Nontraditional Deterministic Remote State Preparation Using a Non-Maximally Entangled Channel without Additional Quantum Resources
In this paper, we have reinvestigated probabilistic quantum communication protocols and developed a nontraditional remote state preparation protocol that allows for deterministically transferring information encoded in quantum states using a non-maximally entangled channel. With an auxiliary particl...
Saved in:
Published in | Entropy (Basel, Switzerland) Vol. 25; no. 5; p. 768 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
08.05.2023
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper, we have reinvestigated probabilistic quantum communication protocols and developed a nontraditional remote state preparation protocol that allows for deterministically transferring information encoded in quantum states using a non-maximally entangled channel. With an auxiliary particle and a simple measurement method, the success probability of preparing a d-dimensional quantum state is increased to 1 without spending additional quantum resources in advance to improve quantum channels, such as entanglement purification. Furthermore, we have designed a feasible experimental scheme to demonstrate the deterministic paradigm of transporting a polarization-encoded photon from one location to another using a generalized entangled state. This approach provides a practical method to address decoherence and environmental noises in actual quantum communication. |
---|---|
AbstractList | In this paper, we have reinvestigated probabilistic quantum communication protocols and developed a nontraditional remote state preparation protocol that allows for deterministically transferring information encoded in quantum states using a non-maximally entangled channel. With an auxiliary particle and a simple measurement method, the success probability of preparing a d-dimensional quantum state is increased to 1 without spending additional quantum resources in advance to improve quantum channels, such as entanglement purification. Furthermore, we have designed a feasible experimental scheme to demonstrate the deterministic paradigm of transporting a polarization-encoded photon from one location to another using a generalized entangled state. This approach provides a practical method to address decoherence and environmental noises in actual quantum communication. In this paper, we have reinvestigated probabilistic quantum communication protocols and developed a nontraditional remote state preparation protocol that allows for deterministically transferring information encoded in quantum states using a non-maximally entangled channel. With an auxiliary particle and a simple measurement method, the success probability of preparing a d-dimensional quantum state is increased to 1 without spending additional quantum resources in advance to improve quantum channels, such as entanglement purification. Furthermore, we have designed a feasible experimental scheme to demonstrate the deterministic paradigm of transporting a polarization-encoded photon from one location to another using a generalized entangled state. This approach provides a practical method to address decoherence and environmental noises in actual quantum communication.In this paper, we have reinvestigated probabilistic quantum communication protocols and developed a nontraditional remote state preparation protocol that allows for deterministically transferring information encoded in quantum states using a non-maximally entangled channel. With an auxiliary particle and a simple measurement method, the success probability of preparing a d-dimensional quantum state is increased to 1 without spending additional quantum resources in advance to improve quantum channels, such as entanglement purification. Furthermore, we have designed a feasible experimental scheme to demonstrate the deterministic paradigm of transporting a polarization-encoded photon from one location to another using a generalized entangled state. This approach provides a practical method to address decoherence and environmental noises in actual quantum communication. |
Audience | Academic |
Author | Li, Chong Xin, Xuanxuan He, Shiwen Li, Yongxing |
AuthorAffiliation | School of Physics, Dalian University of Technology, Dalian 116024, China |
AuthorAffiliation_xml | – name: School of Physics, Dalian University of Technology, Dalian 116024, China |
Author_xml | – sequence: 1 givenname: Xuanxuan surname: Xin fullname: Xin, Xuanxuan – sequence: 2 givenname: Shiwen surname: He fullname: He, Shiwen – sequence: 3 givenname: Yongxing surname: Li fullname: Li, Yongxing – sequence: 4 givenname: Chong orcidid: 0000-0003-4627-7307 surname: Li fullname: Li, Chong |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37238523$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkk1vEzEQhleoiH7AgT-AVuIChxR_r_eEolCgUvmm55XXHieOdu3U9tL2yi_HISVqkSXbsp95Z97RHFcHPnioqucYnVLaojdAOOKoEfJRdYRR284YRejg3v2wOk5pjRChBIsn1SFtCJWc0KPq9-fgc1TGZRe8Gup3kCGOzruUna6_wxgy1D-yKvvXCBsV1RasL5Pzy1rVJXr2Sd24UQ3DbX3ms_LLAUy9WCnvYaivXV6FKddzs8_wbVI-T2PRTmGKGtLT6rFVQ4Jnd-dJdfn-7Ofi4-ziy4fzxfxipplo86xnPadaNxa1WDEwwiIMjBLBFdfSMsuIxbbpG0Z7giTveyKwtIRSwTg1QE-q852uCWrdbWIpOt52Qbnu70OIy07F4nqADlutAHOkWoSZ4UgyaFqhDJWCC2ZQ0Xq709pM_QhGw7aJwwPRhz_erbpl-NVhRHDTEFkUXt0pxHA1Qcrd6JKGYVAewpQ6IglCWDasKejL_9B16Vzp5ZbCLWNU0G1JpztqqYoD520oiXVZBkany8BYV97nTXEjW8lECXhx38O--H_DUYDXO0DHkFIEu0cw6raD1-0Hj_4BFMvKqA |
Cites_doi | 10.1103/PhysRevA.98.042329 10.1038/s41586-020-2401-y 10.1038/s41567-021-01296-y 10.1103/PhysRevA.58.4394 10.1103/PhysRevA.69.052319 10.1007/s43673-022-00072-1 10.1103/PhysRevA.67.012326 10.1103/PhysRevLett.94.030501 10.1038/nphys1996 10.1103/PhysRevLett.74.4087 10.7498/aps.70.20210837 10.1038/nature14246 10.1103/PhysRevA.51.1015 10.1103/PhysRevA.65.032302 10.1038/nature11332 10.1103/PhysRevA.68.022310 10.1038/s41377-022-00744-5 10.1103/PhysRevA.61.034301 10.1038/nature02015 10.1103/PhysRevLett.81.2594 10.1103/PhysRevLett.95.010503 10.1088/1367-2630/ac0478 10.1007/s43673-021-00030-3 10.1103/PhysRevLett.117.170403 10.1103/PhysRevLett.118.220501 10.1038/nature07127 10.1103/PhysRevA.68.042317 10.1038/lsa.2017.146 10.1038/nphoton.2011.354 10.1103/PhysRevA.54.3824 10.1103/PhysRevLett.70.1187 10.1103/PhysRevLett.76.4656 10.1103/PhysRevLett.93.210501 10.1103/PhysRevLett.85.5635 10.1103/PhysRevLett.78.3221 10.1038/532169a 10.1103/PhysRevA.73.022340 10.1103/PhysRevLett.83.3566 10.1103/PhysRevResearch.3.023045 10.1103/PhysRevLett.76.722 10.1103/PhysRevA.63.014302 10.1103/PhysRevLett.67.661 10.1103/PhysRevLett.100.090403 10.1007/s43673-022-00043-6 10.1038/nphoton.2010.123 10.1103/PhysRevA.50.R2803 10.1103/PhysRevA.65.022316 10.1103/PhysRevA.64.042314 10.1103/PhysRevLett.100.133601 10.1038/s42254-020-0193-5 10.1103/PhysRevA.87.012307 10.3390/e25010061 10.1038/nphys2377 10.1103/PhysRevLett.94.230504 10.1103/PhysRevA.62.024301 10.1038/37539 10.1103/PhysRevLett.126.100402 10.1103/PhysRevLett.120.030501 10.1038/nature11023 10.1103/PhysRevA.72.012315 10.1126/science.aam9288 10.1103/PhysRevA.58.4373 10.1103/PhysRevLett.87.077902 10.1103/PhysRevLett.25.84 10.1103/PhysRevLett.127.040502 10.1103/PhysRevA.52.3457 10.1103/PhysRevLett.93.250502 10.1038/35000514 10.1103/PhysRevLett.105.150401 10.1103/PhysRevLett.93.093601 10.1103/PhysRevLett.96.150501 10.1038/nature23675 10.3390/e18070267 10.1103/PhysRevLett.83.5166 10.1103/PhysRevA.60.R773 10.1103/PhysRevA.84.050301 10.1038/nphys629 10.1103/PhysRevA.29.1419 10.1103/PhysRevLett.125.230501 10.1103/PhysRevA.52.R2493 10.1007/s11128-019-2535-8 10.1103/PhysRevA.79.054302 10.1103/PhysRevLett.74.4101 10.1103/PhysRevA.86.052115 10.1103/PhysRevLett.74.2619 10.1038/nphoton.2011.213 10.1103/PhysRevLett.124.160501 10.1103/PhysRevLett.127.080502 10.1103/PhysRevLett.85.441 10.1103/PhysRevLett.110.260503 10.1103/RevModPhys.76.1267 10.1103/PhysRevA.67.040301 10.1103/PhysRevLett.105.030407 10.1103/PhysRevLett.97.180501 10.1103/PhysRevLett.70.1895 10.1038/ncomms1556 10.1103/PhysRevA.91.012344 10.1038/s41566-017-0032-0 10.1103/PhysRevA.62.012313 10.1007/s43673-023-00077-4 10.1038/35106500 10.1103/PhysRevLett.106.130506 10.1007/s43673-021-00017-0 10.1002/qute.201900011 10.1103/PhysRevLett.75.4337 10.1103/PhysRevA.54.2685 10.1103/PhysRevLett.69.2881 10.1103/PhysRevLett.77.2818 10.3390/e17041755 10.1103/PhysRevLett.126.010503 10.1103/PhysRevLett.106.013602 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 by the authors. 2023 |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 by the authors. 2023 |
DBID | AAYXX CITATION NPM 7TB 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO FR3 HCIFZ KR7 L6V M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 5PM DOA |
DOI | 10.3390/e25050768 |
DatabaseName | CrossRef PubMed Mechanical & Transportation Engineering Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central Engineering Research Database ProQuest SciTech Premium Collection Civil Engineering Abstracts ProQuest Engineering Collection Engineering Database (Proquest) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database (Proquest) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Civil Engineering Abstracts Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic CrossRef PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ - Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 1099-4300 |
ExternalDocumentID | oai_doaj_org_article_1fcae150a9014d5084e796ad386564d0 PMC10217728 A750889846 37238523 10_3390_e25050768 |
Genre | Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 11574041 – fundername: National Natural Science Foundation of China grantid: 12274053 – fundername: Natural Science Foundation of China (NSFC) grantid: 11574041; 12274053 |
GroupedDBID | 29G 2WC 5GY 5VS 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABJCF ACIWK ACUHS ADBBV AEGXH AENEX AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR BGLVJ CCPQU CITATION CS3 DU5 E3Z ESX F5P GROUPED_DOAJ GX1 HCIFZ HH5 IAO ITC J9A KQ8 L6V M7S MODMG M~E OK1 OVT PGMZT PHGZM PHGZT PIMPY PROAC PTHSS RNS RPM TR2 TUS XSB ~8M NPM PMFND 7TB 8FD ABUWG AZQEC DWQXO FR3 KR7 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c469t-b4b53cc7f091a4ed6f01e43265a5c8f4f42f1f7b743b2085bb2618f2336453de3 |
IEDL.DBID | BENPR |
ISSN | 1099-4300 |
IngestDate | Wed Aug 27 01:32:10 EDT 2025 Thu Aug 21 18:37:47 EDT 2025 Sun Aug 24 03:43:56 EDT 2025 Sun Jul 13 05:17:41 EDT 2025 Tue Jun 10 20:51:32 EDT 2025 Thu Jan 02 22:51:56 EST 2025 Tue Jul 01 01:58:24 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | non-maximally entangled channels quantum communication deterministic remote state preparation |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c469t-b4b53cc7f091a4ed6f01e43265a5c8f4f42f1f7b743b2085bb2618f2336453de3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-4627-7307 |
OpenAccessLink | https://www.proquest.com/docview/2819443630?pq-origsite=%requestingapplication% |
PMID | 37238523 |
PQID | 2819443630 |
PQPubID | 2032401 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_1fcae150a9014d5084e796ad386564d0 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10217728 proquest_miscellaneous_2820018747 proquest_journals_2819443630 gale_infotracacademiconefile_A750889846 pubmed_primary_37238523 crossref_primary_10_3390_e25050768 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-05-08 |
PublicationDateYYYYMMDD | 2023-05-08 |
PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-08 day: 08 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Entropy (Basel, Switzerland) |
PublicationTitleAlternate | Entropy (Basel) |
PublicationYear | 2023 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Yao (ref_45) 2012; 6 Yu (ref_108) 2006; 73 DiVincenzo (ref_76) 1995; 51 Ritter (ref_3) 2012; 484 Gross (ref_105) 2010; 105 An (ref_74) 2018; 98 Leonhardt (ref_104) 1995; 74 Shor (ref_15) 2000; 85 Lo (ref_69) 2000; 62 Zeng (ref_109) 2002; 65 Jonathan (ref_57) 1999; 83 Bennett (ref_20) 1992; 69 Simon (ref_4) 2017; 11 Kimble (ref_36) 2008; 453 Erhard (ref_112) 2020; 2 Ekert (ref_7) 1991; 67 Kwiat (ref_85) 1995; 75 Lemr (ref_102) 2011; 106 Lu (ref_41) 2023; 33 Bouwmeester (ref_88) 1997; 390 Wang (ref_9) 2001; 70 Kwek (ref_19) 2021; 31 Liang (ref_65) 2012; 86 Zhang (ref_27) 2017; 118 Roa (ref_107) 2015; 91 Peres (ref_62) 1996; 54 Lipp (ref_43) 2012; 8 Nemoto (ref_95) 2004; 93 Lidar (ref_30) 1998; 81 Schlosshauer (ref_31) 2005; 76 Deng (ref_26) 2004; 69 Bennett (ref_70) 2001; 87 Stenholm (ref_13) 1998; 58 Nguyen (ref_72) 2011; 2 Banaszek (ref_33) 2000; 62 Rambach (ref_106) 2021; 126 Erhard (ref_111) 2018; 7 Zhang (ref_49) 2011; 5 Larsen (ref_100) 2021; 17 Podoshvedov (ref_99) 2013; 87 Xiang (ref_32) 2005; 72 Sleator (ref_77) 1995; 74 Ursin (ref_10) 2007; 3 Bombin (ref_54) 2006; 97 ref_73 Zhao (ref_96) 2005; 94 Zhang (ref_94) 2022; 11 Masanes (ref_64) 2008; 100 Barrett (ref_17) 2005; 95 Barreiro (ref_82) 2010; 105 Yin (ref_50) 2020; 582 Li (ref_34) 2000; 61 Tipsmark (ref_98) 2011; 84 Guo (ref_23) 2019; 2 Liao (ref_5) 2018; 120 Silberhorn (ref_80) 2004; 93 Wang (ref_37) 2015; 17 Sanders (ref_60) 2009; 79 Hu (ref_92) 2016; 117 Cabello (ref_14) 2000; 85 Pirandola (ref_38) 2016; 532 Masanes (ref_63) 2006; 96 Shor (ref_28) 1995; 52 Burnham (ref_84) 1970; 25 Zurek (ref_29) 1993; 70 Karlsson (ref_12) 1998; 58 Mattle (ref_21) 1996; 76 Wagenknecht (ref_48) 2010; 4 Deutsch (ref_52) 1996; 77 Hu (ref_56) 2021; 126 Popescu (ref_61) 1995; 74 Barenco (ref_78) 1995; 52 Yurke (ref_1) 1984; 29 Dada (ref_110) 2011; 7 Kwiat (ref_86) 1999; 60 Yin (ref_90) 2012; 488 Yamamoto (ref_97) 2003; 425 Lo (ref_16) 2005; 94 Qi (ref_18) 2021; 23 Li (ref_68) 2021; 3 Garuccio (ref_87) 1994; 50 Xu (ref_42) 2022; 32 Zhang (ref_47) 2023; 33 Pati (ref_71) 2000; 63 Hayden (ref_59) 2003; 67 Kim (ref_79) 2003; 67 Huang (ref_46) 2011; 2 Rauschenbeutel (ref_101) 1999; 83 Mosley (ref_81) 2008; 100 Bennett (ref_11) 1993; 70 Zwerger (ref_55) 2013; 110 Du (ref_75) 2019; 19 Roa (ref_35) 2003; 68 ref_39 Bennett (ref_53) 1996; 54 Sekatski (ref_66) 2021; 127 Cirac (ref_2) 1997; 78 Ren (ref_91) 2017; 549 Heuck (ref_103) 2020; 124 Pan (ref_89) 2000; 403 Monz (ref_44) 2011; 106 Hu (ref_93) 2020; 125 Long (ref_24) 2002; 65 Deng (ref_25) 2003; 68 Bennett (ref_51) 1996; 76 Daftuar (ref_58) 2001; 64 Wei (ref_6) 2022; 32 Duan (ref_8) 2001; 414 Skrzypczyk (ref_67) 2021; 127 ref_40 Wang (ref_83) 2015; 518 Lewenstein (ref_22) 2004; 93 |
References_xml | – volume: 98 start-page: 042329 year: 2018 ident: ref_74 article-title: Nonstandard protocols for joint remote preparation of a general quantum state and hybrid entanglement of any dimension publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.98.042329 – volume: 582 start-page: 501 year: 2020 ident: ref_50 article-title: Entanglement-based secure quantum cryptography over 1,120 kilometres publication-title: Nature doi: 10.1038/s41586-020-2401-y – volume: 17 start-page: 1018 year: 2021 ident: ref_100 article-title: Deterministic multi-mode gates on a scalable photonic quantum computing platform publication-title: Nat. Phys. doi: 10.1038/s41567-021-01296-y – volume: 58 start-page: 4394 year: 1998 ident: ref_12 article-title: Quantum teleportation using three-particle entanglement publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.58.4394 – volume: 69 start-page: 052319 year: 2004 ident: ref_26 article-title: Secure direct communication with a quantum one-time pad publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.69.052319 – volume: 33 start-page: 2 year: 2023 ident: ref_47 article-title: Coupling-selective quantum optimal control in weak-coupling NV-13 C system publication-title: AAPPS Bull. doi: 10.1007/s43673-022-00072-1 – volume: 67 start-page: 060302 year: 2003 ident: ref_59 article-title: Universal entanglement transformations without communication publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.67.012326 – volume: 94 start-page: 030501 year: 2005 ident: ref_96 article-title: Experimental Demonstration of a Nondestructive Controlled-NOT Quantum Gate for Two Independent Photon Qubits publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.94.030501 – volume: 7 start-page: 677 year: 2011 ident: ref_110 article-title: Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities publication-title: Nat. Phys. doi: 10.1038/nphys1996 – volume: 74 start-page: 4087 year: 1995 ident: ref_77 article-title: Realizable Universal Quantum Logic Gates publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.74.4087 – volume: 70 start-page: 190301 year: 2001 ident: ref_9 article-title: Quantum direct portation publication-title: Acta Phys. Sin. doi: 10.7498/aps.70.20210837 – volume: 2 start-page: 035009 year: 2011 ident: ref_72 article-title: Remote state preparation with unit success probability publication-title: Adv. Nat. Sci. – volume: 518 start-page: 516 year: 2015 ident: ref_83 article-title: Quantum teleportation of multiple degrees of freedom of a single photon publication-title: Nature doi: 10.1038/nature14246 – volume: 51 start-page: 1015 year: 1995 ident: ref_76 article-title: Two-bit gates are universal for quantum computation publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.51.1015 – volume: 65 start-page: 032302 year: 2002 ident: ref_24 article-title: Theoretically efficient high-capacity quantum-key-distribution scheme publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.65.032302 – volume: 488 start-page: 185 year: 2012 ident: ref_90 article-title: Quantum teleportation and entanglement distribution over 100-kilometre free-space channels publication-title: Nature doi: 10.1038/nature11332 – volume: 68 start-page: 022310 year: 2003 ident: ref_35 article-title: Optimal conclusive teleportation of quantum states publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.68.022310 – volume: 11 start-page: 58 year: 2022 ident: ref_94 article-title: All-optical modulation of quantum states by nonlinear metasurface publication-title: Light Sci. Appl. doi: 10.1038/s41377-022-00744-5 – volume: 61 start-page: 034301 year: 2000 ident: ref_34 article-title: Probabilistic teleportation and entanglement matching publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.61.034301 – volume: 425 start-page: 941 year: 2003 ident: ref_97 article-title: Demonstration of conditional gate operation using superconducting charge qubits publication-title: Nature doi: 10.1038/nature02015 – volume: 81 start-page: 2594 year: 1998 ident: ref_30 article-title: Decoherence-Free Subspaces for Quantum Computation publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.81.2594 – volume: 95 start-page: 010503 year: 2005 ident: ref_17 article-title: No Signaling and Quantum Key Distribution publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.95.010503 – volume: 23 start-page: 063058 year: 2021 ident: ref_18 article-title: Loophole-free plug-and-play quantum key distribution publication-title: N. J. Phys. doi: 10.1088/1367-2630/ac0478 – volume: 32 start-page: 2 year: 2022 ident: ref_6 article-title: A quantum convolutional neural network on NISQ devices publication-title: AAPPS Bull. doi: 10.1007/s43673-021-00030-3 – volume: 117 start-page: 170403 year: 2016 ident: ref_92 article-title: Experimental Test of Compatibility-Loophole-Free Contextuality with Spatially Separated Entangled Qutrits publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.117.170403 – volume: 118 start-page: 220501 year: 2017 ident: ref_27 article-title: Quantum Secure Direct Communication with Quantum Memory publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.118.220501 – volume: 453 start-page: 1023 year: 2008 ident: ref_36 article-title: The quantum internet publication-title: Nature doi: 10.1038/nature07127 – volume: 68 start-page: 042317 year: 2003 ident: ref_25 article-title: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.68.042317 – volume: 7 start-page: 17146 year: 2018 ident: ref_111 article-title: Twisted photons: New quantum perspectives in high dimensions publication-title: Light Sci. Appl. doi: 10.1038/lsa.2017.146 – volume: 6 start-page: 225 year: 2012 ident: ref_45 article-title: Observation of eight-photon entanglement publication-title: Nat. Photonics doi: 10.1038/nphoton.2011.354 – volume: 54 start-page: 3824 year: 1996 ident: ref_53 article-title: Mixed-state entanglement and quantum error correction publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.54.3824 – volume: 70 start-page: 1187 year: 1993 ident: ref_29 article-title: Coherent states via decoherence publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.70.1187 – volume: 76 start-page: 4656 year: 1996 ident: ref_21 article-title: Dense Coding in Experimental Quantum Communication publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.76.4656 – volume: 93 start-page: 210501 year: 2004 ident: ref_22 article-title: Distributed Quantum Dense Coding publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.93.210501 – volume: 85 start-page: 5635 year: 2000 ident: ref_14 article-title: Quantum Key Distribution in the Holevo Limit publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.85.5635 – volume: 78 start-page: 3221 year: 1997 ident: ref_2 article-title: Quantum State Transfer and Entanglement Distribution among Distant Nodes in a Quantum Network publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.78.3221 – volume: 532 start-page: 169 year: 2016 ident: ref_38 article-title: Physics: Unite to build a quantum Internet publication-title: Nat. News doi: 10.1038/532169a – volume: 73 start-page: 022340 year: 2006 ident: ref_108 article-title: Remote preparation of a qudit using maximally entangled states of qubits publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.73.022340 – volume: 83 start-page: 3566 year: 1999 ident: ref_57 article-title: Entanglement-assisted local manipulation of pure quantum states publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.83.3566 – volume: 3 start-page: 023045 year: 2021 ident: ref_68 article-title: Activating hidden teleportation power: Theory and experiment publication-title: Phys. Rev. Res. doi: 10.1103/PhysRevResearch.3.023045 – volume: 76 start-page: 722 year: 1996 ident: ref_51 article-title: Purification of Noisy Entanglement and Faithful Teleportation via Noisy Channels publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.76.722 – volume: 63 start-page: 014302 year: 2000 ident: ref_71 article-title: Minimum classical bit for remote preparation and measurement of a qubit publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.63.014302 – volume: 67 start-page: 661 year: 1991 ident: ref_7 article-title: Quantum cryptography based on Bell’s theorem publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.67.661 – volume: 100 start-page: 090403 year: 2008 ident: ref_64 article-title: All Bipartite Entangled States Display Some Hidden Nonlocality publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.100.090403 – volume: 32 start-page: 13 year: 2022 ident: ref_42 article-title: Realizing multi-qubit controlled nonadiabatic holonomic gates with connecting systems publication-title: AAPPS Bull. doi: 10.1007/s43673-022-00043-6 – volume: 4 start-page: 549 year: 2010 ident: ref_48 article-title: Experimental demonstration of a heralded entanglement source publication-title: Nat. Photonics doi: 10.1038/nphoton.2010.123 – volume: 50 start-page: R2803 year: 1994 ident: ref_87 article-title: Reliability of Bell-inequality measurements using polarization correlations in parametric-down-conversion photon sources publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.50.R2803 – volume: 65 start-page: 022316 year: 2002 ident: ref_109 article-title: Remote-state preparation in higher dimension and the parallelizable manifold Sn−1 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.65.022316 – volume: 64 start-page: 042314 year: 2001 ident: ref_58 article-title: Mathematical structure of entanglement catalysis publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.64.042314 – volume: 100 start-page: 133601 year: 2008 ident: ref_81 article-title: Heralded Generation of Ultrafast Single Photons in Pure Quantum States publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.100.133601 – volume: 2 start-page: 365 year: 2020 ident: ref_112 article-title: Advances in high-dimensional quantum entanglement publication-title: Nat. Rev. Phys. doi: 10.1038/s42254-020-0193-5 – volume: 87 start-page: 012307 year: 2013 ident: ref_99 article-title: Building of one-way Hadamard gate for squeezed coherent states publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.87.012307 – ident: ref_40 doi: 10.3390/e25010061 – volume: 8 start-page: 666 year: 2012 ident: ref_43 article-title: Quantum discord as resource for remote state preparation publication-title: Nat. Phys. doi: 10.1038/nphys2377 – volume: 94 start-page: 230504 year: 2005 ident: ref_16 article-title: Decoy State Quantum Key Distribution publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.94.230504 – volume: 62 start-page: 024301 year: 2000 ident: ref_33 article-title: Optimal quantum teleportation with an arbitrary pure state publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.62.024301 – volume: 390 start-page: 575 year: 1997 ident: ref_88 article-title: Experimental quantum teleportation publication-title: Nature doi: 10.1038/37539 – volume: 126 start-page: 100402 year: 2021 ident: ref_106 article-title: Robust and Efficient High-Dimensional Quantum State Tomography publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.126.100402 – volume: 120 start-page: 030501 year: 2018 ident: ref_5 article-title: Satellite-Relayed Intercontinental Quantum Network publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.120.030501 – volume: 484 start-page: 195 year: 2012 ident: ref_3 article-title: An elementary quantum network of single atoms in optical cavities publication-title: Nature doi: 10.1038/nature11023 – volume: 72 start-page: 012315 year: 2005 ident: ref_32 article-title: Remote preparation of mixed states via noisy entanglement publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.72.012315 – ident: ref_39 doi: 10.1126/science.aam9288 – volume: 58 start-page: 4373 year: 1998 ident: ref_13 article-title: Teleportation of N-dimensional states publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.58.4373 – volume: 87 start-page: 077902 year: 2001 ident: ref_70 article-title: Remote State Preparation publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.87.077902 – volume: 25 start-page: 84 year: 1970 ident: ref_84 article-title: Observation of Simultaneity in Parametric Production of Optical Photon Pairs publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.25.84 – volume: 127 start-page: 040502 year: 2021 ident: ref_66 article-title: Entanglement-Assisted Entanglement Purification publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.127.040502 – volume: 52 start-page: 3457 year: 1995 ident: ref_78 article-title: Elementary gates for quantum computation publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.52.3457 – volume: 93 start-page: 250502 year: 2004 ident: ref_95 article-title: Nearly Deterministic Linear Optical Controlled-NOT Gate publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.93.250502 – volume: 403 start-page: 515 year: 2000 ident: ref_89 article-title: Experimental test of quantum nonlocality in three-photon Greenberger-Horne-Zeilinger entanglement publication-title: Nature doi: 10.1038/35000514 – volume: 105 start-page: 150401 year: 2010 ident: ref_105 article-title: Quantum State Tomography via Compressed Sensing publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.105.150401 – volume: 93 start-page: 093601 year: 2004 ident: ref_80 article-title: Efficient Conditional Preparation of High-Fidelity Single Photon States for Fiber-Optic Quantum Networks publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.93.093601 – volume: 96 start-page: 150501 year: 2006 ident: ref_63 article-title: All Bipartite Entangled States Are Useful for Information Processing publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.96.150501 – volume: 549 start-page: 70 year: 2017 ident: ref_91 article-title: Ground-to-satellite quantum teleportation publication-title: Nature doi: 10.1038/nature23675 – ident: ref_73 doi: 10.3390/e18070267 – volume: 83 start-page: 5166 year: 1999 ident: ref_101 article-title: Coherent Operation of a Tunable Quantum Phase Gate in Cavity QED publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.83.5166 – volume: 60 start-page: R773 year: 1999 ident: ref_86 article-title: Ultrabright source of polarization-entangled photons publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.60.R773 – volume: 84 start-page: 050301 year: 2011 ident: ref_98 article-title: Experimental demonstration of a Hadamard gate for coherent state qubits publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.84.050301 – volume: 3 start-page: 481 year: 2007 ident: ref_10 article-title: Entanglement-based quantum communication over 144 km publication-title: Nat. Phys. doi: 10.1038/nphys629 – volume: 29 start-page: 1419 year: 1984 ident: ref_1 article-title: Quantum network theory publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.29.1419 – volume: 125 start-page: 230501 year: 2020 ident: ref_93 article-title: Experimental High-Dimensional Quantum Teleportation publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.125.230501 – volume: 52 start-page: R2493 year: 1995 ident: ref_28 article-title: Scheme for reducing decoherence in quantum computer memory publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.52.R2493 – volume: 19 start-page: 39 year: 2019 ident: ref_75 article-title: Deterministic joint remote state preparation of four-qubit cluster type with tripartite involvement publication-title: Quantum Inf. Process. doi: 10.1007/s11128-019-2535-8 – volume: 79 start-page: 054302 year: 2009 ident: ref_60 article-title: Necessary conditions for entanglement catalysts publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.79.054302 – volume: 74 start-page: 4101 year: 1995 ident: ref_104 article-title: Quantum-State Tomography and Discrete Wigner Function publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.74.4101 – volume: 86 start-page: 052115 year: 2012 ident: ref_65 article-title: All entangled states display some hidden nonlocality publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.86.052115 – volume: 74 start-page: 2619 year: 1995 ident: ref_61 article-title: Bell’s Inequalities and Density Matrices: Revealing “Hidden” Nonlocality publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.74.2619 – volume: 5 start-page: 628 year: 2011 ident: ref_49 article-title: Preparation and storage of frequency-uncorrelated entangled photons from cavity-enhanced spontaneous parametric downconversion publication-title: Nat. Photonics doi: 10.1038/nphoton.2011.213 – volume: 124 start-page: 160501 year: 2020 ident: ref_103 article-title: Controlled-Phase Gate Using Dynamically Coupled Cavities and Optical Nonlinearities publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.124.160501 – volume: 127 start-page: 080502 year: 2021 ident: ref_67 article-title: Catalytic Quantum Teleportation publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.127.080502 – volume: 85 start-page: 441 year: 2000 ident: ref_15 article-title: Simple Proof of Security of the BB84 Quantum Key Distribution Protocol publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.85.441 – volume: 110 start-page: 260503 year: 2013 ident: ref_55 article-title: Universal and Optimal Error Thresholds for Measurement-Based Entanglement Purification publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.110.260503 – volume: 76 start-page: 1267 year: 2005 ident: ref_31 article-title: Decoherence, the measurement problem, and interpretations of quantum mechanics publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.76.1267 – volume: 67 start-page: 040301 year: 2003 ident: ref_79 article-title: Single-photon two-qubit entangled states: Preparation and measurement publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.67.040301 – volume: 105 start-page: 030407 year: 2010 ident: ref_82 article-title: Remote Preparation of Single-Photon “Hybrid” Entangled and Vector-Polarization States publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.105.030407 – volume: 97 start-page: 180501 year: 2006 ident: ref_54 article-title: Topological Quantum Distillation publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.97.180501 – volume: 70 start-page: 1895 year: 1993 ident: ref_11 article-title: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.70.1895 – volume: 2 start-page: 1 year: 2011 ident: ref_46 article-title: Experimental generation of an eight-photon Greenberger–Horne–Zeilinger state publication-title: Nat. Commun. doi: 10.1038/ncomms1556 – volume: 91 start-page: 012344 year: 2015 ident: ref_107 article-title: Probabilistic teleportation without loss of information publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.91.012344 – volume: 11 start-page: 678 year: 2017 ident: ref_4 article-title: Towards a global quantum network publication-title: Nat. Photonics doi: 10.1038/s41566-017-0032-0 – volume: 62 start-page: 012313 year: 2000 ident: ref_69 article-title: Classical-communication cost in distributed quantum-information processing: A generalization of quantum-communication complexity publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.62.012313 – volume: 33 start-page: 7 year: 2023 ident: ref_41 article-title: Recent progress on coherent computation based on quantum squeezing publication-title: AAPPS Bull. doi: 10.1007/s43673-023-00077-4 – volume: 414 start-page: 413 year: 2001 ident: ref_8 article-title: Long-distance quantum communication with atomic ensembles and linear optics publication-title: Nature doi: 10.1038/35106500 – volume: 106 start-page: 130506 year: 2011 ident: ref_44 article-title: 14-Qubit Entanglement: Creation and Coherence publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.106.130506 – volume: 31 start-page: 15 year: 2021 ident: ref_19 article-title: Chip-based quantum key distribution publication-title: AAPPS Bull. doi: 10.1007/s43673-021-00017-0 – volume: 2 start-page: 1900011 year: 2019 ident: ref_23 article-title: Advances in Quantum Dense Coding publication-title: Adv. Quantum Technol. doi: 10.1002/qute.201900011 – volume: 75 start-page: 4337 year: 1995 ident: ref_85 article-title: New High-Intensity Source of Polarization-Entangled Photon Pairs publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.75.4337 – volume: 54 start-page: 2685 year: 1996 ident: ref_62 article-title: Collective tests for quantum nonlocality publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.54.2685 – volume: 69 start-page: 2881 year: 1992 ident: ref_20 article-title: Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.69.2881 – volume: 77 start-page: 2818 year: 1996 ident: ref_52 article-title: Quantum Privacy Amplification and the Security of Quantum Cryptography over Noisy Channels publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.2818 – volume: 17 start-page: 1755 year: 2015 ident: ref_37 article-title: Generalized Remote Preparation of Arbitrary m-qubit Entangled States via Genuine Entanglements publication-title: Entropy doi: 10.3390/e17041755 – volume: 126 start-page: 010503 year: 2021 ident: ref_56 article-title: Long-Distance Entanglement Purification for Quantum Communication publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.126.010503 – volume: 106 start-page: 013602 year: 2011 ident: ref_102 article-title: Experimental Implementation of the Optimal Linear-Optical Controlled Phase Gate publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.106.013602 |
SSID | ssj0023216 |
Score | 2.301773 |
Snippet | In this paper, we have reinvestigated probabilistic quantum communication protocols and developed a nontraditional remote state preparation protocol that... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | 768 |
SubjectTerms | Atoms Coding Communication Computer network protocols deterministic remote state preparation Entangled states Measurement methods non-maximally entangled channels Protocol quantum communication Statistical analysis Success |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQT1wQCAqBtjKoEqeoydpJnOO2tKqQWhVEpd4sf4xhpW22ajdSufaXM2Nno404cOGyh0121-vn8bzxTN4wdqikaUIRqlwK1-JLXeXGSpOjs0Fv5HzRmljle1mfX8uvN9XNVqsvqglL8sBp4o7K4AwgazGU7_NIJyQ0bW089aqspY_ROvq8TTA1hFpiVtZJR0hgUH8E5Ogp5zTxPlGk_--teMsXTesktxzP2Uv2YmCMfJ5G-oo9g-41e7qkEnPjF-koj38Zqlqi7DL_DggA8Egk-dU9JH3vVcdjgQA3HD-dX5jHxa1ZLn_z0w4Z4s8leE7PGnSw5HQ6u-rXfO7HX_jWIwb9Ld-c9z-8Yddnpz9OzvOhnULuMAZe51baSjiH0LSlkeDrUJQgkb5VpnIqyCBnoQyNRU5hqXOntRhdqTATlKkUHsQu2-lWHbxjHIq6tUEZ1QjcaSvc7wO6feUKIxW0ABn7tJlmfZdUMzRGG4SFHrHI2DEBMN5AQtfxDYRfD_Drf8Gfsc8EnyZzxGl3ZniqAMdJwlZ63hADbZFlZWxvg7Ae7PRBUxpR4goV-EUfx8toYZQ2MR2serpnlloXNhl7mxbEOGZBPdswls-YmiyVyZ-aXukWv6KKN_VUx9BGvf8f0_CBPUfjSpWYao_trO972Ee2tLYH0TD-ABVlFHA priority: 102 providerName: Directory of Open Access Journals |
Title | Nontraditional Deterministic Remote State Preparation Using a Non-Maximally Entangled Channel without Additional Quantum Resources |
URI | https://www.ncbi.nlm.nih.gov/pubmed/37238523 https://www.proquest.com/docview/2819443630 https://www.proquest.com/docview/2820018747 https://pubmed.ncbi.nlm.nih.gov/PMC10217728 https://doaj.org/article/1fcae150a9014d5084e796ad386564d0 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7R9sIFgXgFysogJE5Rk7WTOCe0hd1WSKxKRaW9RY4f7UrbpOxDgiu_nBnHGxohcckhTyefPfPNIzMA76VQhUtcFguuS9zkWaxqoWJUNqiNtElK5bN85_n5lfiyyBbB4bYJaZV7megFtWk1-chPKOAj8F48-Xj3I6auURRdDS00DuAIRbBE4-vodDq_uOxNLj5O866eEEfj_sSSwqfY00AL-WL9_4rkezppmC95TwHNHsOjwBzZpIP6CTywzVP4PadUc2WWnUuPfQ7ZLb78Mru0CIRlnlCyi7Xt6ny3DfOJAkwxvDr-qn4ub9Vq9YtNG2SK1ytrGP1z0NgVIy9tu9uyiemf8G2HWOxu2d7vv3kGV7Pp90_ncWirEGu0hbdxLeqMa40QlakS1uQuSa1AGpepTEsnnBi71BU1couaOnjWNVpZ0o05RSy5sfw5HDZtY18Cs0le1k4qWXCUuBnKfYfqX-pECWlLayN4t__M1V1XPaNCq4OwqHosIjglAPoTqOC139Gur6uwfqrUaWWRvCoK-xpklcIWZa4MtSzNhUki-EDwVbQs8bNrFf4uwHFSgatqUhATLZFtRXC8R7gK63VT_Z1dEbztD-NKo_CJamy7o3PGXQvDIoIX3YTox8ypdxva9BHIwVQZvNTwSLO88dW8qbc6mjjy1f_H9RoeUqd7n2spj-Fwu97ZN8iHtvUIDuTsbBSm_sh7FXB7tkj_AEC8EM0 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcoALAvEKFDAIxClqEjuJc0BooV22tF0BaqXejOPYZaVtUnY3gl75QfxGZvKiKyRuvewhTrKO5_WNZzwD8FIKnbrAxb7gJsOfJPZ1LrSPxgatkSmCTDdZvtNkciw-nsQnG_C7PwtDaZW9TmwUdVEZ2iPfpoCPwHfx4O35d5-6RlF0tW-h0bLFvr34gS7b8s3eDtL3VRSNd4_eT_yuq4Bv0BVc-bnIY24MzjALtbBF4oLQCkQxsY6NdMKJyIUuzdG05tTAMs_RyZAu4hSw44Xl-N5rcF1wnpFEyfGHwcHjUZi01YtwMNi2BC8o0rVm85rWAP8agEsWcD0785K5G9-GWx1OZaOWse7Ahi3vwq8pJbbrYtZuILKdLpemKfbMvlgku2UNfGWfFratKl6VrElLYJrh0_6h_jk70_P5BdstEZeezm3B6IRDaeeM9oSresVGxfAPn2ukfH3G-ijD8h4cX8ly34fNsirtQ2A2SLLcSS1Tjvo9RivjEGxIE2ghbWatBy_6ZVbnba0OhT4O0UINtPDgHRFguIHKazcXqsWp6qRVhc5oi1BZU5C5QAwrbJoluqAGqYkoAg9eE_kUKQFcdqO7sww4TyqnpUYp4d4MsZ0HWz2FVacdluovL3vwfBhGuaZgjS5tVdM9UdswMfXgQcsQw5w5dYqLI-6BXGOVtY9aHyln35ra4dTJHR0q-ej_83oGNyZHhwfqYG-6_xhuouC2WZ5yCzZXi9o-QSS2yp827M_g61XL2x9VaEjh |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVEJcEIiXocCCQJys2N61vT4glJJELYUoVFTqbVnbuyVSapckFvTKz-LXMeMXjZC49eKDn-ud1zc7szMAr6TQsfVs6AqeJXiIQlenQrtobNAaZbmX6DrLdxYdnIgPp-HpDvzu9sJQWmWnE2tFnZcZrZEPKeAj8F3cG9o2LWI-nr67-O5SBymKtHbtNBoWOTKXP9B9W789HCOtXwfBdPLl_YHbdhhwM3QLN24q0pBnGY428bUweWQ93whENKEOM2mFFYH1bZyimU2pmWWaosMhbcApeMdzw_G9N2A3Rq_IG8Du_mQ2P-7dPR74UVPLiPPEGxoCGxT32rKAdaOAf83BFXu4nat5xfhN78DtFrWyUcNmd2HHFPfg14zS3HW-aJYT2bjNrKlLP7Njg0xgWA1m2XxlmhrjZcHqJAWmGT7tftI_F-d6ubxkkwJR6tnS5Iz2OxRmyWiFuKw2bJT3X_hcIR9U56yLOazvw8m1TPgDGBRlYR4BM16UpFZqGXPU9iHaHIvQQ2aeFtIkxjjwsptmddFU7lDo8RAtVE8LB_aJAP0NVGy7PlGuzlQru8q3mTYInDWFnHNEtMLESaRzapcaidxz4A2RT5FKwGnPdLuzAcdJxbXUKCYUnCDSc2Cvo7BqdcVa_eVsB170l1HKKXSjC1NWdE_QtE-MHXjYMEQ_Zk5948KAOyC3WGXrp7avFItvdSVx6uuO7pV8_P9xPYebKGvq4-Hs6AncQiluUj7lHgw2q8o8RVi2SZ-1_M_g63WL3B_lmk5z |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nontraditional+Deterministic+Remote+State+Preparation+Using+a+Non-Maximally+Entangled+Channel+without+Additional+Quantum+Resources&rft.jtitle=Entropy+%28Basel%2C+Switzerland%29&rft.au=Xin%2C+Xuanxuan&rft.au=He%2C+Shiwen&rft.au=Li%2C+Yongxing&rft.au=Li%2C+Chong&rft.date=2023-05-08&rft.eissn=1099-4300&rft.volume=25&rft.issue=5&rft_id=info:doi/10.3390%2Fe25050768&rft_id=info%3Apmid%2F37238523&rft.externalDocID=37238523 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1099-4300&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1099-4300&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1099-4300&client=summon |