Thermal Sensor Allocation for Effective and Efficient Heat Transfer Measurements in Transportation Systems

Power plants, electric generators, high-frequency controllers, battery storage, and control units are essential in current transportation and energy distribution networks. To improve the performance and guarantee the endurance of such systems, it is critical to control their operational temperature...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 23; no. 5; p. 2803
Main Authors Saavedra, Jorge, Gonzalez Cuadrado, David
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 03.03.2023
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Power plants, electric generators, high-frequency controllers, battery storage, and control units are essential in current transportation and energy distribution networks. To improve the performance and guarantee the endurance of such systems, it is critical to control their operational temperature within certain regimes. Under standard working conditions, those elements become heat sources either during their entire operational envelope or during given phases of it. Consequently, in order to maintain a reasonable working temperature, active cooling is required. The refrigeration may consist of the activation of internal cooling systems relying on fluid circulation or air suction and circulation pulled from the environment. However, in both scenarios pulling surrounding air or making use of coolant pumps increases the power demand. The augmented power demand has a direct impact on the power plant or electric generator autonomy, while instigating higher power demand and substandard performance from the power electronics and batteries' compounds. In this manuscript, we present a methodology to efficiently estimate the heat flux load generated by internal heat sources. By accurately and inexpensively computing the heat flux, it is possible to identify the coolant requirements to optimize the use of the available resources. Based on local thermal measurements fed into a Kriging interpolator, we can accurately compute the heat flux minimizing the number of sensors required. Considering the need for effective thermal load description toward efficient cooling scheduling. This manuscript presents a procedure based on temperature distribution reconstruction via a Kriging interpolator to monitor the surface temperature using a minimal number of sensors. The sensors are allocated by means of a global optimization that minimizes the reconstruction error. The surface temperature distribution is then fed into a heat conduction solver that processes the heat flux of the proposed casing, providing an affordable and efficient way of controlling the thermal load. Conjugate URANS simulations are used to simulate the performance of an aluminum casing and demonstrate the effectiveness of the proposed method.
AbstractList Power plants, electric generators, high-frequency controllers, battery storage, and control units are essential in current transportation and energy distribution networks. To improve the performance and guarantee the endurance of such systems, it is critical to control their operational temperature within certain regimes. Under standard working conditions, those elements become heat sources either during their entire operational envelope or during given phases of it. Consequently, in order to maintain a reasonable working temperature, active cooling is required. The refrigeration may consist of the activation of internal cooling systems relying on fluid circulation or air suction and circulation pulled from the environment. However, in both scenarios pulling surrounding air or making use of coolant pumps increases the power demand. The augmented power demand has a direct impact on the power plant or electric generator autonomy, while instigating higher power demand and substandard performance from the power electronics and batteries' compounds. In this manuscript, we present a methodology to efficiently estimate the heat flux load generated by internal heat sources. By accurately and inexpensively computing the heat flux, it is possible to identify the coolant requirements to optimize the use of the available resources. Based on local thermal measurements fed into a Kriging interpolator, we can accurately compute the heat flux minimizing the number of sensors required. Considering the need for effective thermal load description toward efficient cooling scheduling. This manuscript presents a procedure based on temperature distribution reconstruction via a Kriging interpolator to monitor the surface temperature using a minimal number of sensors. The sensors are allocated by means of a global optimization that minimizes the reconstruction error. The surface temperature distribution is then fed into a heat conduction solver that processes the heat flux of the proposed casing, providing an affordable and efficient way of controlling the thermal load. Conjugate URANS simulations are used to simulate the performance of an aluminum casing and demonstrate the effectiveness of the proposed method.
Audience Academic
Author Saavedra, Jorge
Gonzalez Cuadrado, David
AuthorAffiliation 2 Gas Turbine Lab, Massachusetts Institute of Technology, 70 Vassar Street, Cambridge, MA 02139, USA
1 European Institute For Aviation Training and Accreditation (EIATA), Universidad Rey Juan Carlos, Fuenlabrada, 28943 Madrid, Spain
AuthorAffiliation_xml – name: 1 European Institute For Aviation Training and Accreditation (EIATA), Universidad Rey Juan Carlos, Fuenlabrada, 28943 Madrid, Spain
– name: 2 Gas Turbine Lab, Massachusetts Institute of Technology, 70 Vassar Street, Cambridge, MA 02139, USA
Author_xml – sequence: 1
  givenname: Jorge
  orcidid: 0000-0002-5914-4397
  surname: Saavedra
  fullname: Saavedra, Jorge
  organization: European Institute For Aviation Training and Accreditation (EIATA), Universidad Rey Juan Carlos, Fuenlabrada, 28943 Madrid, Spain
– sequence: 2
  givenname: David
  surname: Gonzalez Cuadrado
  fullname: Gonzalez Cuadrado, David
  organization: Gas Turbine Lab, Massachusetts Institute of Technology, 70 Vassar Street, Cambridge, MA 02139, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36905006$$D View this record in MEDLINE/PubMed
BookMark eNpdkk1v3CAQhq0qVfPRHvoHKku9tIdNhw9jfKpWUdpEStVDtmfEwrBhZcMWvJHy74vrZJVEHGCYd55h0HtaHYUYsKo-EjhnrINvmTJoqAT2pjohnPKFpBSOnp2Pq9OctwCUMSbfVcdMdNAAiJNqu7rDNOi-vsWQY6qXfR-NHn0MtSvhpXNoRn-PtQ52irzxGMb6CvVYr5IO2WGqf6HO-4RDyeTahzmxi2mcQbcPecQhv6_eOt1n_PC4n1V_flyuLq4WN79_Xl8sbxaGi25caGkpth1SA90amo45oil0VnBHEIXmzFrTCM6ZBEolWUvJLTMtgbVd8wbZWXU9c23UW7VLftDpQUXt1f-LmDZKp9GbHlXbgNMt1R0w5FTKTjAjmGhRoubctoX1fWbt9usBrSkTJt2_gL7MBH-nNvFeEQBoG9YUwpdHQop_95hHNfhssO91wLjPirZSEOCET80-v5Ju4z6F8leTqqFMSDGpzmfVRpcJfHCxNDZlWRy8KcZwvtwvW04kZ4LJUvB1LjAp5pzQHZ5PQE3-UQf_FO2n5_MelE-GYf8ArCDBOw
Cites_doi 10.1016/S0142-727X(97)10014-5
10.1016/j.ijheatmasstransfer.2020.119503
10.1115/1.4006313
10.1016/j.applthermaleng.2015.06.003
10.3390/s22218401
10.1115/1.4033267
10.3390/s22103808
10.1016/j.expthermflusci.2021.110398
10.1115/1.4004845
10.1016/j.measurement.2014.09.055
10.1016/0894-1777(88)90043-X
10.1057/palgrave.jors.2602068
10.1115/1.2905435
10.1115/1.4035211
10.1016/j.ijhydene.2015.12.209
10.1115/GT2019-91020
10.1115/1.4046546
10.1115/1.2905437
10.1016/j.ejor.2007.10.013
10.1115/1.4049613
10.1016/j.ijthermalsci.2020.106286
10.1016/j.applthermaleng.2015.02.048
10.1016/S0011-2240(03)00015-4
10.3390/en12193594
10.1007/s13202-015-0175-9
10.1115/1.2960953
10.1109/ITHERM.2019.8757292
10.2514/6.2021-3717
10.6028/NBS.IR.84-3007
10.3390/s22083013
10.4314/ijest.v3i8.1
10.1126/science.220.4598.671
10.1109/APUAVD53804.2021.9615424
10.1016/0040-6031(89)87016-9
10.3390/s22197635
10.1115/1.2752188
10.1115/1.4039026
10.1007/BF02127704
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 by the authors. 2023
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 by the authors. 2023
DBID NPM
AAYXX
CITATION
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s23052803
DatabaseName PubMed
CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni Edition)
ProQuest Central
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle PubMed
CrossRef
Publicly Available Content Database
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Central China
ProQuest Hospital Collection (Alumni)
ProQuest Central
ProQuest Health & Medical Complete
Health Research Premium Collection
ProQuest Medical Library
ProQuest One Academic UKI Edition
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest One Academic
ProQuest Medical Library (Alumni)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList


CrossRef
Publicly Available Content Database
PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X7
  name: Health & Medical Collection
  url: https://search.proquest.com/healthcomplete
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_750fa72a903e4288963c6367e8ea44d7
A741843638
10_3390_s23052803
36905006
Genre Journal Article
GrantInformation_xml – fundername: Agencia Estatal de Investigación (Spain)
  grantid: PID2020-112967GB-C33
– fundername: Agencia Estatal de Investigación, Spain
  grantid: PID2020-112967GB-C33
GroupedDBID ---
123
2WC
3V.
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
ABDBF
ABJCF
ABUWG
ADBBV
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BENPR
BPHCQ
BVXVI
CCPQU
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
ITC
KB.
KQ8
L6V
M1P
M48
M7S
MODMG
M~E
NPM
OK1
P2P
P62
PDBOC
PIMPY
PQQKQ
PROAC
PSQYO
RIG
RNS
RPM
TUS
UKHRP
XSB
~8M
AAYXX
CITATION
BGLVJ
7XB
8FK
AZQEC
DWQXO
K9.
PQEST
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c469t-a8d2e79e2c09b0593f1a209d64f1ee6a43ddc56443802281b884d3c710bdb45e3
IEDL.DBID RPM
ISSN 1424-8220
IngestDate Thu Jul 04 21:11:13 EDT 2024
Tue Sep 17 21:30:14 EDT 2024
Fri Jun 28 16:20:03 EDT 2024
Wed Oct 02 17:49:43 EDT 2024
Fri Feb 02 04:20:24 EST 2024
Thu Sep 26 17:11:54 EDT 2024
Sat Sep 28 08:14:57 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords uncertainty evaluation
thermal sensors
heat conduction
cooling
heat transfer
global optimization
sensor allocation
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c469t-a8d2e79e2c09b0593f1a209d64f1ee6a43ddc56443802281b884d3c710bdb45e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-5914-4397
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10007535/
PMID 36905006
PQID 2785236867
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_750fa72a903e4288963c6367e8ea44d7
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10007535
proquest_miscellaneous_2786104147
proquest_journals_2785236867
gale_infotracacademiconefile_A741843638
crossref_primary_10_3390_s23052803
pubmed_primary_36905006
PublicationCentury 2000
PublicationDate 20230303
PublicationDateYYYYMMDD 2023-03-03
PublicationDate_xml – month: 3
  year: 2023
  text: 20230303
  day: 3
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2023
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Crank (ref_16) 1996; 6
Cuadrado (ref_38) 2020; 152
Renau (ref_4) 2016; 41
Oldfield (ref_12) 2008; 130
Anderson (ref_22) 1992; 114
Lozano (ref_40) 2020; 142
ref_36
Rabin (ref_35) 2003; 46
ref_10
Cuadrado (ref_26) 2018; 140
Saavedra (ref_13) 2017; 139
Moffat (ref_17) 1998; 19
Collins (ref_18) 2016; 138
Pinilla (ref_19) 2012; 134
Anderson (ref_21) 1992; 114
Moffat (ref_34) 1988; 1
ref_39
ref_15
Olmeda (ref_33) 2015; 59
Kirkpatrick (ref_30) 1983; 220
Lavagnoli (ref_11) 2015; 82
Barroso (ref_8) 2015; 89
Saavedra (ref_37) 2021; 126
ref_25
Suman (ref_31) 2006; 57
Saavedra (ref_24) 2021; 143
ref_1
ref_3
ref_2
ref_29
Atkins (ref_20) 2012; 134
Kleijnen (ref_27) 2009; 192
ref_9
Celik (ref_23) 2008; 130
Tanda (ref_6) 2020; 152
ref_5
ref_7
Takahashi (ref_14) 1989; 139
Khademi (ref_28) 2016; 6
Tatara (ref_32) 2011; 3
References_xml – volume: 19
  start-page: 90
  year: 1998
  ident: ref_17
  article-title: What’s new in convective heat transfer?
  publication-title: Int. J. Heat Fluid Flow
  doi: 10.1016/S0142-727X(97)10014-5
  contributor:
    fullname: Moffat
– volume: 152
  start-page: 119503
  year: 2020
  ident: ref_38
  article-title: Non-linear non-Iterative transient inverse conjugate heat transfer method applied to microelectronics
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2020.119503
  contributor:
    fullname: Cuadrado
– volume: 134
  start-page: 091601
  year: 2012
  ident: ref_19
  article-title: Adiabatic wall temperature evaluation in a high speed turbine
  publication-title: J. Heat Transf.
  doi: 10.1115/1.4006313
  contributor:
    fullname: Pinilla
– volume: 89
  start-page: 1
  year: 2015
  ident: ref_8
  article-title: Experimental determination of the heat transfer coefficient for the optimal design of the cooling system of a PEM fuel cell placed inside the fuselage of an UAV
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2015.06.003
  contributor:
    fullname: Barroso
– ident: ref_9
  doi: 10.3390/s22218401
– volume: 138
  start-page: 111007
  year: 2016
  ident: ref_18
  article-title: Improved methodologies for time-resolved heat transfer measurements, demonstrated on an unshrouded transonic turbine casing
  publication-title: J. Turbomach.
  doi: 10.1115/1.4033267
  contributor:
    fullname: Collins
– ident: ref_10
  doi: 10.3390/s22103808
– volume: 126
  start-page: 110398
  year: 2021
  ident: ref_37
  article-title: Experimental analysis of Reynolds effect on flow detachment and sudden flow release on a wall-mounted hump
  publication-title: Exp. Therm. Fluid Sci.
  doi: 10.1016/j.expthermflusci.2021.110398
  contributor:
    fullname: Saavedra
– volume: 134
  start-page: 061002
  year: 2012
  ident: ref_20
  article-title: Unsteady effects on transonic turbine blade-tip heat transfer
  publication-title: J. Turbomach.
  doi: 10.1115/1.4004845
  contributor:
    fullname: Atkins
– volume: 59
  start-page: 363
  year: 2015
  ident: ref_33
  article-title: Uncertainties in power computations in a turbocharger test bench
  publication-title: Measurement
  doi: 10.1016/j.measurement.2014.09.055
  contributor:
    fullname: Olmeda
– volume: 1
  start-page: 3
  year: 1988
  ident: ref_34
  article-title: Describing the uncertainties in experimental results
  publication-title: Exp. Therm. Fluid Sci.
  doi: 10.1016/0894-1777(88)90043-X
  contributor:
    fullname: Moffat
– volume: 57
  start-page: 1143
  year: 2006
  ident: ref_31
  article-title: A survey of simulated annealing as a tool for single and multiobjective optimization
  publication-title: J. Oper. Res. Soc.
  doi: 10.1057/palgrave.jors.2602068
  contributor:
    fullname: Suman
– volume: 114
  start-page: 14
  year: 1992
  ident: ref_22
  article-title: The adiabatic heat transfer coefficient and the superposition kernel function: Part 1—Data for arrays of flatpacks for different flow conditions
  publication-title: J. Electron. Packag.
  doi: 10.1115/1.2905435
  contributor:
    fullname: Anderson
– volume: 139
  start-page: 061004
  year: 2017
  ident: ref_13
  article-title: Experimental Characterization of the Vane Heat Flux Under Pulsating Trailing-Edge Blowing
  publication-title: J. Turbomach.
  doi: 10.1115/1.4035211
  contributor:
    fullname: Saavedra
– volume: 41
  start-page: 19702
  year: 2016
  ident: ref_4
  article-title: Design and manufacture of a high-temperature PEMFC and its cooling system to power a lightweight UAV for a high altitude mission
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2015.12.209
  contributor:
    fullname: Renau
– ident: ref_36
  doi: 10.1115/GT2019-91020
– volume: 142
  start-page: 061009
  year: 2020
  ident: ref_40
  article-title: Experimental Demonstration of Inverse Heat Transfer Methodologies for Turbine Applications
  publication-title: J. Turbomach.
  doi: 10.1115/1.4046546
  contributor:
    fullname: Lozano
– volume: 114
  start-page: 22
  year: 1992
  ident: ref_21
  article-title: The Adiabatic Heat Transfer Coefficient and the Superposition Kernel Function: Part 2—Modeling Flatpack Data as a Function of Channel Turbulence
  publication-title: J. Electron. Packag.
  doi: 10.1115/1.2905437
  contributor:
    fullname: Anderson
– volume: 192
  start-page: 707
  year: 2009
  ident: ref_27
  article-title: Kriging metamodeling in simulation: A review
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2007.10.013
  contributor:
    fullname: Kleijnen
– volume: 143
  start-page: 17
  year: 2021
  ident: ref_24
  article-title: Scalable Heat Transfer Characterization on Film Cooled Geometries Based on Discrete Green’s Functions
  publication-title: J. Turbomach.
  doi: 10.1115/1.4049613
  contributor:
    fullname: Saavedra
– ident: ref_25
– volume: 152
  start-page: 106286
  year: 2020
  ident: ref_6
  article-title: Cooling solutions for an electronic equipment box operating on UAV systems under transient conditions
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2020.106286
  contributor:
    fullname: Tanda
– volume: 82
  start-page: 170
  year: 2015
  ident: ref_11
  article-title: Uncertainty analysis of adiabatic wall temperature measurements in turbine experiments
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2015.02.048
  contributor:
    fullname: Lavagnoli
– ident: ref_29
– volume: 46
  start-page: 109
  year: 2003
  ident: ref_35
  article-title: A general model for the propagation of uncertainty in measurements into heat transfer simulations and its application to cryosurgery
  publication-title: Cryobiology
  doi: 10.1016/S0011-2240(03)00015-4
  contributor:
    fullname: Rabin
– ident: ref_3
  doi: 10.3390/en12193594
– volume: 6
  start-page: 191
  year: 2016
  ident: ref_28
  article-title: Hybrid FDG optimization method and kriging interpolator to optimize well locations
  publication-title: J. Pet. Explor. Prod. Technol.
  doi: 10.1007/s13202-015-0175-9
  contributor:
    fullname: Khademi
– volume: 130
  start-page: 078001
  year: 2008
  ident: ref_23
  article-title: Procedure for estimation and reporting of uncertainty due to discretization in CFD applications
  publication-title: J. Fluids Eng.
  doi: 10.1115/1.2960953
  contributor:
    fullname: Celik
– ident: ref_39
  doi: 10.1109/ITHERM.2019.8757292
– ident: ref_5
  doi: 10.2514/6.2021-3717
– ident: ref_15
  doi: 10.6028/NBS.IR.84-3007
– ident: ref_2
  doi: 10.3390/s22083013
– volume: 3
  start-page: 1
  year: 2011
  ident: ref_32
  article-title: Assessing heat exchanger performance data using temperature measurement uncertainty
  publication-title: Int. J. Eng. Sci. Technol.
  doi: 10.4314/ijest.v3i8.1
  contributor:
    fullname: Tatara
– volume: 220
  start-page: 671
  year: 1983
  ident: ref_30
  article-title: Optimization by simulated annealing
  publication-title: Science
  doi: 10.1126/science.220.4598.671
  contributor:
    fullname: Kirkpatrick
– ident: ref_7
  doi: 10.1109/APUAVD53804.2021.9615424
– volume: 139
  start-page: 133
  year: 1989
  ident: ref_14
  article-title: Heat capacity of aluminum from 80 to 880 K
  publication-title: Thermochim. Acta
  doi: 10.1016/0040-6031(89)87016-9
  contributor:
    fullname: Takahashi
– ident: ref_1
  doi: 10.3390/s22197635
– volume: 130
  start-page: 021023
  year: 2008
  ident: ref_12
  article-title: Impulse response processing of transient heat transfer gauge signals
  publication-title: J. Turbomach.
  doi: 10.1115/1.2752188
  contributor:
    fullname: Oldfield
– volume: 140
  start-page: 010905
  year: 2018
  ident: ref_26
  article-title: Inverse Conduction Heat Transfer and Kriging Interpolation Applied to Temperature Sensor Location in Microchips
  publication-title: J. Electron. Packag.
  doi: 10.1115/1.4039026
  contributor:
    fullname: Cuadrado
– volume: 6
  start-page: 207
  year: 1996
  ident: ref_16
  article-title: A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type
  publication-title: Adv. Comput. Math.
  doi: 10.1007/BF02127704
  contributor:
    fullname: Crank
SSID ssj0023338
Score 2.425722
Snippet Power plants, electric generators, high-frequency controllers, battery storage, and control units are essential in current transportation and energy...
SourceID doaj
pubmedcentral
proquest
gale
crossref
pubmed
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 2803
SubjectTerms Accuracy
Boundary conditions
Conduction heating
Conductive heat transfer
Control equipment
Coolant pumps
cooling
Cooling systems
Demand
Electric generators
Electric power-plants
Energy consumption
Energy resources
Energy storage
Global optimization
heat conduction
Heat conductivity
Heat flux
Heat transfer
Load
Performance enhancement
Power electronics
Power plants
Reconstruction
Repeaters
sensor allocation
Sensors
Suction
Surface temperature
System effectiveness
Temperature
Temperature distribution
Thermal analysis
thermal sensors
Transportation industry
Transportation systems
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUqTnBA_QAaSpFbVeopIsnYjnNcEGhViV5aJG6WP8VWKIt2l__P2M6GjXropcckluXMs2feJJ5nQr55pNQ6GFYaA7pktnalCU6WhmnBwYQGfKx3vv0p5nfsxz2_3znqK-4Jy_LA2XAXGNGCbhvdVeCRKkucMFaAaL30mjGX68hrvk2mhlQLMPPKOkKASf3FGok2j-cwTaJPEun_2xXvxKLpPsmdwHPzlhwOjJHO8kjfkTe-f08OdnQEP5A_CDY62Ef6C5PS5YrOHmOIiianyElpVihGt0Z17-LVIlVB0jn6YZqCVfArevv6tXBNFz0dZc9zR4O0-RG5u7n-fTUvh0MUSouZ76bU0jW-7Xxjq87E8_tCrZuqc4KF2nuhGThnObIiiEW3SGKlZA4sEg_jDOMejslev-z9R0LR8m0w0hmwnFnHJcJb2yZ0oa60NVCQr1vjqqeslaEwx4gIqBGBglxGs48Norx1uoGgqwF09S_QC_I9gqbiIkRkrB5qCXCcUc5KzaImDwP0LQU52-KqhtW5Vk0rMf8WUmBHX8bHuK7izxLd--VzaoPMktUM25zkaTCOGURXcXRXBZGTCTJ5qemTfvGQtLvrRNKAn_4PM3wi-w3O9bQlDs7I3mb17D8jR9qY87QcXgDwJRF5
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9RAEB9q-6IPYv2M1rKK4FO4JPuRzZNcpeUotIha6FvYTz0pSb27_v_OJLn0gtDHbJaw2Zmd-c3uzm8APgWE1CZakVrLTSpc7lMbvU6tMEpyGwseKN_54lItrsT5tbzeg8U2F4auVW5tYmeofetoj3xWlBpjJqVVOTOWdgHcZvbl9m9K9aPonHUopvEIDopc0IHtwcnp5bfvY_DFMRbrmYU4hvmzNUJvSZWZJv6oo-3_3zjveKfpzckdV3T2DJ4OGJLNe6Efwl5onsOTHWbBF_AHxY8m94b9wDC1XbH5DTktEgJDlMp6zmI0dMw0np6WXV4kW6BlZp37imHFLu73D9ds2bCRCL3_0EB2_hKuzk5_fl2kQ1mF1GEsvEmN9kUoq1C4rLJU0S_mpsgqr0TMQ1BGcO-dRJzEKQ0XYa3WwnOHUMR6K2Tgr2C_aZvwBpjC5mi1t9xJ4bzUKPDcFbGKeWac5Ql83E5ufduzZ9QYdZAE6lECCZzQtI8diPC6a2hXv-ph_dQIbKIpC1NlPGDEpNFuOMVVGXQwQvgygc8ktJqWJSmHGbILcJxEcFXPiaVHcLQ2CRxt5VoP63Vd32tXAh_G17jS6PjENKG96_og1hS5wD6vezUYx8xVlUk0YAnoiYJMfmr6pln-7ti88w62cfn24XG9g8dU6b67_saPYH-zugvvEQ9t7PGg6v8AZGoPEQ
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access(OpenAccess)
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwELaW5QIHxHsDCzIIiVMgiR9xDmhVEKsKqVyg0t4sP6GoSpe0Ky3_nhknDY1AHONYluMZz3xfEn9DyKsAkNpEy3Nrmcm5K31uo1e55UYKZmPFAp53XnyW8yX_dCEujsi-xuawgNt_UjusJ7Xs1m-uf_46gw3_DhknUPa3W4DRAqss3SA3K844OvqCjx8TKgY0rBcVmnafpKKk2P93XD5ITNOfJg-y0PldcmeAj3TW2_seOQrtfXL7QFTwAfkBlodou6ZfgKFuOjpbY77C9acAUGkvVwwxjprW49UqHYmkcwjKNGWuGDq6-PPqcEtXLR010PuBBp3zh2R5_vHrh3k-VFTIHdDgXW6Ur0LdhMoVjcVifrE0VdF4yWMZgjScee8EQCSGJ3AB0SrFPXOAQqy3XAT2iBy3mzacECqhOVrlLXOCOy8U2Lp0VWxiWRhnWUZe7hdXX_bCGRoIB1pAjxbIyHtc9rEDal2nhk33TQ9bRwOmiaauTFOwAGRJQchwksk6qGA493VGXqPRNPoIWMaZ4WABzBO1rfQMBXo4g0CTkdO9XfXe03RVKyDjUkkY6MV4GzYZfjkxbdhcpT4AM3nJoc_j3g3GOTPZFAJiV0bUxEEmDzW9066-JyHvMiE2Jp78f15PyS0scp_-fGOn5HjXXYVnAIV29nly9N_KGgtR
  priority: 102
  providerName: Scholars Portal
Title Thermal Sensor Allocation for Effective and Efficient Heat Transfer Measurements in Transportation Systems
URI https://www.ncbi.nlm.nih.gov/pubmed/36905006
https://www.proquest.com/docview/2785236867/abstract/
https://search.proquest.com/docview/2786104147
https://pubmed.ncbi.nlm.nih.gov/PMC10007535
https://doaj.org/article/750fa72a903e4288963c6367e8ea44d7
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEB7ygJIcSp-p2tRsS6EnxZJ2tVodnRDXBBxC24BvYp-JiyMH2_n_mV09atNbLwJJK7HeeX0jz3wL8M0ipJZOsVgpKmOmUxMrZ0SsmOQ5VS6j1vc7T6_55JZdzfLZHvCuFyYU7Ws1P6sXD2f1_D7UVj4-6GFXJza8mV6kIdLRfLgP-wWlXY7eplkUs66GQ4hiQj9cI8jO_R5MR_CCYi6YJ353o60gFLj6__XIWyFpt1xyK_6MX8HLFjiSUTPB17Bn6zdwvEUn-Bb-oMzRzy7IL8xNlysyWvhI5VeeIDQlDVExejcia-PP5qEZkkzQHZMQs5xdkenfj4ZrMq9Jz37evKhlOH8Ht-PL3xeTuN1LIdaYAG9iKUxmi9JmOimV38bPpTJLSsOZS63lklFjdI7giPreW8SyQjBDNeIPZRTLLX0PB_Wyth-AcLzslDCK6pxpkwuUcqozV7o0kVrRCL52i1s9NpQZFaYaXhhVL4wIzv2y9wM8y3W4sFzdVa2sK0QzThaZLBNqMU0S6Cw0p7ywwkrGTBHBdy-0ytsiSkbLtqUA5-lZraqRp-ZhFF1MBKedXKvWSNdVVghMw7ng-KIv_W00L_-fiazt8imMQYDJUoZjTho16OfcaVMEYkdBdn7U7h3U6EDh3Wnwx_9_9BMcZajsoR6OnsLBZvVkPyNA2qgBWsWswKMY_xjA4fnl9c3PQfjYgMcpE4NgL8-J-hhR
link.rule.ids 230,315,733,786,790,870,891,2115,2236,12083,12792,21416,24346,27957,27958,31754,31755,33408,33409,33779,33780,43345,43635,43840,53827,53829,74102,74392,74659
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagHIAD4k2ggEFInKIm8SPOCS2IZYFuL7RSb5afsKhKyu72_zPjZNONkDjGsSLHM575xvZ8Q8i7AJDaRMtza5nJuSt9bqNXueVGCmZjxQLmOy9P5OKMfzsX58OG22a4VrmziclQ-87hHvlRVSuImaSS9YfLPzlWjcLT1aGExk1yizNwnZgpPv8yBlwM4q-eTYhBaH-0AbgtsBrTxAclqv5_DfKeR5reltxzP_P75N6AG-msF_QDciO0D8ndPTbBR-Q3iBzM7AX9AaFpt6azC3RUOPEUkCnteYrBuFHTenxapVxIugBrTJPLimFNl9d7hhu6aulIft5_aCA4f0zO5p9PPy3yoZRC7iD-3eZG-SrUTahc0Vis4hdLUxWNlzyWIUjDmfdOADZimHoLUFYp7pkD-GG95SKwJ-Sg7drwjFAJzdEqb5kT3HmhQMilq2ITy8I4yzLydje5-rJnzNAQaaAE9CiBjHzEaR87IMl1aujWP_WwZjSAmWjqyjQFCxAlKbAVTjJZBxUM577OyHsUmsalCJJxZsgogHEiqZWeITMP6oXKyOFOrnpYoxt9rVEZeTO-htWFRyamDd1V6gP4kpcc-jzt1WAcM5NNIcBoZURNFGTyU9M37epXYvAuE1Rj4vn_x_Wa3F6cLo_18deT7y_IHax0n66_sUNysF1fhZeAh7b2VVL6vwbyDN4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bi9QwFA66guiDeF2rq0YRfCrTNmmaPsl4GcbLLoIuzFvIVUeWdp2Z_f-ek2YuRfCxbShpv5NzvtOefIeQ1x4otQ6G58YwnXNbutwEJ3PDtaiZCRXzuN_59EzMz_nnRb1I9U_rVFa59YnRUbve4jfySdVIyJmEFM0kpLKIbx9mby__5NhBCv-0pnYa18kNiJIFdjNoFvvki0EuNigLMUjzJ2ug3jV2ZhrFoyjb_69zPohO48rJg1A0u0vuJA5JpwPo98g1390ntw-UBR-Q3wA_uNwL-h3S1H5FpxcYtBAECiyVDprF4Oio7hweLeO-SDoHz0xj-Ap-RU_33w_XdNnRnRD6cKMkdv6QnM8-_ng_z1NbhdxCLrzJtXSVb1pf2aI12NEvlLoqWid4KL0XmjPnbA08ieE2XKC1UnLHLFAR4wyvPXtEjrq-848JFXA6GOkMszW3rpYAeGmr0Iay0NawjLzavlx1OahnKMg6EAG1QyAj7_C17wag4HU80a9-qrR-FBCboJtKtwXzkDFJ8BtWMNF46TXnrsnIGwRN4bIEZKxOuwtgnihwpaao0sMZeJuMnGxxVWm9rtXeujLycncZVhr-PtGd76_iGOCavOQw5ngwg92cmWiLGhxYRuTIQEYPNb7SLX9FNe8y0jZWP_n_vF6Qm2Dv6uunsy9PyS1seh8r4dgJOdqsrvwzoEYb8zza_F9gbBEK
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermal+Sensor+Allocation+for+Effective+and+Efficient+Heat+Transfer+Measurements+in+Transportation+Systems&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Saavedra%2C+Jorge&rft.au=David+Gonzalez+Cuadrado&rft.date=2023-03-03&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=23&rft.issue=5&rft.spage=2803&rft_id=info:doi/10.3390%2Fs23052803&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon