In Shift and In Variance: Assessing the Robustness of HAR Deep Learning Models Against Variability

Deep learning (DL)-based Human Activity Recognition (HAR) using wearable inertial measurement unit (IMU) sensors can revolutionize continuous health monitoring and early disease prediction. However, most DL HAR models are untested in their robustness to real-world variability, as they are trained on...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 25; no. 2; p. 430
Main Authors Khaked, Azhar Ali, Oishi, Nobuyuki, Roggen, Daniel, Lago, Paula
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 01.01.2025
MDPI
Subjects
Online AccessGet full text
ISSN1424-8220
1424-8220
DOI10.3390/s25020430

Cover

Loading…
Abstract Deep learning (DL)-based Human Activity Recognition (HAR) using wearable inertial measurement unit (IMU) sensors can revolutionize continuous health monitoring and early disease prediction. However, most DL HAR models are untested in their robustness to real-world variability, as they are trained on limited lab-controlled data. In this study, we isolated and analyzed the effects of the subject, device, position, and orientation variabilities on DL HAR models using the HARVAR and REALDISP datasets. The Maximum Mean Discrepancy (MMD) was used to quantify shifts in the data distribution caused by these variabilities, and the relationship between the distribution shifts and model performance was drawn. Our HARVAR results show that different types of variability significantly degraded the DL model performance, with an inverse relationship between the data distribution shifts and performance. The compounding effect of multiple variabilities studied using REALDISP further underscores the challenges of generalizing DL HAR models to real-world conditions. Analyzing these impacts highlights the need for more robust models that generalize effectively to real-world settings. The MMD proved valuable for explaining the performance drops, emphasizing its utility in evaluating distribution shifts in HAR data.
AbstractList Deep learning (DL)-based Human Activity Recognition (HAR) using wearable inertial measurement unit (IMU) sensors can revolutionize continuous health monitoring and early disease prediction. However, most DL HAR models are untested in their robustness to real-world variability, as they are trained on limited lab-controlled data. In this study, we isolated and analyzed the effects of the subject, device, position, and orientation variabilities on DL HAR models using the HARVAR and REALDISP datasets. The Maximum Mean Discrepancy (MMD) was used to quantify shifts in the data distribution caused by these variabilities, and the relationship between the distribution shifts and model performance was drawn. Our HARVAR results show that different types of variability significantly degraded the DL model performance, with an inverse relationship between the data distribution shifts and performance. The compounding effect of multiple variabilities studied using REALDISP further underscores the challenges of generalizing DL HAR models to real-world conditions. Analyzing these impacts highlights the need for more robust models that generalize effectively to real-world settings. The MMD proved valuable for explaining the performance drops, emphasizing its utility in evaluating distribution shifts in HAR data.
Deep learning (DL)-based Human Activity Recognition (HAR) using wearable inertial measurement unit (IMU) sensors can revolutionize continuous health monitoring and early disease prediction. However, most DL HAR models are untested in their robustness to real-world variability, as they are trained on limited lab-controlled data. In this study, we isolated and analyzed the effects of the subject, device, position, and orientation variabilities on DL HAR models using the HARVAR and REALDISP datasets. The Maximum Mean Discrepancy (MMD) was used to quantify shifts in the data distribution caused by these variabilities, and the relationship between the distribution shifts and model performance was drawn. Our HARVAR results show that different types of variability significantly degraded the DL model performance, with an inverse relationship between the data distribution shifts and performance. The compounding effect of multiple variabilities studied using REALDISP further underscores the challenges of generalizing DL HAR models to real-world conditions. Analyzing these impacts highlights the need for more robust models that generalize effectively to real-world settings. The MMD proved valuable for explaining the performance drops, emphasizing its utility in evaluating distribution shifts in HAR data.Deep learning (DL)-based Human Activity Recognition (HAR) using wearable inertial measurement unit (IMU) sensors can revolutionize continuous health monitoring and early disease prediction. However, most DL HAR models are untested in their robustness to real-world variability, as they are trained on limited lab-controlled data. In this study, we isolated and analyzed the effects of the subject, device, position, and orientation variabilities on DL HAR models using the HARVAR and REALDISP datasets. The Maximum Mean Discrepancy (MMD) was used to quantify shifts in the data distribution caused by these variabilities, and the relationship between the distribution shifts and model performance was drawn. Our HARVAR results show that different types of variability significantly degraded the DL model performance, with an inverse relationship between the data distribution shifts and performance. The compounding effect of multiple variabilities studied using REALDISP further underscores the challenges of generalizing DL HAR models to real-world conditions. Analyzing these impacts highlights the need for more robust models that generalize effectively to real-world settings. The MMD proved valuable for explaining the performance drops, emphasizing its utility in evaluating distribution shifts in HAR data.
Audience Academic
Author Roggen, Daniel
Lago, Paula
Khaked, Azhar Ali
Oishi, Nobuyuki
AuthorAffiliation 1 Department of Electrical and Computer Engineering, Concordia University, Montreal, QC H3G 1M8, Canada
2 School of Engineering and Informatics, University of Sussex, Brighton BN1 9PS, UK daniel.roggen@ieee.org (D.R.)
AuthorAffiliation_xml – name: 1 Department of Electrical and Computer Engineering, Concordia University, Montreal, QC H3G 1M8, Canada
– name: 2 School of Engineering and Informatics, University of Sussex, Brighton BN1 9PS, UK daniel.roggen@ieee.org (D.R.)
Author_xml – sequence: 1
  givenname: Azhar Ali
  orcidid: 0009-0004-8889-0913
  surname: Khaked
  fullname: Khaked, Azhar Ali
– sequence: 2
  givenname: Nobuyuki
  orcidid: 0000-0002-9809-4011
  surname: Oishi
  fullname: Oishi, Nobuyuki
– sequence: 3
  givenname: Daniel
  orcidid: 0000-0001-8033-6417
  surname: Roggen
  fullname: Roggen, Daniel
– sequence: 4
  givenname: Paula
  orcidid: 0000-0001-5290-6486
  surname: Lago
  fullname: Lago, Paula
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39860799$$D View this record in MEDLINE/PubMed
BookMark eNpdkktv3CAURq0qVfNoF_0DFVI37WLSa7Ax7qay0kdGmqpS-tgiwBcPIw9MwVMp_75MnI6SigVwfXTgw_e8OPHBY1G8LOGSsRbeJVoDhYrBk-KsrGi1EJTCyYP1aXGe0gaAMsbEs-KUtYJD07ZnhV568n3t7ESU70ne_FLRKW_wPelSwpScH8i0RnIT9D5NPldIsOS6uyEfEXdkhSr6A_M19Dgm0g3K-TTNGu1GN90-L55aNSZ8cT9fFD8_f_pxdb1YffuyvOpWC1PxdlpoLnRrrdEaVWUU1zVyDT21XFtKbVkbWnMjSpZjtH0L1qhG9FwrpjQgQ3ZRLGdvH9RG7qLbqngrg3LyrhDiIFWcnBlRUjCoKTZaAFZgtdCqRIuqMXWjEZvs-jC7dnu9xd6gn6IaH0kff_FuLYfwR5Zlw9saymx4c2-I4fce0yS3LhkcR-Ux7JNkZd0KYIxXGX39H7oJ--jzW91RnAIHnqnLmRpUTuC8Dflgk0ePW2dyQ1iX651glAuo6kOGVw8zHC__7-dn4O0MmBhSimiPSAny0Fjy2FjsL1BSv5s
Cites_doi 10.1145/2948963.2948967
10.1145/3494672
10.1007/978-3-031-46452-2_17
10.1007/s12652-021-03465-6
10.3390/s23135845
10.1145/3550299
10.7551/mitpress/9780262017091.001.0001
10.1145/3544794.3558467
10.1186/s40537-014-0007-7
10.1007/s10015-017-0422-x
10.3390/s16010115
10.1145/3448083
10.1109/TKDE.2009.191
10.1007/978-3-030-96068-1_1
10.1145/2370216.2370437
10.1109/IST48021.2019.9010115
10.1109/RTEICT42901.2018.9012507
10.1109/JSEN.2021.3069927
10.1109/IJCNN.2016.7727224
10.1145/3594739.3610742
10.1145/3460421.3480419
10.3390/s140609995
10.1145/2914920.2940337
10.23919/Eusipco47968.2020.9287327
10.1145/3341163.3347716
10.1109/SYSCON.2019.8836789
10.1007/978-3-030-51070-1_4
10.3390/s22041476
10.3390/ani13203276
10.3390/s17081838
10.1007/s11042-023-14492-0
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2025 by the authors. 2025
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2025 by the authors. 2025
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s25020430
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE


MEDLINE - Academic
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_20ceb2e7b80e40fb8ba1efea7c57bee7
PMC11769501
A832680457
39860799
10_3390_s25020430
Genre Journal Article
GrantInformation_xml – fundername: Concordia Startup
  grantid: 300010133
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
CGR
CUY
CVF
ECM
EIF
NPM
PMFND
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c469t-b68b9ffcbbea4ca6b5e6b0d2f6bf22f15c256c8130029d90fca78d6ba3ab0e3e3
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 01:28:07 EDT 2025
Thu Aug 21 18:40:35 EDT 2025
Fri Sep 05 12:40:18 EDT 2025
Fri Jul 25 22:25:31 EDT 2025
Tue Jun 10 21:01:05 EDT 2025
Tue May 06 01:31:52 EDT 2025
Tue Jul 01 02:10:09 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords deep learning
real world variability
model robustness evaluation
data heterogeneity
human activity recognition
distribution shift
wearable sensors
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c469t-b68b9ffcbbea4ca6b5e6b0d2f6bf22f15c256c8130029d90fca78d6ba3ab0e3e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5290-6486
0000-0001-8033-6417
0000-0002-9809-4011
0009-0004-8889-0913
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s25020430
PMID 39860799
PQID 3159620606
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_20ceb2e7b80e40fb8ba1efea7c57bee7
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11769501
proquest_miscellaneous_3159803364
proquest_journals_3159620606
gale_infotracacademiconefile_A832680457
pubmed_primary_39860799
crossref_primary_10_3390_s25020430
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2025
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Haresamudram (ref_43) 2022; 6
Gupta (ref_4) 2021; 1
Jimale (ref_15) 2023; 14
ref_14
ref_36
ref_13
ref_35
ref_12
ref_33
ref_10
ref_31
Abedin (ref_37) 2021; 5
ref_30
Najafabadi (ref_7) 2015; 2
ref_17
Inoue (ref_32) 2018; 23
ref_39
ref_16
Taori (ref_24) 2020; 33
ref_38
Ramanujam (ref_11) 2021; 21
Hong (ref_42) 2024; 8
Li (ref_9) 2010; 10
Gretton (ref_20) 2012; 13
ref_25
Pessach (ref_19) 2022; 55
ref_23
ref_22
ref_21
Mekruksavanich (ref_2) 2022; 13
ref_40
ref_1
Kumar (ref_34) 2023; 82
ref_3
Banos (ref_41) 2014; 14
ref_29
ref_28
ref_27
ref_26
ref_8
ref_5
Pan (ref_18) 2009; 22
ref_6
References_xml – ident: ref_25
  doi: 10.1145/2948963.2948967
– volume: 55
  start-page: 1
  year: 2022
  ident: ref_19
  article-title: A review on fairness in machine learning
  publication-title: Acm Comput. Surv. (Csur)
  doi: 10.1145/3494672
– volume: 13
  start-page: 132
  year: 2022
  ident: ref_2
  article-title: Multimodal wearable sensing for sport-related activity recognition using deep learning networks
  publication-title: J. Adv. Inf. Technol.
– ident: ref_3
  doi: 10.1007/978-3-031-46452-2_17
– volume: 14
  start-page: 3261
  year: 2023
  ident: ref_15
  article-title: Subject variability in sensor-based activity recognition
  publication-title: J. Ambient. Intell. Humaniz. Comput.
  doi: 10.1007/s12652-021-03465-6
– ident: ref_27
  doi: 10.3390/s23135845
– volume: 6
  start-page: 1
  year: 2022
  ident: ref_43
  article-title: Assessing the state of self-supervised human activity recognition using wearables
  publication-title: Proc. ACM Interact. Mob. Wearable Ubiquitous Technol.
  doi: 10.1145/3550299
– ident: ref_16
  doi: 10.7551/mitpress/9780262017091.001.0001
– volume: 33
  start-page: 18583
  year: 2020
  ident: ref_24
  article-title: Measuring Robustness to Natural Distribution Shifts in Image Classification
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: ref_36
  doi: 10.1145/3544794.3558467
– volume: 10
  start-page: 1x1
  year: 2010
  ident: ref_9
  article-title: Automatic musical pattern feature extraction using convolutional neural network
  publication-title: Genre
– ident: ref_39
– volume: 2
  start-page: 1
  year: 2015
  ident: ref_7
  article-title: Deep learning applications and challenges in big data analytics
  publication-title: J. Big Data
  doi: 10.1186/s40537-014-0007-7
– volume: 23
  start-page: 173
  year: 2018
  ident: ref_32
  article-title: Deep recurrent neural network for mobile human activity recognition with high throughput
  publication-title: Artif. Life Robot.
  doi: 10.1007/s10015-017-0422-x
– ident: ref_35
  doi: 10.3390/s16010115
– volume: 5
  start-page: 1
  year: 2021
  ident: ref_37
  article-title: Attend and Discriminate: Beyond the State-of-the-Art for Human Activity Recognition Using Wearable Sensors
  publication-title: Proc. ACM Interact. Mob. Wearable Ubiquitous Technol.
  doi: 10.1145/3448083
– volume: 22
  start-page: 1345
  year: 2009
  ident: ref_18
  article-title: A survey on transfer learning
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2009.191
– ident: ref_1
  doi: 10.1007/978-3-030-96068-1_1
– ident: ref_40
  doi: 10.1145/2370216.2370437
– volume: 1
  start-page: 100046
  year: 2021
  ident: ref_4
  article-title: Deep learning based human activity recognition (HAR) using wearable sensor data
  publication-title: Int. J. Inf. Manag. Data Insights
– ident: ref_6
  doi: 10.1109/IST48021.2019.9010115
– ident: ref_31
– ident: ref_8
  doi: 10.1109/RTEICT42901.2018.9012507
– volume: 21
  start-page: 13029
  year: 2021
  ident: ref_11
  article-title: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2021.3069927
– ident: ref_33
  doi: 10.1109/IJCNN.2016.7727224
– ident: ref_12
– ident: ref_28
  doi: 10.1145/3594739.3610742
– ident: ref_21
  doi: 10.1145/3460421.3480419
– volume: 14
  start-page: 9995
  year: 2014
  ident: ref_41
  article-title: Dealing with the effects of sensor displacement in wearable activity recognition
  publication-title: Sensors
  doi: 10.3390/s140609995
– ident: ref_14
  doi: 10.1145/2914920.2940337
– ident: ref_23
  doi: 10.23919/Eusipco47968.2020.9287327
– volume: 13
  start-page: 723
  year: 2012
  ident: ref_20
  article-title: A kernel two-sample test
  publication-title: J. Mach. Learn. Res.
– ident: ref_26
  doi: 10.1145/3341163.3347716
– ident: ref_5
  doi: 10.1109/SYSCON.2019.8836789
– ident: ref_30
  doi: 10.1007/978-3-030-51070-1_4
– ident: ref_38
– ident: ref_17
– ident: ref_10
  doi: 10.3390/s22041476
– ident: ref_22
– ident: ref_29
  doi: 10.3390/ani13203276
– volume: 8
  start-page: 1
  year: 2024
  ident: ref_42
  article-title: CrossHAR: Generalizing Cross-dataset Human Activity Recognition via Hierarchical Self-Supervised Pretraining
  publication-title: Proc. ACM Interact. Mob. Wearable Ubiquitous Technol.
– ident: ref_13
  doi: 10.3390/s17081838
– volume: 82
  start-page: 30435
  year: 2023
  ident: ref_34
  article-title: Deep-HAR: An ensemble deep learning model for recognizing the simple, complex, and heterogeneous human activities
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-023-14492-0
SSID ssj0023338
Score 2.442913
Snippet Deep learning (DL)-based Human Activity Recognition (HAR) using wearable inertial measurement unit (IMU) sensors can revolutionize continuous health monitoring...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 430
SubjectTerms Accuracy
Automation
Classification
data heterogeneity
Datasets
Deep Learning
distribution shift
Human Activities
human activity recognition
Humans
Machine learning
Measuring instruments
Monitoring, Physiologic - methods
Neural networks
Performance evaluation
real world variability
Sensors
Smartphones
Smartwatches
User behavior
Wearable computers
Wearable Electronic Devices
wearable sensors
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NbxMxELVQT3BAtOVjoUUGIXFa4V1nvTa3AK0CEhwKRb1ZHu-4jYQ2Fdkc-u8Z25soKw5cOCa2Imfejmfejv2GsTdJgywoKA2F4zIW3kqo0JRSK2dQyTaEeMH56ze1uJx9uWqu9lp9xTNhWR44G47IuSfyhy1ogTMRQIOrMKBrfdMCYrpHTjFvS6ZGqiWJeWUdIUmk_t2aAn28BCom0SeJ9P-9Fe_Fouk5yb3Ac_6IPRwzRj7PKz1k97A_Yg_2dASPGXzu-febZRi46ztOH34SA45wvue5qEuzOGV6_GIFm_UQdze-Cnwxv-CfEG_5KLJ6zWNntF9rPr92S0ob88-k07N3j9nl-dmPj4tybJ5QemK8QwlKgwnBA6CbeaegQQWiqwmXUNehajwlO17HalZtOiOCd63uFDjpQKBE-YQd9KsenzHeqVSe9iFQrtghQCdj2kPuT2EvKFmw11uj2tuskWGJW0TL253lC_Yhmns3Icpapy8IbDuCbf8FdsHeRrBsdD5CxLvxDgGtM8pY2TntT0pTlkozT7Z42tEr11ZWsdeQIM5WsFe7YfKnWCRxPa42eY4WUqpZwZ5m-HdrlkYr0RpTMD15MCZ_ajrSL2-SZndVtco0onr-P8zwgt2vYxvi9CbohB0Mvzd4SrnRAC-TG_wBzHwQNw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwELVge4ED4ruhLTIIiVNUJ944NpdqS1stSFRooai3yHbs7UooWZrsof--M4k3bITEMbEVOTP2zBuP_YaQDx0HmRcmVuCOY0y8xSZxKuZSaOUEz73HC87fLsX8avr1OrsOG25NOFa5tYmdoS5ri3vkxzzBOjEM8PbJ-k-MVaMwuxpKaDwke2CCZTYhe6fnl98XQ8jFIQLr-YQ4BPfHDTh8vAzKRl6oI-v_1yTv-KTxeckdB3TxlDwJyJHOelU_Iw9c9Zw83uETfEHMl4r-uFn5luqqpPDwCyJhVOsn2id3oRcFxEcXtdk0LVo5Wns6ny3omXNrGshWlxQrpP1u6GypVwAf-890p2jvXpKri_Ofn-dxKKIQW4h829gIaZT31hinp1YLkzlhWJmCfnya-iSzAHqsxKxWqkrFvNW5LIXRXBvmuOOvyKSqK7dPaCm6NLX1HjBj6YwpOcIfMAPg_rzgEXm_FWqx7rkyCogxUPLFIPmInKK4hw5Ib929qG-XRVgtRcosRPwuN5K5KfNGGp0473Rus9w4l0fkIyqrwEUIGrE63CWAcSKdVTEDOyUkoFXoebjVZxFWZ1P8nUsReTc0w7rCZImuXL3p-0jGuZhG5HWv_mHMXEnBcqUiIkcTY_RT45ZqddNxdydJLlTGkjf_H9cBeZRioeFur-eQTNrbjTsC9NOat2GK3wOS1gbI
  priority: 102
  providerName: ProQuest
Title In Shift and In Variance: Assessing the Robustness of HAR Deep Learning Models Against Variability
URI https://www.ncbi.nlm.nih.gov/pubmed/39860799
https://www.proquest.com/docview/3159620606
https://www.proquest.com/docview/3159803364
https://pubmed.ncbi.nlm.nih.gov/PMC11769501
https://doaj.org/article/20ceb2e7b80e40fb8ba1efea7c57bee7
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELfG9gIPiO8FRmUQEk8BJ04cGwmhDlYK0iZUKOpbZCd2V2lKRptK7L_nzkmjRvDAS6TETuTch-_OZ_-OkFceg8wJEyowxyEm3kITWRVyKbSygmfO4QHn8wsxnSdfF-nigOxqbHYE3PwztMN6UvP11Zvfv24-gMK_x4gTQva3GzDjeMQTIvcjMEgChfs86ZMJMee-oDWe6QrBHrIWYGj46sAsefT-v-foPSM13EC5Z5Em98jdzpWk45b398mBrR6QO3sAgw-J-VLR75cr11BdlRRufkJojHx-R9tsL_Si4ALSWW22mwanPVo7Oh3P6Cdrr2mHvrqkWDLtakPHS70Cf7L9jN9We_OIzCdnPz5Ow66qQlhAKNyERkijnCuMsToptDCpFYaVMTDMxbGL0gK8oEJimitWpWKu0JkshdFcG2a55Y_JYVVX9pjQUvi8deEcOJGlNabk6A_BvAD20AkekJc7oubXLXhGDkEHUj7vKR-QUyR33wHxrv2Der3MO_XJY1ZYE9vMSGYT5ow0OrLO6qxIM2NtFpDXyKwc5QQ4UujucAGME_Gt8jFMXEKC-wo9T3b8zHfSlvMIixAxCOYC8qJvBkXD7ImubL1t-0jGuUgC8qRlfz9mrqRgmVIBkQPBGPzUsKVaXXow7yjKhEpZ9PR_aPWM3I6x_rBfAjohh816a5-DU9SYEbmVLTK4ysnnETk6Pbv4Nhv5BYaRV4Y_PrIOZg
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGeAAeEN9kDDAIxFM0J24dGwmhwigt-3gY27S3YDvnrtKUlLUV2j_F38hdkpZWSLztsbEVuXfnu9_l7N8x9qbmIAvKxQbDcUyFt9glYGKplTWgZBYCXXA-OFSDk863s-7ZBvu9uAtDxyoXPrF21EXl6Rv5jkyoT4xAvP1x8jOmrlFUXV200GjMYg-ufmHKNv0w3EX9vk3T_pfjz4O47SoQe0wFZ7FT2pkQvHNgO94q1wXlRJHigkOahqTrEQV4TWWe1BRGBG8zXShnpXUCJEh87w12syOlIa5-3f-6TPAk5nsNexEOip0pwgu6eirWYl7dGuDfALASAddPZ66Eu_49drfFqbzXGNZ9tgHlA3Znhb3wIXPDkn8_H4cZt2XB8ccp5t1kRO95U0rGWRzxJT-q3Hw6I5_Kq8AHvSO-CzDhLbXriFM_tosp743sGMFq85r6zO7VI3ZyLcJ9zDbLqoSnjBeqLor7EBChFuBcIQlsodPBYBuUjNjrhVDzScPMkWNGQ5LPl5KP2CcS93ICkWnXD6rLUd7uzTwVHlwKmdMCOiI47WwCAWzmu5kDyCL2jpSV05ZHjXjb3lzAdRJ5Vt5Dr6g0YmOcub3QZ976gmn-13Ij9mo5jLuYSjO2hGrezNFCStWJ2JNG_cs1S6OVyIyJmF4zjLU_tT5Sjs9rpvAkyZTpimTr_-t6yW4Njg_28_3h4d4zdjulFsf1V6Zttjm7nMNzxF0z96I2ds5-XPfu-gNuV0Ty
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTkLwgPgmMMAgEE9RnbhxbCSEOrqqZVBNhaG9Bduxu0ooKWsrtH-Nv45zPkorJN72mORkOXfnu9_57DuAV1UNMsd1KNEdhz7xFurIypAJrqTlLHXOX3D-POGj097Hs-RsD363d2H8scrWJlaGOi-N3yPvssj3iaGIt7uuORZxMhi-X_wMfQcpn2lt22nUKnJsL39h-LZ8Nx6grF_H8fDo64dR2HQYCA2GhatQc6Glc0Zrq3pGcZ1Yrmke4-RdHLsoMYgIjPApn1jmkjqjUpFzrZjS1DLLcNxrsJ-iVxQd2D88mpxMN-Eew-ivrmXEmKTdJYINfxGV7njAqlHAv-5gyx_untXccn7D23CrQa2kX6vZHdizxV24uVXL8B7ocUG-nM_diqgiJ_jwDaNwr1JvSZ1YRiqCaJNMS71erryFJaUjo_6UDKxdkKbQ64z47mw_lqQ_U3OErvUw1Qney_tweiXsfQCdoizsIyA5r1LkxjnEq7nVOmceeqEJQtfrOAvgZcvUbFHX6cgwvvGczzacD-DQs3tD4EtrVy_Ki1nWrNQspsbq2KZaUNujTgutIuusSk2SamvTAN54YWXeAKBEjGruMeA8fSmtrI82kgtEykh50MozayzDMvurxwG82HzGNe0TNaqw5bqmEZQx3gvgYS3-zZyZFJymUgYgdhRj56d2vxTz86pueBSlXCY0evz_eT2H67iysk_jyfETuBH7fsfVltMBdFYXa_sUQdhKP2u0ncD3q15gfwC620qN
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In+Shift+and+In+Variance%3A+Assessing+the+Robustness+of+HAR+Deep+Learning+Models+Against+Variability&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Khaked%2C+Azhar+Ali&rft.au=Oishi%2C+Nobuyuki&rft.au=Roggen%2C+Daniel&rft.au=Lago%2C+Paula&rft.date=2025-01-01&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=25&rft.issue=2&rft.spage=430&rft_id=info:doi/10.3390%2Fs25020430&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_s25020430
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon