Significance of a Posttranslational Modification of the PilA Protein of Geobacter sulfurreducens for Surface Attachment, Biofilm Formation, and Growth on Insoluble Extracellular Electron Acceptors
Geobacter sulfurreducens , an anaerobic metal-reducing bacterium, possesses type IV pili. These pili are intrinsic structural elements in biofilm formation and, together with a number of c -type cytochromes, are thought to serve as conductive nanowires enabling long-range electron transfer (ET) to m...
Saved in:
Published in | Journal of bacteriology Vol. 199; no. 8; p. E00716 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Society for Microbiology
01.04.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Geobacter sulfurreducens
, an anaerobic metal-reducing bacterium, possesses type IV pili. These pili are intrinsic structural elements in biofilm formation and, together with a number of
c
-type cytochromes, are thought to serve as conductive nanowires enabling long-range electron transfer (ET) to metal oxides and graphite anodes. Here, we report that a posttranslational modification of a nonconserved amino acid residue within the PilA protein, the structural subunit of the type IV pili, is crucial for growth on insoluble extracellular electron acceptors. Matrix-assisted laser desorption ionization (MALDI) mass spectrometry of the secreted PilA protein revealed a posttranslational modification of tyrosine-32 with a moiety of a mass consistent with a glycerophosphate group. Mutating this tyrosine into a phenylalanine inhibited cell growth with Fe(III) oxides as the sole electron acceptor. In addition, this amino acid substitution severely diminished biofilm formation on graphite surfaces and impaired current output in microbial fuel cells. These results demonstrate that the capability to attach to insoluble electron acceptors plays a crucial role for the cells' ability to utilize them. The work suggests that glycerophosphate modification of Y32 is a key factor contributing to the surface charge of type IV pili, influencing the adhesion of
Geobacter
to specific surfaces.
IMPORTANCE
Type IV pili are bacterial appendages that function in cell adhesion, virulence, twitching motility, and long-range electron transfer (ET) from bacterial cells to insoluble extracellular electron acceptors. The mechanism and role of type IV pili for ET in
Geobacter sulfurreducens
is still a subject of research. In this study, we identified a posttranslational modification of the major
G. sulfurreducens
type IV pilin, suggested to be a glycerophosphate moiety. We show that a mutant in which the glycerophosphate-modified tyrosine-32 is replaced with a phenylalanine has reduced abilities for ET and biofilm formation compared with those of the wild type. The results show the importance of the glycerophosphate-modified tyrosine for surface attachment and electron transfer in electrode- or Fe(III)-respiring
G. sulfurreducens
cells. |
---|---|
AbstractList | Geobacter sulfurreducens, an anaerobic metal-reducing bacterium, possesses type IV pili. These pili are intrinsic structural elements in biofilm formation and, together with a number of c-type cytochromes, are thought to serve as conductive nanowires enabling long-range electron transfer (ET) to metal oxides and graphite anodes. Here, we report that a posttranslational modification of a nonconserved amino acid residue within the PilA protein, the structural subunit of the type IV pili, is crucial for growth on insoluble extracellular electron acceptors. Matrix-assisted laser desorption ionization (MALDI) mass spectrometry of the secreted PilA protein revealed a posttranslational modification of tyrosine-32 with a moiety of a mass consistent with a glycerophosphate group. Mutating this tyrosine into a phenylalanine inhibited cell growth with Fe(III) oxides as the sole electron acceptor. In addition, this amino acid substitution severely diminished biofilm formation on graphite surfaces and impaired current output in microbial fuel cells. These results demonstrate that the capability to attach to insoluble electron acceptors plays a crucial role for the cells' ability to utilize them. The work suggests that glycerophosphate modification of Y32 is a key factor contributing to the surface charge of type IV pili, influencing the adhesion of Geobacter to specific surfaces. Geobacter sulfurreducens , an anaerobic metal-reducing bacterium, possesses type IV pili. These pili are intrinsic structural elements in biofilm formation and, together with a number of c -type cytochromes, are thought to serve as conductive nanowires enabling long-range electron transfer (ET) to metal oxides and graphite anodes. Here, we report that a posttranslational modification of a nonconserved amino acid residue within the PilA protein, the structural subunit of the type IV pili, is crucial for growth on insoluble extracellular electron acceptors. Matrix-assisted laser desorption ionization (MALDI) mass spectrometry of the secreted PilA protein revealed a posttranslational modification of tyrosine-32 with a moiety of a mass consistent with a glycerophosphate group. Mutating this tyrosine into a phenylalanine inhibited cell growth with Fe(III) oxides as the sole electron acceptor. In addition, this amino acid substitution severely diminished biofilm formation on graphite surfaces and impaired current output in microbial fuel cells. These results demonstrate that the capability to attach to insoluble electron acceptors plays a crucial role for the cells' ability to utilize them. The work suggests that glycerophosphate modification of Y32 is a key factor contributing to the surface charge of type IV pili, influencing the adhesion of Geobacter to specific surfaces. IMPORTANCE Type IV pili are bacterial appendages that function in cell adhesion, virulence, twitching motility, and long-range electron transfer (ET) from bacterial cells to insoluble extracellular electron acceptors. The mechanism and role of type IV pili for ET in Geobacter sulfurreducens is still a subject of research. In this study, we identified a posttranslational modification of the major G. sulfurreducens type IV pilin, suggested to be a glycerophosphate moiety. We show that a mutant in which the glycerophosphate-modified tyrosine-32 is replaced with a phenylalanine has reduced abilities for ET and biofilm formation compared with those of the wild type. The results show the importance of the glycerophosphate-modified tyrosine for surface attachment and electron transfer in electrode- or Fe(III)-respiring G. sulfurreducens cells. Geobacter sulfurreducens, an anaerobic metal-reducing bacterium, possesses type IV pili. These pili are intrinsic structural elements in biofilm formation and, together with a number of c-type cytochromes, are thought to serve as conductive nanowires enabling long-range electron transfer (ET) to metal oxides and graphite anodes. Here, we report that a posttranslational modification of a nonconserved amino acid residue within the PilA protein, the structural subunit of the type IV pili, is crucial for growth on insoluble extracellular electron acceptors. Matrix-assisted laser desorption ionization (MALDI) mass spectrometry of the secreted PilA protein revealed a posttranslational modification of tyrosine-32 with a moiety of a mass consistent with a glycerophosphate group. Mutating this tyrosine into a phenylalanine inhibited cell growth with Fe(III) oxides as the sole electron acceptor. In addition, this amino acid substitution severely diminished biofilm formation on graphite surfaces and impaired current output in microbial fuel cells. These results demonstrate that the capability to attach to insoluble electron acceptors plays a crucial role for the cells' ability to utilize them. The work suggests that glycerophosphate modification of Y32 is a key factor contributing to the surface charge of type IV pili, influencing the adhesion of Geobacter to specific surfaces.IMPORTANCE Type IV pili are bacterial appendages that function in cell adhesion, virulence, twitching motility, and long-range electron transfer (ET) from bacterial cells to insoluble extracellular electron acceptors. The mechanism and role of type IV pili for ET in Geobacter sulfurreducens is still a subject of research. In this study, we identified a posttranslational modification of the major G. sulfurreducens type IV pilin, suggested to be a glycerophosphate moiety. We show that a mutant in which the glycerophosphate-modified tyrosine-32 is replaced with a phenylalanine has reduced abilities for ET and biofilm formation compared with those of the wild type. The results show the importance of the glycerophosphate-modified tyrosine for surface attachment and electron transfer in electrode- or Fe(III)-respiring G. sulfurreducens cells. <named-content content-type='genus-species'>Geobacter sulfurreducens</named-content>, an anaerobic metal-reducing bacterium, possesses type IV pili. These pili are intrinsic structural elements in biofilm formation and, together with a number ofc-type cytochromes, are thought to serve as conductive nanowires enabling long-range electron transfer (ET) to metal oxides and graphite anodes. Here, we report that a posttranslational modification of a nonconserved amino acid residue within the PilA protein, the structural subunit of the type IV pili, is crucial for growth on insoluble extracellular electron acceptors. Matrix-assisted laser desorption ionization (MALDI) mass spectrometry of the secreted PilA protein revealed a posttranslational modification of tyrosine-32 with a moiety of a mass consistent with a glycerophosphate group. Mutating this tyrosine into a phenylalanine inhibited cell growth with Fe(III) oxides as the sole electron acceptor. In addition, this amino acid substitution severely diminished biofilm formation on graphite surfaces and impaired current output in microbial fuel cells. These results demonstrate that the capability to attach to insoluble electron acceptors plays a crucial role for the cells' ability to utilize them. The work suggests that glycerophosphate modification of Y32 is a key factor contributing to the surface charge of type IV pili, influencing the adhesion of<named-content content-type='genus-species'>Geobacter</named-content>to specific surfaces. Type IV pili are bacterial appendages that function in cell adhesion, virulence, twitching motility, and long-range electron transfer (ET) from bacterial cells to insoluble extracellular electron acceptors. The mechanism and role of type IV pili for ET in<named-content content-type='genus-species'>Geobacter sulfurreducens</named-content>is still a subject of research. In this study, we identified a posttranslational modification of the major<named-content content-type='genus-species'>G. sulfurreducens</named-content>type IV pilin, suggested to be a glycerophosphate moiety. We show that a mutant in which the glycerophosphate-modified tyrosine-32 is replaced with a phenylalanine has reduced abilities for ET and biofilm formation compared with those of the wild type. The results show the importance of the glycerophosphate-modified tyrosine for surface attachment and electron transfer in electrode- or Fe(III)-respiring<named-content content-type='genus-species'>G. sulfurreducens</named-content>cells. , an anaerobic metal-reducing bacterium, possesses type IV pili. These pili are intrinsic structural elements in biofilm formation and, together with a number of -type cytochromes, are thought to serve as conductive nanowires enabling long-range electron transfer (ET) to metal oxides and graphite anodes. Here, we report that a posttranslational modification of a nonconserved amino acid residue within the PilA protein, the structural subunit of the type IV pili, is crucial for growth on insoluble extracellular electron acceptors. Matrix-assisted laser desorption ionization (MALDI) mass spectrometry of the secreted PilA protein revealed a posttranslational modification of tyrosine-32 with a moiety of a mass consistent with a glycerophosphate group. Mutating this tyrosine into a phenylalanine inhibited cell growth with Fe(III) oxides as the sole electron acceptor. In addition, this amino acid substitution severely diminished biofilm formation on graphite surfaces and impaired current output in microbial fuel cells. These results demonstrate that the capability to attach to insoluble electron acceptors plays a crucial role for the cells' ability to utilize them. The work suggests that glycerophosphate modification of Y32 is a key factor contributing to the surface charge of type IV pili, influencing the adhesion of to specific surfaces. Type IV pili are bacterial appendages that function in cell adhesion, virulence, twitching motility, and long-range electron transfer (ET) from bacterial cells to insoluble extracellular electron acceptors. The mechanism and role of type IV pili for ET in is still a subject of research. In this study, we identified a posttranslational modification of the major type IV pilin, suggested to be a glycerophosphate moiety. We show that a mutant in which the glycerophosphate-modified tyrosine-32 is replaced with a phenylalanine has reduced abilities for ET and biofilm formation compared with those of the wild type. The results show the importance of the glycerophosphate-modified tyrosine for surface attachment and electron transfer in electrode- or Fe(III)-respiring cells. |
Author | Sandler, Steven J. Franks, Ashley E. Weis, Robert M. Richter, Lubna V. |
Author_xml | – sequence: 1 givenname: Lubna V. surname: Richter fullname: Richter, Lubna V. organization: Department of Chemistry, University of Massachusetts at Amherst, Amherst, Massachusetts, USA – sequence: 2 givenname: Ashley E. surname: Franks fullname: Franks, Ashley E. organization: Department of Microbiology, University of Massachusetts at Amherst, Amherst, Massachusetts, USA – sequence: 3 givenname: Robert M. surname: Weis fullname: Weis, Robert M. organization: Department of Chemistry, University of Massachusetts at Amherst, Amherst, Massachusetts, USA – sequence: 4 givenname: Steven J. surname: Sandler fullname: Sandler, Steven J. organization: Department of Microbiology, University of Massachusetts at Amherst, Amherst, Massachusetts, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28138101$$D View this record in MEDLINE/PubMed https://www.osti.gov/servlets/purl/1536861$$D View this record in Osti.gov |
BookMark | eNqNks1u1DAUhSNURKeFFXtkwQaJpthx4jgbpJlqOrQqYqTC2nKcm44rxx5sh5_348FwZkoFFQtWlq8_H5_je4-yA-ssZNlzgk8JKfjby8UpxjVhOWGPshnBDc-riuKDbIZxQfKGNPQwOwrhFmNSllXxJDssOKGcYDLLfl7rG6t7raRVgFyPJFq7EKOXNhgZtbPSoA-u2yHTdmLiBtBamzlaexdB72orcK1UETwKo-lH76EbFdiAeufR9eh7mfTnMUq1GcDGE7TQrtdmQOfODzvlEyRth1befYsblB66sMGZsTWAlt-THwXGjEZ6tDSgok_AXCnYRufD0-xxL02AZ3frcfb5fPnp7H1-9XF1cTa_ylXJmpgnfwC8ZEq2bdsTLGtoq67tCK9SlXUcaNNhXkslMWBMmQTVFR0lvFZVWWB6nL3b627HdoAuxUu-jNh6PUj_Qzipxd8nVm_EjfsqKlrjsiiTwMu9QPpiLYLSEdRGOWtTIkEqyjgjCXp994p3X0YIUQw6TOmlBTcGQXiTHFHaFP-BMlqQpq4n9NUD9NaNPnV3onhVV6xkk8EXfya8j_Z7YBLwZg8o70Lw0N8jBItpHMXlQuzGURCWaPKATpF3zU7fo80_7_wCyNDmJw |
CODEN | JOBAAY |
CitedBy_id | crossref_primary_10_1111_1751_7915_13280 crossref_primary_10_1016_j_actbio_2018_01_007 crossref_primary_10_3389_fmicb_2023_1079000 crossref_primary_10_3389_fcimb_2024_1428637 crossref_primary_10_1016_j_biortech_2021_125893 crossref_primary_10_1016_j_jenvman_2018_12_028 crossref_primary_10_1016_j_cofs_2019_03_006 crossref_primary_10_1016_j_bioflm_2023_100144 crossref_primary_10_1038_s41586_021_03857_w crossref_primary_10_1016_j_biortech_2021_125738 crossref_primary_10_1002_adma_201807285 crossref_primary_10_1016_j_biortech_2018_10_082 crossref_primary_10_1016_j_coelec_2017_09_003 crossref_primary_10_1021_acsnano_9b02032 crossref_primary_10_1007_s00284_017_1386_8 crossref_primary_10_1007_s00248_019_01316_8 crossref_primary_10_1021_acsestengg_4c00077 |
Cites_doi | 10.1128/AEM.66.5.2248-2251.2000 10.1128/MMBR.00035-12 10.1111/j.1574-6968.2010.02046.x 10.1038/339297a0 10.1007/s10142-008-0094-7 10.1128/AEM.69.3.1548-1555.2003 10.1128/JB.01224-06 10.1128/AEM.01122-14 10.1046/j.1365-2958.1998.01013.x 10.1039/c5cp03432a 10.1039/B816647A 10.1046/j.1365-2958.1998.00706.x 10.1146/annurev.micro.56.012302.160938 10.1128/AEM.71.12.8634-8641.2005 10.1046/j.1365-2958.1999.01184.x 10.1016/j.bbrc.2006.06.182 10.1111/j.1758-2229.2010.00210.x 10.1128/aem.60.10.3752-3759.1994 10.1016/S1097-2765(03)00170-9 10.1128/JB.01092-10 10.1073/pnas.1209829109 10.1016/j.molcel.2006.07.004 10.1111/j.1365-2958.2006.05482.x 10.1128/AEM.68.5.2300-2306.2002 10.1038/nrmicro885 10.1163/016942410X511079 10.1128/IAI.73.12.7922-7931.2005 10.1111/j.1462-5822.2011.01586.x 10.1128/aem.54.6.1472-1480.1988 10.1016/0167-4838(87)90109-9 10.1038/nnano.2011.119 10.1016/0003-2697(85)90442-7 10.1128/AEM.67.7.3180-3187.2001 10.1128/jb.174.22.7345-7351.1992 10.1371/journal.pone.0005628 10.1111/j.1364-3703.2012.00789.x 10.1128/JB.187.13.4505-4513.2005 10.1039/C1EE02229F 10.1021/es400901u 10.1099/mic.0.064089-0 10.1128/mBio.00105-13 10.1074/jbc.M113.498527 10.1111/j.1365-2958.2007.05806.x 10.1016/j.mib.2016.02.004 10.1016/S0065-2113(08)60900-1 10.1016/j.bios.2009.05.004 10.1038/nature03661 10.1126/science.1200729 10.1128/AEM.01444-06 10.1016/j.jmb.2012.02.017 10.1128/JB.01075-08 10.1039/C1EE01753E 10.1042/bj3160029 10.1128/JB.06366-11 10.1002/rcm.1280 10.1016/0003-2697(76)90067-1 10.1002/cssc.201100748 10.1002/pmic.200300744 10.1016/0378-1119(91)90007-X 10.1128/AEM.65.11.5082-5088.1999 10.1016/j.colsurfb.2004.05.006 10.1039/c3cp50411e 10.1126/science.1088727 10.1016/j.bbapap.2006.04.017 10.1016/j.bbabio.2011.01.003 10.1046/j.1365-2958.1998.01062.x 10.1186/1472-6785-6-1 10.1128/AEM.00023-10 10.1128/JB.185.7.2096-2103.2003 10.1038/ismej.2009.137 10.1038/ncomms12217 10.1128/JB.01284-06 10.1073/pnas.1108616108 10.1074/jbc.M111.297242 |
ContentType | Journal Article |
Copyright | Copyright © 2017 American Society for Microbiology. Copyright American Society for Microbiology Apr 2017 Copyright © 2017 American Society for Microbiology. 2017 American Society for Microbiology |
Copyright_xml | – notice: Copyright © 2017 American Society for Microbiology. – notice: Copyright American Society for Microbiology Apr 2017 – notice: Copyright © 2017 American Society for Microbiology. 2017 American Society for Microbiology |
CorporateAuthor | Univ. of Massachusetts, Amherst, MA (United States) |
CorporateAuthor_xml | – name: Univ. of Massachusetts, Amherst, MA (United States) |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QL 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 OIOZB OTOTI 5PM |
DOI | 10.1128/JB.00716-16 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Bacteriology Abstracts (Microbiology B) Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic OSTI.GOV - Hybrid OSTI.GOV PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Virology and AIDS Abstracts Technology Research Database Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Nucleic Acids Abstracts AIDS and Cancer Research Abstracts Engineering Research Database Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | Genetics Abstracts MEDLINE - Academic Bacteriology Abstracts (Microbiology B) CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | Geobacter PilA Tyrosine Mutant |
EISSN | 1098-5530 |
ExternalDocumentID | PMC5370424 1536861 4321570539 28138101 10_1128_JB_00716_16 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article Feature |
GrantInformation_xml | – fundername: DOE | SC | Office of Biological and Environmental Research (BER) grantid: DEFC02-02ER63446 |
GroupedDBID | --- -DZ -~X .55 0R~ 18M 29J 2WC 39C 4.4 53G 5GY 5RE 5VS 79B 85S AAGFI AAYXX ABPPZ ACGFO ACGOD ACNCT ACPRK ADBBV AENEX AFRAH AGVNZ ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BKOMP BTFSW CITATION CJ0 CS3 DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 HYE HZ~ IH2 KQ8 L7B O9- OK1 P-S P2P PQQKQ RHI RNS RPM RSF RXW TAE TR2 UHB UKR UPT W8F WH7 WOQ X7M YQT YR2 YZZ ZCA ~02 ~KM CGR CUY CVF ECM EIF NPM RHF UCJ VQA YIN 7QL 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 AAUGY ABPTK OIOZB OTOTI PQEST TAF ZA5 5PM |
ID | FETCH-LOGICAL-c469t-bacee846cabbbf10a7eb5dbd1858466d8e39d087aca0e0036aecd2d3187c54203 |
ISSN | 0021-9193 |
IngestDate | Thu Aug 21 18:18:18 EDT 2025 Mon Jul 03 03:58:19 EDT 2023 Thu Jul 10 18:04:08 EDT 2025 Fri Jul 11 08:40:32 EDT 2025 Mon Jun 30 08:13:59 EDT 2025 Wed Feb 19 02:41:33 EST 2025 Tue Jul 01 02:56:25 EDT 2025 Thu Apr 24 22:55:15 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | fimbriae filaments attachment microbial fuel cells glycerophosphate type IV pili |
Language | English |
License | Copyright © 2017 American Society for Microbiology. All Rights Reserved. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c469t-bacee846cabbbf10a7eb5dbd1858466d8e39d087aca0e0036aecd2d3187c54203 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 FC02-02ER63446 USDOE Office of Science (SC), Biological and Environmental Research (BER) Present address: Lubna V. Richter, Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York, USA; Ashley E. Franks, Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Victoria, Australia. Deceased. Citation Richter LV, Franks AE, Weis RM, Sandler SJ. 2017. Significance of a posttranslational modification of the PilA protein of Geobacter sulfurreducens for surface attachment, biofilm formation, and growth on insoluble extracellular electron acceptors. J Bacteriol 199:e00716-16. https://doi.org/10.1128/JB.00716-16. |
OpenAccessLink | https://www.osti.gov/servlets/purl/1536861 |
PMID | 28138101 |
PQID | 1885756464 |
PQPubID | 40724 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5370424 osti_scitechconnect_1536861 proquest_miscellaneous_1891873392 proquest_miscellaneous_1863219772 proquest_journals_1885756464 pubmed_primary_28138101 crossref_primary_10_1128_JB_00716_16 crossref_citationtrail_10_1128_JB_00716_16 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-04-01 |
PublicationDateYYYYMMDD | 2017-04-01 |
PublicationDate_xml | – month: 04 year: 2017 text: 2017-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington – name: 1752 N St., N.W., Washington, DC |
PublicationTitle | Journal of bacteriology |
PublicationTitleAlternate | J Bacteriol |
PublicationYear | 2017 |
Publisher | American Society for Microbiology |
Publisher_xml | – name: American Society for Microbiology |
References | e_1_3_3_50_2 e_1_3_3_75_2 e_1_3_3_71_2 e_1_3_3_16_2 e_1_3_3_18_2 e_1_3_3_39_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_58_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_56_2 e_1_3_3_33_2 e_1_3_3_54_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_52_2 e_1_3_3_73_2 e_1_3_3_61_2 e_1_3_3_5_2 e_1_3_3_7_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_23_2 e_1_3_3_48_2 e_1_3_3_69_2 e_1_3_3_25_2 e_1_3_3_46_2 e_1_3_3_67_2 e_1_3_3_44_2 e_1_3_3_65_2 e_1_3_3_3_2 e_1_3_3_21_2 e_1_3_3_42_2 e_1_3_3_63_2 e_1_3_3_51_2 e_1_3_3_74_2 e_1_3_3_70_2 Stimson E (e_1_3_3_40_2) 1996; 316 e_1_3_3_17_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_59_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_57_2 e_1_3_3_32_2 e_1_3_3_55_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_53_2 e_1_3_3_72_2 e_1_3_3_62_2 e_1_3_3_60_2 e_1_3_3_6_2 e_1_3_3_8_2 e_1_3_3_28_2 e_1_3_3_49_2 e_1_3_3_24_2 e_1_3_3_47_2 e_1_3_3_26_2 e_1_3_3_45_2 e_1_3_3_68_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_43_2 e_1_3_3_66_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_41_2 e_1_3_3_64_2 18677521 - Funct Integr Genomics. 2009 Feb;9(1):15-25 16347658 - Appl Environ Microbiol. 1988 Jun;54(6):1472-80 20629752 - FEMS Microbiol Lett. 2010 Sep 1;310(1):62-8 17158673 - J Bacteriol. 2007 Mar;189(5):2125-7 15261011 - Colloids Surf B Biointerfaces. 2004 Jul 15;36(2):81-90 12644478 - J Bacteriol. 2003 Apr;185(7):2096-103 15968061 - J Bacteriol. 2005 Jul;187(13):4505-13 26243427 - Phys Chem Chem Phys. 2015 Sep 14;17(34):22217-26 16299283 - Infect Immun. 2005 Dec;73(12):7922-31 9767592 - Mol Microbiol. 1998 Sep;29(5):1249-61 21169487 - J Bacteriol. 2011 Mar;193(5):1023-33 17608667 - Mol Microbiol. 2007 Aug;65(3):607-24 22955881 - Proc Natl Acad Sci U S A. 2012 Sep 18;109(38):15467-72 7527204 - Appl Environ Microbiol. 1994 Oct;60(10):3752-9 21371235 - Cell Microbiol. 2011 Jun;13(6):885-96 16949362 - Mol Cell. 2006 Sep 1;23(5):651-62 22615023 - ChemSusChem. 2012 Jun;5(6):1099-105 14671304 - Science. 2003 Dec 12;302(5652):1967-9 17140412 - Mol Microbiol. 2007 Jan;63(1):69-85 12142488 - Annu Rev Microbiol. 2002;56:289-314 27481214 - Nat Commun. 2016 Aug 02;7:12217 21236241 - Biochim Biophys Acta. 2011 Apr;1807(4):404-12 20400557 - Appl Environ Microbiol. 2010 Jun;76(12):4080-4 15973408 - Nature. 2005 Jun 23;435(7045):1098-101 21311024 - Science. 2011 Feb 11;331(6018):778-82 822747 - Anal Biochem. 1976 Sep;75(1):168-76 15100690 - Nat Rev Microbiol. 2004 May;2(5):363-78 15174123 - Proteomics. 2004 Jun;4(6):1534-6 16412253 - BMC Ecol. 2006 Jan 16;6:1 12769840 - Mol Cell. 2003 May;11(5):1139-50 22353307 - Mol Plant Pathol. 2012 Sep;13(7):764-74 17085575 - J Bacteriol. 2007 Jan;189(1):151-9 23204365 - Microbiol Mol Biol Rev. 2012 Dec;76(4):740-72 11976101 - Appl Environ Microbiol. 2002 May;68(5):2300-6 22361030 - J Mol Biol. 2012 Apr 20;418(1-2):47-64 16332857 - Appl Environ Microbiol. 2005 Dec;71(12 ):8634-41 16936064 - Appl Environ Microbiol. 2006 Nov;72(11):7345-8 19461962 - PLoS One. 2009 May 20;4(5):e5628 10543826 - Appl Environ Microbiol. 1999 Nov;65(11):5082-8 23965997 - J Biol Chem. 2013 Oct 11;288(41):29260-6 1847347 - Gene. 1991 Jan 2;97(1):39-47 19487117 - Biosens Bioelectron. 2009 Aug 15;24(12):3498-503 3843705 - Anal Biochem. 1985 Oct;150(1):76-85 12620842 - Appl Environ Microbiol. 2003 Mar;69(3):1548-55 9791175 - Mol Microbiol. 1998 Oct;30(2):295-304 14745769 - Rapid Commun Mass Spectrom. 2004;18(2):191-8 10788411 - Appl Environ Microbiol. 2000 May;66(5):2248-51 10048019 - Mol Microbiol. 1999 Feb;31(3):743-52 21822253 - Nat Nanotechnol. 2011 Aug 07;6(9):573-9 11425739 - Appl Environ Microbiol. 2001 Jul;67(7):3180-7 23481602 - MBio. 2013 Mar 12;4(2):e00105-13 16870136 - Biochem Biophys Res Commun. 2006 Sep 8;347(4):904-8 9515697 - Mol Microbiol. 1998 Feb;27(4):705-15 1429457 - J Bacteriol. 1992 Nov;174(22):7345-51 8645220 - Biochem J. 1996 May 15;316 ( Pt 1):29-33 23698325 - Phys Chem Chem Phys. 2013 Jul 7;15(25):10300-6 23745742 - Environ Sci Technol. 2013 Jul 2;47(13):7563-70 26968016 - Curr Opin Microbiol. 2016 Apr;30:139-46 20033069 - ISME J. 2010 Apr;4(4):509-19 24814783 - Appl Environ Microbiol. 2014 Jul;80(14):4331-40 23306674 - Microbiology. 2013 Mar;159(Pt 3):515-35 16797259 - Biochim Biophys Acta. 2006 Jul;1764(7):1198-206 22027840 - J Biol Chem. 2011 Dec 23;286(51):44254-65 3676331 - Biochim Biophys Acta. 1987 Nov 26;916(2):200-4 23761253 - Environ Microbiol Rep. 2011 Apr;3(2):211-7 21896750 - Proc Natl Acad Sci U S A. 2011 Sep 13;108(37):15248-52 22408162 - J Bacteriol. 2012 May;194(10):2551-63 18805982 - J Bacteriol. 2008 Nov;190(22):7464-78 |
References_xml | – ident: e_1_3_3_10_2 doi: 10.1128/AEM.66.5.2248-2251.2000 – ident: e_1_3_3_32_2 doi: 10.1128/MMBR.00035-12 – ident: e_1_3_3_54_2 doi: 10.1111/j.1574-6968.2010.02046.x – ident: e_1_3_3_5_2 doi: 10.1038/339297a0 – ident: e_1_3_3_64_2 doi: 10.1007/s10142-008-0094-7 – ident: e_1_3_3_52_2 doi: 10.1128/AEM.69.3.1548-1555.2003 – ident: e_1_3_3_38_2 doi: 10.1128/JB.01224-06 – ident: e_1_3_3_65_2 doi: 10.1128/AEM.01122-14 – ident: e_1_3_3_69_2 doi: 10.1046/j.1365-2958.1998.01013.x – ident: e_1_3_3_17_2 doi: 10.1039/c5cp03432a – ident: e_1_3_3_13_2 doi: 10.1039/B816647A – ident: e_1_3_3_55_2 doi: 10.1046/j.1365-2958.1998.00706.x – ident: e_1_3_3_58_2 doi: 10.1146/annurev.micro.56.012302.160938 – ident: e_1_3_3_9_2 doi: 10.1128/AEM.71.12.8634-8641.2005 – ident: e_1_3_3_61_2 doi: 10.1046/j.1365-2958.1999.01184.x – ident: e_1_3_3_37_2 doi: 10.1016/j.bbrc.2006.06.182 – ident: e_1_3_3_24_2 doi: 10.1111/j.1758-2229.2010.00210.x – ident: e_1_3_3_67_2 doi: 10.1128/aem.60.10.3752-3759.1994 – ident: e_1_3_3_29_2 doi: 10.1016/S1097-2765(03)00170-9 – ident: e_1_3_3_66_2 doi: 10.1128/JB.01092-10 – ident: e_1_3_3_19_2 doi: 10.1073/pnas.1209829109 – ident: e_1_3_3_31_2 doi: 10.1016/j.molcel.2006.07.004 – ident: e_1_3_3_28_2 doi: 10.1111/j.1365-2958.2006.05482.x – ident: e_1_3_3_7_2 doi: 10.1128/AEM.68.5.2300-2306.2002 – ident: e_1_3_3_30_2 doi: 10.1038/nrmicro885 – ident: e_1_3_3_57_2 doi: 10.1163/016942410X511079 – ident: e_1_3_3_41_2 doi: 10.1128/IAI.73.12.7922-7931.2005 – ident: e_1_3_3_42_2 doi: 10.1111/j.1462-5822.2011.01586.x – ident: e_1_3_3_6_2 doi: 10.1128/aem.54.6.1472-1480.1988 – ident: e_1_3_3_48_2 doi: 10.1016/0167-4838(87)90109-9 – ident: e_1_3_3_15_2 doi: 10.1038/nnano.2011.119 – ident: e_1_3_3_72_2 doi: 10.1016/0003-2697(85)90442-7 – ident: e_1_3_3_68_2 doi: 10.1128/AEM.67.7.3180-3187.2001 – ident: e_1_3_3_26_2 doi: 10.1128/jb.174.22.7345-7351.1992 – ident: e_1_3_3_11_2 doi: 10.1371/journal.pone.0005628 – ident: e_1_3_3_43_2 doi: 10.1111/j.1364-3703.2012.00789.x – ident: e_1_3_3_63_2 doi: 10.1128/JB.187.13.4505-4513.2005 – ident: e_1_3_3_3_2 doi: 10.1039/C1EE02229F – ident: e_1_3_3_60_2 doi: 10.1021/es400901u – ident: e_1_3_3_62_2 doi: 10.1099/mic.0.064089-0 – ident: e_1_3_3_16_2 doi: 10.1128/mBio.00105-13 – ident: e_1_3_3_35_2 doi: 10.1074/jbc.M113.498527 – ident: e_1_3_3_36_2 doi: 10.1111/j.1365-2958.2007.05806.x – ident: e_1_3_3_50_2 doi: 10.1016/j.mib.2016.02.004 – ident: e_1_3_3_53_2 doi: 10.1016/S0065-2113(08)60900-1 – ident: e_1_3_3_70_2 doi: 10.1016/j.bios.2009.05.004 – ident: e_1_3_3_2_2 doi: 10.1038/nature03661 – ident: e_1_3_3_44_2 doi: 10.1126/science.1200729 – ident: e_1_3_3_12_2 doi: 10.1128/AEM.01444-06 – ident: e_1_3_3_34_2 doi: 10.1016/j.jmb.2012.02.017 – ident: e_1_3_3_39_2 doi: 10.1128/JB.01075-08 – ident: e_1_3_3_18_2 doi: 10.1039/C1EE01753E – volume: 316 start-page: 29 year: 1996 ident: e_1_3_3_40_2 article-title: Discovery of a novel protein modification: alpha-glycerophosphate is a substituent of meningococcal pilin publication-title: Biochem J doi: 10.1042/bj3160029 – ident: e_1_3_3_27_2 doi: 10.1128/JB.06366-11 – ident: e_1_3_3_47_2 doi: 10.1002/rcm.1280 – ident: e_1_3_3_71_2 doi: 10.1016/0003-2697(76)90067-1 – ident: e_1_3_3_20_2 doi: 10.1002/cssc.201100748 – ident: e_1_3_3_46_2 doi: 10.1002/pmic.200300744 – ident: e_1_3_3_75_2 doi: 10.1016/0378-1119(91)90007-X – ident: e_1_3_3_74_2 doi: 10.1128/AEM.65.11.5082-5088.1999 – ident: e_1_3_3_56_2 doi: 10.1016/j.colsurfb.2004.05.006 – ident: e_1_3_3_25_2 doi: 10.1039/c3cp50411e – ident: e_1_3_3_45_2 doi: 10.1126/science.1088727 – ident: e_1_3_3_21_2 doi: 10.1016/j.bbapap.2006.04.017 – ident: e_1_3_3_23_2 doi: 10.1016/j.bbabio.2011.01.003 – ident: e_1_3_3_59_2 doi: 10.1046/j.1365-2958.1998.01062.x – ident: e_1_3_3_73_2 doi: 10.1186/1472-6785-6-1 – ident: e_1_3_3_22_2 doi: 10.1128/AEM.00023-10 – ident: e_1_3_3_8_2 doi: 10.1128/JB.185.7.2096-2103.2003 – ident: e_1_3_3_14_2 doi: 10.1038/ismej.2009.137 – ident: e_1_3_3_49_2 doi: 10.1038/ncomms12217 – ident: e_1_3_3_51_2 doi: 10.1128/JB.01284-06 – ident: e_1_3_3_4_2 doi: 10.1073/pnas.1108616108 – ident: e_1_3_3_33_2 doi: 10.1074/jbc.M111.297242 – reference: 21896750 - Proc Natl Acad Sci U S A. 2011 Sep 13;108(37):15248-52 – reference: 23698325 - Phys Chem Chem Phys. 2013 Jul 7;15(25):10300-6 – reference: 10788411 - Appl Environ Microbiol. 2000 May;66(5):2248-51 – reference: 23204365 - Microbiol Mol Biol Rev. 2012 Dec;76(4):740-72 – reference: 9515697 - Mol Microbiol. 1998 Feb;27(4):705-15 – reference: 8645220 - Biochem J. 1996 May 15;316 ( Pt 1):29-33 – reference: 22408162 - J Bacteriol. 2012 May;194(10):2551-63 – reference: 10048019 - Mol Microbiol. 1999 Feb;31(3):743-52 – reference: 23481602 - MBio. 2013 Mar 12;4(2):e00105-13 – reference: 27481214 - Nat Commun. 2016 Aug 02;7:12217 – reference: 20033069 - ISME J. 2010 Apr;4(4):509-19 – reference: 21371235 - Cell Microbiol. 2011 Jun;13(6):885-96 – reference: 16797259 - Biochim Biophys Acta. 2006 Jul;1764(7):1198-206 – reference: 23965997 - J Biol Chem. 2013 Oct 11;288(41):29260-6 – reference: 10543826 - Appl Environ Microbiol. 1999 Nov;65(11):5082-8 – reference: 11425739 - Appl Environ Microbiol. 2001 Jul;67(7):3180-7 – reference: 1429457 - J Bacteriol. 1992 Nov;174(22):7345-51 – reference: 12142488 - Annu Rev Microbiol. 2002;56:289-314 – reference: 22353307 - Mol Plant Pathol. 2012 Sep;13(7):764-74 – reference: 1847347 - Gene. 1991 Jan 2;97(1):39-47 – reference: 18805982 - J Bacteriol. 2008 Nov;190(22):7464-78 – reference: 23745742 - Environ Sci Technol. 2013 Jul 2;47(13):7563-70 – reference: 21169487 - J Bacteriol. 2011 Mar;193(5):1023-33 – reference: 14671304 - Science. 2003 Dec 12;302(5652):1967-9 – reference: 16332857 - Appl Environ Microbiol. 2005 Dec;71(12 ):8634-41 – reference: 7527204 - Appl Environ Microbiol. 1994 Oct;60(10):3752-9 – reference: 9791175 - Mol Microbiol. 1998 Oct;30(2):295-304 – reference: 19487117 - Biosens Bioelectron. 2009 Aug 15;24(12):3498-503 – reference: 16347658 - Appl Environ Microbiol. 1988 Jun;54(6):1472-80 – reference: 16949362 - Mol Cell. 2006 Sep 1;23(5):651-62 – reference: 22361030 - J Mol Biol. 2012 Apr 20;418(1-2):47-64 – reference: 26243427 - Phys Chem Chem Phys. 2015 Sep 14;17(34):22217-26 – reference: 12644478 - J Bacteriol. 2003 Apr;185(7):2096-103 – reference: 19461962 - PLoS One. 2009 May 20;4(5):e5628 – reference: 24814783 - Appl Environ Microbiol. 2014 Jul;80(14):4331-40 – reference: 17085575 - J Bacteriol. 2007 Jan;189(1):151-9 – reference: 15100690 - Nat Rev Microbiol. 2004 May;2(5):363-78 – reference: 16936064 - Appl Environ Microbiol. 2006 Nov;72(11):7345-8 – reference: 20400557 - Appl Environ Microbiol. 2010 Jun;76(12):4080-4 – reference: 17608667 - Mol Microbiol. 2007 Aug;65(3):607-24 – reference: 17158673 - J Bacteriol. 2007 Mar;189(5):2125-7 – reference: 16412253 - BMC Ecol. 2006 Jan 16;6:1 – reference: 11976101 - Appl Environ Microbiol. 2002 May;68(5):2300-6 – reference: 26968016 - Curr Opin Microbiol. 2016 Apr;30:139-46 – reference: 15174123 - Proteomics. 2004 Jun;4(6):1534-6 – reference: 21236241 - Biochim Biophys Acta. 2011 Apr;1807(4):404-12 – reference: 22955881 - Proc Natl Acad Sci U S A. 2012 Sep 18;109(38):15467-72 – reference: 3843705 - Anal Biochem. 1985 Oct;150(1):76-85 – reference: 20629752 - FEMS Microbiol Lett. 2010 Sep 1;310(1):62-8 – reference: 14745769 - Rapid Commun Mass Spectrom. 2004;18(2):191-8 – reference: 9767592 - Mol Microbiol. 1998 Sep;29(5):1249-61 – reference: 12769840 - Mol Cell. 2003 May;11(5):1139-50 – reference: 16870136 - Biochem Biophys Res Commun. 2006 Sep 8;347(4):904-8 – reference: 15973408 - Nature. 2005 Jun 23;435(7045):1098-101 – reference: 18677521 - Funct Integr Genomics. 2009 Feb;9(1):15-25 – reference: 15968061 - J Bacteriol. 2005 Jul;187(13):4505-13 – reference: 23306674 - Microbiology. 2013 Mar;159(Pt 3):515-35 – reference: 822747 - Anal Biochem. 1976 Sep;75(1):168-76 – reference: 22027840 - J Biol Chem. 2011 Dec 23;286(51):44254-65 – reference: 21822253 - Nat Nanotechnol. 2011 Aug 07;6(9):573-9 – reference: 12620842 - Appl Environ Microbiol. 2003 Mar;69(3):1548-55 – reference: 16299283 - Infect Immun. 2005 Dec;73(12):7922-31 – reference: 3676331 - Biochim Biophys Acta. 1987 Nov 26;916(2):200-4 – reference: 15261011 - Colloids Surf B Biointerfaces. 2004 Jul 15;36(2):81-90 – reference: 17140412 - Mol Microbiol. 2007 Jan;63(1):69-85 – reference: 23761253 - Environ Microbiol Rep. 2011 Apr;3(2):211-7 – reference: 21311024 - Science. 2011 Feb 11;331(6018):778-82 – reference: 22615023 - ChemSusChem. 2012 Jun;5(6):1099-105 |
SSID | ssj0014452 |
Score | 2.3294504 |
Snippet | Geobacter sulfurreducens
, an anaerobic metal-reducing bacterium, possesses type IV pili. These pili are intrinsic structural elements in biofilm formation... , an anaerobic metal-reducing bacterium, possesses type IV pili. These pili are intrinsic structural elements in biofilm formation and, together with a number... Geobacter sulfurreducens, an anaerobic metal-reducing bacterium, possesses type IV pili. These pili are intrinsic structural elements in biofilm formation and,... <named-content content-type='genus-species'>Geobacter sulfurreducens</named-content>, an anaerobic metal-reducing bacterium, possesses type IV pili. These pili... |
SourceID | pubmedcentral osti proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | E00716 |
SubjectTerms | Amino Acid Sequence Amino acids Bacterial Adhesion - physiology Bacteriological Techniques Bacteriology BASIC BIOLOGICAL SCIENCES Bioelectric Energy Sources - microbiology Biofilms Biofilms - growth & development Culture Media Electron transfer Fimbriae Proteins - chemistry Fimbriae Proteins - genetics Fimbriae Proteins - metabolism Gene Expression Regulation, Bacterial - physiology Geobacter Geobacter - cytology Geobacter - genetics Geobacter - metabolism Geobacter - physiology Geobacter sulfurreducens Glycerophosphates - chemistry Gram-negative bacteria Ionization Iron Mass spectrometry Microbiology Protein Processing, Post-Translational Proteins |
Title | Significance of a Posttranslational Modification of the PilA Protein of Geobacter sulfurreducens for Surface Attachment, Biofilm Formation, and Growth on Insoluble Extracellular Electron Acceptors |
URI | https://www.ncbi.nlm.nih.gov/pubmed/28138101 https://www.proquest.com/docview/1885756464 https://www.proquest.com/docview/1863219772 https://www.proquest.com/docview/1891873392 https://www.osti.gov/servlets/purl/1536861 https://pubmed.ncbi.nlm.nih.gov/PMC5370424 |
Volume | 199 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bjtMwELVKERIviDthF2QknmADzc1JHruo3aXqLki0om9RfAmNVNJVN5WAL-JD-DBmHCdNoKCFl6h1rNTNnIzHzsw5hDwXroqDjKd27HFh-zySNvc9pNd2BsJjUSRTLHA-O2enc3-yCBa93vdW1tK25K_Et711Jf9jVWgDu2KV7D9YtrkoNMBnsC8cwcJwvJKNP-SfCkz10Wn_utARtXdLnH5W9Sbf2VrqLnVkiIHm-3w1xBIBVLrEthMFTzWyNmOyeoaMTRIsXmiqBnAtmyyF6w_LMhVLvZmImMhR6_vzy3Fd_FingZ7Aur5c4juItwX-e6zMGn2BMeErAp3zOjLKO6hUoS5Q7ecPEXI1pryz8Y9EAEZLZLrlRbpL0tXy85W28uUSXV1TY_FRVUQKVRZ5S0FZM0xsTLIbeH3zjsxsgsDEusudUZXjRl5UlEDqePZKe8lAONo_Y7hYBTE5Rg51h9nOHl7u83fJeD6dJrPRYnaNXHdhQaLLyhdNMhGsSgPXVH_CBV-3LteJd_oAgnzfWubXlNxWjDO7TW6ZW0-HFdLukJ4q7pIblVzp13vkRxtvdJ3RlP6GN9rGG_YBvFHEGzV4w7YGb7SLNwp4owZvdIe3I2rQRhu0HVGwHa2wRuGHGqzRDtZojTXaYO0-mY9HszentlEBsYXP4tKG8SgFUbJIOeeZM0hDxQPJJQSa0MpkpLxYDqIwFelAIb1SqoR0JcxVoQh8d-A9IP1iXahHhPLAU5mMhPBF5juujAULwUoMvnlZprhFXtS2SoShyEelllWil8pulEyOE23YxGEWOLq680XFDLO_2wEaPYGAFlmZBaaviTKBQINFzLHIYY2FxDiWy8SJUDaX-cy3yLPmNLh9vHlpodZb7MM8CDYAin_rE8NN8GAFZJGHFbyakbqRo7n9LBJ2gNd0QNr57pkiX2r6-cALMV_i8RXGdkBu7p7WQ9IvN1v1BIL4kj_Vz89PYs0CEw |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Significance+of+a+Posttranslational+Modification+of+the+PilA+Protein+of+Geobacter+sulfurreducens+for+Surface+Attachment%2C+Biofilm+Formation%2C+and+Growth+on+Insoluble+Extracellular+Electron+Acceptors&rft.jtitle=Journal+of+bacteriology&rft.au=Richter%2C+Lubna+V&rft.au=Franks%2C+Ashley+E&rft.au=Weis%2C+Robert+M&rft.au=Sandler%2C+Steven+J&rft.date=2017-04-01&rft.eissn=1098-5530&rft.volume=199&rft.issue=8&rft_id=info:doi/10.1128%2FJB.00716-16&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9193&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9193&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9193&client=summon |