ECG Identification Based on the Gramian Angular Field and Tested with Individuals in Resting and Activity States
In the last decade, biosignals have attracted the attention of many researchers when designing novel biometrics systems. Many of these works use cardiac signals and their representation as electrocardiograms (ECGs). Nowadays, these solutions are even more realistic since we can acquire reliable ECG...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 23; no. 2; p. 937 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
13.01.2023
MDPI |
Subjects | |
Online Access | Get full text |
ISSN | 1424-8220 1424-8220 |
DOI | 10.3390/s23020937 |
Cover
Loading…
Abstract | In the last decade, biosignals have attracted the attention of many researchers when designing novel biometrics systems. Many of these works use cardiac signals and their representation as electrocardiograms (ECGs). Nowadays, these solutions are even more realistic since we can acquire reliable ECG records by using wearable devices. This paper moves in that direction and proposes a novel approach for an ECG identification system. For that, we transform the ECG recordings into Gramian Angular Field (GAF) images, a time series encoding technique well-known in other domains but not very common with biosignals. Specifically, the time series is transformed using polar coordinates, and then, the cosine sum of the angles is computed for each pair of points. We present a proof-of-concept identification system built on a tuned VGG19 convolutional neural network using this approach. We confirm our proposal’s feasibility through experimentation using two well-known public datasets: MIT-BIH Normal Sinus Rhythm Database (subjects at a resting state) and ECG-GUDB (individuals under four specific activities). In both scenarios, the identification system reaches an accuracy of 91%, and the False Acceptance Rate (FAR) is eight times higher than the False Rejection Rate (FRR). |
---|---|
AbstractList | In the last decade, biosignals have attracted the attention of many researchers when designing novel biometrics systems. Many of these works use cardiac signals and their representation as electrocardiograms (ECGs). Nowadays, these solutions are even more realistic since we can acquire reliable ECG records by using wearable devices. This paper moves in that direction and proposes a novel approach for an ECG identification system. For that, we transform the ECG recordings into Gramian Angular Field (GAF) images, a time series encoding technique well-known in other domains but not very common with biosignals. Specifically, the time series is transformed using polar coordinates, and then, the cosine sum of the angles is computed for each pair of points. We present a proof-of-concept identification system built on a tuned VGG19 convolutional neural network using this approach. We confirm our proposal’s feasibility through experimentation using two well-known public datasets: MIT-BIH Normal Sinus Rhythm Database (subjects at a resting state) and ECG-GUDB (individuals under four specific activities). In both scenarios, the identification system reaches an accuracy of 91%, and the False Acceptance Rate (FAR) is eight times higher than the False Rejection Rate (FRR). In the last decade, biosignals have attracted the attention of many researchers when designing novel biometrics systems. Many of these works use cardiac signals and their representation as electrocardiograms (ECGs). Nowadays, these solutions are even more realistic since we can acquire reliable ECG records by using wearable devices. This paper moves in that direction and proposes a novel approach for an ECG identification system. For that, we transform the ECG recordings into Gramian Angular Field (GAF) images, a time series encoding technique well-known in other domains but not very common with biosignals. Specifically, the time series is transformed using polar coordinates, and then, the cosine sum of the angles is computed for each pair of points. We present a proof-of-concept identification system built on a tuned VGG19 convolutional neural network using this approach. We confirm our proposal's feasibility through experimentation using two well-known public datasets: MIT-BIH Normal Sinus Rhythm Database (subjects at a resting state) and ECG-GUDB (individuals under four specific activities). In both scenarios, the identification system reaches an accuracy of 91%, and the False Acceptance Rate (FAR) is eight times higher than the False Rejection Rate (FRR).In the last decade, biosignals have attracted the attention of many researchers when designing novel biometrics systems. Many of these works use cardiac signals and their representation as electrocardiograms (ECGs). Nowadays, these solutions are even more realistic since we can acquire reliable ECG records by using wearable devices. This paper moves in that direction and proposes a novel approach for an ECG identification system. For that, we transform the ECG recordings into Gramian Angular Field (GAF) images, a time series encoding technique well-known in other domains but not very common with biosignals. Specifically, the time series is transformed using polar coordinates, and then, the cosine sum of the angles is computed for each pair of points. We present a proof-of-concept identification system built on a tuned VGG19 convolutional neural network using this approach. We confirm our proposal's feasibility through experimentation using two well-known public datasets: MIT-BIH Normal Sinus Rhythm Database (subjects at a resting state) and ECG-GUDB (individuals under four specific activities). In both scenarios, the identification system reaches an accuracy of 91%, and the False Acceptance Rate (FAR) is eight times higher than the False Rejection Rate (FRR). |
Author | Bagheri, Nasour Safkhani, Masoumeh Camara, Carmen Peris-Lopez, Pedro |
AuthorAffiliation | 2 Computer Engineering Department, Shahid Rajaee Teacher Training University, Tehran 16788-15811, Iran 4 School of Computer Science (SCS), Institute for Research in Fundamental Sciences (IPM), Tehran 16788-15811, Iran 3 Electrical Engineering Department, Shahid Rajaee Teacher Training University, Tehran 16788-15811, Iran 1 Computer Science Department, Carlos III University of Madrid, 28911 Leganés, Spain |
AuthorAffiliation_xml | – name: 3 Electrical Engineering Department, Shahid Rajaee Teacher Training University, Tehran 16788-15811, Iran – name: 1 Computer Science Department, Carlos III University of Madrid, 28911 Leganés, Spain – name: 2 Computer Engineering Department, Shahid Rajaee Teacher Training University, Tehran 16788-15811, Iran – name: 4 School of Computer Science (SCS), Institute for Research in Fundamental Sciences (IPM), Tehran 16788-15811, Iran |
Author_xml | – sequence: 1 givenname: Carmen surname: Camara fullname: Camara, Carmen – sequence: 2 givenname: Pedro orcidid: 0000-0001-6943-0760 surname: Peris-Lopez fullname: Peris-Lopez, Pedro – sequence: 3 givenname: Masoumeh orcidid: 0000-0002-1897-0828 surname: Safkhani fullname: Safkhani, Masoumeh – sequence: 4 givenname: Nasour orcidid: 0000-0002-6818-5342 surname: Bagheri fullname: Bagheri, Nasour |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36679733$$D View this record in MEDLINE/PubMed |
BookMark | eNptkstqGzEUhkVJaS7toi9QBN00Cze6jS6bgmMS1xAotOlaaDQaW2YsuZImJW8fxU5NErrSQf93fs7tFByFGBwAHzH6SqlCF5lQRJCi4g04wYywiSQEHT2Lj8FpzmuECKVUvgPHlHOhBKUnYHs1m8NF50Lxvbem-BjgpcmugzUoKwfnyWy8CXAaluNgErz2buigCR28dblU7q8vK7gInb_z3WiGDH2AP6vkw3KHTW2pUrmHv4opLr8Hb_tKuQ9P7xn4fX11O_s-ufkxX8ymNxPLuCoTI5zEAlHemrbDFCGMBG4slj23lFiiCO2ZtA61gjDllFW0pVgx4ZyQiDt6BhZ73y6atd4mvzHpXkfj9e4jpqU2qXg7OE2MwbLpSWNbxkzLVCs4aRVhDZUIMV69vu29tmO7cZ2t00pmeGH6Ugl-pZfxTivJCSayGnx5Mkjxz1iHozc-WzcMJrg4Zk0Er2viQqiKfn6FruOYQh3VIyWIamqblfr0vKJDKf8WW4HzPWBTzDm5_oBgpB-PRh-OprIXr1jry-4UajN--E_GA4zrwO0 |
CitedBy_id | crossref_primary_10_1016_j_bbe_2024_06_005 crossref_primary_10_1016_j_eswa_2024_126018 crossref_primary_10_1016_j_eswa_2025_126379 crossref_primary_10_3390_s25061864 crossref_primary_10_1109_ACCESS_2024_3448261 crossref_primary_10_1016_j_istruc_2024_107928 crossref_primary_10_3390_biomedinformatics5010007 crossref_primary_10_15212_CVIA_2023_0061 crossref_primary_10_1109_JSEN_2023_3323564 crossref_primary_10_3390_foods12234267 crossref_primary_10_1016_j_imu_2024_101563 crossref_primary_10_1016_j_eswa_2024_124371 crossref_primary_10_1515_mks_2024_0003 |
Cites_doi | 10.1109/ACCESS.2018.2886573 10.1109/ICITCS.2015.7292977 10.1038/s41569-021-00522-7 10.1109/ACCESS.2018.2820684 10.1016/j.bspc.2021.103159 10.1038/s41597-020-0495-6 10.1109/ACCESS.2016.2548519 10.1016/j.future.2018.01.031 10.1016/j.dsp.2016.02.008 10.1145/3410158 10.1002/tee.21970 10.1016/j.ijcard.2021.01.002 10.1161/01.CIR.101.23.e215 10.1016/j.physa.2019.03.056 10.1016/j.patrec.2019.11.005 10.1016/j.patrec.2020.04.022 10.1016/j.ajem.2019.10.040 10.1016/S1361-3723(19)30116-2 10.1016/j.bspc.2018.03.003 10.1016/j.neucom.2020.01.019 10.1109/ACCESS.2017.2707460 10.1109/TIFS.2017.2784362 10.1007/s10916-015-0323-2 10.1016/j.patrec.2018.03.028 10.1016/j.patrec.2021.01.027 10.1109/ACCESS.2019.2910753 10.3390/s17102228 10.1016/j.bspc.2021.102689 10.1109/ACCESS.2020.3004464 10.1109/ACCESS.2020.2976688 10.1016/j.bspc.2021.102766 10.1016/j.amjmed.2019.03.005 10.1109/TBIOM.2019.2947434 10.1016/j.future.2019.06.008 10.1016/j.ins.2021.01.001 |
ContentType | Journal Article |
Copyright | 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 by the authors. 2023 |
Copyright_xml | – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 by the authors. 2023 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU COVID DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/s23020937 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Coronavirus Research Database ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals - May need to register for free articles |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_2aa185f25cb44ab49b762b9245380046 PMC9862128 36679733 10_3390_s23020937 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Government of Spain grantid: PID2019-111429RBC21(ODIO) – fundername: Government of Spain grantid: TED2021-131681B-I00 (CIOMET) – fundername: Comunidad de Madrid grantid: PUCFA (PUCFA- CM-UC3M) – fundername: Comunidad de Madrid grantid: CYNAMON (P2018/TCS- 263 4566) – fundername: Spanish Ministry of Science, Innovation and Universities grantid: TED2021-131681B-I00 (CIOMET); PID2019-111429RBC21 (ODIO) – fundername: European Structural Funds (ESF and FEDER) – fundername: Comunidad de Madrid (Spain) grantid: PUCFA- CM-UC3M; P2018/TCS-4566 |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. ABJCF ARAPS CGR CUY CVF ECM EIF HCIFZ KB. M7S NPM PDBOC 7XB 8FK AZQEC COVID DWQXO K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c469t-a7e817036babd130010715c18f6c32c2923f48ce0b7249e9c93b31947ee7806e3 |
IEDL.DBID | M48 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:26:46 EDT 2025 Thu Aug 21 18:38:46 EDT 2025 Fri Sep 05 14:13:12 EDT 2025 Fri Jul 25 20:02:51 EDT 2025 Wed Feb 19 02:26:17 EST 2025 Tue Jul 01 01:19:44 EDT 2025 Thu Apr 24 22:52:30 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | ECG biometrics deep learning gramian angular field wearables |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c469t-a7e817036babd130010715c18f6c32c2923f48ce0b7249e9c93b31947ee7806e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 All the authors contributed equally to this work. |
ORCID | 0000-0001-6943-0760 0000-0002-6818-5342 0000-0002-1897-0828 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s23020937 |
PMID | 36679733 |
PQID | 2767295319 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_2aa185f25cb44ab49b762b9245380046 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9862128 proquest_miscellaneous_2768226779 proquest_journals_2767295319 pubmed_primary_36679733 crossref_primary_10_3390_s23020937 crossref_citationtrail_10_3390_s23020937 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20230113 |
PublicationDateYYYYMMDD | 2023-01-13 |
PublicationDate_xml | – month: 1 year: 2023 text: 20230113 day: 13 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2023 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Piuri (ref_1) 2019; 126 Goldberger (ref_22) 2000; 101 Srivastva (ref_24) 2021; 558 Frisch (ref_38) 2019; 132 Choi (ref_31) 2016; 4 Camara (ref_28) 2015; 39 ref_12 Liu (ref_32) 2018; 6 ref_30 Wagner (ref_25) 2020; 7 Li (ref_8) 2020; 129 Ringwald (ref_19) 2020; 38 Sepahvand (ref_14) 2021; 68 Bayoumy (ref_21) 2021; 18 Huang (ref_13) 2021; 145 Hammad (ref_16) 2019; 101 Furnell (ref_37) 2019; 2019 Moreira (ref_17) 2018; 13 Hammad (ref_35) 2019; 7 Xu (ref_9) 2020; 135 Buchner (ref_5) 2019; 525 Berkaya (ref_6) 2018; 43 Hejazi (ref_11) 2016; 52 Maille (ref_20) 2021; 331 Rathore (ref_36) 2020; 53 Li (ref_18) 2020; 391 ref_23 Pathoumvanh (ref_33) 2014; 9 Karimian (ref_3) 2019; 7 Ingale (ref_39) 2020; 8 Bai (ref_4) 2019; 92 Zhang (ref_15) 2021; 68 ref_29 Li (ref_7) 2022; 71 Zhang (ref_34) 2017; 5 ref_27 ref_26 Abdeldayem (ref_2) 2020; 2 Bak (ref_10) 2020; 8 |
References_xml | – volume: 7 start-page: 26527 year: 2019 ident: ref_35 article-title: Multimodal Biometric Authentication Systems Using Convolution Neural Network Based on Different Level Fusion of ECG and Fingerprint publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2886573 – ident: ref_30 – ident: ref_26 doi: 10.1109/ICITCS.2015.7292977 – volume: 18 start-page: 581 year: 2021 ident: ref_21 article-title: Smart wearable devices in cardiovascular care: Where we are and how to move forward publication-title: Nat. Rev. Cardiol. doi: 10.1038/s41569-021-00522-7 – volume: 6 start-page: 18251 year: 2018 ident: ref_32 article-title: A Multiscale Autoregressive Model-Based Electrocardiogram Identification Method publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2820684 – volume: 71 start-page: 103159 year: 2022 ident: ref_7 article-title: ET-UMAP integration feature for ECG biometrics using Stacking publication-title: Biomed. Signal Process. Control. doi: 10.1016/j.bspc.2021.103159 – volume: 7 start-page: 1 year: 2020 ident: ref_25 article-title: PTB-XL, a large publicly available electrocardiography dataset publication-title: Sci. Data doi: 10.1038/s41597-020-0495-6 – volume: 4 start-page: 1266 year: 2016 ident: ref_31 article-title: Biometric Authentication Using Noisy Electrocardiograms Acquired by Mobile Sensors publication-title: IEEE Access doi: 10.1109/ACCESS.2016.2548519 – volume: 92 start-page: 800 year: 2019 ident: ref_4 article-title: A lightweight method of data encryption in BANs using electrocardiogram signal publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2018.01.031 – volume: 52 start-page: 72 year: 2016 ident: ref_11 article-title: ECG biometric authentication based on non-fiducial approach using kernel methods publication-title: Digit. Signal Process. doi: 10.1016/j.dsp.2016.02.008 – volume: 53 start-page: 1 year: 2020 ident: ref_36 article-title: A Survey on Heart Biometrics publication-title: ACM Comput. Surv. doi: 10.1145/3410158 – ident: ref_23 – volume: 9 start-page: 294 year: 2014 ident: ref_33 article-title: Robustness study of ECG biometric identification in heart rate variability conditions publication-title: IEEJ Trans. Electr. Electron. Eng. doi: 10.1002/tee.21970 – volume: 331 start-page: 333 year: 2021 ident: ref_20 article-title: Smartwatch Electrocardiogram and Artificial Intelligence for Assessing Cardiac-Rhythm Safety of Drug Therapy in the COVID-19 Pandemic. The QT-logs study publication-title: Int. J. Cardiol. doi: 10.1016/j.ijcard.2021.01.002 – volume: 101 start-page: E215 year: 2000 ident: ref_22 article-title: PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals publication-title: Circulation doi: 10.1161/01.CIR.101.23.e215 – volume: 525 start-page: 85 year: 2019 ident: ref_5 article-title: On the physical nature of biopotentials, their propagation and measurement publication-title: Phys. A Stat. Mech. Its Appl. doi: 10.1016/j.physa.2019.03.056 – volume: 129 start-page: 70 year: 2020 ident: ref_8 article-title: Robust ECG biometrics using GNMF and sparse representation publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2019.11.005 – volume: 135 start-page: 44 year: 2020 ident: ref_9 article-title: Structural sparse representation with class-specific dictionary for ECG biometric recognition publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2020.04.022 – volume: 38 start-page: 849.e3 year: 2020 ident: ref_19 article-title: Smart watch recording of ventricular tachycardia: Case study publication-title: Am. J. Emerg. Med. doi: 10.1016/j.ajem.2019.10.040 – volume: 2019 start-page: 6 year: 2019 ident: ref_37 article-title: Password meters: Inaccurate advice offered inconsistently? publication-title: Comput. Fraud. Secur. doi: 10.1016/S1361-3723(19)30116-2 – ident: ref_29 – volume: 43 start-page: 216 year: 2018 ident: ref_6 article-title: A survey on ECG analysis publication-title: Biomed. Signal Process. Control. doi: 10.1016/j.bspc.2018.03.003 – volume: 391 start-page: 83 year: 2020 ident: ref_18 article-title: Toward improving ECG biometric identification using cascaded convolutional neural networks publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.01.019 – ident: ref_27 – volume: 5 start-page: 11805 year: 2017 ident: ref_34 article-title: HeartID: A Multiresolution Convolutional Neural Network for ECG-Based Biometric Human Identification in Smart Health Applications publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2707460 – volume: 13 start-page: 1258 year: 2018 ident: ref_17 article-title: Learning Deep Off-the-Person Heart Biometrics Representations publication-title: IEEE Trans. Inf. Forensics Secur. doi: 10.1109/TIFS.2017.2784362 – volume: 39 start-page: 148 year: 2015 ident: ref_28 article-title: Human Identification Using Compressed ECG Signals publication-title: J. Med. Syst. doi: 10.1007/s10916-015-0323-2 – volume: 126 start-page: 78 year: 2019 ident: ref_1 article-title: Deep-ECG: Convolutional Neural Networks for ECG biometric recognition publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2018.03.028 – volume: 145 start-page: 110 year: 2021 ident: ref_13 article-title: Multi-view discriminant analysis with sample diversity for ECG biometric recognition publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2021.01.027 – volume: 7 start-page: 49135 year: 2019 ident: ref_3 article-title: Unlock Your Heart: Next Generation Biometric in Resource-Constrained Healthcare Systems and IoT publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2910753 – ident: ref_12 doi: 10.3390/s17102228 – volume: 68 start-page: 102689 year: 2021 ident: ref_15 article-title: Human identification driven by deep CNN and transfer learning based on multiview feature representations of ECG publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2021.102689 – volume: 8 start-page: 117853 year: 2020 ident: ref_39 article-title: ECG Biometric Authentication: A Comparative Analysis publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3004464 – volume: 8 start-page: 42217 year: 2020 ident: ref_10 article-title: ECG-Based Human Identification System by Temporal-Amplitude Combined Feature Vectors publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2976688 – volume: 68 start-page: 102766 year: 2021 ident: ref_14 article-title: A novel multi-lead ECG personal recognition based on signals functional and structural dependencies using time-frequency representation and evolutionary morphological CNN publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2021.102766 – volume: 132 start-page: 940 year: 2019 ident: ref_38 article-title: A Novel Technique to Expand the Electrocardiographic Recording Capability from an Apple Watch publication-title: Am. J. Med. doi: 10.1016/j.amjmed.2019.03.005 – volume: 2 start-page: 1 year: 2020 ident: ref_2 article-title: A Novel Approach for ECG-Based Human Identification Using Spectral Correlation and Deep Learning publication-title: IEEE Trans. Biom. Behav. Identity Sci. doi: 10.1109/TBIOM.2019.2947434 – volume: 101 start-page: 180 year: 2019 ident: ref_16 article-title: A novel two-dimensional ECG feature extraction and classification algorithm based on convolution neural network for human authentication publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2019.06.008 – volume: 558 start-page: 208 year: 2021 ident: ref_24 article-title: PlexNet: A fast and robust ECG biometric system for human recognition publication-title: Inf. Sci. doi: 10.1016/j.ins.2021.01.001 |
SSID | ssj0023338 |
Score | 2.4592204 |
Snippet | In the last decade, biosignals have attracted the attention of many researchers when designing novel biometrics systems. Many of these works use cardiac... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 937 |
SubjectTerms | Algorithms Arrhythmias, Cardiac Biometric Identification - methods Biometrics Biometry Cardiology Cardiovascular disease Datasets deep learning ECG Electrocardiography Electrocardiography - methods gramian angular field Humans Identification systems Medical equipment Medical research Neural Networks, Computer Smartwatches Time series Wavelet transforms Wearable computers wearables |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals - May need to register for free articles dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDI7QTnBAvCkMFBAHLtXapm3a4zbtARIc0CbtViVpCkiQTXv8f-ymqzY0iQu3qnWlNLZrf07ymZAHCKqF7-fczSOBpZuIuRIuXaawJ0pYRDzAw8kvr_FwHD5PoslGqy_cE2bpge3EtQIhIKQUQaRkGAoZphLcVwJqAE9FcId_X4h5azBVQS0GyMvyCDEA9a0FJNoghc3ON6JPSdK_K7P8vUFyI-L0j8hhlSrSth3iMdnT5oQcbBAInpJZrzug9qxtURXfaAfiUk7hAlI7OpiLbzAA2jbYcn5O-7hhjQqT01FZ6KRYh6VP9amsBf009A2ZN8x7KdZWtr0EtVnpGRn3e6Pu0K16KLgKgO_SFVwjBR-LpZA5Ll0B3PMj5SdFrFigAsjvijBR2pOgmVSnKmUSvDLkWvPEizU7Jw0zNfqSUHiLcy9nqRY6ZEWQJjJK8sRLYJpE7nOHPK7nNlMVwTj2ufjKAGigGrJaDQ65r0VnllVjl1AHFVQLIBF2eQPMI6vMI_vLPBzSXKs3q7xzkQU8BkyBfx-H3NWPwa9wsUQYPV2VMpA7xZyDzIW1hnokLI55yhlzCN-yk62hbj8xnx8ld3cKCBJSgqv_-LZrsh-AqWNByGdN0ljOV_oGUqSlvC294QfIPQ1Q priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT9swED9BeYEHNDa2hcFkpj3sJWoTJ3HyhFrU8iENTYhKfYv8FUBibmnL_89d4gY6VXuz4otk-c7n3-9s3wH8xE21iiIjQpNKCt2kPFTYDLmmmihJlYqYHif_vskux8n1JJ34gNvCX6tc-cTaUZupphh5NxYZ4kCymLPZc0hVo-h01ZfQ2IYddMF52oGdwfDmz21LuTgysCafEEdy310g4I6Rw4u1XahO1r8JYf57UfLdzjP6APseMrJ-o-MD2LLuI-y9SyT4CWbD8wvWvLmtfBCODXB_MgwbCPHYxVz-RUNgfUel5-dsRBfXmHSG3dUBT0bxWHbVvs5asEfHbikDh7uvxfq6KTPBGnR6COPR8O78MvS1FEKNBHgZSmEpFR_PlFSGjrCQ9kWpjvIq0zzWMeK8Ksm17SnUUGELXXCFc50Ia0Xeyyz_DB03dfYrMPxLiJ7hhZU24VVc5CrNTd7LcZqkiUQAv1ZzW2qfaJzqXTyVSDhIDWWrhgB-tKKzJrvGJqEBKagVoITY9Yfp_L7066uMpUTkUcWpVkkiVVIo9PIKySU6dIoBBHC8Um_pV-mifLOpAE7bblxfdGginZ2-1DKIoTIhUOZLYw3tSHiWiUJwHoBYs5O1oa73uMeHOod3gUwSLfbo_8P6BrtU3p5CPhE_hs5y_mJPEAQt1Xdv6a9hgAdh priority: 102 providerName: ProQuest |
Title | ECG Identification Based on the Gramian Angular Field and Tested with Individuals in Resting and Activity States |
URI | https://www.ncbi.nlm.nih.gov/pubmed/36679733 https://www.proquest.com/docview/2767295319 https://www.proquest.com/docview/2768226779 https://pubmed.ncbi.nlm.nih.gov/PMC9862128 https://doaj.org/article/2aa185f25cb44ab49b762b9245380046 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9swED_68bI9jHWf3tqgjT3sxVssyZL9MEZSknSDllEayJuRZLktdE7npLD997uzHVOXPPbFGPsMtu5O9_udrDuATxhUiyjKdZjHhlI3sQgtnobCUU8UWcSa0-bk0zN1Mpc_F_FiBzY9NtsBXG2ldtRPal7dfPn75993dPhvxDiRsn9dIYzmyMz1LuxjQFJk3KeyW0zgAmlYU1SoL94LRXXF_m0w8-HfkvfCz_Q5PGtxIxs1ij6AHV--gKf3qgm-hNvJ8Yw1G2-LNhPHxhikcoYniPPYrDK_0RrYqKT-8xWb0t9rzJQ5u6iznoySsuxHt0Vrxa5Ldk5lOMrLWmzkml4TrIGor2A-nVwcn4RtQ4XQIQteh0Z7qscnlDU2p3Us5H5R7KKkUE5wxxHsFTJxfmhRTalPXSosuqjU3utkqLx4DXvlsvRvgeFTWg9zkXrjpSh4mtg4yZNhgsNk8kgH8Hkztplrq41T04ubDFkHqSHr1BDAx070timxsU1oTArqBKgqdn1hWV1mrZNl3BiEHwWPnZXSWJlanOotMkyc1SkREMDhRr3ZxtIyrhUSDJqKAvjQ3UYno5UTU_rlXS2DQEppjTJvGmvo3kQopVMtRAC6Zye9V-3fKa-v6kLeKdJJxAfvHuPb3sMTjqZO2aFIHMLeurrzR4iX1nYAu3qh8ZhMZwPYH0_Ofp0P6tzDoPaT_5wVGCk |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiDeBUgwCiUvUxE7i-IDQtnQf9HFAW6m31HacUqnNLrtbVf1T_EZm8uouqrj1Fq1nE8vz2fPN2J4B-IRGtQjDXPp5rCl0Ewvf4KMvLNVEiYpYcrqcfHCYDI-iH8fx8Rr8ae_C0LHKdk2sFup8YilGvsVlgjyQEPNt-tunqlG0u9qW0Khhseeur9Blm38dfUf9fua8vzveGfpNVQHfoiu48LV0lJROJEabnDZz0AEKYxumRWIFtxwZTxGl1gUG-6qcskoY_GoknZNpkDiB770H9yMhFOXqT_uDzsET6O_V2YuwMdiaI73ngaIS60s2ryoNcBuf_fdY5pKd6z-Bxw1BZb0aUU9hzZXP4NFS2sLnMN3dGbD6hm_RhPzYNlrDnOEDEko2mOkLhB3rlVTofsb6dEyO6TJn4yq8yij6y0bdXbA5OyvZT8r3UZ5WYj1bF7VgNRd-AUd3MsYvYb2clO41MPyXlEEulNMuEgVXqYnTPA1SHCadh9KDL-3YZrZJa07VNc4zdG9IDVmnBg8-dqLTOpfHbULbpKBOgNJvVz9MZqdZM5szrjXynILH1kSRNpEyaFMMurJoPiji4MFGq96sWRPm2Q2CPfjQNeNspi0aXbrJZSWDjC2REmVe1WjoeiKSRCophAdyBScrXV1tKc9-VRnDFfqtSETe_L9b7-HBcHywn-2PDvfewkOOgKZgUyg2YH0xu3TvkH4tzGaFeQYndz3J_gJL90Et |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTkLwgPgmMMAgkHiJmthJHD8g1G7tVgbVNG3S3oLtOGMSpKXthPjX-Ou4yxctmnjbW9RcqpPv7Pvd2b4fwBsMqkUY5tLPY02lm1j4Bh99YYkTJSpiyely8udpcnAafTyLz7bgd3sXho5VtmtitVDnM0s18j6XCeJA8ph-0RyLONobf5j_8IlBinZaWzqN2kUO3a-fmL4t30_20NZvOR-PTnYP_IZhwLeYFq58LR01qBOJ0SanjR1MhsLYhmmRWMEtR_RTRKl1gUG9lVNWCYMaRNI5mQaJE_i_N2BbYlRMe7A9HE2Pjrt0T2D2V_cyEkIF_SWCfR4oIlxfi4AVUcBV6PbfQ5prUW98F-40cJUNav-6B1uuvA-315oYPoD5aHef1fd9i6YAyIYYG3OGDwgv2f5Cf0cnZIOSaO8XbEyH5pguc3ZSFVsZ1YLZpLsZtmQXJTum7h_leSU2sDXFBauR8UM4vZZRfgS9cla6J8DwKymDXCinXSQKrlITp3kapDhMOg-lB-_asc1s0-ScuDa-ZZjskBmyzgwevO5E53Vnj6uEhmSgToCacVc_zBbnWTO3M641op6Cx9ZEkTaRMhhhDCa2GEyo_uDBTmverFkhltlff_bgVfca5zZt2OjSzS4rGcRviZQo87j2hk4TkSRSSSE8kBt-sqHq5pvy4mvVP1xhFouw5On_1XoJN3GCZZ8m08NncIujP1PlKRQ70FstLt1zxGIr86JxegZfrnue_QG570bI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ECG+Identification+Based+on+the+Gramian+Angular+Field+and+Tested+with+Individuals+in+Resting+and+Activity+States&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Carmen+Camara&rft.au=Pedro+Peris-Lopez&rft.au=Masoumeh+Safkhani&rft.au=Nasour+Bagheri&rft.date=2023-01-13&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=23&rft.issue=2&rft.spage=937&rft_id=info:doi/10.3390%2Fs23020937&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_2aa185f25cb44ab49b762b9245380046 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |