In Shift and In Variance: Assessing the Robustness of HAR Deep Learning Models Against Variability
Deep learning (DL)-based Human Activity Recognition (HAR) using wearable inertial measurement unit (IMU) sensors can revolutionize continuous health monitoring and early disease prediction. However, most DL HAR models are untested in their robustness to real-world variability, as they are trained on...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 25; no. 2; p. 430 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
01.01.2025
MDPI |
Subjects | |
Online Access | Get full text |
ISSN | 1424-8220 1424-8220 |
DOI | 10.3390/s25020430 |
Cover
Loading…
Abstract | Deep learning (DL)-based Human Activity Recognition (HAR) using wearable inertial measurement unit (IMU) sensors can revolutionize continuous health monitoring and early disease prediction. However, most DL HAR models are untested in their robustness to real-world variability, as they are trained on limited lab-controlled data. In this study, we isolated and analyzed the effects of the subject, device, position, and orientation variabilities on DL HAR models using the HARVAR and REALDISP datasets. The Maximum Mean Discrepancy (MMD) was used to quantify shifts in the data distribution caused by these variabilities, and the relationship between the distribution shifts and model performance was drawn. Our HARVAR results show that different types of variability significantly degraded the DL model performance, with an inverse relationship between the data distribution shifts and performance. The compounding effect of multiple variabilities studied using REALDISP further underscores the challenges of generalizing DL HAR models to real-world conditions. Analyzing these impacts highlights the need for more robust models that generalize effectively to real-world settings. The MMD proved valuable for explaining the performance drops, emphasizing its utility in evaluating distribution shifts in HAR data. |
---|---|
AbstractList | Deep learning (DL)-based Human Activity Recognition (HAR) using wearable inertial measurement unit (IMU) sensors can revolutionize continuous health monitoring and early disease prediction. However, most DL HAR models are untested in their robustness to real-world variability, as they are trained on limited lab-controlled data. In this study, we isolated and analyzed the effects of the subject, device, position, and orientation variabilities on DL HAR models using the HARVAR and REALDISP datasets. The Maximum Mean Discrepancy (MMD) was used to quantify shifts in the data distribution caused by these variabilities, and the relationship between the distribution shifts and model performance was drawn. Our HARVAR results show that different types of variability significantly degraded the DL model performance, with an inverse relationship between the data distribution shifts and performance. The compounding effect of multiple variabilities studied using REALDISP further underscores the challenges of generalizing DL HAR models to real-world conditions. Analyzing these impacts highlights the need for more robust models that generalize effectively to real-world settings. The MMD proved valuable for explaining the performance drops, emphasizing its utility in evaluating distribution shifts in HAR data. Deep learning (DL)-based Human Activity Recognition (HAR) using wearable inertial measurement unit (IMU) sensors can revolutionize continuous health monitoring and early disease prediction. However, most DL HAR models are untested in their robustness to real-world variability, as they are trained on limited lab-controlled data. In this study, we isolated and analyzed the effects of the subject, device, position, and orientation variabilities on DL HAR models using the HARVAR and REALDISP datasets. The Maximum Mean Discrepancy (MMD) was used to quantify shifts in the data distribution caused by these variabilities, and the relationship between the distribution shifts and model performance was drawn. Our HARVAR results show that different types of variability significantly degraded the DL model performance, with an inverse relationship between the data distribution shifts and performance. The compounding effect of multiple variabilities studied using REALDISP further underscores the challenges of generalizing DL HAR models to real-world conditions. Analyzing these impacts highlights the need for more robust models that generalize effectively to real-world settings. The MMD proved valuable for explaining the performance drops, emphasizing its utility in evaluating distribution shifts in HAR data.Deep learning (DL)-based Human Activity Recognition (HAR) using wearable inertial measurement unit (IMU) sensors can revolutionize continuous health monitoring and early disease prediction. However, most DL HAR models are untested in their robustness to real-world variability, as they are trained on limited lab-controlled data. In this study, we isolated and analyzed the effects of the subject, device, position, and orientation variabilities on DL HAR models using the HARVAR and REALDISP datasets. The Maximum Mean Discrepancy (MMD) was used to quantify shifts in the data distribution caused by these variabilities, and the relationship between the distribution shifts and model performance was drawn. Our HARVAR results show that different types of variability significantly degraded the DL model performance, with an inverse relationship between the data distribution shifts and performance. The compounding effect of multiple variabilities studied using REALDISP further underscores the challenges of generalizing DL HAR models to real-world conditions. Analyzing these impacts highlights the need for more robust models that generalize effectively to real-world settings. The MMD proved valuable for explaining the performance drops, emphasizing its utility in evaluating distribution shifts in HAR data. |
Audience | Academic |
Author | Roggen, Daniel Lago, Paula Khaked, Azhar Ali Oishi, Nobuyuki |
AuthorAffiliation | 1 Department of Electrical and Computer Engineering, Concordia University, Montreal, QC H3G 1M8, Canada 2 School of Engineering and Informatics, University of Sussex, Brighton BN1 9PS, UK daniel.roggen@ieee.org (D.R.) |
AuthorAffiliation_xml | – name: 1 Department of Electrical and Computer Engineering, Concordia University, Montreal, QC H3G 1M8, Canada – name: 2 School of Engineering and Informatics, University of Sussex, Brighton BN1 9PS, UK daniel.roggen@ieee.org (D.R.) |
Author_xml | – sequence: 1 givenname: Azhar Ali orcidid: 0009-0004-8889-0913 surname: Khaked fullname: Khaked, Azhar Ali – sequence: 2 givenname: Nobuyuki orcidid: 0000-0002-9809-4011 surname: Oishi fullname: Oishi, Nobuyuki – sequence: 3 givenname: Daniel orcidid: 0000-0001-8033-6417 surname: Roggen fullname: Roggen, Daniel – sequence: 4 givenname: Paula orcidid: 0000-0001-5290-6486 surname: Lago fullname: Lago, Paula |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39860799$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkktv3CAURq0qVfNoF_0DFVI37WLSa7Ax7qay0kdGmqpS-tgiwBcPIw9MwVMp_75MnI6SigVwfXTgw_e8OPHBY1G8LOGSsRbeJVoDhYrBk-KsrGi1EJTCyYP1aXGe0gaAMsbEs-KUtYJD07ZnhV568n3t7ESU70ne_FLRKW_wPelSwpScH8i0RnIT9D5NPldIsOS6uyEfEXdkhSr6A_M19Dgm0g3K-TTNGu1GN90-L55aNSZ8cT9fFD8_f_pxdb1YffuyvOpWC1PxdlpoLnRrrdEaVWUU1zVyDT21XFtKbVkbWnMjSpZjtH0L1qhG9FwrpjQgQ3ZRLGdvH9RG7qLbqngrg3LyrhDiIFWcnBlRUjCoKTZaAFZgtdCqRIuqMXWjEZvs-jC7dnu9xd6gn6IaH0kff_FuLYfwR5Zlw9saymx4c2-I4fce0yS3LhkcR-Ux7JNkZd0KYIxXGX39H7oJ--jzW91RnAIHnqnLmRpUTuC8Dflgk0ePW2dyQ1iX651glAuo6kOGVw8zHC__7-dn4O0MmBhSimiPSAny0Fjy2FjsL1BSv5s |
Cites_doi | 10.1145/2948963.2948967 10.1145/3494672 10.1007/978-3-031-46452-2_17 10.1007/s12652-021-03465-6 10.3390/s23135845 10.1145/3550299 10.7551/mitpress/9780262017091.001.0001 10.1145/3544794.3558467 10.1186/s40537-014-0007-7 10.1007/s10015-017-0422-x 10.3390/s16010115 10.1145/3448083 10.1109/TKDE.2009.191 10.1007/978-3-030-96068-1_1 10.1145/2370216.2370437 10.1109/IST48021.2019.9010115 10.1109/RTEICT42901.2018.9012507 10.1109/JSEN.2021.3069927 10.1109/IJCNN.2016.7727224 10.1145/3594739.3610742 10.1145/3460421.3480419 10.3390/s140609995 10.1145/2914920.2940337 10.23919/Eusipco47968.2020.9287327 10.1145/3341163.3347716 10.1109/SYSCON.2019.8836789 10.1007/978-3-030-51070-1_4 10.3390/s22041476 10.3390/ani13203276 10.3390/s17081838 10.1007/s11042-023-14492-0 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2025 by the authors. 2025 |
Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2025 by the authors. 2025 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/s25020430 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE MEDLINE - Academic Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_20ceb2e7b80e40fb8ba1efea7c57bee7 PMC11769501 A832680457 39860799 10_3390_s25020430 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Concordia Startup grantid: 300010133 |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M CGR CUY CVF ECM EIF NPM PMFND 3V. 7XB 8FK AZQEC DWQXO K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c469t-b68b9ffcbbea4ca6b5e6b0d2f6bf22f15c256c8130029d90fca78d6ba3ab0e3e3 |
IEDL.DBID | M48 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:28:07 EDT 2025 Thu Aug 21 18:40:35 EDT 2025 Fri Sep 05 12:40:18 EDT 2025 Fri Jul 25 22:25:31 EDT 2025 Tue Jun 10 21:01:05 EDT 2025 Tue May 06 01:31:52 EDT 2025 Tue Jul 01 02:10:09 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | deep learning real world variability model robustness evaluation data heterogeneity human activity recognition distribution shift wearable sensors |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c469t-b68b9ffcbbea4ca6b5e6b0d2f6bf22f15c256c8130029d90fca78d6ba3ab0e3e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-5290-6486 0000-0001-8033-6417 0000-0002-9809-4011 0009-0004-8889-0913 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s25020430 |
PMID | 39860799 |
PQID | 3159620606 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_20ceb2e7b80e40fb8ba1efea7c57bee7 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11769501 proquest_miscellaneous_3159803364 proquest_journals_3159620606 gale_infotracacademiconefile_A832680457 pubmed_primary_39860799 crossref_primary_10_3390_s25020430 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-01-01 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2025 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Haresamudram (ref_43) 2022; 6 Gupta (ref_4) 2021; 1 Jimale (ref_15) 2023; 14 ref_14 ref_36 ref_13 ref_35 ref_12 ref_33 ref_10 ref_31 Abedin (ref_37) 2021; 5 ref_30 Najafabadi (ref_7) 2015; 2 ref_17 Inoue (ref_32) 2018; 23 ref_39 ref_16 Taori (ref_24) 2020; 33 ref_38 Ramanujam (ref_11) 2021; 21 Hong (ref_42) 2024; 8 Li (ref_9) 2010; 10 Gretton (ref_20) 2012; 13 ref_25 Pessach (ref_19) 2022; 55 ref_23 ref_22 ref_21 Mekruksavanich (ref_2) 2022; 13 ref_40 ref_1 Kumar (ref_34) 2023; 82 ref_3 Banos (ref_41) 2014; 14 ref_29 ref_28 ref_27 ref_26 ref_8 ref_5 Pan (ref_18) 2009; 22 ref_6 |
References_xml | – ident: ref_25 doi: 10.1145/2948963.2948967 – volume: 55 start-page: 1 year: 2022 ident: ref_19 article-title: A review on fairness in machine learning publication-title: Acm Comput. Surv. (Csur) doi: 10.1145/3494672 – volume: 13 start-page: 132 year: 2022 ident: ref_2 article-title: Multimodal wearable sensing for sport-related activity recognition using deep learning networks publication-title: J. Adv. Inf. Technol. – ident: ref_3 doi: 10.1007/978-3-031-46452-2_17 – volume: 14 start-page: 3261 year: 2023 ident: ref_15 article-title: Subject variability in sensor-based activity recognition publication-title: J. Ambient. Intell. Humaniz. Comput. doi: 10.1007/s12652-021-03465-6 – ident: ref_27 doi: 10.3390/s23135845 – volume: 6 start-page: 1 year: 2022 ident: ref_43 article-title: Assessing the state of self-supervised human activity recognition using wearables publication-title: Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. doi: 10.1145/3550299 – ident: ref_16 doi: 10.7551/mitpress/9780262017091.001.0001 – volume: 33 start-page: 18583 year: 2020 ident: ref_24 article-title: Measuring Robustness to Natural Distribution Shifts in Image Classification publication-title: Adv. Neural Inf. Process. Syst. – ident: ref_36 doi: 10.1145/3544794.3558467 – volume: 10 start-page: 1x1 year: 2010 ident: ref_9 article-title: Automatic musical pattern feature extraction using convolutional neural network publication-title: Genre – ident: ref_39 – volume: 2 start-page: 1 year: 2015 ident: ref_7 article-title: Deep learning applications and challenges in big data analytics publication-title: J. Big Data doi: 10.1186/s40537-014-0007-7 – volume: 23 start-page: 173 year: 2018 ident: ref_32 article-title: Deep recurrent neural network for mobile human activity recognition with high throughput publication-title: Artif. Life Robot. doi: 10.1007/s10015-017-0422-x – ident: ref_35 doi: 10.3390/s16010115 – volume: 5 start-page: 1 year: 2021 ident: ref_37 article-title: Attend and Discriminate: Beyond the State-of-the-Art for Human Activity Recognition Using Wearable Sensors publication-title: Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. doi: 10.1145/3448083 – volume: 22 start-page: 1345 year: 2009 ident: ref_18 article-title: A survey on transfer learning publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2009.191 – ident: ref_1 doi: 10.1007/978-3-030-96068-1_1 – ident: ref_40 doi: 10.1145/2370216.2370437 – volume: 1 start-page: 100046 year: 2021 ident: ref_4 article-title: Deep learning based human activity recognition (HAR) using wearable sensor data publication-title: Int. J. Inf. Manag. Data Insights – ident: ref_6 doi: 10.1109/IST48021.2019.9010115 – ident: ref_31 – ident: ref_8 doi: 10.1109/RTEICT42901.2018.9012507 – volume: 21 start-page: 13029 year: 2021 ident: ref_11 article-title: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2021.3069927 – ident: ref_33 doi: 10.1109/IJCNN.2016.7727224 – ident: ref_12 – ident: ref_28 doi: 10.1145/3594739.3610742 – ident: ref_21 doi: 10.1145/3460421.3480419 – volume: 14 start-page: 9995 year: 2014 ident: ref_41 article-title: Dealing with the effects of sensor displacement in wearable activity recognition publication-title: Sensors doi: 10.3390/s140609995 – ident: ref_14 doi: 10.1145/2914920.2940337 – ident: ref_23 doi: 10.23919/Eusipco47968.2020.9287327 – volume: 13 start-page: 723 year: 2012 ident: ref_20 article-title: A kernel two-sample test publication-title: J. Mach. Learn. Res. – ident: ref_26 doi: 10.1145/3341163.3347716 – ident: ref_5 doi: 10.1109/SYSCON.2019.8836789 – ident: ref_30 doi: 10.1007/978-3-030-51070-1_4 – ident: ref_38 – ident: ref_17 – ident: ref_10 doi: 10.3390/s22041476 – ident: ref_22 – ident: ref_29 doi: 10.3390/ani13203276 – volume: 8 start-page: 1 year: 2024 ident: ref_42 article-title: CrossHAR: Generalizing Cross-dataset Human Activity Recognition via Hierarchical Self-Supervised Pretraining publication-title: Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. – ident: ref_13 doi: 10.3390/s17081838 – volume: 82 start-page: 30435 year: 2023 ident: ref_34 article-title: Deep-HAR: An ensemble deep learning model for recognizing the simple, complex, and heterogeneous human activities publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-023-14492-0 |
SSID | ssj0023338 |
Score | 2.442913 |
Snippet | Deep learning (DL)-based Human Activity Recognition (HAR) using wearable inertial measurement unit (IMU) sensors can revolutionize continuous health monitoring... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | 430 |
SubjectTerms | Accuracy Automation Classification data heterogeneity Datasets Deep Learning distribution shift Human Activities human activity recognition Humans Machine learning Measuring instruments Monitoring, Physiologic - methods Neural networks Performance evaluation real world variability Sensors Smartphones Smartwatches User behavior Wearable computers Wearable Electronic Devices wearable sensors |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NbxMxELVQT3BAtOVjoUUGIXFa4V1nvTa3AK0CEhwKRb1ZHu-4jYQ2Fdkc-u8Z25soKw5cOCa2Imfejmfejv2GsTdJgywoKA2F4zIW3kqo0JRSK2dQyTaEeMH56ze1uJx9uWqu9lp9xTNhWR44G47IuSfyhy1ogTMRQIOrMKBrfdMCYrpHTjFvS6ZGqiWJeWUdIUmk_t2aAn28BCom0SeJ9P-9Fe_Fouk5yb3Ac_6IPRwzRj7PKz1k97A_Yg_2dASPGXzu-febZRi46ztOH34SA45wvue5qEuzOGV6_GIFm_UQdze-Cnwxv-CfEG_5KLJ6zWNntF9rPr92S0ob88-k07N3j9nl-dmPj4tybJ5QemK8QwlKgwnBA6CbeaegQQWiqwmXUNehajwlO17HalZtOiOCd63uFDjpQKBE-YQd9KsenzHeqVSe9iFQrtghQCdj2kPuT2EvKFmw11uj2tuskWGJW0TL253lC_Yhmns3Icpapy8IbDuCbf8FdsHeRrBsdD5CxLvxDgGtM8pY2TntT0pTlkozT7Z42tEr11ZWsdeQIM5WsFe7YfKnWCRxPa42eY4WUqpZwZ5m-HdrlkYr0RpTMD15MCZ_ajrSL2-SZndVtco0onr-P8zwgt2vYxvi9CbohB0Mvzd4SrnRAC-TG_wBzHwQNw priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwELVge4ED4ruhLTIIiVNUJ944NpdqS1stSFRooai3yHbs7UooWZrsof--M4k3bITEMbEVOTP2zBuP_YaQDx0HmRcmVuCOY0y8xSZxKuZSaOUEz73HC87fLsX8avr1OrsOG25NOFa5tYmdoS5ri3vkxzzBOjEM8PbJ-k-MVaMwuxpKaDwke2CCZTYhe6fnl98XQ8jFIQLr-YQ4BPfHDTh8vAzKRl6oI-v_1yTv-KTxeckdB3TxlDwJyJHOelU_Iw9c9Zw83uETfEHMl4r-uFn5luqqpPDwCyJhVOsn2id3oRcFxEcXtdk0LVo5Wns6ny3omXNrGshWlxQrpP1u6GypVwAf-890p2jvXpKri_Ofn-dxKKIQW4h829gIaZT31hinp1YLkzlhWJmCfnya-iSzAHqsxKxWqkrFvNW5LIXRXBvmuOOvyKSqK7dPaCm6NLX1HjBj6YwpOcIfMAPg_rzgEXm_FWqx7rkyCogxUPLFIPmInKK4hw5Ib929qG-XRVgtRcosRPwuN5K5KfNGGp0473Rus9w4l0fkIyqrwEUIGrE63CWAcSKdVTEDOyUkoFXoebjVZxFWZ1P8nUsReTc0w7rCZImuXL3p-0jGuZhG5HWv_mHMXEnBcqUiIkcTY_RT45ZqddNxdydJLlTGkjf_H9cBeZRioeFur-eQTNrbjTsC9NOat2GK3wOS1gbI priority: 102 providerName: ProQuest |
Title | In Shift and In Variance: Assessing the Robustness of HAR Deep Learning Models Against Variability |
URI | https://www.ncbi.nlm.nih.gov/pubmed/39860799 https://www.proquest.com/docview/3159620606 https://www.proquest.com/docview/3159803364 https://pubmed.ncbi.nlm.nih.gov/PMC11769501 https://doaj.org/article/20ceb2e7b80e40fb8ba1efea7c57bee7 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELfG9gIPiO8FRmUQEk8BJ04cGwmhDlYK0iZUKOpbZCd2V2lKRptK7L_nzkmjRvDAS6TETuTch-_OZ_-OkFceg8wJEyowxyEm3kITWRVyKbSygmfO4QHn8wsxnSdfF-nigOxqbHYE3PwztMN6UvP11Zvfv24-gMK_x4gTQva3GzDjeMQTIvcjMEgChfs86ZMJMee-oDWe6QrBHrIWYGj46sAsefT-v-foPSM13EC5Z5Em98jdzpWk45b398mBrR6QO3sAgw-J-VLR75cr11BdlRRufkJojHx-R9tsL_Si4ALSWW22mwanPVo7Oh3P6Cdrr2mHvrqkWDLtakPHS70Cf7L9jN9We_OIzCdnPz5Ow66qQlhAKNyERkijnCuMsToptDCpFYaVMTDMxbGL0gK8oEJimitWpWKu0JkshdFcG2a55Y_JYVVX9pjQUvi8deEcOJGlNabk6A_BvAD20AkekJc7oubXLXhGDkEHUj7vKR-QUyR33wHxrv2Der3MO_XJY1ZYE9vMSGYT5ow0OrLO6qxIM2NtFpDXyKwc5QQ4UujucAGME_Gt8jFMXEKC-wo9T3b8zHfSlvMIixAxCOYC8qJvBkXD7ImubL1t-0jGuUgC8qRlfz9mrqRgmVIBkQPBGPzUsKVaXXow7yjKhEpZ9PR_aPWM3I6x_rBfAjohh816a5-DU9SYEbmVLTK4ysnnETk6Pbv4Nhv5BYaRV4Y_PrIOZg |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGeAAeEN9kDDAIxFM0J24dGwmhwigt-3gY27S3YDvnrtKUlLUV2j_F38hdkpZWSLztsbEVuXfnu9_l7N8x9qbmIAvKxQbDcUyFt9glYGKplTWgZBYCXXA-OFSDk863s-7ZBvu9uAtDxyoXPrF21EXl6Rv5jkyoT4xAvP1x8jOmrlFUXV200GjMYg-ufmHKNv0w3EX9vk3T_pfjz4O47SoQe0wFZ7FT2pkQvHNgO94q1wXlRJHigkOahqTrEQV4TWWe1BRGBG8zXShnpXUCJEh87w12syOlIa5-3f-6TPAk5nsNexEOip0pwgu6eirWYl7dGuDfALASAddPZ66Eu_49drfFqbzXGNZ9tgHlA3Znhb3wIXPDkn8_H4cZt2XB8ccp5t1kRO95U0rGWRzxJT-q3Hw6I5_Kq8AHvSO-CzDhLbXriFM_tosp743sGMFq85r6zO7VI3ZyLcJ9zDbLqoSnjBeqLor7EBChFuBcIQlsodPBYBuUjNjrhVDzScPMkWNGQ5LPl5KP2CcS93ICkWnXD6rLUd7uzTwVHlwKmdMCOiI47WwCAWzmu5kDyCL2jpSV05ZHjXjb3lzAdRJ5Vt5Dr6g0YmOcub3QZ976gmn-13Ij9mo5jLuYSjO2hGrezNFCStWJ2JNG_cs1S6OVyIyJmF4zjLU_tT5Sjs9rpvAkyZTpimTr_-t6yW4Njg_28_3h4d4zdjulFsf1V6Zttjm7nMNzxF0z96I2ds5-XPfu-gNuV0Ty |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTkLwgPgmMMAgEE9RnbhxbCSEOrqqZVBNhaG9Bduxu0ooKWsrtH-Nv45zPkorJN72mORkOXfnu9_57DuAV1UNMsd1KNEdhz7xFurIypAJrqTlLHXOX3D-POGj097Hs-RsD363d2H8scrWJlaGOi-N3yPvssj3iaGIt7uuORZxMhi-X_wMfQcpn2lt22nUKnJsL39h-LZ8Nx6grF_H8fDo64dR2HQYCA2GhatQc6Glc0Zrq3pGcZ1Yrmke4-RdHLsoMYgIjPApn1jmkjqjUpFzrZjS1DLLcNxrsJ-iVxQd2D88mpxMN-Eew-ivrmXEmKTdJYINfxGV7njAqlHAv-5gyx_untXccn7D23CrQa2kX6vZHdizxV24uVXL8B7ocUG-nM_diqgiJ_jwDaNwr1JvSZ1YRiqCaJNMS71erryFJaUjo_6UDKxdkKbQ64z47mw_lqQ_U3OErvUw1Qney_tweiXsfQCdoizsIyA5r1LkxjnEq7nVOmceeqEJQtfrOAvgZcvUbFHX6cgwvvGczzacD-DQs3tD4EtrVy_Ki1nWrNQspsbq2KZaUNujTgutIuusSk2SamvTAN54YWXeAKBEjGruMeA8fSmtrI82kgtEykh50MozayzDMvurxwG82HzGNe0TNaqw5bqmEZQx3gvgYS3-zZyZFJymUgYgdhRj56d2vxTz86pueBSlXCY0evz_eT2H67iysk_jyfETuBH7fsfVltMBdFYXa_sUQdhKP2u0ncD3q15gfwC620qN |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In+Shift+and+In+Variance%3A+Assessing+the+Robustness+of+HAR+Deep+Learning+Models+Against+Variability&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Khaked%2C+Azhar+Ali&rft.au=Oishi%2C+Nobuyuki&rft.au=Roggen%2C+Daniel&rft.au=Lago%2C+Paula&rft.date=2025-01-01&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=25&rft.issue=2&rft.spage=430&rft_id=info:doi/10.3390%2Fs25020430&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_s25020430 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |