghNQqIJSebCIM2t1WvIxQ6zCPFR_CNVbnsyFhK33Gy3ZbWra3u9vAJ4L0yeOGL55KmhEmbOxxrdXuxSzYUZaS9antnzaT75Lr7OR_Md-NOfhaFtlb1PbB21bQzNke9nGKfyCjWw_Hz1M6aqUbS62pfQCGpx6n7_Qsi2_HTyBcf3A-fHR7PDSdxVFYgNQsFVrK0Szvs8TSvPVao0ZgC5KZXwLiuEzn2hVaacU5V23FmRW21yXRZW-YLotfCzt-A2xt2EDKqYX-O7DOFeIC_KsirZX3IihqkKPgh5bWWAf_3_VgAcbs7cinbHD-B-l6aycdCrh7Dj6kdwb4u88DFcTFEa8bf1wivj2PhywWYOc_DA0cyO0HWEU5HsAAOlZXihahbmMPD2sKG18nYekgXqa_K7rK0PvVRkFWwadqg_gdlNCPgp7NZN7Z4Dw-StSoxPtE2dKJ2rfK4VHZdQI015VATvesHKq0DOIRHUkPTlRvoRHJDINy8Qn3b7oFlcyM48pdKVdUlJVEfYeatQX_3Ilng5EgohVQQfacAkWT2OilHd4QXsJ_FnyXGJMLpEaJhFsNePqezcwVJeK28EbzfNaMi0OqNq16zDOxh5OH3iWVCBTZ-zClULgXcE5UA5Bj81bKkvf7Rk4Yh3M8xixYv_9-sN3JnMzs_k2cn09CXc5Zi60a6YVOzB7mqxdq8w9Vrp163CM5A3bGB_ATLESKA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbtRAEC2FICE4IHYcAjQIxMkaL-3tgNBkGSUERkgM0txavYZc7GQWIT6Nv6PKbU_GQuKWm2dsWe3q2l539SuAd1znkSWWzyTW1MLMulCh2wttrBKuM-V4yzP7dZqf_OCf59l8B_70Z2GorLL3ia2jNo2mNfJRinEqr1ADy5HryiK-HU0-XV6F1EGKdlr7dhpeRc7s718I35YfT49wrt8nyeR4dngSdh0GQo2wcBUqI7l1Lo_jyiUylgqzgVyXkjubFlzlrlAyldbKStnEGp4bpXNVFka6gqi28LW34HaRZjGZWDG_xnopQj9PZJSmVTRaJkQSUxXJIPy1XQL-jQVbwXBYqLkV-SYP4H6XsrKx17GHsGPrR3Bvi8jwMZxPURrh9_XCSW3Z-GLBZhbzcc_XzI7RjfgTkuwAg6ZheCFr5tcz8OdhQ_vm7Zok8zTY5INZ2yt6KclC2NRXqz-B2U0I-Cns1k1tnwPDRK6KtIuUiS0vra1criQdnZCZopwqgLe9YMWlJ-oQCHBI-mIj_QAOSOSbB4hbu_2jWZyLzlSFVJWxUUm0Rzh4I1F3XWZKvMy4RHgVwAeaMEEeAGdFy-4gA46TuLTEuERIXSJMTAPY7-dUdK5hKa4VOYA3m9to1LRTI2vbrP0zGIUSesUzrwKbMacVqhaC8ADKgXIMPmp4p7742RKHI_ZNMaPle_8f12u4g6YlvpxOz17A3QSzOCqQifk-7K4Wa_sSs7CVetXqOwNxw_b1FwZQTNY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Near-Surface+Air+Temperature+Estimation+Based+on+an+Improved+Conditional+Generative+Adversarial+Network&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Jiaqi+Zheng&rft.au=Xi+Wu&rft.au=Xiaojie+Li&rft.au=Jing+Peng&rft.date=2024-09-14&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=24&rft.issue=18&rft.spage=5972&rft_id=info:doi/10.3390%2Fs24185972&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_ab9de087100a4edab42f5d84ed54a758
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon