Driver’s Head Pose and Gaze Zone Estimation Based on Multi-Zone Templates Registration and Multi-Frame Point Cloud Fusion

Head pose and eye gaze are vital clues for analysing a driver’s visual attention. Previous approaches achieve promising results from point clouds in constrained conditions. However, these approaches face challenges in the complex naturalistic driving scene. One of the challenges is that the collecte...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 22; no. 9; p. 3154
Main Authors Wang, Yafei, Yuan, Guoliang, Fu, Xianping
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 20.04.2022
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Head pose and eye gaze are vital clues for analysing a driver’s visual attention. Previous approaches achieve promising results from point clouds in constrained conditions. However, these approaches face challenges in the complex naturalistic driving scene. One of the challenges is that the collected point cloud data under non-uniform illumination and large head rotation is prone to partial facial occlusion. It causes bad transformation during failed template matching or incorrect feature extraction. In this paper, a novel estimation method is proposed for predicting accurate driver head pose and gaze zone using an RGB-D camera, with an effective point cloud fusion and registration strategy. In the fusion step, to reduce bad transformation, continuous multi-frame point clouds are registered and fused to generate a stable point cloud. In the registration step, to reduce reliance on template registration, multiple point clouds in the nearest neighbor gaze zone are utilized as a template point cloud. A coarse transformation computed by the normal distributions transform is used as the initial transformation, and updated with particle filter. A gaze zone estimator is trained by combining the head pose and eye image features, in which the head pose is predicted by point cloud registration, and the eye image features are extracted via multi-scale spare coding. Extensive experiments demonstrate that the proposed strategy achieves better results on head pose tracking, and also has a low error on gaze zone classification.
AbstractList Head pose and eye gaze are vital clues for analysing a driver's visual attention. Previous approaches achieve promising results from point clouds in constrained conditions. However, these approaches face challenges in the complex naturalistic driving scene. One of the challenges is that the collected point cloud data under non-uniform illumination and large head rotation is prone to partial facial occlusion. It causes bad transformation during failed template matching or incorrect feature extraction. In this paper, a novel estimation method is proposed for predicting accurate driver head pose and gaze zone using an RGB-D camera, with an effective point cloud fusion and registration strategy. In the fusion step, to reduce bad transformation, continuous multi-frame point clouds are registered and fused to generate a stable point cloud. In the registration step, to reduce reliance on template registration, multiple point clouds in the nearest neighbor gaze zone are utilized as a template point cloud. A coarse transformation computed by the normal distributions transform is used as the initial transformation, and updated with particle filter. A gaze zone estimator is trained by combining the head pose and eye image features, in which the head pose is predicted by point cloud registration, and the eye image features are extracted via multi-scale spare coding. Extensive experiments demonstrate that the proposed strategy achieves better results on head pose tracking, and also has a low error on gaze zone classification.Head pose and eye gaze are vital clues for analysing a driver's visual attention. Previous approaches achieve promising results from point clouds in constrained conditions. However, these approaches face challenges in the complex naturalistic driving scene. One of the challenges is that the collected point cloud data under non-uniform illumination and large head rotation is prone to partial facial occlusion. It causes bad transformation during failed template matching or incorrect feature extraction. In this paper, a novel estimation method is proposed for predicting accurate driver head pose and gaze zone using an RGB-D camera, with an effective point cloud fusion and registration strategy. In the fusion step, to reduce bad transformation, continuous multi-frame point clouds are registered and fused to generate a stable point cloud. In the registration step, to reduce reliance on template registration, multiple point clouds in the nearest neighbor gaze zone are utilized as a template point cloud. A coarse transformation computed by the normal distributions transform is used as the initial transformation, and updated with particle filter. A gaze zone estimator is trained by combining the head pose and eye image features, in which the head pose is predicted by point cloud registration, and the eye image features are extracted via multi-scale spare coding. Extensive experiments demonstrate that the proposed strategy achieves better results on head pose tracking, and also has a low error on gaze zone classification.
Head pose and eye gaze are vital clues for analysing a driver's visual attention. Previous approaches achieve promising results from point clouds in constrained conditions. However, these approaches face challenges in the complex naturalistic driving scene. One of the challenges is that the collected point cloud data under non-uniform illumination and large head rotation is prone to partial facial occlusion. It causes bad transformation during failed template matching or incorrect feature extraction. In this paper, a novel estimation method is proposed for predicting accurate driver head pose and gaze zone using an RGB-D camera, with an effective point cloud fusion and registration strategy. In the fusion step, to reduce bad transformation, continuous multi-frame point clouds are registered and fused to generate a stable point cloud. In the registration step, to reduce reliance on template registration, multiple point clouds in the nearest neighbor gaze zone are utilized as a template point cloud. A coarse transformation computed by the normal distributions transform is used as the initial transformation, and updated with particle filter. A gaze zone estimator is trained by combining the head pose and eye image features, in which the head pose is predicted by point cloud registration, and the eye image features are extracted via multi-scale spare coding. Extensive experiments demonstrate that the proposed strategy achieves better results on head pose tracking, and also has a low error on gaze zone classification.
Author Yuan, Guoliang
Wang, Yafei
Fu, Xianping
AuthorAffiliation School of Information Science and Technology, Dalian Maritime University, Dalian 116026, China; wangyafei@dlmu.edu.cn (Y.W.); fxp@dlmu.edu.cn (X.F.)
AuthorAffiliation_xml – name: School of Information Science and Technology, Dalian Maritime University, Dalian 116026, China; wangyafei@dlmu.edu.cn (Y.W.); fxp@dlmu.edu.cn (X.F.)
Author_xml – sequence: 1
  givenname: Yafei
  surname: Wang
  fullname: Wang, Yafei
– sequence: 2
  givenname: Guoliang
  surname: Yuan
  fullname: Yuan, Guoliang
– sequence: 3
  givenname: Xianping
  surname: Fu
  fullname: Fu, Xianping
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35590843$$D View this record in MEDLINE/PubMed
BookMark eNptks1u1DAQgC1URH_gwAsgS1zoYal_E_uCBEu3rVQEQuXCxXKcyeJVEi92Uoly4TV4PZ4E76as2oqTrZnPnz2eOUR7fegBoeeUvOZck5PEGNGcSvEIHVDBxEzlwN6d_T46TGlFCOOcqydon0upiRL8AP18H_01xD-_fid8DrbGn0ICbPsan9kbwF_zRfg0Db6zgw89fmcT1DhvPozt4Gfb9BV069YOkPBnWPo0xAndOCZqEW0HWez7Ac_bMNZ4MaaMPEWPG9smeHa7HqEvi9Or-fns8uPZxfzt5cyJQg-zSjleNYLUliopG10UrmaNdhqE01SAlMDBQqMogLYFzyFSk0paqgtlieBH6GLy1sGuzDrmYuIPE6w320CIS2Pj4F0LhhHqGguKEagFEUyVZUN1BVrohjPHs-vN5FqPVQe1gz7X296T3s_0_ptZhmujKZGCFlnw6lYQw_cR0mA6nxy0re0hjMmwoihLTaRiGX35AF2FMfb5qzYUp6yg5YZ6cfdFu6f863EGjifAxZBShGaHUGI282N285PZkwes88O2n7kY3_7nxF_Kh8eS
CitedBy_id crossref_primary_10_1080_10589759_2024_2409391
crossref_primary_10_1007_s10462_024_10936_7
crossref_primary_10_3390_s23249894
crossref_primary_10_1109_TITS_2024_3444588
crossref_primary_10_1016_j_engappai_2024_108117
crossref_primary_10_1016_j_patcog_2022_109288
Cites_doi 10.1109/ACCESS.2021.3054951
10.1109/IV47402.2020.9304592
10.1049/iet-cvi.2015.0296
10.1109/ITSC.2017.8317870
10.1109/TPAMI.2015.2500221
10.1109/MIS.2016.47
10.1109/ICIP.2015.7351101
10.1109/ICCE.2018.8326308
10.1109/CVPR42600.2020.01138
10.1016/0262-8856(92)90066-C
10.1109/CVPR.2019.00733
10.1109/ICCV.2015.416
10.1109/TCE.2021.3127006
10.1109/ITSC.2012.6338678
10.1109/TITS.2021.3075350
10.1109/TITS.2019.2892155
10.1109/ICCV.2013.184
10.1109/TITS.2016.2526050
10.1109/CVPR.2011.5995458
10.1109/AFGR.2008.4813369
10.1109/TITS.2014.2332613
10.1007/s00371-020-01934-1
10.3390/s19061287
10.1109/FG.2019.8756592
10.1109/CVPRW.2017.155
10.3390/electronics10121480
10.1109/TITS.2015.2462084
10.3390/s21186262
10.1109/FG.2018.00019
10.1016/j.knosys.2017.10.010
10.37247/PAELEC.1.22.12
10.1109/ICIBA50161.2020.9276968
10.1109/CVPRW.2012.6239236
10.1109/CVPR.2017.583
10.1016/j.knosys.2021.107630
10.3390/s19245540
10.3390/s18051641
10.1016/j.knosys.2016.07.038
10.1109/TITS.2015.2396031
10.1109/ICETECH.2016.7569378
10.1109/ICRA.2018.8461063
10.1109/ROBOT.2009.5152712
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s22093154
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Publicly Available Content Database
CrossRef


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_201cfae820ed4042877f19be949f32c3
PMC9105416
35590843
10_3390_s22093154
Genre Journal Article
GrantInformation_xml – fundername: Research Project of China Disabled Persons' Federation - on Assistive Technology
  grantid: 2021CDPFAT-09
– fundername: Dalian Science and Technology Innovation Fund
  grantid: 2019J11CY001
– fundername: Dalian Science and Technology Innovation Fund
  grantid: 2021JJ12GX028
– fundername: Liaoning Revitalization Talents Program
  grantid: XLYC1908007
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
ABJCF
ARAPS
CGR
CUY
CVF
ECM
EIF
HCIFZ
KB.
M7S
NPM
PDBOC
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c469t-b8c3bf40da1855f966cd2f9c9e4c914e55e3eaef81ee9a6314e0d0b5a1968a043
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 01:30:30 EDT 2025
Thu Aug 21 13:50:58 EDT 2025
Fri Jul 11 02:14:23 EDT 2025
Fri Jul 25 20:19:51 EDT 2025
Wed Feb 19 02:26:27 EST 2025
Tue Jul 01 02:41:51 EDT 2025
Thu Apr 24 22:55:56 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords point cloud
head pose
ICP
driving environment
gaze zone
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c469t-b8c3bf40da1855f966cd2f9c9e4c914e55e3eaef81ee9a6314e0d0b5a1968a043
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s22093154
PMID 35590843
PQID 2663126172
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_201cfae820ed4042877f19be949f32c3
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9105416
proquest_miscellaneous_2667790582
proquest_journals_2663126172
pubmed_primary_35590843
crossref_primary_10_3390_s22093154
crossref_citationtrail_10_3390_s22093154
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220420
PublicationDateYYYYMMDD 2022-04-20
PublicationDate_xml – month: 4
  year: 2022
  text: 20220420
  day: 20
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References ref_50
ref_14
ref_13
ref_12
ref_11
ref_10
Chen (ref_24) 1992; 10
ref_19
ref_18
ref_17
ref_16
ref_15
Armingol (ref_8) 2014; 15
Wang (ref_37) 2018; 139
ref_25
Wang (ref_36) 2016; 110
ref_23
Yang (ref_45) 2021; 67
ref_22
ref_21
ref_20
Fridman (ref_41) 2016; 10
Vicente (ref_48) 2015; 16
ref_28
ref_27
ref_26
Li (ref_47) 2015; 38
Kaplan (ref_1) 2015; 16
ref_35
ref_34
ref_33
ref_32
Lundgren (ref_38) 2016; 17
ref_30
Yuan (ref_39) 2022; 235
Yuan (ref_31) 2021; 9
Zhang (ref_5) 2021; 37
Chiou (ref_44) 2019; 21
ref_46
ref_43
ref_42
ref_40
ref_3
ref_2
ref_49
ref_9
ref_4
ref_7
Fridman (ref_29) 2016; 31
ref_6
References_xml – volume: 9
  start-page: 18560
  year: 2021
  ident: ref_31
  article-title: A Novel Driving Behavior Learning and Visualization Method with Natural Gaze Prediction
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3054951
– ident: ref_10
  doi: 10.1109/IV47402.2020.9304592
– volume: 10
  start-page: 308
  year: 2016
  ident: ref_41
  article-title: ‘Owl’and ‘Lizard’: Patterns of head pose and eye pose in driver gaze classification
  publication-title: IET Comput. Vis.
  doi: 10.1049/iet-cvi.2015.0296
– ident: ref_28
  doi: 10.1109/ITSC.2017.8317870
– volume: 38
  start-page: 1922
  year: 2015
  ident: ref_47
  article-title: Real-time head pose tracking with online face template reconstruction
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2015.2500221
– ident: ref_23
– volume: 31
  start-page: 49
  year: 2016
  ident: ref_29
  article-title: Driver gaze region estimation without use of eye movement
  publication-title: IEEE Intell. Syst.
  doi: 10.1109/MIS.2016.47
– ident: ref_18
  doi: 10.1109/ICIP.2015.7351101
– ident: ref_32
  doi: 10.1109/ICCE.2018.8326308
– ident: ref_22
  doi: 10.1109/CVPR42600.2020.01138
– volume: 10
  start-page: 145
  year: 1992
  ident: ref_24
  article-title: Object modelling by registration of multiple range images
  publication-title: Image Vis. Comput.
  doi: 10.1016/0262-8856(92)90066-C
– ident: ref_20
  doi: 10.1109/CVPR.2019.00733
– ident: ref_7
  doi: 10.1109/ICCV.2015.416
– volume: 67
  start-page: 275
  year: 2021
  ident: ref_45
  article-title: Driver Gaze Zone Estimation via Head Pose Fusion Assisted Supervision and Eye Region Weighted Encoding
  publication-title: IEEE Trans. Consum. Electron.
  doi: 10.1109/TCE.2021.3127006
– ident: ref_9
  doi: 10.1109/ITSC.2012.6338678
– ident: ref_11
  doi: 10.1109/TITS.2021.3075350
– volume: 21
  start-page: 346
  year: 2019
  ident: ref_44
  article-title: Driver monitoring using sparse representation with part-based temporal face descriptors
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2019.2892155
– ident: ref_26
  doi: 10.1109/ICCV.2013.184
– volume: 17
  start-page: 2739
  year: 2016
  ident: ref_38
  article-title: Driver-gaze zone estimation using Bayesian filtering and Gaussian processes
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2016.2526050
– ident: ref_17
– ident: ref_4
  doi: 10.1109/CVPR.2011.5995458
– ident: ref_49
  doi: 10.1109/AFGR.2008.4813369
– volume: 15
  start-page: 1855
  year: 2014
  ident: ref_8
  article-title: Driver monitoring based on low-cost 3-D sensors
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2014.2332613
– volume: 37
  start-page: 1731
  year: 2021
  ident: ref_5
  article-title: RGB-D-based gaze point estimation via multi-column CNNs and facial landmarks global optimization
  publication-title: Vis. Comput.
  doi: 10.1007/s00371-020-01934-1
– ident: ref_30
– ident: ref_3
– ident: ref_6
  doi: 10.3390/s19061287
– ident: ref_19
  doi: 10.1109/FG.2019.8756592
– ident: ref_15
  doi: 10.1109/CVPRW.2017.155
– ident: ref_42
  doi: 10.3390/electronics10121480
– volume: 16
  start-page: 3017
  year: 2015
  ident: ref_1
  article-title: Driver behavior analysis for safe driving: A survey
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2015.2462084
– ident: ref_40
– ident: ref_43
  doi: 10.3390/s21186262
– ident: ref_21
– ident: ref_50
  doi: 10.1109/FG.2018.00019
– volume: 139
  start-page: 41
  year: 2018
  ident: ref_37
  article-title: Learning a gaze estimator with neighbor selection from large-scale synthetic eye images
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2017.10.010
– ident: ref_34
  doi: 10.37247/PAELEC.1.22.12
– ident: ref_33
  doi: 10.1109/ICIBA50161.2020.9276968
– ident: ref_14
  doi: 10.1109/CVPRW.2012.6239236
– ident: ref_25
– ident: ref_16
  doi: 10.1109/CVPR.2017.583
– volume: 235
  start-page: 107630
  year: 2022
  ident: ref_39
  article-title: Self-calibrated driver gaze estimation via gaze pattern learning
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2021.107630
– ident: ref_35
  doi: 10.3390/s19245540
– ident: ref_12
– ident: ref_13
  doi: 10.3390/s18051641
– volume: 110
  start-page: 293
  year: 2016
  ident: ref_36
  article-title: Appearance-based gaze estimation using deep features and random forest regression
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2016.07.038
– volume: 16
  start-page: 2014
  year: 2015
  ident: ref_48
  article-title: Driver gaze tracking and eyes off the road detection system
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2015.2396031
– ident: ref_2
  doi: 10.1109/ICETECH.2016.7569378
– ident: ref_27
  doi: 10.1109/ICRA.2018.8461063
– ident: ref_46
  doi: 10.1109/ROBOT.2009.5152712
SSID ssj0023338
Score 2.4106061
Snippet Head pose and eye gaze are vital clues for analysing a driver’s visual attention. Previous approaches achieve promising results from point clouds in...
Head pose and eye gaze are vital clues for analysing a driver's visual attention. Previous approaches achieve promising results from point clouds in...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 3154
SubjectTerms Automobile Driving
Cameras
Deep learning
driving environment
Face
Fixation, Ocular
gaze zone
Head
Head Movements
head pose
ICP
Methods
Optimization algorithms
point cloud
Registration
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LattAFB2KV-mipG-naZiWLroRlTSjxyybhzGFllISMN2IeVy1BkcOsb3KJr-R38uX9MxIFnYwdJOd0VyGse69uudId84w9qlwJRmZW785xkZSl17yNtWRTckpB0hugs7s9x_5-EJ-m2STjaO-fE9YKw_c3jiQ88TWmlCoyMkA8Is6UYaUVLVIbdD5RM1bk6mOagkwr1ZHSIDUf1mksBFJJreqTxDp34UsHzZIblSc0T571kFF_rVd4nP2hJoX7OmGgOBLdnN67fsq7m_vFnwMb_Gf8wVx3Tjum3j473lD_AxJ3O5P5McoWY7jR9h2G4Xhc7q8mnnAyX_Rn15FN8zRWo18-xYmnjZLfjKbrxwfrfwrtlfsYnR2fjKOuuMUIgsOvIxMaYWpZew0anRWg-dYl9bKKpJWJZKyjARpqsuESOlc4FLsYpNpJGmpYyles0GDhb1lnHIC7EGdKwojgRiMTSXJWGiQQ5VTMmSf17e5sp3WuD_yYlaBc3iPVL1Hhuxjb3rVCmzsMjr2vuoNvCZ2uIBIqbpIqf4XKUN2uPZ01SXqogI-EYlXpU-H7EM_jBTz3010Q_NVsPGqjFkJmzdtYPQrAVxTcSkxebEVMltL3R5ppn-DjDeAWgY4fPAY_-0d20v9voxY4rF3yAbL6xW9B1pamqOQGP8Aj6oUQw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZKe4EDgvLoQqkM4sAlamI7m_hU9bVaVQIh1EorLpEfk7bSNlk2uycu_Rv9e_wSZpxs2kUVtygeWVbG4_k-Z_yZsc-Zz8GqoaPDMS5SJifJW2EiJ8Brj5DcBp3Zr9-G4wt1Nkkn3YZb05VVrtbEsFD72tEe-T4mEpmQfLg4mP2K6NYo-rvaXaHxhG2RdBmVdGWTe8IlkX-1akISqf1-IwTy9yRVazkoSPU_hi__LZN8kHdGL9jzDjDyw9bDL9kGVNvs2QMZwVfs98mcqiv-3N41fIw-49_rBripPKdSHv6zroCfYii3pxT5ESYuz_EhHL6NQvM53MymBDv5D7jstXRDH63ViIq4sOPrasGPp_XS89GSNtpes4vR6fnxOOouVYgcMuFFZHMnbalibzBTpyWyHedFqZ0G5XSiIE1BgoEyTwC0wW-uIPaxTQ2Gam5iJd-wzQoHtsM4DAHBD2a7LLMKcYN1QoGKpUGKqIeQDNiX1WcuXKc4ThdfTAtkHuSRovfIgH3qTWetzMZjRkfkq96AlLHDi3p-WXSBViCgcaUBBDbgVSCEWZloC1rpUgonB2x35emiC9emuJ9cA_axb8ZAo78npoJ6GWxImzHN0eZtOzH6kSBo03GusPNsbcqsDXW9pbq-CmLeCNdSBMXv_j-s9-ypoHMXscJlbZdtLuZL-IBoaGH3wpT_C54hDAA
  priority: 102
  providerName: ProQuest
Title Driver’s Head Pose and Gaze Zone Estimation Based on Multi-Zone Templates Registration and Multi-Frame Point Cloud Fusion
URI https://www.ncbi.nlm.nih.gov/pubmed/35590843
https://www.proquest.com/docview/2663126172
https://www.proquest.com/docview/2667790582
https://pubmed.ncbi.nlm.nih.gov/PMC9105416
https://doaj.org/article/201cfae820ed4042877f19be949f32c3
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1Za9wwEB5yQEkfSu-6TRe1FNoXN7YsH3oopZuuuxQSQsjC0hcjy-M0sLGTPaD59x3JB3HZvhhjDUJoNJ7v0_EJ4ENcJJiLSJvDMdoVKjGSt1y5mmMhC4LkudWZPTmNpjPxcx7Od6C7Y7PtwNVWamfuk5otF5__3N59pYD_YhgnUfajFefEywkL7MI-JaTYxOeJ6BcTeEA0rBEVGpofwAPKttJLRDDISla8fxvi_Hfj5L1MlD6GRy2EZN8anz-BHayewsN7woLP4O770uy3-LhiU_IhO6tXyFRVMLO1h_2qK2QTCu3m1CIbUyIrGL3Yw7iuLb7A65uFgaHsHC97bV1bR2OVmk1dVPFVtWbHi3pTsHRjJt6ewyydXBxP3faSBVcTM167eaKDvBReoShzhyWxH13wUmqJQktfYBhigArLxEeUKgrok1d4eagodBPlieAF7FXUsFfAMEICQ5T94jgXhCNyzQUKL1BEGWWEvgOfuk7OdKtAbi7CWGTERIxrst41DrzvTW8a2Y1tRmPjqd7AKGXbD_XyMmsDLyOAo0uFBHSwEJYgxqUvc5RClgHXgQOHnZ-zbvRlhFoC32jVcwfe9cUUeGY1RVVYb6yN0WoME7J52QyLviXdsHIgHgyYQVOHJdXVbyvuTfAtJJD8-r91voEDbo5geIL-cIewt15u8C0Bo3U-gt14HtMzSX-MYH88OT07H9lJhpENiL_3Mg_S
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQAHxJstBQwCiUtUx3Y28QEh-lht6UMIbaUVl9SxJ6XSNlk2u0KIC3-DP8GP4pcwdh7toopbb1E8cqzMeOabxPMNIa9im0Am-8YVx5hA6sRR3nIdGA5WWYTkmeeZPTjsD4_kh3E0XiG_21oYd6yy9YneUdvSuG_kGxhIROjow_m76dfAdY1yf1fbFhq1WezB92-YslVvd7dRv685H-yMtoZB01UgMJgKzoMsMSLLJbMaQ1WUI9w3lufKKJBGhRKiCARoyJMQQGl8qARmWRZptNVEMylw3mvkOgZe5nZUPD5P8ATmezV7kRCKbVScMyXCSC7FPN8a4DI8---xzAtxbnCH3G4AKn1fW9RdsgLFPXLrAm3hffJje-ZOc_z5-auiQ7QR-rGsgOrCUnd0iH4uC6A76Drqqki6iYHSUrzwxb6BHx7B2XTiYC79BCcdd6-fo5YauENjOPFpMadbk3Jh6WDhPuw9IEdX8rofktUCF_aYUOgDgi2MrnGcScQpmeESJBMaU1LVh7BH3rSvOTUNw7lrtDFJMdNxGkk7jfTIy050WtN6XCa06XTVCTgmbn-jnJ2kzcZOEUCZXAMCKbDSJ6BxHqoMlFS54Eb0yHqr6bRxD1V6bsw98qIbxo3t_tboAsqFl3FckFGCMo9qw-hWgiBRsUTi5PGSySwtdXmkOP3iycMRHkYIwtf-v6zn5MZwdLCf7u8e7j0hN7mr-WASXeo6WZ3PFvAUkdg8e-bNn5Ljq95vfwECdknf
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELZKkRAcEP8sFDAIJC7RJraziQ8I0W5XWwpVhVppxSU49qRUWpJlf4QQF16DV-nj9EmYcbJpF1XcelutR9Yonp9vkvE3jL1MXAq56lm6HGMDZVKivBUmsAKcdgjJc88z-3GvNzxU70fxaI2dLO_CUFvlMib6QO0qS-_Iu5hIZET04aJbNG0R-_3B28n3gCZI0ZfW5TiN2kR24ecPLN9mb3b6eNavhBhsH2wNg2bCQGCxLJwHeWplXqjQGUxbcYHQ3zpRaKtBWR0piGOQYKBIIwBtUAEFoQvz2KDdpiZUEve9wq4mMo7Ix5LRWbEnsfarmYyk1GF3JkSoZRSrlfznxwRchG3_bdE8l_MGt9jNBqzyd7V13WZrUN5hN85RGN5lv_pT6uw4_f1nxodoL3y_mgE3pePURsQ_VyXwbQwj9Q1JvolJ03H84S_-Bn75AL5NxgR5-Sc4anl8_R611IAayHDj43LOt8bVwvHBgl7y3WOHl_K477P1EhV7yDj0AIEXZtokyRViltwKBSqUBstT3YOow14vH3NmG7ZzGroxzrDqoRPJ2hPpsBet6KSm-LhIaJPOqhUgVm7_RzU9yhonzxBM2cIAgipwyhejSRHpHLTShRRWdtjG8qSzJlTMsjPD7rDn7TI6OX25MSVUCy9DvJBxijIPasNoNUHAqMNU4ebJismsqLq6Uh5_9UTiCBVjBOSP_q_WM3YNPS37sLO3-5hdF3T9I1QYXTfY-ny6gCcIyub5U2_9nH25bHf7Cx49ThU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Driver%27s+Head+Pose+and+Gaze+Zone+Estimation+Based+on+Multi-Zone+Templates+Registration+and+Multi-Frame+Point+Cloud+Fusion&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Wang%2C+Yafei&rft.au=Yuan%2C+Guoliang&rft.au=Fu%2C+Xianping&rft.date=2022-04-20&rft.eissn=1424-8220&rft.volume=22&rft.issue=9&rft_id=info:doi/10.3390%2Fs22093154&rft_id=info%3Apmid%2F35590843&rft.externalDocID=35590843
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon