Near-Surface Air Temperature Estimation Based on an Improved Conditional Generative Adversarial Network
To address the issue of missing near-surface air temperature data caused by the uneven distribution of ground meteorological observation stations, we propose a method for near-surface air temperature estimation based on an improved conditional generative adversarial network (CGAN) framework. Leverag...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 24; no. 18; p. 5972 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
14.09.2024
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | To address the issue of missing near-surface air temperature data caused by the uneven distribution of ground meteorological observation stations, we propose a method for near-surface air temperature estimation based on an improved conditional generative adversarial network (CGAN) framework. Leveraging the all-weather coverage advantage of Fengyun meteorological satellites, Fengyun-4A (FY-4A) satellite remote sensing data are utilized as conditional guiding information for the CGAN, helping to direct and constrain the near-surface air temperature estimation process. In the proposed network model of the method based on the conditional generative adversarial network structure, the generator combining a self-attention mechanism and cascaded residual blocks is designed with U-Net as the backbone, which extracts implicit feature information and suppresses the irrelevant information in the Fengyun satellite data. Furthermore, a discriminator with multi-level and multi-scale spatial feature fusion is constructed to enhance the network’s perception of details and the global structure, enabling accurate air temperature estimation. The experimental results demonstrate that, compared with Attention U-Net, Pix2pix, and other deep learning models, the method presents significant improvements of 68.75% and 10.53%, respectively in the root mean square error (RMSE) and Pearson’s correlation coefficient (CC). These results indicate the superior performance of the proposed model for near-surface air temperature estimation. |
---|---|
AbstractList | To address the issue of missing near-surface air temperature data caused by the uneven distribution of ground meteorological observation stations, we propose a method for near-surface air temperature estimation based on an improved conditional generative adversarial network (CGAN) framework. Leveraging the all-weather coverage advantage of Fengyun meteorological satellites, Fengyun-4A (FY-4A) satellite remote sensing data are utilized as conditional guiding information for the CGAN, helping to direct and constrain the near-surface air temperature estimation process. In the proposed network model of the method based on the conditional generative adversarial network structure, the generator combining a self-attention mechanism and cascaded residual blocks is designed with U-Net as the backbone, which extracts implicit feature information and suppresses the irrelevant information in the Fengyun satellite data. Furthermore, a discriminator with multi-level and multi-scale spatial feature fusion is constructed to enhance the network’s perception of details and the global structure, enabling accurate air temperature estimation. The experimental results demonstrate that, compared with Attention U-Net, Pix2pix, and other deep learning models, the method presents significant improvements of 68.75% and 10.53%, respectively in the root mean square error (RMSE) and Pearson’s correlation coefficient (CC). These results indicate the superior performance of the proposed model for near-surface air temperature estimation. To address the issue of missing near-surface air temperature data caused by the uneven distribution of ground meteorological observation stations, we propose a method for near-surface air temperature estimation based on an improved conditional generative adversarial network (CGAN) framework. Leveraging the all-weather coverage advantage of Fengyun meteorological satellites, Fengyun-4A (FY-4A) satellite remote sensing data are utilized as conditional guiding information for the CGAN, helping to direct and constrain the near-surface air temperature estimation process. In the proposed network model of the method based on the conditional generative adversarial network structure, the generator combining a self-attention mechanism and cascaded residual blocks is designed with U-Net as the backbone, which extracts implicit feature information and suppresses the irrelevant information in the Fengyun satellite data. Furthermore, a discriminator with multi-level and multi-scale spatial feature fusion is constructed to enhance the network's perception of details and the global structure, enabling accurate air temperature estimation. The experimental results demonstrate that, compared with Attention U-Net, Pix2pix, and other deep learning models, the method presents significant improvements of 68.75% and 10.53%, respectively in the root mean square error (RMSE) and Pearson's correlation coefficient (CC). These results indicate the superior performance of the proposed model for near-surface air temperature estimation.To address the issue of missing near-surface air temperature data caused by the uneven distribution of ground meteorological observation stations, we propose a method for near-surface air temperature estimation based on an improved conditional generative adversarial network (CGAN) framework. Leveraging the all-weather coverage advantage of Fengyun meteorological satellites, Fengyun-4A (FY-4A) satellite remote sensing data are utilized as conditional guiding information for the CGAN, helping to direct and constrain the near-surface air temperature estimation process. In the proposed network model of the method based on the conditional generative adversarial network structure, the generator combining a self-attention mechanism and cascaded residual blocks is designed with U-Net as the backbone, which extracts implicit feature information and suppresses the irrelevant information in the Fengyun satellite data. Furthermore, a discriminator with multi-level and multi-scale spatial feature fusion is constructed to enhance the network's perception of details and the global structure, enabling accurate air temperature estimation. The experimental results demonstrate that, compared with Attention U-Net, Pix2pix, and other deep learning models, the method presents significant improvements of 68.75% and 10.53%, respectively in the root mean square error (RMSE) and Pearson's correlation coefficient (CC). These results indicate the superior performance of the proposed model for near-surface air temperature estimation. |
Audience | Academic |
Author | Wu, Xi Peng, Jing Zheng, Jiaqi Li, Xiaojie |
AuthorAffiliation | Department of Computer Science, Chengdu University of Information Technology, Chengdu 610225, China; 3220608049@stu.cuit.edu.cn (J.Z.); wuxi@cuit.edu.cn (X.W.); lixj@cuit.edu.cn (X.L.) |
AuthorAffiliation_xml | – name: Department of Computer Science, Chengdu University of Information Technology, Chengdu 610225, China; 3220608049@stu.cuit.edu.cn (J.Z.); wuxi@cuit.edu.cn (X.W.); lixj@cuit.edu.cn (X.L.) |
Author_xml | – sequence: 1 givenname: Jiaqi surname: Zheng fullname: Zheng, Jiaqi – sequence: 2 givenname: Xi surname: Wu fullname: Wu, Xi – sequence: 3 givenname: Xiaojie surname: Li fullname: Li, Xiaojie – sequence: 4 givenname: Jing surname: Peng fullname: Peng, Jing |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39338717$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkktv1DAQxyNURB9w4AugSFzoIcWvOM4JbVdtWakqB_ZuTeLx4iWJFztZxLfH25RVi3yY8fjv3zw059nJ4AfMsveUXHFek8-RCarKumKvsjMqmCgUY-TkmX-ance4JYRxztWb7JTXyVa0Oss2Dwih-D4FCy3mCxfyNfY7DDBOAfObOLoeRueH_Boimjw5MOSrfhf8Pl2XfjDu8AxdfofD4ZvbJ4zZY4gQXAo_4Pjbh59vs9cWuojvnuxFtr69WS-_Fvff7lbLxX3RClmPRWNAoLWS0toyoNCUkslWgbDIK9FIWzXAARHqBhkaIU3TykZVBmxFhOQX2WrGGg9bvQup-vBHe3D6MeDDRkMYXduhhqY2SNIUCEk5DTSC2dKo5JYCqlIl1peZtZuaHk2LwxigewF9-TK4H3rj95pSwSVlIhE-PRGC_zVhHHXvYotdBwP6KWpOKakpZSVP0o__Sbd-Cmmus0rWnKpDSVezagOpAzdYnxK36RjsXZuWwroUXyhKKiXJI_bD8x6Oxf9bgCS4nAVt8DEGtEcJJfqwXPq4XPwvkMfCQw |
Cites_doi | 10.3354/cr030079 10.1007/s00376-023-2293-5 10.1145/3444370.3444550 10.1016/j.rse.2010.08.010 10.1175/JHM-D-15-0075.1 10.1175/JAMC-D-16-0188.1 10.1016/j.rse.2020.111692 10.1109/LGRS.2022.3200756 10.1016/j.rse.2016.11.011 10.1016/j.rse.2020.111791 10.1175/JHM-D-19-0110.1 10.1109/LGRS.2013.2293540 10.3390/rs12061023 10.1016/j.rse.2009.10.002 10.1360/TB-2024-0100 10.1109/CVPR.2016.90 10.1175/1520-0450(2000)039<1570:RBSTAA>2.0.CO;2 10.1016/j.rse.2017.04.008 10.1109/IJCNN55064.2022.9892376 10.1175/JHM-D-16-0176.1 10.1109/CVPR46437.2021.01402 10.1016/j.rse.2021.112665 10.1109/ICCV.2017.168 10.1016/S0034-4257(96)00216-7 10.1002/qj.3803 10.1155/2020/8887364 10.1080/014311699212885 10.1175/1520-0450(1989)028<0276:EORSRT>2.0.CO;2 10.5194/hess-6-85-2002 10.1109/CVPR.2017.632 10.3390/rs14122925 10.3390/s23218863 10.1109/CVPR46437.2021.01063 10.3390/rs10122013 10.3390/rs6020946 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2024 by the authors. 2024 |
Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2024 by the authors. 2024 |
DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI 7X8 5PM DOA |
DOI | 10.3390/s24185972 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Central ProQuest Health & Medical Complete Health Research Premium Collection ProQuest Medical Library ProQuest One Academic UKI Edition Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Medical Library (Alumni) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database PubMed CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_ab9de087100a4edab42f5d84ed54a758 PMC11436124 A810786053 39338717 10_3390_s24185972 |
Genre | Journal Article |
GrantInformation_xml | – fundername: CUIT Science and Technology Innovation Capacity Enhancement Program Project grantid: Grant No. KYTD202330 – fundername: National Science Foundation of China grantid: No. 42075142 – fundername: Sichuan Science and Technology program grantid: No. 24ZDYF0017 – fundername: the China Meteorological Administration through the FengYun Application Pioneering Project grantid: No. FY-APP-2022.0609 – fundername: Sichuan Science and Technology program grantid: 24ZDYF0017 – fundername: China Meteorological Administration through the FengYun Application Pioneering Project grantid: FY-APP-2022.0609 – fundername: CUIT Science and Technology Innovation Capacity Enhancement Program Project grantid: KYTD202330 – fundername: National Science Foundation of China grantid: 42075142 |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M NPM PJZUB PPXIY PMFND 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c469t-bda4eff6119f2a1ab5626c8a4fe374b6f7ba3aeea9be2ed46dbc6b87daf70463 |
IEDL.DBID | DOA |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:20:10 EDT 2025 Thu Aug 21 18:31:25 EDT 2025 Thu Jul 10 22:39:01 EDT 2025 Sat Jul 26 00:22:39 EDT 2025 Tue Jun 10 21:02:13 EDT 2025 Mon Jul 21 05:40:19 EDT 2025 Tue Jul 01 03:51:13 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 18 |
Keywords | self-attention mechanism deep learning remote sensing conditional generative adversarial network multi-scale near-surface air temperature |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c469t-bda4eff6119f2a1ab5626c8a4fe374b6f7ba3aeea9be2ed46dbc6b87daf70463 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://doaj.org/article/ab9de087100a4edab42f5d84ed54a758 |
PMID | 39338717 |
PQID | 3110693188 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_ab9de087100a4edab42f5d84ed54a758 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11436124 proquest_miscellaneous_3110911253 proquest_journals_3110693188 gale_infotracacademiconefile_A810786053 pubmed_primary_39338717 crossref_primary_10_3390_s24185972 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20240914 |
PublicationDateYYYYMMDD | 2024-09-14 |
PublicationDate_xml | – month: 9 year: 2024 text: 20240914 day: 14 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2024 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Chen (ref_30) 2021; 44 Su (ref_36) 2023; 40 ref_12 ref_11 Zhang (ref_40) 2022; 16 ref_53 ref_51 Sadeghi (ref_24) 2019; 20 Venter (ref_3) 2020; 242 Liu (ref_10) 2017; 56 Tao (ref_22) 2016; 17 ref_20 Bai (ref_14) 2017; 19 Prihodko (ref_2) 1997; 60 ref_26 Wang (ref_27) 2021; 265 Han (ref_9) 2012; 70 Deng (ref_31) 2021; 40 Zhu (ref_18) 2017; 189 ref_35 Yang (ref_38) 2023; 17 ref_33 Hersbach (ref_41) 2020; 146 ref_32 Ke (ref_5) 2011; 30 Willmott (ref_52) 2005; 30 Ma (ref_50) 2022; 19 Niclos (ref_6) 2013; 11 Yu (ref_39) 2022; 24 Nieto (ref_16) 2011; 115 Duan (ref_19) 2017; 195 Shen (ref_25) 2020; 240 ref_47 Williamson (ref_7) 2014; 6 ref_45 ref_44 Wang (ref_37) 2018; 40 ref_43 Wang (ref_34) 2021; 48 ref_42 Goodfellow (ref_29) 2014; 27 Vancutsem (ref_8) 2010; 114 Zhou (ref_4) 2020; 2020 Kawashima (ref_13) 2000; 39 Su (ref_17) 2002; 6 Cresswell (ref_1) 1999; 20 Nemani (ref_15) 1989; 28 Guo (ref_28) 2022; 16 ref_49 ref_48 Tao (ref_23) 2017; 18 Huang (ref_21) 2024; 69 Han (ref_46) 2021; 60 |
References_xml | – volume: 30 start-page: 79 year: 2005 ident: ref_52 article-title: Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance publication-title: Clim. Res. doi: 10.3354/cr030079 – volume: 40 start-page: 367 year: 2021 ident: ref_31 article-title: Liver CT image segmentation based on generative adversarial network publication-title: Beijing Biomed. Eng. – volume: 48 start-page: 101 year: 2021 ident: ref_34 article-title: Medical Image Deblur Using Generative Adversarial Networks with Channel Attention publication-title: Comput. Sci. – volume: 27 start-page: 1 year: 2014 ident: ref_29 article-title: Generative adversarial nets publication-title: NeurIPS – volume: 40 start-page: 1844 year: 2023 ident: ref_36 article-title: A multi-domain compression radiative transfer model for the Fengyun-4 Geosynchronous Interferometric Infrared Sounder (GIIRS) publication-title: Adv. Atmos. Sci. doi: 10.1007/s00376-023-2293-5 – ident: ref_26 doi: 10.1145/3444370.3444550 – volume: 115 start-page: 107 year: 2011 ident: ref_16 article-title: Air temperature estimation with MSG-SEVIRI data: Calibration and validation of the TVX algorithm for the Iberian Peninsula publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2010.08.010 – volume: 17 start-page: 931 year: 2016 ident: ref_22 article-title: A Deep Neural Network Modeling Framework to Reduce Bias in Satellite Precipitation Products publication-title: J. Hydrometeorol. doi: 10.1175/JHM-D-15-0075.1 – ident: ref_35 – volume: 56 start-page: 803 year: 2017 ident: ref_10 article-title: Evaluating four remote sensing methods for estimating surface air temperature on a regional scale publication-title: J. Appl. Meteorol. Clim. doi: 10.1175/JAMC-D-16-0188.1 – volume: 16 start-page: 321 year: 2022 ident: ref_28 article-title: Correction of sea surface wind speed based on SAR rainfall grade classification using convolutional neural network publication-title: IEEE J.-Stars – volume: 240 start-page: 111692 year: 2020 ident: ref_25 article-title: Deep-learning-based air temperature mapping by fusing remote sensing, station, simulation and socioeconomic data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2020.111692 – volume: 19 start-page: 1006105 year: 2022 ident: ref_50 article-title: Improvement of a near-real-time precipitation estimation algorithm using deep learning publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2022.3200756 – volume: 16 start-page: 15 year: 2022 ident: ref_40 article-title: Temperature Error Test of CMA Global Atmospheric Reanalysis Data in Xinjiang publication-title: Desert Oasis Met – volume: 189 start-page: 152 year: 2017 ident: ref_18 article-title: Retrievals of all-weather daytime air temperature from MODIS products publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2016.11.011 – volume: 19 start-page: 390 year: 2017 ident: ref_14 article-title: Remote sensing inversion of near surface air temperature based on random forest publication-title: Int. J. Geogr. Inf. Sci. – volume: 242 start-page: 111791 year: 2020 ident: ref_3 article-title: Hyperlocal mapping of urban air temperature using remote sensing and crowdsourced weather data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2020.111791 – ident: ref_45 – volume: 20 start-page: 2273 year: 2019 ident: ref_24 article-title: PERSIANN-CNN: Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks–Convolutional Neural Networks publication-title: J. Hydrometeorol. doi: 10.1175/JHM-D-19-0110.1 – volume: 11 start-page: 1380 year: 2013 ident: ref_6 article-title: Land surface air temperature retrieval from EOS-MODIS images publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2013.2293540 – ident: ref_11 doi: 10.3390/rs12061023 – ident: ref_53 – volume: 114 start-page: 449 year: 2010 ident: ref_8 article-title: Evaluation of MODIS land surface temperature data to estimate air temperature in different ecosystems over Africa publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2009.10.002 – volume: 69 start-page: 2336 year: 2024 ident: ref_21 article-title: How artificial intelligence is transforming weather forecasting for the future publication-title: Chin. Sci. Bull. doi: 10.1360/TB-2024-0100 – ident: ref_47 – ident: ref_43 doi: 10.1109/CVPR.2016.90 – volume: 39 start-page: 1570 year: 2000 ident: ref_13 article-title: Relations between surface temperature and air temperature on a local scale during winter nights publication-title: J. Appl. Meteorol. Clim. doi: 10.1175/1520-0450(2000)039<1570:RBSTAA>2.0.CO;2 – volume: 195 start-page: 107 year: 2017 ident: ref_19 article-title: A framework for the retrieval of all-weather land surface temperature at a high spatial resolution from polar-orbiting thermal infrared and passive microwave data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.04.008 – ident: ref_48 doi: 10.1109/IJCNN55064.2022.9892376 – ident: ref_44 – volume: 24 start-page: 750 year: 2022 ident: ref_39 article-title: A downscaling method for land surface air temperature of ERA5 reanalysis dataset under complex terrain conditions in mountainous areas publication-title: J. Geosci. – volume: 18 start-page: 1271 year: 2017 ident: ref_23 article-title: Precipitation Identification with Bispectral Satellite Information Using Deep Learning Approaches publication-title: J. Hydrometeorol. doi: 10.1175/JHM-D-16-0176.1 – ident: ref_33 doi: 10.1109/CVPR46437.2021.01402 – volume: 265 start-page: 112665 year: 2021 ident: ref_27 article-title: A method for land surface temperature retrieval based on model-data-knowledge-driven and deep learning publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2021.112665 – ident: ref_51 doi: 10.1109/ICCV.2017.168 – volume: 60 start-page: 335 year: 1997 ident: ref_2 article-title: Estimation of air temperature from remotely sensed surface observations publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(96)00216-7 – volume: 146 start-page: 1999 year: 2020 ident: ref_41 article-title: The ERA5 global reanalysis publication-title: Q. J. R. Meteorol. Soc. doi: 10.1002/qj.3803 – volume: 2020 start-page: 8887364 year: 2020 ident: ref_4 article-title: Comparison of Machine-Learning Algorithms for Near-Surface Air-Temperature Estimation from FY-4A AGRI Data publication-title: Adv. Meteorol. doi: 10.1155/2020/8887364 – volume: 44 start-page: 347 year: 2021 ident: ref_30 article-title: Research Review on Generative Adversarial Networks and Their Application to Image Generation publication-title: J. Chin. Comput. – volume: 20 start-page: 1125 year: 1999 ident: ref_1 article-title: Estimating surface air temperatures, from Meteosat land surface temperatures, using an empirical solar zenith angle model publication-title: INT J. Remote Sens. doi: 10.1080/014311699212885 – volume: 28 start-page: 276 year: 1989 ident: ref_15 article-title: Estimation of regional surface resistance to evapotranspiration from NDVI and thermal-IR AVHRR data publication-title: J. Appl. Meteorol. Clim. doi: 10.1175/1520-0450(1989)028<0276:EORSRT>2.0.CO;2 – volume: 6 start-page: 85 year: 2002 ident: ref_17 article-title: The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-6-85-2002 – ident: ref_42 doi: 10.1109/CVPR.2017.632 – volume: 60 start-page: 4103508 year: 2021 ident: ref_46 article-title: Convective precipitation nowcasting using U-Net model publication-title: IEEE Trans. Geosci. Remote Sens. – ident: ref_49 doi: 10.3390/rs14122925 – ident: ref_20 doi: 10.3390/s23218863 – volume: 40 start-page: 1 year: 2018 ident: ref_37 article-title: The FY-4 radiometer imager and the application of its data in the satellite meteorology publication-title: Chin. J. Nat. – volume: 70 start-page: 1107 year: 2012 ident: ref_9 article-title: Study of obtaining high resolution near-surface atmosphere temperature by using the land surface temperature from meteorological satellite data publication-title: Acta Meteorol. Sin. – volume: 30 start-page: 277 year: 2011 ident: ref_5 article-title: Reconstruction of MODIS land surface temperature in northeast qinghai-xizang plateau and its comparison with air temperature publication-title: Plateau Meteorol. – ident: ref_32 doi: 10.1109/CVPR46437.2021.01063 – ident: ref_12 doi: 10.3390/rs10122013 – volume: 6 start-page: 946 year: 2014 ident: ref_7 article-title: Estimating temperature fields from MODIS land surface temperature and air temperature observations in a sub-arctic alpine environment publication-title: Remote Sens. doi: 10.3390/rs6020946 – volume: 17 start-page: 13108 year: 2023 ident: ref_38 article-title: Deep Learning for Near-Surface Air Temperature Estimation from FY-4A Satellite Data publication-title: IEEE J.-Stars |
SSID | ssj0023338 |
Score | 2.4277253 |
Snippet | To address the issue of missing near-surface air temperature data caused by the uneven distribution of ground meteorological observation stations, we propose a... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | 5972 |
SubjectTerms | Accuracy Analysis Artificial satellites in remote sensing conditional generative adversarial network Deep learning Meteorological research Meteorological satellites Methods multi-scale near-surface air temperature Precipitation Remote sensing Satellites self-attention mechanism Temperature Vegetation |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BucAB8SZQkEFInKJuEsdxTmhbtaqQ2AuLtDfLj3HpJSn7-P_MxNntRkjcskkUecfz-uzxNwBfpFczZJbPsvDcwgxj7sjt5Vi4UvraRTnwzP5YqOtf8vuqXo0LbpuxrHLvEwdHHXrPa-RnFcUp1ZIG6m93f3LuGsW7q2MLjYfwiKnLuKSrWd0DrorwV2ITqgjan21KZmppm3ISgwaq_n8d8lFEmlZLHoWfq2fwdMwbxTxN9HN4gN0LeHLEJvgSbhaktfnP3Tpaj2J-uxZLpKQ4kSaLS7LldExRnFPkCoIubCfSogL9vOh583pYGBSJi5odoRgaNm8sq6lYpJLxV7C8ulxeXOdjH4XcE_jd5i5YiTEqElEsbWEd5TzKaysjVo10KjbOVhbRtg5LDFIF55XTTbCxYUKx13DS9R2-BUHZVDvzceZCgVIjtlE5y-cXbO04scng816w5i6xZRhCGSx9c5B-Bucs8sMLTHA93OjXN2a0F2NdG3CmmXuIBh8sKVCsg6bLWlrCOBl85QkzbIY0K96OpwlonExoZeaacK0mrFZlcLqfUzPa58bca1MGnw6PybJ4u8R22O_SOxQKSv7Em6QChzFXLakWIeEM9EQ5Jn9q-qS7_T2wdxMArSitlO_-P6738Lik_IlLUwp5Cifb9Q4_UP6zdR8HJf8LSr8JAw priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELaqcoEDKu9AQQYhcQpsEsdJDghtq1YVUvfCVurNGtvjUgllIbsrlX_PTJyNNoIjNyexImc8ry-2vxHivXJ6hszymWeOS5hhSC25vRQzmytX2qB6ntnLhb64Ul-vy-sDsauxOQhw_U9ox_WkrrofH-9-_f5CBv-ZESdB9k_rnBlYmoo88T1qVmyfl2pcTMgLgmGRVGjafRKKesb-v_3yXmCabprci0LnR-LhkD7KeZzvR-IA28fiwR6p4BNxsyDlTb9tuwAO5fy2k0uk3DhyJ8szMul4WlGeUADzkhrQyvhvgS5PV7yG3f8flJGSmv2h7Os2r4G1VS7izvGnYnl-tjy9SIdyCqkjDLxJrQeFIegsa0IOGVhKfbSrQQUsKmV1qCwUgAiNxRy90t46bevKQ6iYV-yZOGxXLb4QkpKqZubCzPoMVY3YBG2BjzFAaTm_ScS7nWDNz0iaYQhssPTNKP1EnLDIxw7Mc93fWHU3ZjAbA7bxOKuZgogG74H0KJS-pmapgKBOIj7whBnWD5oVB8OhAhon81qZeU3wtibIViTieDenZqdlpqDkRzfk1uhFb8fHZGC8agItrraxD0WEnF_xPKrAOOaiIdUiQJyIeqIck4-aPmlvv_ck3oRDC8ou1cv_IYZX4n5OyRbvY8nUsTjcdFt8TcnSxr7pTeEPZ_YX4A priority: 102 providerName: Scholars Portal |
Title | Near-Surface Air Temperature Estimation Based on an Improved Conditional Generative Adversarial Network |
URI | https://www.ncbi.nlm.nih.gov/pubmed/39338717 https://www.proquest.com/docview/3110693188 https://www.proquest.com/docview/3110911253 https://pubmed.ncbi.nlm.nih.gov/PMC11436124 https://doaj.org/article/ab9de087100a4edab42f5d84ed54a758 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZg9wIHBMsrsFQGIXGKtkkcxzm2q3ZXK22FoEi9RWN7DHtJUR__n5k4rRpx4MIlSpvIcubh-b7E_izEZ-X0GFnlM88cb2GGIbU07KWY2Vy50gbV6czeL_TtD3W3KlcnW33xnLAoDxwNdwW29jg2LEIDCj1QS6H0hk5LBQR2efSlmncgUz3VKoh5RR2hgkj91TZnjZa6ygfVpxPp_3soPqlFw3mSJ4Vn_lw86xGjnMSevhCPsL0QT090BF-KnwuK1_T7fhPAoZw8bOQSCQ5HuWQ5oyyOCxTllGqWl3QCrYyvE-jn9Zo_W3evBGVUoeYhUHZbNW-BA1Qu4mTxV2I5ny2vb9N-B4XUEe3dpdaTzULQWVaHHDKwhHa0M6ACFpWyOlQWCkCE2mKOXmlvnbam8hAqlhJ7Lc7adYtvhSQcVY9dGFufoTKIddAWeOUClJYhTSI-HQzb_I46GQ3xC7Z-c7R-IqZs8uMNLG3d_UEOb3qHN_9yeCK-sMMaTkDyioN-HQH1k6WsmokhRmuIpRWJuDz4tOkzc9sUhHd0TSMZNfTxeJlyij-UQIvrfbyHikDOTbyJIXDsc1FTaBEHToQZBMfgoYZX2odfnW43Uc-CAKV69z_M8F48yQlf8dSVTF2Ks91mjx8IH-3sSDyuVhUdzfxmJM6ns8XXb6MuPeh4r8wf5ucWlQ |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbtRAEC2FcAAOiB1DgAaBOFmx2z1eDghNQqIJSebCIM2t1WvIxQ6zCPFR_CNVbnsyFhK33Gy3ZbWra3u9vAJ4L0yeOGL55KmhEmbOxxrdXuxSzYUZaS9antnzaT75Lr7OR_Md-NOfhaFtlb1PbB21bQzNke9nGKfyCjWw_Hz1M6aqUbS62pfQCGpx6n7_Qsi2_HTyBcf3A-fHR7PDSdxVFYgNQsFVrK0Szvs8TSvPVao0ZgC5KZXwLiuEzn2hVaacU5V23FmRW21yXRZW-YLotfCzt-A2xt2EDKqYX-O7DOFeIC_KsirZX3IihqkKPgh5bWWAf_3_VgAcbs7cinbHD-B-l6aycdCrh7Dj6kdwb4u88DFcTFEa8bf1wivj2PhywWYOc_DA0cyO0HWEU5HsAAOlZXihahbmMPD2sKG18nYekgXqa_K7rK0PvVRkFWwadqg_gdlNCPgp7NZN7Z4Dw-StSoxPtE2dKJ2rfK4VHZdQI015VATvesHKq0DOIRHUkPTlRvoRHJDINy8Qn3b7oFlcyM48pdKVdUlJVEfYeatQX_3Ilng5EgohVQQfacAkWT2OilHd4QXsJ_FnyXGJMLpEaJhFsNePqezcwVJeK28EbzfNaMi0OqNq16zDOxh5OH3iWVCBTZ-zClULgXcE5UA5Bj81bKkvf7Rk4Yh3M8xixYv_9-sN3JnMzs_k2cn09CXc5Zi60a6YVOzB7mqxdq8w9Vrp163CM5A3bGB_ATLESKA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbtRAEC2FICE4IHYcAjQIxMkaL-3tgNBkGSUERkgM0txavYZc7GQWIT6Nv6PKbU_GQuKWm2dsWe3q2l539SuAd1znkSWWzyTW1MLMulCh2wttrBKuM-V4yzP7dZqf_OCf59l8B_70Z2GorLL3ia2jNo2mNfJRinEqr1ADy5HryiK-HU0-XV6F1EGKdlr7dhpeRc7s718I35YfT49wrt8nyeR4dngSdh0GQo2wcBUqI7l1Lo_jyiUylgqzgVyXkjubFlzlrlAyldbKStnEGp4bpXNVFka6gqi28LW34HaRZjGZWDG_xnopQj9PZJSmVTRaJkQSUxXJIPy1XQL-jQVbwXBYqLkV-SYP4H6XsrKx17GHsGPrR3Bvi8jwMZxPURrh9_XCSW3Z-GLBZhbzcc_XzI7RjfgTkuwAg6ZheCFr5tcz8OdhQ_vm7Zok8zTY5INZ2yt6KclC2NRXqz-B2U0I-Cns1k1tnwPDRK6KtIuUiS0vra1criQdnZCZopwqgLe9YMWlJ-oQCHBI-mIj_QAOSOSbB4hbu_2jWZyLzlSFVJWxUUm0Rzh4I1F3XWZKvMy4RHgVwAeaMEEeAGdFy-4gA46TuLTEuERIXSJMTAPY7-dUdK5hKa4VOYA3m9to1LRTI2vbrP0zGIUSesUzrwKbMacVqhaC8ADKgXIMPmp4p7742RKHI_ZNMaPle_8f12u4g6YlvpxOz17A3QSzOCqQifk-7K4Wa_sSs7CVetXqOwNxw_b1FwZQTNY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Near-Surface+Air+Temperature+Estimation+Based+on+an+Improved+Conditional+Generative+Adversarial+Network&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Jiaqi+Zheng&rft.au=Xi+Wu&rft.au=Xiaojie+Li&rft.au=Jing+Peng&rft.date=2024-09-14&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=24&rft.issue=18&rft.spage=5972&rft_id=info:doi/10.3390%2Fs24185972&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_ab9de087100a4edab42f5d84ed54a758 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |