Comparison of Wearable and Clinical Devices for Acquisition of Peripheral Nervous System Signals
A key access point to the functioning of the autonomic nervous system is the investigation of peripheral signals. Wearable devices (WDs) enable the acquisition and quantification of peripheral signals in a wide range of contexts, from personal uses to scientific research. WDs have lower costs and hi...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 20; no. 23; p. 6778 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
27.11.2020
MDPI |
Subjects | |
Online Access | Get full text |
ISSN | 1424-8220 1424-8220 |
DOI | 10.3390/s20236778 |
Cover
Loading…
Abstract | A key access point to the functioning of the autonomic nervous system is the investigation of peripheral signals. Wearable devices (WDs) enable the acquisition and quantification of peripheral signals in a wide range of contexts, from personal uses to scientific research. WDs have lower costs and higher portability than medical-grade devices. However, the achievable data quality can be lower, and data are subject to artifacts due to body movements and data losses. It is therefore crucial to evaluate the reliability and validity of WDs before their use in research. In this study, we introduce a data analysis procedure for the assessment of WDs for multivariate physiological signals. The quality of cardiac and electrodermal activity signals is validated with a standard set of signal quality indicators. The pipeline is available as a collection of open source Python scripts based on the pyphysio package. We apply the indicators for the analysis of signal quality on data simultaneously recorded from a clinical-grade device and two WDs. The dataset provides signals of six different physiological measures collected from 18 subjects with WDs. This study indicates the need to validate the use of WDs in experimental settings for research and the importance of both technological and signal processing aspects to obtain reliable signals and reproducible results. |
---|---|
AbstractList | A key access point to the functioning of the autonomic nervous system is the investigation of peripheral signals. Wearable devices (WDs) enable the acquisition and quantification of peripheral signals in a wide range of contexts, from personal uses to scientific research. WDs have lower costs and higher portability than medical-grade devices. However, the achievable data quality can be lower, and data are subject to artifacts due to body movements and data losses. It is therefore crucial to evaluate the reliability and validity of WDs before their use in research. In this study, we introduce a data analysis procedure for the assessment of WDs for multivariate physiological signals. The quality of cardiac and electrodermal activity signals is validated with a standard set of signal quality indicators. The pipeline is available as a collection of open source Python scripts based on the pyphysio package. We apply the indicators for the analysis of signal quality on data simultaneously recorded from a clinical-grade device and two WDs. The dataset provides signals of six different physiological measures collected from 18 subjects with WDs. This study indicates the need to validate the use of WDs in experimental settings for research and the importance of both technological and signal processing aspects to obtain reliable signals and reproducible results. A key access point to the functioning of the autonomic nervous system is the investigation of peripheral signals. Wearable devices (WDs) enable the acquisition and quantification of peripheral signals in a wide range of contexts, from personal uses to scientific research. WDs have lower costs and higher portability than medical-grade devices. However, the achievable data quality can be lower, and data are subject to artifacts due to body movements and data losses. It is therefore crucial to evaluate the reliability and validity of WDs before their use in research. In this study, we introduce a data analysis procedure for the assessment of WDs for multivariate physiological signals. The quality of cardiac and electrodermal activity signals is validated with a standard set of signal quality indicators. The pipeline is available as a collection of open source Python scripts based on the pyphysio package. We apply the indicators for the analysis of signal quality on data simultaneously recorded from a clinical-grade device and two WDs. The dataset provides signals of six different physiological measures collected from 18 subjects with WDs. This study indicates the need to validate the use of WDs in experimental settings for research and the importance of both technological and signal processing aspects to obtain reliable signals and reproducible results.A key access point to the functioning of the autonomic nervous system is the investigation of peripheral signals. Wearable devices (WDs) enable the acquisition and quantification of peripheral signals in a wide range of contexts, from personal uses to scientific research. WDs have lower costs and higher portability than medical-grade devices. However, the achievable data quality can be lower, and data are subject to artifacts due to body movements and data losses. It is therefore crucial to evaluate the reliability and validity of WDs before their use in research. In this study, we introduce a data analysis procedure for the assessment of WDs for multivariate physiological signals. The quality of cardiac and electrodermal activity signals is validated with a standard set of signal quality indicators. The pipeline is available as a collection of open source Python scripts based on the pyphysio package. We apply the indicators for the analysis of signal quality on data simultaneously recorded from a clinical-grade device and two WDs. The dataset provides signals of six different physiological measures collected from 18 subjects with WDs. This study indicates the need to validate the use of WDs in experimental settings for research and the importance of both technological and signal processing aspects to obtain reliable signals and reproducible results. |
Author | Bizzego, Andrea Gabrieli, Giulio Esposito, Gianluca Furlanello, Cesare |
AuthorAffiliation | 2 Psychology Program, School of Social Sciences, Nanyang Technological University, Singapore 639798, Singapore; GIULIO001@e.ntu.edu.sg 3 HK3 Lab, Rovereto, 38068 Trento, Italy; cesare.furlanello@hk3lab.ai 4 Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 639798, Singapore 1 Department of Psychology and Cognitive Science, University of Trento, 38122 Trento, Italy; andrea.bizzego@unitn.it |
AuthorAffiliation_xml | – name: 4 Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 639798, Singapore – name: 1 Department of Psychology and Cognitive Science, University of Trento, 38122 Trento, Italy; andrea.bizzego@unitn.it – name: 2 Psychology Program, School of Social Sciences, Nanyang Technological University, Singapore 639798, Singapore; GIULIO001@e.ntu.edu.sg – name: 3 HK3 Lab, Rovereto, 38068 Trento, Italy; cesare.furlanello@hk3lab.ai |
Author_xml | – sequence: 1 givenname: Andrea orcidid: 0000-0002-1586-8350 surname: Bizzego fullname: Bizzego, Andrea – sequence: 2 givenname: Giulio orcidid: 0000-0002-9846-5767 surname: Gabrieli fullname: Gabrieli, Giulio – sequence: 3 givenname: Cesare orcidid: 0000-0002-5384-3605 surname: Furlanello fullname: Furlanello, Cesare – sequence: 4 givenname: Gianluca orcidid: 0000-0002-9442-0254 surname: Esposito fullname: Esposito, Gianluca |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33260880$$D View this record in MEDLINE/PubMed |
BookMark | eNplkstq3DAUhkVJaS7toi9QBN0ki2l0sWVpUwjTWyC0hbR0qUry0USDbU0keyBvH7mThCRdHXH0_T_ndoj2hjgAQm8p-cC5IqeZEcZF08gX6IBWrFpIxsjeo_c-Osx5TQrFuXyF9jlngkhJDtDfZew3JoUcBxw9_gMmGdsBNkOLl10YgjMd_gTb4CBjHxM-c9dTyGEMO8FPSGFzBalQ3yFt45Tx5U0eoceXYTWYLr9GL30J8OYuHqHfXz7_Wn5bXPz4er48u1i4SqhxYZVQRKrKOaY4NC2nzDMnS1KB49a3jlrr2rYllfSlVSZqQpsiIEoAYYQfofOdbxvNWm9S6E260dEE_S8R00qbNAbXgeaNIbWXBKhnleXSMq6MsVaqhhkuVPH6uPPaTLaH1sEwlgafmD79GcKVXsWtbhpOalEXg-M7gxSvJ8ij7kN20HVmgDIizSohSp-S0oK-f4au45Tmyc1UrepK8Jl697iih1LuF1mA0x3gUsw5gdcujGbeUikwdJoSPZ-KfjiVojh5prg3_Z-9Bf8ZvLc |
CitedBy_id | crossref_primary_10_1109_JPROC_2022_3149785 crossref_primary_10_1109_ACCESS_2021_3106255 crossref_primary_10_1016_j_healthplace_2022_102924 crossref_primary_10_2196_38454 crossref_primary_10_2196_25415 crossref_primary_10_1038_s41598_022_25949_x |
Cites_doi | 10.3390/s20185380 10.1016/j.artmed.2012.09.003 10.1038/ncomms6028 10.1109/T-AFFC.2011.20 10.3390/jsan1030217 10.1101/118943 10.1109/T-AFFC.2011.15 10.1109/SPMB.2015.7405467 10.20944/preprints201911.0174.v1 10.1038/s41598-020-63596-2 10.1088/0967-3334/33/11/1769 10.1109/IEMBS.2011.6091232 10.3390/s16030342 10.1109/34.954607 10.1111/jsr.12926 10.1016/j.jocn.2013.12.003 10.1111/j.1542-474X.1996.tb00275.x 10.1109/JSEN.2020.2969635 10.1097/ALN.0000000000003029 10.1109/TBME.2013.2240452 10.1016/j.jneumeth.2005.02.001 10.3390/s140917586 10.4108/icst.mobihealth.2014.257418 10.1088/0967-3334/29/1/002 10.1002/adma.201904765 10.1007/s10916-017-0760-1 10.1109/EMBC.2015.7318762 10.3390/s19194079 10.1109/TBME.2017.2758643 10.1145/3382507.3418837 10.1088/0967-3334/35/12/2543 10.1016/j.biopsycho.2010.03.010 10.1016/j.physbeh.2012.01.020 10.1109/T-AFFC.2011.25 10.1177/1754073913512003 10.1161/01.CIR.101.23.e215 10.1109/IEMBS.2010.5626734 10.1016/j.ijcard.2012.03.119 10.1016/j.bios.2013.11.039 10.1109/TSMCC.2009.2032660 10.1016/j.softx.2019.100287 10.1016/j.bios.2020.112460 10.1002/adma.201901924 10.1213/01.ane.0000278134.47777.a5 10.1038/s41551-018-0336-5 10.1249/MSS.0000000000001947 10.3390/bioengineering3040021 10.1016/j.rasd.2019.05.005 10.1002/aur.2374 |
ContentType | Journal Article |
Copyright | 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2020 by the authors. 2020 |
Copyright_xml | – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2020 by the authors. 2020 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/s20236778 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central Database Suite (ProQuest) url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_37a05f80e1f24b38b239aabb8972a369 PMC7730565 33260880 10_3390_s20236778 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Ministero dell'Istruzione, dell'Università e della Ricerca grantid: Dipartimenti di Eccellenza |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. ABJCF ARAPS CGR CUY CVF ECM EIF HCIFZ KB. M7S NPM PDBOC 7XB 8FK AZQEC DWQXO K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c469t-b9690894cc293e7d312f2c86909ec3bfdc1bbcddd048f677265017894096e0203 |
IEDL.DBID | M48 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:10:03 EDT 2025 Thu Aug 21 18:18:48 EDT 2025 Fri Sep 05 07:36:20 EDT 2025 Fri Jul 25 22:46:26 EDT 2025 Wed Feb 19 02:09:42 EST 2025 Thu Apr 24 22:52:30 EDT 2025 Tue Jul 01 03:55:56 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 23 |
Keywords | wearable devices signal processing multivariate analysis physiological data analysis |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c469t-b9690894cc293e7d312f2c86909ec3bfdc1bbcddd048f677265017894096e0203 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-9442-0254 0000-0002-5384-3605 0000-0002-1586-8350 0000-0002-9846-5767 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s20236778 |
PMID | 33260880 |
PQID | 2465954631 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_37a05f80e1f24b38b239aabb8972a369 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7730565 proquest_miscellaneous_2466293811 proquest_journals_2465954631 pubmed_primary_33260880 crossref_citationtrail_10_3390_s20236778 crossref_primary_10_3390_s20236778 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20201127 |
PublicationDateYYYYMMDD | 2020-11-27 |
PublicationDate_xml | – month: 11 year: 2020 text: 20201127 day: 27 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2020 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Levenson (ref_16) 2014; 6 Li (ref_40) 2007; 29 Cellini (ref_29) 2019; 51 Koumpouros (ref_19) 2019; 66 Dinh (ref_13) 2020; 166 Pantelopoulos (ref_5) 2010; 40 Lim (ref_9) 2020; 32 ref_17 Kreibig (ref_1) 2010; 84 Azhari (ref_20) 2020; 10 Yadhuraj (ref_23) 2013; 2 Baig (ref_32) 2017; 41 Huang (ref_12) 2014; 14 Alexander (ref_49) 2005; 146 ref_24 ref_21 Chan (ref_4) 2012; 56 Chen (ref_7) 2014; 5 ref_28 ref_26 Appelboom (ref_33) 2014; 21 Bizzego (ref_39) 2019; 10 Bandodkar (ref_11) 2014; 54 Vernetti (ref_3) 2020; 13 Yang (ref_8) 2019; 31 Picard (ref_18) 2001; 23 Swan (ref_15) 2012; 1 Boutry (ref_10) 2019; 3 Janssen (ref_51) 2012; 106 Tipparaju (ref_14) 2020; 20 Soleymani (ref_35) 2012; 3 Vagedes (ref_50) 2013; 166 Koelstra (ref_34) 2012; 3 ref_38 Breteler (ref_31) 2020; 132 Kleckner (ref_25) 2017; 65 Danzig (ref_30) 2020; 29 McKeown (ref_36) 2012; 3 Goldberger (ref_37) 2000; 101 Petterson (ref_22) 2007; 105 Wander (ref_43) 2014; 35 ref_47 ref_45 ref_44 ref_42 Malik (ref_46) 1996; 1 ref_2 ref_48 Kleiman (ref_27) 2019; 7 Bassett (ref_6) 2012; 33 Behar (ref_41) 2013; 60 |
References_xml | – ident: ref_26 doi: 10.3390/s20185380 – volume: 56 start-page: 137 year: 2012 ident: ref_4 article-title: Smart wearable systems: Current status and future challenges publication-title: Artif. Intell. Med. doi: 10.1016/j.artmed.2012.09.003 – volume: 5 start-page: 1 year: 2014 ident: ref_7 article-title: Continuous wireless pressure monitoring and mapping with ultra-small passive sensors for health monitoring and critical care publication-title: Nat. Commun. doi: 10.1038/ncomms6028 – volume: 3 start-page: 5 year: 2012 ident: ref_36 article-title: The SEMAINE database: Annotated multimodal records of emotionally coloured conversations between a person and a limited agent publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/T-AFFC.2011.20 – volume: 1 start-page: 217 year: 2012 ident: ref_15 article-title: Sensor mania! the internet of things, wearable computing, objective metrics, and the quantified self 2.0 publication-title: J. Sens. Actuator Netw. doi: 10.3390/jsan1030217 – ident: ref_45 doi: 10.1101/118943 – volume: 3 start-page: 18 year: 2012 ident: ref_34 article-title: Deap: A database for emotion analysis using physiological signals publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/T-AFFC.2011.15 – ident: ref_48 doi: 10.1109/SPMB.2015.7405467 – ident: ref_21 doi: 10.20944/preprints201911.0174.v1 – volume: 10 start-page: 1 year: 2020 ident: ref_20 article-title: Physical presence of spouse enhances brain-to-brain synchrony in co-parenting couples publication-title: Sci. Rep. doi: 10.1038/s41598-020-63596-2 – volume: 33 start-page: 1769 year: 2012 ident: ref_6 article-title: Device-based monitoring in physical activity and public health research publication-title: Physiol. Meas. doi: 10.1088/0967-3334/33/11/1769 – ident: ref_44 doi: 10.1109/IEMBS.2011.6091232 – ident: ref_24 doi: 10.3390/s16030342 – volume: 23 start-page: 1175 year: 2001 ident: ref_18 article-title: Toward machine emotional intelligence: Analysis of affective physiological state publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.954607 – volume: 29 start-page: e12926 year: 2020 ident: ref_30 article-title: The wrist is not the brain: Estimation of sleep by clinical and consumer wearable actigraphy devices is impacted by multiple patient-and device-specific factors publication-title: J. Sleep Res. doi: 10.1111/jsr.12926 – volume: 21 start-page: 1089 year: 2014 ident: ref_33 article-title: The promise of wearable activity sensors to define patient recovery publication-title: J. Clin. Neurosci. doi: 10.1016/j.jocn.2013.12.003 – volume: 1 start-page: 151 year: 1996 ident: ref_46 article-title: Heart rate variability publication-title: Ann. Noninvasive Electrocardiol. doi: 10.1111/j.1542-474X.1996.tb00275.x – volume: 20 start-page: 5510 year: 2020 ident: ref_14 article-title: Reliable Breathing Tracking With Wearable Mask Device publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2020.2969635 – volume: 132 start-page: 424 year: 2020 ident: ref_31 article-title: Vital signs monitoring with wearable sensors in high-risk surgical patients: A clinical validation study publication-title: Anesthesiology doi: 10.1097/ALN.0000000000003029 – volume: 60 start-page: 1660 year: 2013 ident: ref_41 article-title: ECG signal quality during arrhythmia and its application to false alarm reduction publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2013.2240452 – volume: 146 start-page: 116 year: 2005 ident: ref_49 article-title: Separating individual skin conductance responses in a short interstimulus-interval paradigm publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2005.02.001 – volume: 14 start-page: 17586 year: 2014 ident: ref_12 article-title: Novel wearable and wireless ring-type pulse oximeter with multi-detectors publication-title: Sensors doi: 10.3390/s140917586 – volume: 7 start-page: e13725 year: 2019 ident: ref_27 article-title: Using wearable physiological monitors with suicidal adolescent inpatients: Feasibility and acceptability study publication-title: JMIR mHealth uHealth – ident: ref_38 doi: 10.4108/icst.mobihealth.2014.257418 – volume: 29 start-page: 15 year: 2007 ident: ref_40 article-title: Robust heart rate estimation from multiple asynchronous noisy sources using signal quality indices and a Kalman filter publication-title: Physiol. Meas. doi: 10.1088/0967-3334/29/1/002 – volume: 31 start-page: 1904765 year: 2019 ident: ref_8 article-title: Electronic Skin: Recent Progress and Future Prospects for Skin-Attachable Devices for Health Monitoring, Robotics, and Prosthetics publication-title: Adv. Mater. doi: 10.1002/adma.201904765 – volume: 41 start-page: 115 year: 2017 ident: ref_32 article-title: A systematic review of wearable patient monitoring systems–current challenges and opportunities for clinical adoption publication-title: J. Med. Syst. doi: 10.1007/s10916-017-0760-1 – volume: 2 start-page: 626 year: 2013 ident: ref_23 article-title: Motion Artifact Reduction in Photoplethysmographic Signals: A Review publication-title: Int. J. Innov. Res. Dev. – ident: ref_47 doi: 10.1109/EMBC.2015.7318762 – ident: ref_17 doi: 10.3390/s19194079 – volume: 65 start-page: 1460 year: 2017 ident: ref_25 article-title: Simple, Transparent, and Flexible Automated Quality Assessment Procedures for Ambulatory Electrodermal Activity Data publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2017.2758643 – ident: ref_28 doi: 10.1145/3382507.3418837 – volume: 35 start-page: 2543 year: 2014 ident: ref_43 article-title: A combined segmenting and non-segmenting approach to signal quality estimation for ambulatory photoplethysmography publication-title: Physiol. Meas. doi: 10.1088/0967-3334/35/12/2543 – volume: 84 start-page: 394 year: 2010 ident: ref_1 article-title: Autonomic nervous system activity in emotion: A review publication-title: Biol. Psychol. doi: 10.1016/j.biopsycho.2010.03.010 – volume: 106 start-page: 298 year: 2012 ident: ref_51 article-title: Emotional sweating across the body: Comparing 16 different skin conductance measurement locations publication-title: Physiol. Behav. doi: 10.1016/j.physbeh.2012.01.020 – volume: 3 start-page: 42 year: 2012 ident: ref_35 article-title: A multimodal database for affect recognition and implicit tagging publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/T-AFFC.2011.25 – volume: 6 start-page: 100 year: 2014 ident: ref_16 article-title: The autonomic nervous system and emotion publication-title: Emot. Rev. doi: 10.1177/1754073913512003 – volume: 101 start-page: e215 year: 2000 ident: ref_37 article-title: Physiobank, physiotoolkit, and physionet components of a new research resource for complex physiologic signals publication-title: Circulation doi: 10.1161/01.CIR.101.23.e215 – ident: ref_2 doi: 10.1109/IEMBS.2010.5626734 – volume: 166 start-page: 15 year: 2013 ident: ref_50 article-title: How accurate is pulse rate variability as an estimate of heart rate variability? A review on studies comparing photoplethysmographic technology with an electrocardiogram publication-title: Int. J. Cardiol. doi: 10.1016/j.ijcard.2012.03.119 – volume: 54 start-page: 603 year: 2014 ident: ref_11 article-title: Epidermal tattoo potentiometric sodium sensors with wireless signal transduction for continuous non-invasive sweat monitoring publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2013.11.039 – volume: 40 start-page: 1 year: 2010 ident: ref_5 article-title: A survey on wearable sensor-based systems for health monitoring and prognosis publication-title: IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. doi: 10.1109/TSMCC.2009.2032660 – volume: 10 start-page: 100287 year: 2019 ident: ref_39 article-title: pyphysio: A physiological signal processing library for data science approaches in physiology publication-title: SoftwareX doi: 10.1016/j.softx.2019.100287 – volume: 166 start-page: 112460 year: 2020 ident: ref_13 article-title: Stretchable respiration sensors: Advanced designs and multifunctional platforms for wearable physiological monitoring publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2020.112460 – volume: 32 start-page: 1901924 year: 2020 ident: ref_9 article-title: Advanced soft materials, sensor integrations, and applications of wearable flexible hybrid electronics in healthcare, energy, and environment publication-title: Adv. Mater. doi: 10.1002/adma.201901924 – volume: 105 start-page: S78 year: 2007 ident: ref_22 article-title: The effect of motion on pulse oximetry and its clinical significance publication-title: Anesth. Analg. doi: 10.1213/01.ane.0000278134.47777.a5 – volume: 3 start-page: 47 year: 2019 ident: ref_10 article-title: Biodegradable and flexible arterial-pulse sensor for the wireless monitoring of blood flow publication-title: Nat. Biomed. Eng. doi: 10.1038/s41551-018-0336-5 – volume: 51 start-page: 1538 year: 2019 ident: ref_29 article-title: Wearable sleep technology in clinical and research settings publication-title: Med. Sci. Sport. Exerc. doi: 10.1249/MSS.0000000000001947 – ident: ref_42 doi: 10.3390/bioengineering3040021 – volume: 66 start-page: 101405 year: 2019 ident: ref_19 article-title: Wearables and mobile technologies in Autism Spectrum Disorder interventions: A systematic literature review publication-title: Res. Autism Spectr. Disord. doi: 10.1016/j.rasd.2019.05.005 – volume: 13 start-page: 1476 year: 2020 ident: ref_3 article-title: Atypical Emotional Electrodermal Activity in Toddlers with Autism Spectrum Disorder publication-title: Autism Res. doi: 10.1002/aur.2374 |
SSID | ssj0023338 |
Score | 2.4057221 |
Snippet | A key access point to the functioning of the autonomic nervous system is the investigation of peripheral signals. Wearable devices (WDs) enable the acquisition... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 6778 |
SubjectTerms | Algorithms Autonomic Nervous System Experiments Humans Male Medical research multivariate analysis Nervous system physiological data analysis Physiology Reproducibility of Results Signal processing Signal Processing, Computer-Assisted Software Wearable computers wearable devices Wearable Electronic Devices |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA7iSQ_ib6tTonjwUrYkbdMe53QMwSHocLeapIkORqdu-_99r-3KJgMvXtuXkn55yXsfSb5HyDULrZLSKN9paf2A8QzmnFC-YaHWgYKQWVwXe-xHvUHwMAyHS6W-8ExYKQ9cAtcUUrVCF7csczzQItZcJEppHSeSKxEVV_cg5i3IVEW1BDCvUkdIAKlvTrFIOEqlrUSfQqR_XWb5-4DkUsTp7pKdKlWk7bKLe2TD5vtke0lA8IC8deoygnTi6Cu4LV6FoirPaKX4OaZ3tlgNKKSntG2-5qPymBY2eILvFLoCY9qHRWMyn9JSwpw-j95RWfmQDLr3L52eX9VM8A0Q3Zmvkwh38gJjII5bmQnGHTdYdiqxRmiXGaa1ybIMZq4DRDhkaExCA6AyFnclj8hmPsntCaEsYImF-C6tAuS5jHWGGYVj3DquVOyRmwWWqakExbGuxTgFYoGwpzXsHrmqTT9LFY11Rrc4ILUBCl8XD8Ad0sod0r_cwSONxXCm1WycpjxA1cQgEswjl_VrmEe4OaJyC-iiTQSQxQxsjsvRr3siIMeF1bjlEbniFytdXX2Tjz4KrW4pkaOFp__xb2dkiyPbZ8znskE2Z99zew4p0UxfFN7_A87tCf8 priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB61y4UeUOmLtFC5VQ-9RKztJE5OFVAQqtQVaovgFvyElVYJsLv_vzOJN2UR6jUeR6PxPP34BuALz71Wyuo0GOXTjAuHNid1anluTKYxZHbPxX5OitPz7Mdlfhk33ObxWuXKJ3aO2rWW9sj3RUbId1kh-bfbu5S6RtHpamyh8Rw20AWX-Qg2Do8nZ7-GkktiBdbjCUks7vfn1CycINPWolAH1v9Uhvn4ouSDyHPyErZiysgO-jXehme-eQUvHgAJvoaro6GdIGsDu0D1pSdRTDeOReTPGfvuO6_AME1lB_ZuOe2va9GEM_xPhy8wYxN0Hu1yznooc_Z7ek0Iy2_g_OT4z9FpGnsnpBYL3kVqqoJO9DJrMZ575SQXQVhqP1V5K01wlhtjnXNowQElIjBT4wonYEnj6XTyLYyatvE7wHjGK49xXnktMiNUaRxlFoELH4TWZQJfV7KsbQQWp_4WsxoLDBJ7PYg9gc8D6W2PpvEU0SEtyEBAANjdh_b-uo72VEulx3kox54HZEqWRshKa2PKSgktiyqB3dVy1tEq5_U_HUrg0zCM9kSHJLrxKF2iKVBkJUead_3qD5xIzHXRK48TUGt6scbq-kgzvekwu5WiWi1__3-2PsCmoHqe81SoXRgt7pd-D5OehfkYNfsvSuMDNA priority: 102 providerName: ProQuest |
Title | Comparison of Wearable and Clinical Devices for Acquisition of Peripheral Nervous System Signals |
URI | https://www.ncbi.nlm.nih.gov/pubmed/33260880 https://www.proquest.com/docview/2465954631 https://www.proquest.com/docview/2466293811 https://pubmed.ncbi.nlm.nih.gov/PMC7730565 https://doaj.org/article/37a05f80e1f24b38b239aabb8972a369 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB71IaFyqHiWlLIyiAOXwNpO4uSAUFu6VEhdVcCKvQXbsctKqyzdhwT_npm81KA9cckhHkfWPDzzxck3AK957LRSVofeKBdGXBQYc1KHlsfGRBpTZvW72NU4uZxEn6fxdAfaHpuNAldboR31k5os529_3_75gAH_nhAnQvZ3K2oBTkRou7CPCSkh576KusMEIRGG1aRCffEDuCexesE4G_ayUkXev63i_PfDyTuZaPQADpsSkp3WNn8IO658BPfvEAs-hh_nXXtBtvDsO7oz_SLFdFmwhgl0zj66apdgWLayU3u7mdWfb9GEa3xOxTcwZ2PcTBabFaupzdnX2Q1p7glMRhffzi_DppdCaBEAr0OTJXTCF1mL-d2pQnLhhaV2VJmz0vjCcmNsURQY0R6VI7By4wonIMRxdFr5FPbKRemeAeMRzxzmfeW0iIxQqSmo0vBcOC-0TgN40-oytw3ROPW7mOcIOMgCeWeBAF51or9qdo1tQmdkkE6ACLGrG4vlTd7EVy6VHsY-HTrucVEyNUJmWhuTZkpomWQBnLTmzFsny0VEbIpRInkAL7thjC86NNGlQ-2STIIqSznKHNXW71bSek8AqucXvaX2R8rZz4rDWynCbvHxf898DgeCoD_noVAnsLdebtwLrI_WZgC7aqrwmo4-DWD_7GJ8_WVQvWsYVHHxFx_eFO4 |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiGdJKWAQSFyiru0kTg4IlZZlS9sVEq3oLfUr7UqrpO3uCvGn-I3M5EUXVdx6jceWNR7PfBPb3wC85bHXSlkdFkb5MOLC4Z6TOrQ8NibSGDLr52IH42R0FH09jo9X4Hf3FoauVXY-sXbUrrL0j3xTRMR8FyWSfzy_CKlqFJ2udiU0GrPY879-Yso2-7C7g-v7Tojh58PtUdhWFQgtpoLz0GQJnXVF1mKk88pJLgphqTBT5q00hbPcGOucQ9suEgSfiGG4wg4I9j2d2-G4t-B2JGVGXP3p8Euf4EnM9xr2ImwcbM6oNDkRtC3FvLo0wHV49t9rmVfi3PAB3G8BKttqLOohrPjyEdy7Qlv4GE62--KFrCrYD9QKPcBiunSs5Rmdsh1f-yCGoJht2YvFpLkcRh2-4Tg1m8GUjdFVVYsZa4jT2ffJKfE5P4GjG9HpU1gtq9I_A8YjnnlEFcprERmhUuMIxxRc-EJonQbwvtNlblsac6qmMc0xnSG1573aA3jTi5433B3XCX2iBekFiG67_lBdnubt7s2l0oO4SAeeFzgpmRohM62NSTMltEyyADa65cxbHzDL_1psAK_7Zty9dCSjS4_aJZkEVZZylFlrVr-fiURkjTFgEIBasoulqS63lJOzmiFcKcoM4_X_T-sV3BkdHuzn-7vjvedwV9CfBM5DoTZgdX658C8Qbs3Ny9rGGZzc9Kb6A9u7PY4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTkLwgPgmMMAgkHiJWttJnDwgtK2rNgZVBUzsLbMde1Sqkm1thfjX-Ou4S9Kwoom3vSbnyDrfx-9i-3cAb3jstFJWh94oF0ZcFOhzUoeWx8ZEGlNmfV3s8zjZP4o-HsfHG_B7dReGjlWuYmIdqIvK0j_yvoiI-S5KJO_79ljEZDj6cHYeUgcp2mldtdNoTOTQ_fqJ5dv8_cEQ1_qtEKO9b7v7YdthILRYFi5CkyW07xVZi1nPqUJy4YWlJk2Zs9L4wnJjbFEUaOc-QSCKeIYrHIDA39EeHn73BmwqzIppDzZ39saTL125J7H6a7iMpMwG_Tk1Kie6trUMWDcKuArd_ntI81LWG92FOy1cZduNfd2DDVfeh9uXSAwfwMlu18qQVZ59R73QdSymy4K1rKMzNnR1RGIIkdm2PV9Om6NiNGCC36m5DWZsjIGrWs5ZQ6POvk5Pid35IRxdi1YfQa-sSvcEGI945hBjKKdFZIRKTUGoxnPhvNA6DeDdSpe5bUnNqbfGLMfihtSed2oP4HUnetYweVwltEML0gkQ-Xb9oLo4zVtfzqXSg9inA8c9TkqmRshMa2PSTAktkyyArdVy5m1EmOd_7TeAV91r9GXaoNGlQ-2STIIqSznKPG5Wv5uJRJyNGWEQgFqzi7Wprr8ppz9qvnClqE6Mn_5_Wi_hJjpU_ulgfPgMbgn6rcB5KNQW9BYXS_ccsdfCvGiNnMHJdfvVH_joQyk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+Wearable+and+Clinical+Devices+for+Acquisition+of+Peripheral+Nervous+System+Signals&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Bizzego%2C+Andrea&rft.au=Gabrieli%2C+Giulio&rft.au=Furlanello%2C+Cesare&rft.au=Esposito%2C+Gianluca&rft.date=2020-11-27&rft.pub=MDPI&rft.eissn=1424-8220&rft.volume=20&rft.issue=23&rft_id=info:doi/10.3390%2Fs20236778&rft_id=info%3Apmid%2F33260880&rft.externalDocID=PMC7730565 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |