Semi-Supervised Cross-Subject Emotion Recognition Based on Stacked Denoising Autoencoder Architecture Using a Fusion of Multi-Modal Physiological Signals
In recent decades, emotion recognition has received considerable attention. As more enthusiasm has shifted to the physiological pattern, a wide range of elaborate physiological emotion data features come up and are combined with various classifying models to detect one’s emotional states. To circumv...
Saved in:
Published in | Entropy (Basel, Switzerland) Vol. 24; no. 5; p. 577 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
20.04.2022
MDPI |
Subjects | |
Online Access | Get full text |
ISSN | 1099-4300 1099-4300 |
DOI | 10.3390/e24050577 |
Cover
Loading…
Abstract | In recent decades, emotion recognition has received considerable attention. As more enthusiasm has shifted to the physiological pattern, a wide range of elaborate physiological emotion data features come up and are combined with various classifying models to detect one’s emotional states. To circumvent the labor of artificially designing features, we propose to acquire affective and robust representations automatically through the Stacked Denoising Autoencoder (SDA) architecture with unsupervised pre-training, followed by supervised fine-tuning. In this paper, we compare the performances of different features and models through three binary classification tasks based on the Valence-Arousal-Dominance (VAD) affection model. Decision fusion and feature fusion of electroencephalogram (EEG) and peripheral signals are performed on hand-engineered features; data-level fusion is performed on deep-learning methods. It turns out that the fusion data perform better than the two modalities. To take advantage of deep-learning algorithms, we augment the original data and feed it directly into our training model. We use two deep architectures and another generative stacked semi-supervised architecture as references for comparison to test the method’s practical effects. The results reveal that our scheme slightly outperforms the other three deep feature extractors and surpasses the state-of-the-art of hand-engineered features. |
---|---|
AbstractList | In recent decades, emotion recognition has received considerable attention. As more enthusiasm has shifted to the physiological pattern, a wide range of elaborate physiological emotion data features come up and are combined with various classifying models to detect one’s emotional states. To circumvent the labor of artificially designing features, we propose to acquire affective and robust representations automatically through the Stacked Denoising Autoencoder (SDA) architecture with unsupervised pre-training, followed by supervised fine-tuning. In this paper, we compare the performances of different features and models through three binary classification tasks based on the Valence-Arousal-Dominance (VAD) affection model. Decision fusion and feature fusion of electroencephalogram (EEG) and peripheral signals are performed on hand-engineered features; data-level fusion is performed on deep-learning methods. It turns out that the fusion data perform better than the two modalities. To take advantage of deep-learning algorithms, we augment the original data and feed it directly into our training model. We use two deep architectures and another generative stacked semi-supervised architecture as references for comparison to test the method’s practical effects. The results reveal that our scheme slightly outperforms the other three deep feature extractors and surpasses the state-of-the-art of hand-engineered features. In recent decades, emotion recognition has received considerable attention. As more enthusiasm has shifted to the physiological pattern, a wide range of elaborate physiological emotion data features come up and are combined with various classifying models to detect one's emotional states. To circumvent the labor of artificially designing features, we propose to acquire affective and robust representations automatically through the Stacked Denoising Autoencoder (SDA) architecture with unsupervised pre-training, followed by supervised fine-tuning. In this paper, we compare the performances of different features and models through three binary classification tasks based on the Valence-Arousal-Dominance (VAD) affection model. Decision fusion and feature fusion of electroencephalogram (EEG) and peripheral signals are performed on hand-engineered features; data-level fusion is performed on deep-learning methods. It turns out that the fusion data perform better than the two modalities. To take advantage of deep-learning algorithms, we augment the original data and feed it directly into our training model. We use two deep architectures and another generative stacked semi-supervised architecture as references for comparison to test the method's practical effects. The results reveal that our scheme slightly outperforms the other three deep feature extractors and surpasses the state-of-the-art of hand-engineered features.In recent decades, emotion recognition has received considerable attention. As more enthusiasm has shifted to the physiological pattern, a wide range of elaborate physiological emotion data features come up and are combined with various classifying models to detect one's emotional states. To circumvent the labor of artificially designing features, we propose to acquire affective and robust representations automatically through the Stacked Denoising Autoencoder (SDA) architecture with unsupervised pre-training, followed by supervised fine-tuning. In this paper, we compare the performances of different features and models through three binary classification tasks based on the Valence-Arousal-Dominance (VAD) affection model. Decision fusion and feature fusion of electroencephalogram (EEG) and peripheral signals are performed on hand-engineered features; data-level fusion is performed on deep-learning methods. It turns out that the fusion data perform better than the two modalities. To take advantage of deep-learning algorithms, we augment the original data and feed it directly into our training model. We use two deep architectures and another generative stacked semi-supervised architecture as references for comparison to test the method's practical effects. The results reveal that our scheme slightly outperforms the other three deep feature extractors and surpasses the state-of-the-art of hand-engineered features. |
Author | Luo, Junhai Tian, Yuxin Wu, Man Chen, Yu Yu, Hang |
AuthorAffiliation | School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu 610056, China; 202021011418@std.uestc.edu.cn (Y.T.); 202121011427@std.uestc.edu.cn (H.Y.); 202022011429@std.uestc.edu.cn (Y.C.); 201821011420@std.uestc.edu.cn (M.W.) |
AuthorAffiliation_xml | – name: School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu 610056, China; 202021011418@std.uestc.edu.cn (Y.T.); 202121011427@std.uestc.edu.cn (H.Y.); 202022011429@std.uestc.edu.cn (Y.C.); 201821011420@std.uestc.edu.cn (M.W.) |
Author_xml | – sequence: 1 givenname: Junhai orcidid: 0000-0002-8435-007X surname: Luo fullname: Luo, Junhai – sequence: 2 givenname: Yuxin surname: Tian fullname: Tian, Yuxin – sequence: 3 givenname: Hang surname: Yu fullname: Yu, Hang – sequence: 4 givenname: Yu surname: Chen fullname: Chen, Yu – sequence: 5 givenname: Man surname: Wu fullname: Wu, Man |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35626462$$D View this record in MEDLINE/PubMed |
BookMark | eNptks9u3CAQxq0qVfOnPfQFKku9tAc3gDE2l0rbbZJGStSq25wRhrGXrRe2gCPlUfq2wbvpKokqDjMMPz4G-I6zA-ssZNlbjD6VJUenQCiqUFXXL7IjjDgvaInQwaP8MDsOYYUQKQlmr7LDsmKEUUaOsr8LWJtiMW7A35oAOp97F0IqtCtQMT9bu2iczX-Ccr012_yLnLiULKJUv1P6Fawzwdg-n43RgVVOg89nXi1NTCKjh_xmuyzz8zFMEq7Lr8chmuLaaTnkP5Z3qTy43qg0W5jeyiG8zl52KcCbh3iS3Zyf_Zp_K66-X1zOZ1eFoozHomWYYNxKqplEJTQcKYaIhJZJCpTRljatrjVTFdRlBxwRyrVUTcLLFjesPMkud7rayZXYeLOW_k44acS24HwvpI9GDSAIBS5VzSiiKo2uTYcRSqquZJ3qtE5an3dam7Fdg1Zgo5fDE9GnK9YsRe9uBccUU8qTwIcHAe_-jBCiWJugYBikBTcGQViNCeM1ntD3z9CVG_30chOFMK0aWifq3eOO9q38c0ACPu4ANX28h26PYCQmd4m9uxJ7-oxVJsrJFOkyZvjPjnvbzNNC |
CitedBy_id | crossref_primary_10_1007_s13042_024_02158_8 crossref_primary_10_1109_TIM_2024_3369130 crossref_primary_10_1109_JPROC_2023_3286445 crossref_primary_10_3390_e24091187 crossref_primary_10_1088_1402_4896_ad5237 crossref_primary_10_1007_s12652_023_04674_x crossref_primary_10_1007_s11571_024_10193_y crossref_primary_10_1016_j_jneumeth_2024_110129 crossref_primary_10_3390_e24121830 crossref_primary_10_1016_j_inffus_2024_102536 crossref_primary_10_1109_JBHI_2022_3225330 crossref_primary_10_1088_2631_8695_adb00d crossref_primary_10_3390_s22239102 |
Cites_doi | 10.1109/PROC.1987.13824 10.1038/nbt0308-303 10.1016/0167-2789(88)90081-4 10.1109/ACCESS.2019.2922047 10.1109/34.954607 10.1126/science.1127647 10.1145/2001269.2001295 10.1098/rspa.1998.0193 10.1162/neco.2006.18.7.1527 10.1037/0022-3514.53.4.712 10.1007/978-3-540-45012-2_2 10.1109/EMBC.2016.7590834 10.1080/02699930126048 10.1109/T-AFFC.2011.15 10.21437/Eurospeech.2001-627 10.7551/mitpress/7503.003.0024 10.1109/TAFFC.2017.2768030 10.1109/T-AFFC.2011.25 10.1609/aaai.v31i2.19105 10.1007/978-3-642-24571-8_58 10.1109/TPAMI.2013.50 10.1016/0013-4694(70)90143-4 |
ContentType | Journal Article |
Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022 |
Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022 |
DBID | AAYXX CITATION NPM 7TB 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO FR3 HCIFZ KR7 L6V M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 5PM DOA |
DOI | 10.3390/e24050577 |
DatabaseName | CrossRef PubMed Mechanical & Transportation Engineering Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database SciTech Premium Collection Civil Engineering Abstracts ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals - May need to register for free articles |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Civil Engineering Abstracts Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database CrossRef MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1099-4300 |
ExternalDocumentID | oai_doaj_org_article_24e9ac76404c4c4fb90c2425f36fcfdd PMC9141449 35626462 10_3390_e24050577 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Science & Technology Department of Sichuan Province grantid: 2020JDRC0007 |
GroupedDBID | 29G 2WC 5GY 5VS 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABJCF ACIWK ACUHS ADBBV AEGXH AENEX AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR BGLVJ CCPQU CITATION CS3 DU5 E3Z ESX F5P GROUPED_DOAJ GX1 HCIFZ HH5 IAO ITC J9A KQ8 L6V M7S MODMG M~E OK1 OVT PGMZT PHGZM PHGZT PIMPY PROAC PTHSS RNS RPM TR2 TUS XSB ~8M NPM PQGLB 7TB 8FD ABUWG AZQEC DWQXO FR3 KR7 PKEHL PQEST PQQKQ PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c469t-b61211ba4d6a03e890c602aeb6a4e464b48bd7d6c5e73fe90249dac8d6a3b1863 |
IEDL.DBID | DOA |
ISSN | 1099-4300 |
IngestDate | Wed Aug 27 01:15:18 EDT 2025 Thu Aug 21 14:14:07 EDT 2025 Fri Jul 11 05:35:43 EDT 2025 Fri Jul 25 12:01:41 EDT 2025 Mon Jul 21 06:02:41 EDT 2025 Thu Apr 24 22:51:49 EDT 2025 Tue Jul 01 01:58:12 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | stacked denoising autoencoder emotion recognition unsupervised representation learning electroencephalogram (EEG) multi-source fusion DEAP dataset |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c469t-b61211ba4d6a03e890c602aeb6a4e464b48bd7d6c5e73fe90249dac8d6a3b1863 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-8435-007X |
OpenAccessLink | https://doaj.org/article/24e9ac76404c4c4fb90c2425f36fcfdd |
PMID | 35626462 |
PQID | 2670145847 |
PQPubID | 2032401 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_24e9ac76404c4c4fb90c2425f36fcfdd pubmedcentral_primary_oai_pubmedcentral_nih_gov_9141449 proquest_miscellaneous_2671269719 proquest_journals_2670145847 pubmed_primary_35626462 crossref_primary_10_3390_e24050577 crossref_citationtrail_10_3390_e24050577 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220420 |
PublicationDateYYYYMMDD | 2022-04-20 |
PublicationDate_xml | – month: 4 year: 2022 text: 20220420 day: 20 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Entropy (Basel, Switzerland) |
PublicationTitleAlternate | Entropy (Basel) |
PublicationYear | 2022 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Lee (ref_7) 2011; 54 ref_14 Hinton (ref_31) 2006; 18 ref_11 ref_10 Pedregosa (ref_30) 2011; 12 Nikias (ref_21) 1987; 75 Vincent (ref_29) 2010; 11 Hinton (ref_27) 2006; 313 ref_19 Huang (ref_24) 1998; 454 (ref_25) 2008; 26 Koelstra (ref_9) 2012; 3 ref_16 Murugappan (ref_22) 2008; 1 Soleymani (ref_8) 2012; 3 Higuchi (ref_17) 1988; 31 Picard (ref_6) 2001; 23 Schmidt (ref_23) 2001; 15 Bengio (ref_26) 2013; 35 ref_20 ref_1 ref_3 ref_2 ref_28 Ekman (ref_5) 1987; 53 Murali (ref_12) 2019; 7 Jenke (ref_18) 2014; 5 Becker (ref_13) 2020; 11 ref_4 Hjorth (ref_15) 1970; 29 |
References_xml | – ident: ref_3 – volume: 75 start-page: 869 year: 1987 ident: ref_21 article-title: Bispectrum Estimation: A Digital Signal Processing Framework publication-title: Proc. IEEE doi: 10.1109/PROC.1987.13824 – volume: 26 start-page: 303 year: 2008 ident: ref_25 article-title: What is principal component analysis? publication-title: Nat Biotechnol. doi: 10.1038/nbt0308-303 – volume: 31 start-page: 277 year: 1988 ident: ref_17 article-title: Approach to an irregular time series on the basis of the fractal theory publication-title: Phys. D doi: 10.1016/0167-2789(88)90081-4 – volume: 1 start-page: 299 year: 2008 ident: ref_22 article-title: EEG feature extraction for classifying emotions using FCM and FKM publication-title: Int. J. Comput. Commun. – volume: 7 start-page: 77905 year: 2019 ident: ref_12 article-title: An Efficient Mixture Model Approach in Brain-Machine Interface Systems for Extracting the Psychological Status of Mentally Impaired Persons Using EEG Signals publication-title: IEEE Access. doi: 10.1109/ACCESS.2019.2922047 – volume: 5 start-page: 327 year: 2014 ident: ref_18 article-title: Feature extraction and selection for emotion recognition from EEG publication-title: IEEE Trans. Nucl. Sci. – volume: 23 start-page: 1175 year: 2001 ident: ref_6 article-title: Toward machine emotional intelligence: Analysis of affective physiological state publication-title: IEEE Trans. Pattern Anal. doi: 10.1109/34.954607 – volume: 313 start-page: 504 year: 2006 ident: ref_27 article-title: Reducing the dimensionality of data with neural networks publication-title: Science doi: 10.1126/science.1127647 – volume: 54 start-page: 95 year: 2011 ident: ref_7 article-title: Unsupervised learning of hierarchical representations with convolutional deep belief networks publication-title: Commun. ACM doi: 10.1145/2001269.2001295 – volume: 454 start-page: 903 year: 1998 ident: ref_24 article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis publication-title: Proc. R. Soc. Lond. A doi: 10.1098/rspa.1998.0193 – ident: ref_14 – volume: 18 start-page: 1527 year: 2006 ident: ref_31 article-title: A fast learning algorithm for deep belief nets publication-title: Neural Comput. doi: 10.1162/neco.2006.18.7.1527 – volume: 53 start-page: 712 year: 1987 ident: ref_5 article-title: Universals and Cultural Differences in the Judgments of Facial Expressions of Emotion publication-title: J. Pers. Soc. Psychol. doi: 10.1037/0022-3514.53.4.712 – ident: ref_4 doi: 10.1007/978-3-540-45012-2_2 – ident: ref_10 doi: 10.1109/EMBC.2016.7590834 – volume: 15 start-page: 487 year: 2001 ident: ref_23 article-title: Frontal brain electrical activity (eeg) distinguishes valence and intensity of musical emotions publication-title: Cogn. Emot. doi: 10.1080/02699930126048 – ident: ref_2 – volume: 3 start-page: 18 year: 2012 ident: ref_9 article-title: DEAP: A database for emotion analysis; Using physiological signals publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/T-AFFC.2011.15 – ident: ref_1 doi: 10.21437/Eurospeech.2001-627 – ident: ref_28 doi: 10.7551/mitpress/7503.003.0024 – volume: 11 start-page: 244 year: 2020 ident: ref_13 article-title: Emotion Recognition Based on High-Resolution EEG Recordings and Reconstructed Brain Sources publication-title: IEEE T Affect Comput. doi: 10.1109/TAFFC.2017.2768030 – volume: 3 start-page: 42 year: 2012 ident: ref_8 article-title: A multimodal database for affect recognition and implicit tagging publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/T-AFFC.2011.25 – ident: ref_11 doi: 10.1609/aaai.v31i2.19105 – ident: ref_16 doi: 10.1007/978-3-642-24571-8_58 – volume: 35 start-page: 1798 year: 2013 ident: ref_26 article-title: Representation learning: A review and new perspectives publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2013.50 – volume: 29 start-page: 306 year: 1970 ident: ref_15 article-title: EEG analysis based on time domain properties publication-title: Electroencephal. Clin. Neurophysiol. doi: 10.1016/0013-4694(70)90143-4 – ident: ref_19 – volume: 12 start-page: 2825 year: 2011 ident: ref_30 article-title: Scikit-learn: Machine learning in python publication-title: J. Mach. Learn Res. – ident: ref_20 – volume: 11 start-page: 3371 year: 2010 ident: ref_29 article-title: Stacked denoising autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion publication-title: J. Mach. Learn Res. |
SSID | ssj0023216 |
Score | 2.3727598 |
Snippet | In recent decades, emotion recognition has received considerable attention. As more enthusiasm has shifted to the physiological pattern, a wide range of... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 577 |
SubjectTerms | Accuracy Algorithms Arousal Artificial intelligence Classification Computer science Datasets DEAP dataset Deep learning Discriminant analysis electroencephalogram (EEG) Electroencephalography Emotion recognition Emotional factors Emotions Experiments Feature extraction Machine learning multi-source fusion Neural networks Neurosciences Noise reduction Physiology stacked denoising autoencoder Support vector machines Training unsupervised representation learning Wavelet transforms |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagvXDh_QgUZBAHLlFjx7HjE9otu6qQqFCXSr1FfpaVIFm6mx_Dv2UmL7qoQrlY8Uh2Mp7xzHj8DSHvrYiMRy5Tn4UsFdz71NgQU-0zWRZKBWE7tM8zeXohPl8Wl0PAbTukVY46sVPUvnEYIz_mUuEJGCjTj5tfKVaNwtPVoYTGXXIIKrgE5-twvjj7ej65XDlnsscTysG5Pw6wf6FFrvZ2oQ6s_zYL899EyRs7z_IhuT-YjHTW8_gRuRPqx-TBWI6BDtL5hPxehZ_rdNVuUPy3wdMTHBteWIy10EVfsIeejylD0J4bpIMG2Jwgzp5-CnWzxvABnbW7BkEuPQwxu3HaQLskA2rossVAG20i7S7xpl8aD7PsMkpHhUpX6yvEZ35KLpaLbyen6VB5IXXgLu9Si7hizBrhpcnyUOrMyYybYKURQUhhRWm98tIVQeUxaMQd9MaVQJ5bVsr8GTmomzq8INRxzjzLQq67n290ZEWpXR6LUgXHyoR8GDlRuQGWHKtj_KjAPUGmVRPTEvJuIt30WBy3Ec2RnRMBwmd3L5rrq2qQxoqLoI1TUmTCwRMtfCD6XjGX0UXvE3I0LoZqkOlt9XcFJuTt1A3SiEcspg5N29EwLrViOiHP-7UzzSQHU1MKyROi9lbV3lT3e-r19w7xWzMBjq9--f9pvSL3OF7OyAToviNysLtuw2swmXb2zSAXfwBrpxuY priority: 102 providerName: ProQuest |
Title | Semi-Supervised Cross-Subject Emotion Recognition Based on Stacked Denoising Autoencoder Architecture Using a Fusion of Multi-Modal Physiological Signals |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35626462 https://www.proquest.com/docview/2670145847 https://www.proquest.com/docview/2671269719 https://pubmed.ncbi.nlm.nih.gov/PMC9141449 https://doaj.org/article/24e9ac76404c4c4fb90c2425f36fcfdd |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEA96vvgiil_Vc4nigy_lmjRNm8fdc_cOwUNuPdi3kk9dONvjbvvH-N86k36wKwe-SKGEZKDTZCYzk0x-IeSjEYHxwGXqMp-lgjuXauNDqlwmq6IsvTAR7fNCnl-JL5tis3fVF-aE9fDAfcedcOGVtqUUmbDwBKMyi25yyGWwwTmcfcHmjcHUEGrlnMkeRyiHoP7Eg91CT7w8sD4RpP8-z_LvBMk9i7N6Sp4MriKd9yw-Iw9885z8Xvtf23Td3aCO33lHT_FDUGFwQYUu-1t56OWYFwTlhUY6KIBjCTrr6GfftFtcI6DzbtcikqXzt3S-t6VAYyYB1XTV4WoabQONJ3XTr60DlmLa6Dhr0vX2B4IwvyBXq-X30_N0uF4htRAT71KD4GHMaOGkznJfQcfKjGtvpBZeSGFEZVzppC18mQevEFzQaVsBeW5YJfOX5KhpG_-aUMs5cyzzuYo9rVVgRaVsHoqq9JZVCfk0dnttB-xxvALjuoYYBEeonkYoIR8m0psecOM-ogWO3USAGNmxAiSnHiSn_pfkJOR4HPl6UNy7mssSN1rBZifk_dQMKof7KLrxbRdpGJeqZCohr3pBmTjJwZ-UQvKElAcidMDqYUuz_RlhvRUTEN2qN__j396SxxzPaWQCpsFjcrS77fw78J52ZkYeVquzGXm0WF58u5xFtYH32Yb9AZGnIKw |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOcCF9yNQwCCQuERNbK8THxDaPpYtfRzYVuot-JWyEiRLd1eIn8Kf4Dcy4zzooopblYsVjxIn8_CMPf6GkNdGlCkrmYxd4pNYMOdibXwZK5fIfJBlXpiA9nkkxyfi4-ngdI387s7CYFplZxODoXa1xTXyTSYz3AEDY_p-9j3GqlG4u9qV0GjEYt___AEh2_zd3g7w9w1jo93j7XHcVhWILYSCi9ggZlZqtHBSJ9znKrEyYdobqYUXUhiRG5c5aQc-46VXiKnntM2BnJs0lxyee41cF5wr1Kh89KEP8DhLZYNeBJ3JpofZEv3_bGXOC6UBLvNn_03LvDDPje6QW62DSoeNRN0la766R253xR9oawvuk18T_20aT5YzNDZz7-g2vhtuGFzZobtNeSD6qUtQgvaWRjpogIcLxsPRHV_VU1ysoMPlokZITQevGF7Y26AhpYFqOlrish6tSxqODMeHtYNRhvzVznzTyfQM0aAfkJMr4chDsl7VlX9MqGUsdWniuQo_X6syHeTK8nKQZ96meUTedpwobAuCjrU4vhYQDCHTip5pEXnVk84a5I_LiLaQnT0BgnWHG_X5WdHqfsGEV9pmUiTCwlUa-ECM9EouS1s6F5GNThiK1oLMi7_yHpGXfTfoPm7o6MrXy0CTMqmyVEXkUSM7_Ug4OLZSSBaRbEWqVoa62lNNvwR8cZUKCLPVk_8P6wW5MT4-PCgO9o72n5KbDI-FJAKs7gZZX5wv_TNw1hbmedAQSj5ftUr-AecpV5A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VVEJceD8MBRYEEhcr6_Vm7T0glDSJWgpR1VKpN-N9lUhghyYR4qfwV_h1zPhFgypulS-WPbLXntlvZ3ZnvyHklRY-4p7L0DLHQsGtDXPtfKgsk-kgSZzQFdvnTO6diPeng9Mt8rvdC4NplS0mVkBtS4Nz5H0uE1wBAzDt-yYt4nA8fbf4HmIFKVxpbctp1CZy4H7-gPBt-XZ_DLp-zfl08ml3L2wqDIQGwsJVqJE_K9K5sDJnsUsVM5Lx3GmZCyek0CLVNrHSDFwSe6eQX8_mJgXxWEepjOG518h2AlER65Ht0WR2eNSFezGPZM1lFMeK9R2MnRgNJBsjYFUo4DLv9t8kzQuj3vQ2udm4q3RY29cdsuWKu-RWWwqCNshwj_w6dt_m4fF6gdCzdJbu4rvhgsZ5HjqpiwXRozZdCc5HOcrBCfi7ACWWjl1RznHqgg7XqxIJNi28YnhhpYNWCQ40p9M1TvLR0tNqA3H4sbTQyiqbtQVzejw_Q27o--TkSnTygPSKsnCPCDWcRzZiLlbVz8-VjwapMrEfpIkzURqQN60mMtNQomNljq8ZhEaotKxTWkBedqKLmgfkMqERqrMTQOru6kJ5fpY1SJBx4VRuEimYMHB4DR-IcZ-PpTfe2oDstMaQNXiyzP5af0BedLcBCXB5Jy9cua5kIi5VEqmAPKxtp2tJDG6uFJIHJNmwqo2mbt4p5l8qtnEVCQi61eP_N-s5uQ7dMfuwPzt4Qm5w3CPCBEDwDumtztfuKXhuK_2s6SKUfL7qXvkHSNBdIg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Semi-Supervised+Cross-Subject+Emotion+Recognition+Based+on+Stacked+Denoising+Autoencoder+Architecture+Using+a+Fusion+of+Multi-Modal+Physiological+Signals&rft.jtitle=Entropy+%28Basel%2C+Switzerland%29&rft.au=Luo%2C+Junhai&rft.au=Tian%2C+Yuxin&rft.au=Yu%2C+Hang&rft.au=Chen%2C+Yu&rft.date=2022-04-20&rft.issn=1099-4300&rft.eissn=1099-4300&rft.volume=24&rft.issue=5&rft_id=info:doi/10.3390%2Fe24050577&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1099-4300&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1099-4300&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1099-4300&client=summon |