Significance of a Posttranslational Modification of the PilA Protein of Geobacter sulfurreducens for Surface Attachment, Biofilm Formation, and Growth on Insoluble Extracellular Electron Acceptors

Geobacter sulfurreducens , an anaerobic metal-reducing bacterium, possesses type IV pili. These pili are intrinsic structural elements in biofilm formation and, together with a number of c -type cytochromes, are thought to serve as conductive nanowires enabling long-range electron transfer (ET) to m...

Full description

Saved in:
Bibliographic Details
Published inJournal of bacteriology Vol. 199; no. 8; p. E00716
Main Authors Richter, Lubna V., Franks, Ashley E., Weis, Robert M., Sandler, Steven J.
Format Journal Article
LanguageEnglish
Published United States American Society for Microbiology 01.04.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Geobacter sulfurreducens , an anaerobic metal-reducing bacterium, possesses type IV pili. These pili are intrinsic structural elements in biofilm formation and, together with a number of c -type cytochromes, are thought to serve as conductive nanowires enabling long-range electron transfer (ET) to metal oxides and graphite anodes. Here, we report that a posttranslational modification of a nonconserved amino acid residue within the PilA protein, the structural subunit of the type IV pili, is crucial for growth on insoluble extracellular electron acceptors. Matrix-assisted laser desorption ionization (MALDI) mass spectrometry of the secreted PilA protein revealed a posttranslational modification of tyrosine-32 with a moiety of a mass consistent with a glycerophosphate group. Mutating this tyrosine into a phenylalanine inhibited cell growth with Fe(III) oxides as the sole electron acceptor. In addition, this amino acid substitution severely diminished biofilm formation on graphite surfaces and impaired current output in microbial fuel cells. These results demonstrate that the capability to attach to insoluble electron acceptors plays a crucial role for the cells' ability to utilize them. The work suggests that glycerophosphate modification of Y32 is a key factor contributing to the surface charge of type IV pili, influencing the adhesion of Geobacter to specific surfaces. IMPORTANCE Type IV pili are bacterial appendages that function in cell adhesion, virulence, twitching motility, and long-range electron transfer (ET) from bacterial cells to insoluble extracellular electron acceptors. The mechanism and role of type IV pili for ET in Geobacter sulfurreducens is still a subject of research. In this study, we identified a posttranslational modification of the major G. sulfurreducens type IV pilin, suggested to be a glycerophosphate moiety. We show that a mutant in which the glycerophosphate-modified tyrosine-32 is replaced with a phenylalanine has reduced abilities for ET and biofilm formation compared with those of the wild type. The results show the importance of the glycerophosphate-modified tyrosine for surface attachment and electron transfer in electrode- or Fe(III)-respiring G. sulfurreducens cells.
AbstractList Geobacter sulfurreducens, an anaerobic metal-reducing bacterium, possesses type IV pili. These pili are intrinsic structural elements in biofilm formation and, together with a number of c-type cytochromes, are thought to serve as conductive nanowires enabling long-range electron transfer (ET) to metal oxides and graphite anodes. Here, we report that a posttranslational modification of a nonconserved amino acid residue within the PilA protein, the structural subunit of the type IV pili, is crucial for growth on insoluble extracellular electron acceptors. Matrix-assisted laser desorption ionization (MALDI) mass spectrometry of the secreted PilA protein revealed a posttranslational modification of tyrosine-32 with a moiety of a mass consistent with a glycerophosphate group. Mutating this tyrosine into a phenylalanine inhibited cell growth with Fe(III) oxides as the sole electron acceptor. In addition, this amino acid substitution severely diminished biofilm formation on graphite surfaces and impaired current output in microbial fuel cells. These results demonstrate that the capability to attach to insoluble electron acceptors plays a crucial role for the cells' ability to utilize them. The work suggests that glycerophosphate modification of Y32 is a key factor contributing to the surface charge of type IV pili, influencing the adhesion of Geobacter to specific surfaces.
Geobacter sulfurreducens , an anaerobic metal-reducing bacterium, possesses type IV pili. These pili are intrinsic structural elements in biofilm formation and, together with a number of c -type cytochromes, are thought to serve as conductive nanowires enabling long-range electron transfer (ET) to metal oxides and graphite anodes. Here, we report that a posttranslational modification of a nonconserved amino acid residue within the PilA protein, the structural subunit of the type IV pili, is crucial for growth on insoluble extracellular electron acceptors. Matrix-assisted laser desorption ionization (MALDI) mass spectrometry of the secreted PilA protein revealed a posttranslational modification of tyrosine-32 with a moiety of a mass consistent with a glycerophosphate group. Mutating this tyrosine into a phenylalanine inhibited cell growth with Fe(III) oxides as the sole electron acceptor. In addition, this amino acid substitution severely diminished biofilm formation on graphite surfaces and impaired current output in microbial fuel cells. These results demonstrate that the capability to attach to insoluble electron acceptors plays a crucial role for the cells' ability to utilize them. The work suggests that glycerophosphate modification of Y32 is a key factor contributing to the surface charge of type IV pili, influencing the adhesion of Geobacter to specific surfaces. IMPORTANCE Type IV pili are bacterial appendages that function in cell adhesion, virulence, twitching motility, and long-range electron transfer (ET) from bacterial cells to insoluble extracellular electron acceptors. The mechanism and role of type IV pili for ET in Geobacter sulfurreducens is still a subject of research. In this study, we identified a posttranslational modification of the major G. sulfurreducens type IV pilin, suggested to be a glycerophosphate moiety. We show that a mutant in which the glycerophosphate-modified tyrosine-32 is replaced with a phenylalanine has reduced abilities for ET and biofilm formation compared with those of the wild type. The results show the importance of the glycerophosphate-modified tyrosine for surface attachment and electron transfer in electrode- or Fe(III)-respiring G. sulfurreducens cells.
Geobacter sulfurreducens, an anaerobic metal-reducing bacterium, possesses type IV pili. These pili are intrinsic structural elements in biofilm formation and, together with a number of c-type cytochromes, are thought to serve as conductive nanowires enabling long-range electron transfer (ET) to metal oxides and graphite anodes. Here, we report that a posttranslational modification of a nonconserved amino acid residue within the PilA protein, the structural subunit of the type IV pili, is crucial for growth on insoluble extracellular electron acceptors. Matrix-assisted laser desorption ionization (MALDI) mass spectrometry of the secreted PilA protein revealed a posttranslational modification of tyrosine-32 with a moiety of a mass consistent with a glycerophosphate group. Mutating this tyrosine into a phenylalanine inhibited cell growth with Fe(III) oxides as the sole electron acceptor. In addition, this amino acid substitution severely diminished biofilm formation on graphite surfaces and impaired current output in microbial fuel cells. These results demonstrate that the capability to attach to insoluble electron acceptors plays a crucial role for the cells' ability to utilize them. The work suggests that glycerophosphate modification of Y32 is a key factor contributing to the surface charge of type IV pili, influencing the adhesion of Geobacter to specific surfaces.IMPORTANCE Type IV pili are bacterial appendages that function in cell adhesion, virulence, twitching motility, and long-range electron transfer (ET) from bacterial cells to insoluble extracellular electron acceptors. The mechanism and role of type IV pili for ET in Geobacter sulfurreducens is still a subject of research. In this study, we identified a posttranslational modification of the major G. sulfurreducens type IV pilin, suggested to be a glycerophosphate moiety. We show that a mutant in which the glycerophosphate-modified tyrosine-32 is replaced with a phenylalanine has reduced abilities for ET and biofilm formation compared with those of the wild type. The results show the importance of the glycerophosphate-modified tyrosine for surface attachment and electron transfer in electrode- or Fe(III)-respiring G. sulfurreducens cells.
<named-content content-type='genus-species'>Geobacter sulfurreducens</named-content>, an anaerobic metal-reducing bacterium, possesses type IV pili. These pili are intrinsic structural elements in biofilm formation and, together with a number ofc-type cytochromes, are thought to serve as conductive nanowires enabling long-range electron transfer (ET) to metal oxides and graphite anodes. Here, we report that a posttranslational modification of a nonconserved amino acid residue within the PilA protein, the structural subunit of the type IV pili, is crucial for growth on insoluble extracellular electron acceptors. Matrix-assisted laser desorption ionization (MALDI) mass spectrometry of the secreted PilA protein revealed a posttranslational modification of tyrosine-32 with a moiety of a mass consistent with a glycerophosphate group. Mutating this tyrosine into a phenylalanine inhibited cell growth with Fe(III) oxides as the sole electron acceptor. In addition, this amino acid substitution severely diminished biofilm formation on graphite surfaces and impaired current output in microbial fuel cells. These results demonstrate that the capability to attach to insoluble electron acceptors plays a crucial role for the cells' ability to utilize them. The work suggests that glycerophosphate modification of Y32 is a key factor contributing to the surface charge of type IV pili, influencing the adhesion of<named-content content-type='genus-species'>Geobacter</named-content>to specific surfaces. Type IV pili are bacterial appendages that function in cell adhesion, virulence, twitching motility, and long-range electron transfer (ET) from bacterial cells to insoluble extracellular electron acceptors. The mechanism and role of type IV pili for ET in<named-content content-type='genus-species'>Geobacter sulfurreducens</named-content>is still a subject of research. In this study, we identified a posttranslational modification of the major<named-content content-type='genus-species'>G. sulfurreducens</named-content>type IV pilin, suggested to be a glycerophosphate moiety. We show that a mutant in which the glycerophosphate-modified tyrosine-32 is replaced with a phenylalanine has reduced abilities for ET and biofilm formation compared with those of the wild type. The results show the importance of the glycerophosphate-modified tyrosine for surface attachment and electron transfer in electrode- or Fe(III)-respiring<named-content content-type='genus-species'>G. sulfurreducens</named-content>cells.
, an anaerobic metal-reducing bacterium, possesses type IV pili. These pili are intrinsic structural elements in biofilm formation and, together with a number of -type cytochromes, are thought to serve as conductive nanowires enabling long-range electron transfer (ET) to metal oxides and graphite anodes. Here, we report that a posttranslational modification of a nonconserved amino acid residue within the PilA protein, the structural subunit of the type IV pili, is crucial for growth on insoluble extracellular electron acceptors. Matrix-assisted laser desorption ionization (MALDI) mass spectrometry of the secreted PilA protein revealed a posttranslational modification of tyrosine-32 with a moiety of a mass consistent with a glycerophosphate group. Mutating this tyrosine into a phenylalanine inhibited cell growth with Fe(III) oxides as the sole electron acceptor. In addition, this amino acid substitution severely diminished biofilm formation on graphite surfaces and impaired current output in microbial fuel cells. These results demonstrate that the capability to attach to insoluble electron acceptors plays a crucial role for the cells' ability to utilize them. The work suggests that glycerophosphate modification of Y32 is a key factor contributing to the surface charge of type IV pili, influencing the adhesion of to specific surfaces. Type IV pili are bacterial appendages that function in cell adhesion, virulence, twitching motility, and long-range electron transfer (ET) from bacterial cells to insoluble extracellular electron acceptors. The mechanism and role of type IV pili for ET in is still a subject of research. In this study, we identified a posttranslational modification of the major type IV pilin, suggested to be a glycerophosphate moiety. We show that a mutant in which the glycerophosphate-modified tyrosine-32 is replaced with a phenylalanine has reduced abilities for ET and biofilm formation compared with those of the wild type. The results show the importance of the glycerophosphate-modified tyrosine for surface attachment and electron transfer in electrode- or Fe(III)-respiring cells.
Author Sandler, Steven J.
Franks, Ashley E.
Weis, Robert M.
Richter, Lubna V.
Author_xml – sequence: 1
  givenname: Lubna V.
  surname: Richter
  fullname: Richter, Lubna V.
  organization: Department of Chemistry, University of Massachusetts at Amherst, Amherst, Massachusetts, USA
– sequence: 2
  givenname: Ashley E.
  surname: Franks
  fullname: Franks, Ashley E.
  organization: Department of Microbiology, University of Massachusetts at Amherst, Amherst, Massachusetts, USA
– sequence: 3
  givenname: Robert M.
  surname: Weis
  fullname: Weis, Robert M.
  organization: Department of Chemistry, University of Massachusetts at Amherst, Amherst, Massachusetts, USA
– sequence: 4
  givenname: Steven J.
  surname: Sandler
  fullname: Sandler, Steven J.
  organization: Department of Microbiology, University of Massachusetts at Amherst, Amherst, Massachusetts, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28138101$$D View this record in MEDLINE/PubMed
https://www.osti.gov/servlets/purl/1536861$$D View this record in Osti.gov
BookMark eNqNks1u1DAUhSNURKeFFXtkwQaJpthx4jgbpJlqOrQqYqTC2nKcm44rxx5sh5_348FwZkoFFQtWlq8_H5_je4-yA-ssZNlzgk8JKfjby8UpxjVhOWGPshnBDc-riuKDbIZxQfKGNPQwOwrhFmNSllXxJDssOKGcYDLLfl7rG6t7raRVgFyPJFq7EKOXNhgZtbPSoA-u2yHTdmLiBtBamzlaexdB72orcK1UETwKo-lH76EbFdiAeufR9eh7mfTnMUq1GcDGE7TQrtdmQOfODzvlEyRth1befYsblB66sMGZsTWAlt-THwXGjEZ6tDSgok_AXCnYRufD0-xxL02AZ3frcfb5fPnp7H1-9XF1cTa_ylXJmpgnfwC8ZEq2bdsTLGtoq67tCK9SlXUcaNNhXkslMWBMmQTVFR0lvFZVWWB6nL3b627HdoAuxUu-jNh6PUj_Qzipxd8nVm_EjfsqKlrjsiiTwMu9QPpiLYLSEdRGOWtTIkEqyjgjCXp994p3X0YIUQw6TOmlBTcGQXiTHFHaFP-BMlqQpq4n9NUD9NaNPnV3onhVV6xkk8EXfya8j_Z7YBLwZg8o70Lw0N8jBItpHMXlQuzGURCWaPKATpF3zU7fo80_7_wCyNDmJw
CODEN JOBAAY
CitedBy_id crossref_primary_10_1111_1751_7915_13280
crossref_primary_10_1016_j_actbio_2018_01_007
crossref_primary_10_3389_fmicb_2023_1079000
crossref_primary_10_3389_fcimb_2024_1428637
crossref_primary_10_1016_j_biortech_2021_125893
crossref_primary_10_1016_j_jenvman_2018_12_028
crossref_primary_10_1016_j_cofs_2019_03_006
crossref_primary_10_1016_j_bioflm_2023_100144
crossref_primary_10_1038_s41586_021_03857_w
crossref_primary_10_1016_j_biortech_2021_125738
crossref_primary_10_1002_adma_201807285
crossref_primary_10_1016_j_biortech_2018_10_082
crossref_primary_10_1016_j_coelec_2017_09_003
crossref_primary_10_1021_acsnano_9b02032
crossref_primary_10_1007_s00284_017_1386_8
crossref_primary_10_1007_s00248_019_01316_8
crossref_primary_10_1021_acsestengg_4c00077
Cites_doi 10.1128/AEM.66.5.2248-2251.2000
10.1128/MMBR.00035-12
10.1111/j.1574-6968.2010.02046.x
10.1038/339297a0
10.1007/s10142-008-0094-7
10.1128/AEM.69.3.1548-1555.2003
10.1128/JB.01224-06
10.1128/AEM.01122-14
10.1046/j.1365-2958.1998.01013.x
10.1039/c5cp03432a
10.1039/B816647A
10.1046/j.1365-2958.1998.00706.x
10.1146/annurev.micro.56.012302.160938
10.1128/AEM.71.12.8634-8641.2005
10.1046/j.1365-2958.1999.01184.x
10.1016/j.bbrc.2006.06.182
10.1111/j.1758-2229.2010.00210.x
10.1128/aem.60.10.3752-3759.1994
10.1016/S1097-2765(03)00170-9
10.1128/JB.01092-10
10.1073/pnas.1209829109
10.1016/j.molcel.2006.07.004
10.1111/j.1365-2958.2006.05482.x
10.1128/AEM.68.5.2300-2306.2002
10.1038/nrmicro885
10.1163/016942410X511079
10.1128/IAI.73.12.7922-7931.2005
10.1111/j.1462-5822.2011.01586.x
10.1128/aem.54.6.1472-1480.1988
10.1016/0167-4838(87)90109-9
10.1038/nnano.2011.119
10.1016/0003-2697(85)90442-7
10.1128/AEM.67.7.3180-3187.2001
10.1128/jb.174.22.7345-7351.1992
10.1371/journal.pone.0005628
10.1111/j.1364-3703.2012.00789.x
10.1128/JB.187.13.4505-4513.2005
10.1039/C1EE02229F
10.1021/es400901u
10.1099/mic.0.064089-0
10.1128/mBio.00105-13
10.1074/jbc.M113.498527
10.1111/j.1365-2958.2007.05806.x
10.1016/j.mib.2016.02.004
10.1016/S0065-2113(08)60900-1
10.1016/j.bios.2009.05.004
10.1038/nature03661
10.1126/science.1200729
10.1128/AEM.01444-06
10.1016/j.jmb.2012.02.017
10.1128/JB.01075-08
10.1039/C1EE01753E
10.1042/bj3160029
10.1128/JB.06366-11
10.1002/rcm.1280
10.1016/0003-2697(76)90067-1
10.1002/cssc.201100748
10.1002/pmic.200300744
10.1016/0378-1119(91)90007-X
10.1128/AEM.65.11.5082-5088.1999
10.1016/j.colsurfb.2004.05.006
10.1039/c3cp50411e
10.1126/science.1088727
10.1016/j.bbapap.2006.04.017
10.1016/j.bbabio.2011.01.003
10.1046/j.1365-2958.1998.01062.x
10.1186/1472-6785-6-1
10.1128/AEM.00023-10
10.1128/JB.185.7.2096-2103.2003
10.1038/ismej.2009.137
10.1038/ncomms12217
10.1128/JB.01284-06
10.1073/pnas.1108616108
10.1074/jbc.M111.297242
ContentType Journal Article
Copyright Copyright © 2017 American Society for Microbiology.
Copyright American Society for Microbiology Apr 2017
Copyright © 2017 American Society for Microbiology. 2017 American Society for Microbiology
Copyright_xml – notice: Copyright © 2017 American Society for Microbiology.
– notice: Copyright American Society for Microbiology Apr 2017
– notice: Copyright © 2017 American Society for Microbiology. 2017 American Society for Microbiology
CorporateAuthor Univ. of Massachusetts, Amherst, MA (United States)
CorporateAuthor_xml – name: Univ. of Massachusetts, Amherst, MA (United States)
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
OIOZB
OTOTI
5PM
DOI 10.1128/JB.00716-16
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
OSTI.GOV - Hybrid
OSTI.GOV
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Virology and AIDS Abstracts
Technology Research Database
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Nucleic Acids Abstracts
AIDS and Cancer Research Abstracts
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList Genetics Abstracts

MEDLINE - Academic
Bacteriology Abstracts (Microbiology B)

CrossRef
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Geobacter PilA Tyrosine Mutant
EISSN 1098-5530
ExternalDocumentID PMC5370424
1536861
4321570539
28138101
10_1128_JB_00716_16
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Feature
GrantInformation_xml – fundername: DOE | SC | Office of Biological and Environmental Research (BER)
  grantid: DEFC02-02ER63446
GroupedDBID ---
-DZ
-~X
.55
0R~
18M
29J
2WC
39C
4.4
53G
5GY
5RE
5VS
79B
85S
AAGFI
AAYXX
ABPPZ
ACGFO
ACGOD
ACNCT
ACPRK
ADBBV
AENEX
AFRAH
AGVNZ
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BKOMP
BTFSW
CITATION
CJ0
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HYE
HZ~
IH2
KQ8
L7B
O9-
OK1
P-S
P2P
PQQKQ
RHI
RNS
RPM
RSF
RXW
TAE
TR2
UHB
UKR
UPT
W8F
WH7
WOQ
X7M
YQT
YR2
YZZ
ZCA
~02
~KM
CGR
CUY
CVF
ECM
EIF
NPM
RHF
UCJ
VQA
YIN
7QL
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
AAUGY
ABPTK
OIOZB
OTOTI
PQEST
TAF
ZA5
5PM
ID FETCH-LOGICAL-c469t-bacee846cabbbf10a7eb5dbd1858466d8e39d087aca0e0036aecd2d3187c54203
ISSN 0021-9193
IngestDate Thu Aug 21 18:18:18 EDT 2025
Mon Jul 03 03:58:19 EDT 2023
Thu Jul 10 18:04:08 EDT 2025
Fri Jul 11 08:40:32 EDT 2025
Mon Jun 30 08:13:59 EDT 2025
Wed Feb 19 02:41:33 EST 2025
Tue Jul 01 02:56:25 EDT 2025
Thu Apr 24 22:55:15 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords fimbriae
filaments
attachment
microbial fuel cells
glycerophosphate
type IV pili
Language English
License Copyright © 2017 American Society for Microbiology.
All Rights Reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c469t-bacee846cabbbf10a7eb5dbd1858466d8e39d087aca0e0036aecd2d3187c54203
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
FC02-02ER63446
USDOE Office of Science (SC), Biological and Environmental Research (BER)
Present address: Lubna V. Richter, Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York, USA; Ashley E. Franks, Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Victoria, Australia.
Deceased.
Citation Richter LV, Franks AE, Weis RM, Sandler SJ. 2017. Significance of a posttranslational modification of the PilA protein of Geobacter sulfurreducens for surface attachment, biofilm formation, and growth on insoluble extracellular electron acceptors. J Bacteriol 199:e00716-16. https://doi.org/10.1128/JB.00716-16.
OpenAccessLink https://www.osti.gov/servlets/purl/1536861
PMID 28138101
PQID 1885756464
PQPubID 40724
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5370424
osti_scitechconnect_1536861
proquest_miscellaneous_1891873392
proquest_miscellaneous_1863219772
proquest_journals_1885756464
pubmed_primary_28138101
crossref_primary_10_1128_JB_00716_16
crossref_citationtrail_10_1128_JB_00716_16
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-04-01
PublicationDateYYYYMMDD 2017-04-01
PublicationDate_xml – month: 04
  year: 2017
  text: 2017-04-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
– name: 1752 N St., N.W., Washington, DC
PublicationTitle Journal of bacteriology
PublicationTitleAlternate J Bacteriol
PublicationYear 2017
Publisher American Society for Microbiology
Publisher_xml – name: American Society for Microbiology
References e_1_3_3_50_2
e_1_3_3_75_2
e_1_3_3_71_2
e_1_3_3_16_2
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_58_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_56_2
e_1_3_3_33_2
e_1_3_3_54_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_52_2
e_1_3_3_73_2
e_1_3_3_61_2
e_1_3_3_5_2
e_1_3_3_7_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_23_2
e_1_3_3_48_2
e_1_3_3_69_2
e_1_3_3_25_2
e_1_3_3_46_2
e_1_3_3_67_2
e_1_3_3_44_2
e_1_3_3_65_2
e_1_3_3_3_2
e_1_3_3_21_2
e_1_3_3_42_2
e_1_3_3_63_2
e_1_3_3_51_2
e_1_3_3_74_2
e_1_3_3_70_2
Stimson E (e_1_3_3_40_2) 1996; 316
e_1_3_3_17_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_59_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_57_2
e_1_3_3_32_2
e_1_3_3_55_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_53_2
e_1_3_3_72_2
e_1_3_3_62_2
e_1_3_3_60_2
e_1_3_3_6_2
e_1_3_3_8_2
e_1_3_3_28_2
e_1_3_3_49_2
e_1_3_3_24_2
e_1_3_3_47_2
e_1_3_3_26_2
e_1_3_3_45_2
e_1_3_3_68_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_43_2
e_1_3_3_66_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_41_2
e_1_3_3_64_2
18677521 - Funct Integr Genomics. 2009 Feb;9(1):15-25
16347658 - Appl Environ Microbiol. 1988 Jun;54(6):1472-80
20629752 - FEMS Microbiol Lett. 2010 Sep 1;310(1):62-8
17158673 - J Bacteriol. 2007 Mar;189(5):2125-7
15261011 - Colloids Surf B Biointerfaces. 2004 Jul 15;36(2):81-90
12644478 - J Bacteriol. 2003 Apr;185(7):2096-103
15968061 - J Bacteriol. 2005 Jul;187(13):4505-13
26243427 - Phys Chem Chem Phys. 2015 Sep 14;17(34):22217-26
16299283 - Infect Immun. 2005 Dec;73(12):7922-31
9767592 - Mol Microbiol. 1998 Sep;29(5):1249-61
21169487 - J Bacteriol. 2011 Mar;193(5):1023-33
17608667 - Mol Microbiol. 2007 Aug;65(3):607-24
22955881 - Proc Natl Acad Sci U S A. 2012 Sep 18;109(38):15467-72
7527204 - Appl Environ Microbiol. 1994 Oct;60(10):3752-9
21371235 - Cell Microbiol. 2011 Jun;13(6):885-96
16949362 - Mol Cell. 2006 Sep 1;23(5):651-62
22615023 - ChemSusChem. 2012 Jun;5(6):1099-105
14671304 - Science. 2003 Dec 12;302(5652):1967-9
17140412 - Mol Microbiol. 2007 Jan;63(1):69-85
12142488 - Annu Rev Microbiol. 2002;56:289-314
27481214 - Nat Commun. 2016 Aug 02;7:12217
21236241 - Biochim Biophys Acta. 2011 Apr;1807(4):404-12
20400557 - Appl Environ Microbiol. 2010 Jun;76(12):4080-4
15973408 - Nature. 2005 Jun 23;435(7045):1098-101
21311024 - Science. 2011 Feb 11;331(6018):778-82
822747 - Anal Biochem. 1976 Sep;75(1):168-76
15100690 - Nat Rev Microbiol. 2004 May;2(5):363-78
15174123 - Proteomics. 2004 Jun;4(6):1534-6
16412253 - BMC Ecol. 2006 Jan 16;6:1
12769840 - Mol Cell. 2003 May;11(5):1139-50
22353307 - Mol Plant Pathol. 2012 Sep;13(7):764-74
17085575 - J Bacteriol. 2007 Jan;189(1):151-9
23204365 - Microbiol Mol Biol Rev. 2012 Dec;76(4):740-72
11976101 - Appl Environ Microbiol. 2002 May;68(5):2300-6
22361030 - J Mol Biol. 2012 Apr 20;418(1-2):47-64
16332857 - Appl Environ Microbiol. 2005 Dec;71(12 ):8634-41
16936064 - Appl Environ Microbiol. 2006 Nov;72(11):7345-8
19461962 - PLoS One. 2009 May 20;4(5):e5628
10543826 - Appl Environ Microbiol. 1999 Nov;65(11):5082-8
23965997 - J Biol Chem. 2013 Oct 11;288(41):29260-6
1847347 - Gene. 1991 Jan 2;97(1):39-47
19487117 - Biosens Bioelectron. 2009 Aug 15;24(12):3498-503
3843705 - Anal Biochem. 1985 Oct;150(1):76-85
12620842 - Appl Environ Microbiol. 2003 Mar;69(3):1548-55
9791175 - Mol Microbiol. 1998 Oct;30(2):295-304
14745769 - Rapid Commun Mass Spectrom. 2004;18(2):191-8
10788411 - Appl Environ Microbiol. 2000 May;66(5):2248-51
10048019 - Mol Microbiol. 1999 Feb;31(3):743-52
21822253 - Nat Nanotechnol. 2011 Aug 07;6(9):573-9
11425739 - Appl Environ Microbiol. 2001 Jul;67(7):3180-7
23481602 - MBio. 2013 Mar 12;4(2):e00105-13
16870136 - Biochem Biophys Res Commun. 2006 Sep 8;347(4):904-8
9515697 - Mol Microbiol. 1998 Feb;27(4):705-15
1429457 - J Bacteriol. 1992 Nov;174(22):7345-51
8645220 - Biochem J. 1996 May 15;316 ( Pt 1):29-33
23698325 - Phys Chem Chem Phys. 2013 Jul 7;15(25):10300-6
23745742 - Environ Sci Technol. 2013 Jul 2;47(13):7563-70
26968016 - Curr Opin Microbiol. 2016 Apr;30:139-46
20033069 - ISME J. 2010 Apr;4(4):509-19
24814783 - Appl Environ Microbiol. 2014 Jul;80(14):4331-40
23306674 - Microbiology. 2013 Mar;159(Pt 3):515-35
16797259 - Biochim Biophys Acta. 2006 Jul;1764(7):1198-206
22027840 - J Biol Chem. 2011 Dec 23;286(51):44254-65
3676331 - Biochim Biophys Acta. 1987 Nov 26;916(2):200-4
23761253 - Environ Microbiol Rep. 2011 Apr;3(2):211-7
21896750 - Proc Natl Acad Sci U S A. 2011 Sep 13;108(37):15248-52
22408162 - J Bacteriol. 2012 May;194(10):2551-63
18805982 - J Bacteriol. 2008 Nov;190(22):7464-78
References_xml – ident: e_1_3_3_10_2
  doi: 10.1128/AEM.66.5.2248-2251.2000
– ident: e_1_3_3_32_2
  doi: 10.1128/MMBR.00035-12
– ident: e_1_3_3_54_2
  doi: 10.1111/j.1574-6968.2010.02046.x
– ident: e_1_3_3_5_2
  doi: 10.1038/339297a0
– ident: e_1_3_3_64_2
  doi: 10.1007/s10142-008-0094-7
– ident: e_1_3_3_52_2
  doi: 10.1128/AEM.69.3.1548-1555.2003
– ident: e_1_3_3_38_2
  doi: 10.1128/JB.01224-06
– ident: e_1_3_3_65_2
  doi: 10.1128/AEM.01122-14
– ident: e_1_3_3_69_2
  doi: 10.1046/j.1365-2958.1998.01013.x
– ident: e_1_3_3_17_2
  doi: 10.1039/c5cp03432a
– ident: e_1_3_3_13_2
  doi: 10.1039/B816647A
– ident: e_1_3_3_55_2
  doi: 10.1046/j.1365-2958.1998.00706.x
– ident: e_1_3_3_58_2
  doi: 10.1146/annurev.micro.56.012302.160938
– ident: e_1_3_3_9_2
  doi: 10.1128/AEM.71.12.8634-8641.2005
– ident: e_1_3_3_61_2
  doi: 10.1046/j.1365-2958.1999.01184.x
– ident: e_1_3_3_37_2
  doi: 10.1016/j.bbrc.2006.06.182
– ident: e_1_3_3_24_2
  doi: 10.1111/j.1758-2229.2010.00210.x
– ident: e_1_3_3_67_2
  doi: 10.1128/aem.60.10.3752-3759.1994
– ident: e_1_3_3_29_2
  doi: 10.1016/S1097-2765(03)00170-9
– ident: e_1_3_3_66_2
  doi: 10.1128/JB.01092-10
– ident: e_1_3_3_19_2
  doi: 10.1073/pnas.1209829109
– ident: e_1_3_3_31_2
  doi: 10.1016/j.molcel.2006.07.004
– ident: e_1_3_3_28_2
  doi: 10.1111/j.1365-2958.2006.05482.x
– ident: e_1_3_3_7_2
  doi: 10.1128/AEM.68.5.2300-2306.2002
– ident: e_1_3_3_30_2
  doi: 10.1038/nrmicro885
– ident: e_1_3_3_57_2
  doi: 10.1163/016942410X511079
– ident: e_1_3_3_41_2
  doi: 10.1128/IAI.73.12.7922-7931.2005
– ident: e_1_3_3_42_2
  doi: 10.1111/j.1462-5822.2011.01586.x
– ident: e_1_3_3_6_2
  doi: 10.1128/aem.54.6.1472-1480.1988
– ident: e_1_3_3_48_2
  doi: 10.1016/0167-4838(87)90109-9
– ident: e_1_3_3_15_2
  doi: 10.1038/nnano.2011.119
– ident: e_1_3_3_72_2
  doi: 10.1016/0003-2697(85)90442-7
– ident: e_1_3_3_68_2
  doi: 10.1128/AEM.67.7.3180-3187.2001
– ident: e_1_3_3_26_2
  doi: 10.1128/jb.174.22.7345-7351.1992
– ident: e_1_3_3_11_2
  doi: 10.1371/journal.pone.0005628
– ident: e_1_3_3_43_2
  doi: 10.1111/j.1364-3703.2012.00789.x
– ident: e_1_3_3_63_2
  doi: 10.1128/JB.187.13.4505-4513.2005
– ident: e_1_3_3_3_2
  doi: 10.1039/C1EE02229F
– ident: e_1_3_3_60_2
  doi: 10.1021/es400901u
– ident: e_1_3_3_62_2
  doi: 10.1099/mic.0.064089-0
– ident: e_1_3_3_16_2
  doi: 10.1128/mBio.00105-13
– ident: e_1_3_3_35_2
  doi: 10.1074/jbc.M113.498527
– ident: e_1_3_3_36_2
  doi: 10.1111/j.1365-2958.2007.05806.x
– ident: e_1_3_3_50_2
  doi: 10.1016/j.mib.2016.02.004
– ident: e_1_3_3_53_2
  doi: 10.1016/S0065-2113(08)60900-1
– ident: e_1_3_3_70_2
  doi: 10.1016/j.bios.2009.05.004
– ident: e_1_3_3_2_2
  doi: 10.1038/nature03661
– ident: e_1_3_3_44_2
  doi: 10.1126/science.1200729
– ident: e_1_3_3_12_2
  doi: 10.1128/AEM.01444-06
– ident: e_1_3_3_34_2
  doi: 10.1016/j.jmb.2012.02.017
– ident: e_1_3_3_39_2
  doi: 10.1128/JB.01075-08
– ident: e_1_3_3_18_2
  doi: 10.1039/C1EE01753E
– volume: 316
  start-page: 29
  year: 1996
  ident: e_1_3_3_40_2
  article-title: Discovery of a novel protein modification: alpha-glycerophosphate is a substituent of meningococcal pilin
  publication-title: Biochem J
  doi: 10.1042/bj3160029
– ident: e_1_3_3_27_2
  doi: 10.1128/JB.06366-11
– ident: e_1_3_3_47_2
  doi: 10.1002/rcm.1280
– ident: e_1_3_3_71_2
  doi: 10.1016/0003-2697(76)90067-1
– ident: e_1_3_3_20_2
  doi: 10.1002/cssc.201100748
– ident: e_1_3_3_46_2
  doi: 10.1002/pmic.200300744
– ident: e_1_3_3_75_2
  doi: 10.1016/0378-1119(91)90007-X
– ident: e_1_3_3_74_2
  doi: 10.1128/AEM.65.11.5082-5088.1999
– ident: e_1_3_3_56_2
  doi: 10.1016/j.colsurfb.2004.05.006
– ident: e_1_3_3_25_2
  doi: 10.1039/c3cp50411e
– ident: e_1_3_3_45_2
  doi: 10.1126/science.1088727
– ident: e_1_3_3_21_2
  doi: 10.1016/j.bbapap.2006.04.017
– ident: e_1_3_3_23_2
  doi: 10.1016/j.bbabio.2011.01.003
– ident: e_1_3_3_59_2
  doi: 10.1046/j.1365-2958.1998.01062.x
– ident: e_1_3_3_73_2
  doi: 10.1186/1472-6785-6-1
– ident: e_1_3_3_22_2
  doi: 10.1128/AEM.00023-10
– ident: e_1_3_3_8_2
  doi: 10.1128/JB.185.7.2096-2103.2003
– ident: e_1_3_3_14_2
  doi: 10.1038/ismej.2009.137
– ident: e_1_3_3_49_2
  doi: 10.1038/ncomms12217
– ident: e_1_3_3_51_2
  doi: 10.1128/JB.01284-06
– ident: e_1_3_3_4_2
  doi: 10.1073/pnas.1108616108
– ident: e_1_3_3_33_2
  doi: 10.1074/jbc.M111.297242
– reference: 21896750 - Proc Natl Acad Sci U S A. 2011 Sep 13;108(37):15248-52
– reference: 23698325 - Phys Chem Chem Phys. 2013 Jul 7;15(25):10300-6
– reference: 10788411 - Appl Environ Microbiol. 2000 May;66(5):2248-51
– reference: 23204365 - Microbiol Mol Biol Rev. 2012 Dec;76(4):740-72
– reference: 9515697 - Mol Microbiol. 1998 Feb;27(4):705-15
– reference: 8645220 - Biochem J. 1996 May 15;316 ( Pt 1):29-33
– reference: 22408162 - J Bacteriol. 2012 May;194(10):2551-63
– reference: 10048019 - Mol Microbiol. 1999 Feb;31(3):743-52
– reference: 23481602 - MBio. 2013 Mar 12;4(2):e00105-13
– reference: 27481214 - Nat Commun. 2016 Aug 02;7:12217
– reference: 20033069 - ISME J. 2010 Apr;4(4):509-19
– reference: 21371235 - Cell Microbiol. 2011 Jun;13(6):885-96
– reference: 16797259 - Biochim Biophys Acta. 2006 Jul;1764(7):1198-206
– reference: 23965997 - J Biol Chem. 2013 Oct 11;288(41):29260-6
– reference: 10543826 - Appl Environ Microbiol. 1999 Nov;65(11):5082-8
– reference: 11425739 - Appl Environ Microbiol. 2001 Jul;67(7):3180-7
– reference: 1429457 - J Bacteriol. 1992 Nov;174(22):7345-51
– reference: 12142488 - Annu Rev Microbiol. 2002;56:289-314
– reference: 22353307 - Mol Plant Pathol. 2012 Sep;13(7):764-74
– reference: 1847347 - Gene. 1991 Jan 2;97(1):39-47
– reference: 18805982 - J Bacteriol. 2008 Nov;190(22):7464-78
– reference: 23745742 - Environ Sci Technol. 2013 Jul 2;47(13):7563-70
– reference: 21169487 - J Bacteriol. 2011 Mar;193(5):1023-33
– reference: 14671304 - Science. 2003 Dec 12;302(5652):1967-9
– reference: 16332857 - Appl Environ Microbiol. 2005 Dec;71(12 ):8634-41
– reference: 7527204 - Appl Environ Microbiol. 1994 Oct;60(10):3752-9
– reference: 9791175 - Mol Microbiol. 1998 Oct;30(2):295-304
– reference: 19487117 - Biosens Bioelectron. 2009 Aug 15;24(12):3498-503
– reference: 16347658 - Appl Environ Microbiol. 1988 Jun;54(6):1472-80
– reference: 16949362 - Mol Cell. 2006 Sep 1;23(5):651-62
– reference: 22361030 - J Mol Biol. 2012 Apr 20;418(1-2):47-64
– reference: 26243427 - Phys Chem Chem Phys. 2015 Sep 14;17(34):22217-26
– reference: 12644478 - J Bacteriol. 2003 Apr;185(7):2096-103
– reference: 19461962 - PLoS One. 2009 May 20;4(5):e5628
– reference: 24814783 - Appl Environ Microbiol. 2014 Jul;80(14):4331-40
– reference: 17085575 - J Bacteriol. 2007 Jan;189(1):151-9
– reference: 15100690 - Nat Rev Microbiol. 2004 May;2(5):363-78
– reference: 16936064 - Appl Environ Microbiol. 2006 Nov;72(11):7345-8
– reference: 20400557 - Appl Environ Microbiol. 2010 Jun;76(12):4080-4
– reference: 17608667 - Mol Microbiol. 2007 Aug;65(3):607-24
– reference: 17158673 - J Bacteriol. 2007 Mar;189(5):2125-7
– reference: 16412253 - BMC Ecol. 2006 Jan 16;6:1
– reference: 11976101 - Appl Environ Microbiol. 2002 May;68(5):2300-6
– reference: 26968016 - Curr Opin Microbiol. 2016 Apr;30:139-46
– reference: 15174123 - Proteomics. 2004 Jun;4(6):1534-6
– reference: 21236241 - Biochim Biophys Acta. 2011 Apr;1807(4):404-12
– reference: 22955881 - Proc Natl Acad Sci U S A. 2012 Sep 18;109(38):15467-72
– reference: 3843705 - Anal Biochem. 1985 Oct;150(1):76-85
– reference: 20629752 - FEMS Microbiol Lett. 2010 Sep 1;310(1):62-8
– reference: 14745769 - Rapid Commun Mass Spectrom. 2004;18(2):191-8
– reference: 9767592 - Mol Microbiol. 1998 Sep;29(5):1249-61
– reference: 12769840 - Mol Cell. 2003 May;11(5):1139-50
– reference: 16870136 - Biochem Biophys Res Commun. 2006 Sep 8;347(4):904-8
– reference: 15973408 - Nature. 2005 Jun 23;435(7045):1098-101
– reference: 18677521 - Funct Integr Genomics. 2009 Feb;9(1):15-25
– reference: 15968061 - J Bacteriol. 2005 Jul;187(13):4505-13
– reference: 23306674 - Microbiology. 2013 Mar;159(Pt 3):515-35
– reference: 822747 - Anal Biochem. 1976 Sep;75(1):168-76
– reference: 22027840 - J Biol Chem. 2011 Dec 23;286(51):44254-65
– reference: 21822253 - Nat Nanotechnol. 2011 Aug 07;6(9):573-9
– reference: 12620842 - Appl Environ Microbiol. 2003 Mar;69(3):1548-55
– reference: 16299283 - Infect Immun. 2005 Dec;73(12):7922-31
– reference: 3676331 - Biochim Biophys Acta. 1987 Nov 26;916(2):200-4
– reference: 15261011 - Colloids Surf B Biointerfaces. 2004 Jul 15;36(2):81-90
– reference: 17140412 - Mol Microbiol. 2007 Jan;63(1):69-85
– reference: 23761253 - Environ Microbiol Rep. 2011 Apr;3(2):211-7
– reference: 21311024 - Science. 2011 Feb 11;331(6018):778-82
– reference: 22615023 - ChemSusChem. 2012 Jun;5(6):1099-105
SSID ssj0014452
Score 2.3294504
Snippet Geobacter sulfurreducens , an anaerobic metal-reducing bacterium, possesses type IV pili. These pili are intrinsic structural elements in biofilm formation...
, an anaerobic metal-reducing bacterium, possesses type IV pili. These pili are intrinsic structural elements in biofilm formation and, together with a number...
Geobacter sulfurreducens, an anaerobic metal-reducing bacterium, possesses type IV pili. These pili are intrinsic structural elements in biofilm formation and,...
<named-content content-type='genus-species'>Geobacter sulfurreducens</named-content>, an anaerobic metal-reducing bacterium, possesses type IV pili. These pili...
SourceID pubmedcentral
osti
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage E00716
SubjectTerms Amino Acid Sequence
Amino acids
Bacterial Adhesion - physiology
Bacteriological Techniques
Bacteriology
BASIC BIOLOGICAL SCIENCES
Bioelectric Energy Sources - microbiology
Biofilms
Biofilms - growth & development
Culture Media
Electron transfer
Fimbriae Proteins - chemistry
Fimbriae Proteins - genetics
Fimbriae Proteins - metabolism
Gene Expression Regulation, Bacterial - physiology
Geobacter
Geobacter - cytology
Geobacter - genetics
Geobacter - metabolism
Geobacter - physiology
Geobacter sulfurreducens
Glycerophosphates - chemistry
Gram-negative bacteria
Ionization
Iron
Mass spectrometry
Microbiology
Protein Processing, Post-Translational
Proteins
Title Significance of a Posttranslational Modification of the PilA Protein of Geobacter sulfurreducens for Surface Attachment, Biofilm Formation, and Growth on Insoluble Extracellular Electron Acceptors
URI https://www.ncbi.nlm.nih.gov/pubmed/28138101
https://www.proquest.com/docview/1885756464
https://www.proquest.com/docview/1863219772
https://www.proquest.com/docview/1891873392
https://www.osti.gov/servlets/purl/1536861
https://pubmed.ncbi.nlm.nih.gov/PMC5370424
Volume 199
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bjtMwELVKERIviDthF2QknmADzc1JHruo3aXqLki0om9RfAmNVNJVN5WAL-JD-DBmHCdNoKCFl6h1rNTNnIzHzsw5hDwXroqDjKd27HFh-zySNvc9pNd2BsJjUSRTLHA-O2enc3-yCBa93vdW1tK25K_Et711Jf9jVWgDu2KV7D9YtrkoNMBnsC8cwcJwvJKNP-SfCkz10Wn_utARtXdLnH5W9Sbf2VrqLnVkiIHm-3w1xBIBVLrEthMFTzWyNmOyeoaMTRIsXmiqBnAtmyyF6w_LMhVLvZmImMhR6_vzy3Fd_FingZ7Aur5c4juItwX-e6zMGn2BMeErAp3zOjLKO6hUoS5Q7ecPEXI1pryz8Y9EAEZLZLrlRbpL0tXy85W28uUSXV1TY_FRVUQKVRZ5S0FZM0xsTLIbeH3zjsxsgsDEusudUZXjRl5UlEDqePZKe8lAONo_Y7hYBTE5Rg51h9nOHl7u83fJeD6dJrPRYnaNXHdhQaLLyhdNMhGsSgPXVH_CBV-3LteJd_oAgnzfWubXlNxWjDO7TW6ZW0-HFdLukJ4q7pIblVzp13vkRxtvdJ3RlP6GN9rGG_YBvFHEGzV4w7YGb7SLNwp4owZvdIe3I2rQRhu0HVGwHa2wRuGHGqzRDtZojTXaYO0-mY9HszentlEBsYXP4tKG8SgFUbJIOeeZM0hDxQPJJQSa0MpkpLxYDqIwFelAIb1SqoR0JcxVoQh8d-A9IP1iXahHhPLAU5mMhPBF5juujAULwUoMvnlZprhFXtS2SoShyEelllWil8pulEyOE23YxGEWOLq680XFDLO_2wEaPYGAFlmZBaaviTKBQINFzLHIYY2FxDiWy8SJUDaX-cy3yLPmNLh9vHlpodZb7MM8CDYAin_rE8NN8GAFZJGHFbyakbqRo7n9LBJ2gNd0QNr57pkiX2r6-cALMV_i8RXGdkBu7p7WQ9IvN1v1BIL4kj_Vz89PYs0CEw
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Significance+of+a+Posttranslational+Modification+of+the+PilA+Protein+of+Geobacter+sulfurreducens+for+Surface+Attachment%2C+Biofilm+Formation%2C+and+Growth+on+Insoluble+Extracellular+Electron+Acceptors&rft.jtitle=Journal+of+bacteriology&rft.au=Richter%2C+Lubna+V&rft.au=Franks%2C+Ashley+E&rft.au=Weis%2C+Robert+M&rft.au=Sandler%2C+Steven+J&rft.date=2017-04-01&rft.eissn=1098-5530&rft.volume=199&rft.issue=8&rft_id=info:doi/10.1128%2FJB.00716-16&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9193&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9193&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9193&client=summon