ECG Identification Based on the Gramian Angular Field and Tested with Individuals in Resting and Activity States

In the last decade, biosignals have attracted the attention of many researchers when designing novel biometrics systems. Many of these works use cardiac signals and their representation as electrocardiograms (ECGs). Nowadays, these solutions are even more realistic since we can acquire reliable ECG...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 23; no. 2; p. 937
Main Authors Camara, Carmen, Peris-Lopez, Pedro, Safkhani, Masoumeh, Bagheri, Nasour
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 13.01.2023
MDPI
Subjects
Online AccessGet full text
ISSN1424-8220
1424-8220
DOI10.3390/s23020937

Cover

Loading…
Abstract In the last decade, biosignals have attracted the attention of many researchers when designing novel biometrics systems. Many of these works use cardiac signals and their representation as electrocardiograms (ECGs). Nowadays, these solutions are even more realistic since we can acquire reliable ECG records by using wearable devices. This paper moves in that direction and proposes a novel approach for an ECG identification system. For that, we transform the ECG recordings into Gramian Angular Field (GAF) images, a time series encoding technique well-known in other domains but not very common with biosignals. Specifically, the time series is transformed using polar coordinates, and then, the cosine sum of the angles is computed for each pair of points. We present a proof-of-concept identification system built on a tuned VGG19 convolutional neural network using this approach. We confirm our proposal’s feasibility through experimentation using two well-known public datasets: MIT-BIH Normal Sinus Rhythm Database (subjects at a resting state) and ECG-GUDB (individuals under four specific activities). In both scenarios, the identification system reaches an accuracy of 91%, and the False Acceptance Rate (FAR) is eight times higher than the False Rejection Rate (FRR).
AbstractList In the last decade, biosignals have attracted the attention of many researchers when designing novel biometrics systems. Many of these works use cardiac signals and their representation as electrocardiograms (ECGs). Nowadays, these solutions are even more realistic since we can acquire reliable ECG records by using wearable devices. This paper moves in that direction and proposes a novel approach for an ECG identification system. For that, we transform the ECG recordings into Gramian Angular Field (GAF) images, a time series encoding technique well-known in other domains but not very common with biosignals. Specifically, the time series is transformed using polar coordinates, and then, the cosine sum of the angles is computed for each pair of points. We present a proof-of-concept identification system built on a tuned VGG19 convolutional neural network using this approach. We confirm our proposal’s feasibility through experimentation using two well-known public datasets: MIT-BIH Normal Sinus Rhythm Database (subjects at a resting state) and ECG-GUDB (individuals under four specific activities). In both scenarios, the identification system reaches an accuracy of 91%, and the False Acceptance Rate (FAR) is eight times higher than the False Rejection Rate (FRR).
In the last decade, biosignals have attracted the attention of many researchers when designing novel biometrics systems. Many of these works use cardiac signals and their representation as electrocardiograms (ECGs). Nowadays, these solutions are even more realistic since we can acquire reliable ECG records by using wearable devices. This paper moves in that direction and proposes a novel approach for an ECG identification system. For that, we transform the ECG recordings into Gramian Angular Field (GAF) images, a time series encoding technique well-known in other domains but not very common with biosignals. Specifically, the time series is transformed using polar coordinates, and then, the cosine sum of the angles is computed for each pair of points. We present a proof-of-concept identification system built on a tuned VGG19 convolutional neural network using this approach. We confirm our proposal's feasibility through experimentation using two well-known public datasets: MIT-BIH Normal Sinus Rhythm Database (subjects at a resting state) and ECG-GUDB (individuals under four specific activities). In both scenarios, the identification system reaches an accuracy of 91%, and the False Acceptance Rate (FAR) is eight times higher than the False Rejection Rate (FRR).In the last decade, biosignals have attracted the attention of many researchers when designing novel biometrics systems. Many of these works use cardiac signals and their representation as electrocardiograms (ECGs). Nowadays, these solutions are even more realistic since we can acquire reliable ECG records by using wearable devices. This paper moves in that direction and proposes a novel approach for an ECG identification system. For that, we transform the ECG recordings into Gramian Angular Field (GAF) images, a time series encoding technique well-known in other domains but not very common with biosignals. Specifically, the time series is transformed using polar coordinates, and then, the cosine sum of the angles is computed for each pair of points. We present a proof-of-concept identification system built on a tuned VGG19 convolutional neural network using this approach. We confirm our proposal's feasibility through experimentation using two well-known public datasets: MIT-BIH Normal Sinus Rhythm Database (subjects at a resting state) and ECG-GUDB (individuals under four specific activities). In both scenarios, the identification system reaches an accuracy of 91%, and the False Acceptance Rate (FAR) is eight times higher than the False Rejection Rate (FRR).
Author Bagheri, Nasour
Safkhani, Masoumeh
Camara, Carmen
Peris-Lopez, Pedro
AuthorAffiliation 2 Computer Engineering Department, Shahid Rajaee Teacher Training University, Tehran 16788-15811, Iran
4 School of Computer Science (SCS), Institute for Research in Fundamental Sciences (IPM), Tehran 16788-15811, Iran
3 Electrical Engineering Department, Shahid Rajaee Teacher Training University, Tehran 16788-15811, Iran
1 Computer Science Department, Carlos III University of Madrid, 28911 Leganés, Spain
AuthorAffiliation_xml – name: 3 Electrical Engineering Department, Shahid Rajaee Teacher Training University, Tehran 16788-15811, Iran
– name: 1 Computer Science Department, Carlos III University of Madrid, 28911 Leganés, Spain
– name: 2 Computer Engineering Department, Shahid Rajaee Teacher Training University, Tehran 16788-15811, Iran
– name: 4 School of Computer Science (SCS), Institute for Research in Fundamental Sciences (IPM), Tehran 16788-15811, Iran
Author_xml – sequence: 1
  givenname: Carmen
  surname: Camara
  fullname: Camara, Carmen
– sequence: 2
  givenname: Pedro
  orcidid: 0000-0001-6943-0760
  surname: Peris-Lopez
  fullname: Peris-Lopez, Pedro
– sequence: 3
  givenname: Masoumeh
  orcidid: 0000-0002-1897-0828
  surname: Safkhani
  fullname: Safkhani, Masoumeh
– sequence: 4
  givenname: Nasour
  orcidid: 0000-0002-6818-5342
  surname: Bagheri
  fullname: Bagheri, Nasour
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36679733$$D View this record in MEDLINE/PubMed
BookMark eNptkstqGzEUhkVJaS7toi9QBN00Cze6jS6bgmMS1xAotOlaaDQaW2YsuZImJW8fxU5NErrSQf93fs7tFByFGBwAHzH6SqlCF5lQRJCi4g04wYywiSQEHT2Lj8FpzmuECKVUvgPHlHOhBKUnYHs1m8NF50Lxvbem-BjgpcmugzUoKwfnyWy8CXAaluNgErz2buigCR28dblU7q8vK7gInb_z3WiGDH2AP6vkw3KHTW2pUrmHv4opLr8Hb_tKuQ9P7xn4fX11O_s-ufkxX8ymNxPLuCoTI5zEAlHemrbDFCGMBG4slj23lFiiCO2ZtA61gjDllFW0pVgx4ZyQiDt6BhZ73y6atd4mvzHpXkfj9e4jpqU2qXg7OE2MwbLpSWNbxkzLVCs4aRVhDZUIMV69vu29tmO7cZ2t00pmeGH6Ugl-pZfxTivJCSayGnx5Mkjxz1iHozc-WzcMJrg4Zk0Er2viQqiKfn6FruOYQh3VIyWIamqblfr0vKJDKf8WW4HzPWBTzDm5_oBgpB-PRh-OprIXr1jry-4UajN--E_GA4zrwO0
CitedBy_id crossref_primary_10_1016_j_bbe_2024_06_005
crossref_primary_10_1016_j_eswa_2024_126018
crossref_primary_10_1016_j_eswa_2025_126379
crossref_primary_10_3390_s25061864
crossref_primary_10_1109_ACCESS_2024_3448261
crossref_primary_10_1016_j_istruc_2024_107928
crossref_primary_10_3390_biomedinformatics5010007
crossref_primary_10_15212_CVIA_2023_0061
crossref_primary_10_1109_JSEN_2023_3323564
crossref_primary_10_3390_foods12234267
crossref_primary_10_1016_j_imu_2024_101563
crossref_primary_10_1016_j_eswa_2024_124371
crossref_primary_10_1515_mks_2024_0003
Cites_doi 10.1109/ACCESS.2018.2886573
10.1109/ICITCS.2015.7292977
10.1038/s41569-021-00522-7
10.1109/ACCESS.2018.2820684
10.1016/j.bspc.2021.103159
10.1038/s41597-020-0495-6
10.1109/ACCESS.2016.2548519
10.1016/j.future.2018.01.031
10.1016/j.dsp.2016.02.008
10.1145/3410158
10.1002/tee.21970
10.1016/j.ijcard.2021.01.002
10.1161/01.CIR.101.23.e215
10.1016/j.physa.2019.03.056
10.1016/j.patrec.2019.11.005
10.1016/j.patrec.2020.04.022
10.1016/j.ajem.2019.10.040
10.1016/S1361-3723(19)30116-2
10.1016/j.bspc.2018.03.003
10.1016/j.neucom.2020.01.019
10.1109/ACCESS.2017.2707460
10.1109/TIFS.2017.2784362
10.1007/s10916-015-0323-2
10.1016/j.patrec.2018.03.028
10.1016/j.patrec.2021.01.027
10.1109/ACCESS.2019.2910753
10.3390/s17102228
10.1016/j.bspc.2021.102689
10.1109/ACCESS.2020.3004464
10.1109/ACCESS.2020.2976688
10.1016/j.bspc.2021.102766
10.1016/j.amjmed.2019.03.005
10.1109/TBIOM.2019.2947434
10.1016/j.future.2019.06.008
10.1016/j.ins.2021.01.001
ContentType Journal Article
Copyright 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 by the authors. 2023
Copyright_xml – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 by the authors. 2023
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
COVID
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s23020937
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
Coronavirus Research Database
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals - May need to register for free articles
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database
MEDLINE - Academic
CrossRef
MEDLINE

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_2aa185f25cb44ab49b762b9245380046
PMC9862128
36679733
10_3390_s23020937
Genre Journal Article
GrantInformation_xml – fundername: Government of Spain
  grantid: PID2019-111429RBC21(ODIO)
– fundername: Government of Spain
  grantid: TED2021-131681B-I00 (CIOMET)
– fundername: Comunidad de Madrid
  grantid: PUCFA (PUCFA- CM-UC3M)
– fundername: Comunidad de Madrid
  grantid: CYNAMON (P2018/TCS- 263 4566)
– fundername: Spanish Ministry of Science, Innovation and Universities
  grantid: TED2021-131681B-I00 (CIOMET); PID2019-111429RBC21 (ODIO)
– fundername: European Structural Funds (ESF and FEDER)
– fundername: Comunidad de Madrid (Spain)
  grantid: PUCFA- CM-UC3M; P2018/TCS-4566
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
ABJCF
ARAPS
CGR
CUY
CVF
ECM
EIF
HCIFZ
KB.
M7S
NPM
PDBOC
7XB
8FK
AZQEC
COVID
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c469t-a7e817036babd130010715c18f6c32c2923f48ce0b7249e9c93b31947ee7806e3
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 01:26:46 EDT 2025
Thu Aug 21 18:38:46 EDT 2025
Fri Sep 05 14:13:12 EDT 2025
Fri Jul 25 20:02:51 EDT 2025
Wed Feb 19 02:26:17 EST 2025
Tue Jul 01 01:19:44 EDT 2025
Thu Apr 24 22:52:30 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords ECG
biometrics
deep learning
gramian angular field
wearables
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c469t-a7e817036babd130010715c18f6c32c2923f48ce0b7249e9c93b31947ee7806e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
All the authors contributed equally to this work.
ORCID 0000-0001-6943-0760
0000-0002-6818-5342
0000-0002-1897-0828
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s23020937
PMID 36679733
PQID 2767295319
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_2aa185f25cb44ab49b762b9245380046
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9862128
proquest_miscellaneous_2768226779
proquest_journals_2767295319
pubmed_primary_36679733
crossref_primary_10_3390_s23020937
crossref_citationtrail_10_3390_s23020937
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230113
PublicationDateYYYYMMDD 2023-01-13
PublicationDate_xml – month: 1
  year: 2023
  text: 20230113
  day: 13
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2023
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Piuri (ref_1) 2019; 126
Goldberger (ref_22) 2000; 101
Srivastva (ref_24) 2021; 558
Frisch (ref_38) 2019; 132
Choi (ref_31) 2016; 4
Camara (ref_28) 2015; 39
ref_12
Liu (ref_32) 2018; 6
ref_30
Wagner (ref_25) 2020; 7
Li (ref_8) 2020; 129
Ringwald (ref_19) 2020; 38
Sepahvand (ref_14) 2021; 68
Bayoumy (ref_21) 2021; 18
Huang (ref_13) 2021; 145
Hammad (ref_16) 2019; 101
Furnell (ref_37) 2019; 2019
Moreira (ref_17) 2018; 13
Hammad (ref_35) 2019; 7
Xu (ref_9) 2020; 135
Buchner (ref_5) 2019; 525
Berkaya (ref_6) 2018; 43
Hejazi (ref_11) 2016; 52
Maille (ref_20) 2021; 331
Rathore (ref_36) 2020; 53
Li (ref_18) 2020; 391
ref_23
Pathoumvanh (ref_33) 2014; 9
Karimian (ref_3) 2019; 7
Ingale (ref_39) 2020; 8
Bai (ref_4) 2019; 92
Zhang (ref_15) 2021; 68
ref_29
Li (ref_7) 2022; 71
Zhang (ref_34) 2017; 5
ref_27
ref_26
Abdeldayem (ref_2) 2020; 2
Bak (ref_10) 2020; 8
References_xml – volume: 7
  start-page: 26527
  year: 2019
  ident: ref_35
  article-title: Multimodal Biometric Authentication Systems Using Convolution Neural Network Based on Different Level Fusion of ECG and Fingerprint
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2886573
– ident: ref_30
– ident: ref_26
  doi: 10.1109/ICITCS.2015.7292977
– volume: 18
  start-page: 581
  year: 2021
  ident: ref_21
  article-title: Smart wearable devices in cardiovascular care: Where we are and how to move forward
  publication-title: Nat. Rev. Cardiol.
  doi: 10.1038/s41569-021-00522-7
– volume: 6
  start-page: 18251
  year: 2018
  ident: ref_32
  article-title: A Multiscale Autoregressive Model-Based Electrocardiogram Identification Method
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2820684
– volume: 71
  start-page: 103159
  year: 2022
  ident: ref_7
  article-title: ET-UMAP integration feature for ECG biometrics using Stacking
  publication-title: Biomed. Signal Process. Control.
  doi: 10.1016/j.bspc.2021.103159
– volume: 7
  start-page: 1
  year: 2020
  ident: ref_25
  article-title: PTB-XL, a large publicly available electrocardiography dataset
  publication-title: Sci. Data
  doi: 10.1038/s41597-020-0495-6
– volume: 4
  start-page: 1266
  year: 2016
  ident: ref_31
  article-title: Biometric Authentication Using Noisy Electrocardiograms Acquired by Mobile Sensors
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2016.2548519
– volume: 92
  start-page: 800
  year: 2019
  ident: ref_4
  article-title: A lightweight method of data encryption in BANs using electrocardiogram signal
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2018.01.031
– volume: 52
  start-page: 72
  year: 2016
  ident: ref_11
  article-title: ECG biometric authentication based on non-fiducial approach using kernel methods
  publication-title: Digit. Signal Process.
  doi: 10.1016/j.dsp.2016.02.008
– volume: 53
  start-page: 1
  year: 2020
  ident: ref_36
  article-title: A Survey on Heart Biometrics
  publication-title: ACM Comput. Surv.
  doi: 10.1145/3410158
– ident: ref_23
– volume: 9
  start-page: 294
  year: 2014
  ident: ref_33
  article-title: Robustness study of ECG biometric identification in heart rate variability conditions
  publication-title: IEEJ Trans. Electr. Electron. Eng.
  doi: 10.1002/tee.21970
– volume: 331
  start-page: 333
  year: 2021
  ident: ref_20
  article-title: Smartwatch Electrocardiogram and Artificial Intelligence for Assessing Cardiac-Rhythm Safety of Drug Therapy in the COVID-19 Pandemic. The QT-logs study
  publication-title: Int. J. Cardiol.
  doi: 10.1016/j.ijcard.2021.01.002
– volume: 101
  start-page: E215
  year: 2000
  ident: ref_22
  article-title: PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals
  publication-title: Circulation
  doi: 10.1161/01.CIR.101.23.e215
– volume: 525
  start-page: 85
  year: 2019
  ident: ref_5
  article-title: On the physical nature of biopotentials, their propagation and measurement
  publication-title: Phys. A Stat. Mech. Its Appl.
  doi: 10.1016/j.physa.2019.03.056
– volume: 129
  start-page: 70
  year: 2020
  ident: ref_8
  article-title: Robust ECG biometrics using GNMF and sparse representation
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2019.11.005
– volume: 135
  start-page: 44
  year: 2020
  ident: ref_9
  article-title: Structural sparse representation with class-specific dictionary for ECG biometric recognition
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2020.04.022
– volume: 38
  start-page: 849.e3
  year: 2020
  ident: ref_19
  article-title: Smart watch recording of ventricular tachycardia: Case study
  publication-title: Am. J. Emerg. Med.
  doi: 10.1016/j.ajem.2019.10.040
– volume: 2019
  start-page: 6
  year: 2019
  ident: ref_37
  article-title: Password meters: Inaccurate advice offered inconsistently?
  publication-title: Comput. Fraud. Secur.
  doi: 10.1016/S1361-3723(19)30116-2
– ident: ref_29
– volume: 43
  start-page: 216
  year: 2018
  ident: ref_6
  article-title: A survey on ECG analysis
  publication-title: Biomed. Signal Process. Control.
  doi: 10.1016/j.bspc.2018.03.003
– volume: 391
  start-page: 83
  year: 2020
  ident: ref_18
  article-title: Toward improving ECG biometric identification using cascaded convolutional neural networks
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.01.019
– ident: ref_27
– volume: 5
  start-page: 11805
  year: 2017
  ident: ref_34
  article-title: HeartID: A Multiresolution Convolutional Neural Network for ECG-Based Biometric Human Identification in Smart Health Applications
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2707460
– volume: 13
  start-page: 1258
  year: 2018
  ident: ref_17
  article-title: Learning Deep Off-the-Person Heart Biometrics Representations
  publication-title: IEEE Trans. Inf. Forensics Secur.
  doi: 10.1109/TIFS.2017.2784362
– volume: 39
  start-page: 148
  year: 2015
  ident: ref_28
  article-title: Human Identification Using Compressed ECG Signals
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-015-0323-2
– volume: 126
  start-page: 78
  year: 2019
  ident: ref_1
  article-title: Deep-ECG: Convolutional Neural Networks for ECG biometric recognition
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2018.03.028
– volume: 145
  start-page: 110
  year: 2021
  ident: ref_13
  article-title: Multi-view discriminant analysis with sample diversity for ECG biometric recognition
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2021.01.027
– volume: 7
  start-page: 49135
  year: 2019
  ident: ref_3
  article-title: Unlock Your Heart: Next Generation Biometric in Resource-Constrained Healthcare Systems and IoT
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2910753
– ident: ref_12
  doi: 10.3390/s17102228
– volume: 68
  start-page: 102689
  year: 2021
  ident: ref_15
  article-title: Human identification driven by deep CNN and transfer learning based on multiview feature representations of ECG
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2021.102689
– volume: 8
  start-page: 117853
  year: 2020
  ident: ref_39
  article-title: ECG Biometric Authentication: A Comparative Analysis
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3004464
– volume: 8
  start-page: 42217
  year: 2020
  ident: ref_10
  article-title: ECG-Based Human Identification System by Temporal-Amplitude Combined Feature Vectors
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2976688
– volume: 68
  start-page: 102766
  year: 2021
  ident: ref_14
  article-title: A novel multi-lead ECG personal recognition based on signals functional and structural dependencies using time-frequency representation and evolutionary morphological CNN
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2021.102766
– volume: 132
  start-page: 940
  year: 2019
  ident: ref_38
  article-title: A Novel Technique to Expand the Electrocardiographic Recording Capability from an Apple Watch
  publication-title: Am. J. Med.
  doi: 10.1016/j.amjmed.2019.03.005
– volume: 2
  start-page: 1
  year: 2020
  ident: ref_2
  article-title: A Novel Approach for ECG-Based Human Identification Using Spectral Correlation and Deep Learning
  publication-title: IEEE Trans. Biom. Behav. Identity Sci.
  doi: 10.1109/TBIOM.2019.2947434
– volume: 101
  start-page: 180
  year: 2019
  ident: ref_16
  article-title: A novel two-dimensional ECG feature extraction and classification algorithm based on convolution neural network for human authentication
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2019.06.008
– volume: 558
  start-page: 208
  year: 2021
  ident: ref_24
  article-title: PlexNet: A fast and robust ECG biometric system for human recognition
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2021.01.001
SSID ssj0023338
Score 2.4592204
Snippet In the last decade, biosignals have attracted the attention of many researchers when designing novel biometrics systems. Many of these works use cardiac...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 937
SubjectTerms Algorithms
Arrhythmias, Cardiac
Biometric Identification - methods
Biometrics
Biometry
Cardiology
Cardiovascular disease
Datasets
deep learning
ECG
Electrocardiography
Electrocardiography - methods
gramian angular field
Humans
Identification systems
Medical equipment
Medical research
Neural Networks, Computer
Smartwatches
Time series
Wavelet transforms
Wearable computers
wearables
SummonAdditionalLinks – databaseName: Directory of Open Access Journals - May need to register for free articles
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDI7QTnBAvCkMFBAHLtXapm3a4zbtARIc0CbtViVpCkiQTXv8f-ymqzY0iQu3qnWlNLZrf07ymZAHCKqF7-fczSOBpZuIuRIuXaawJ0pYRDzAw8kvr_FwHD5PoslGqy_cE2bpge3EtQIhIKQUQaRkGAoZphLcVwJqAE9FcId_X4h5azBVQS0GyMvyCDEA9a0FJNoghc3ON6JPSdK_K7P8vUFyI-L0j8hhlSrSth3iMdnT5oQcbBAInpJZrzug9qxtURXfaAfiUk7hAlI7OpiLbzAA2jbYcn5O-7hhjQqT01FZ6KRYh6VP9amsBf009A2ZN8x7KdZWtr0EtVnpGRn3e6Pu0K16KLgKgO_SFVwjBR-LpZA5Ll0B3PMj5SdFrFigAsjvijBR2pOgmVSnKmUSvDLkWvPEizU7Jw0zNfqSUHiLcy9nqRY6ZEWQJjJK8sRLYJpE7nOHPK7nNlMVwTj2ufjKAGigGrJaDQ65r0VnllVjl1AHFVQLIBF2eQPMI6vMI_vLPBzSXKs3q7xzkQU8BkyBfx-H3NWPwa9wsUQYPV2VMpA7xZyDzIW1hnokLI55yhlzCN-yk62hbj8xnx8ld3cKCBJSgqv_-LZrsh-AqWNByGdN0ljOV_oGUqSlvC294QfIPQ1Q
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT9swED9BeYEHNDa2hcFkpj3sJWoTJ3HyhFrU8iENTYhKfYv8FUBibmnL_89d4gY6VXuz4otk-c7n3-9s3wH8xE21iiIjQpNKCt2kPFTYDLmmmihJlYqYHif_vskux8n1JJ34gNvCX6tc-cTaUZupphh5NxYZ4kCymLPZc0hVo-h01ZfQ2IYddMF52oGdwfDmz21LuTgysCafEEdy310g4I6Rw4u1XahO1r8JYf57UfLdzjP6APseMrJ-o-MD2LLuI-y9SyT4CWbD8wvWvLmtfBCODXB_MgwbCPHYxVz-RUNgfUel5-dsRBfXmHSG3dUBT0bxWHbVvs5asEfHbikDh7uvxfq6KTPBGnR6COPR8O78MvS1FEKNBHgZSmEpFR_PlFSGjrCQ9kWpjvIq0zzWMeK8Ksm17SnUUGELXXCFc50Ia0Xeyyz_DB03dfYrMPxLiJ7hhZU24VVc5CrNTd7LcZqkiUQAv1ZzW2qfaJzqXTyVSDhIDWWrhgB-tKKzJrvGJqEBKagVoITY9Yfp_L7066uMpUTkUcWpVkkiVVIo9PIKySU6dIoBBHC8Um_pV-mifLOpAE7bblxfdGginZ2-1DKIoTIhUOZLYw3tSHiWiUJwHoBYs5O1oa73uMeHOod3gUwSLfbo_8P6BrtU3p5CPhE_hs5y_mJPEAQt1Xdv6a9hgAdh
  priority: 102
  providerName: ProQuest
Title ECG Identification Based on the Gramian Angular Field and Tested with Individuals in Resting and Activity States
URI https://www.ncbi.nlm.nih.gov/pubmed/36679733
https://www.proquest.com/docview/2767295319
https://www.proquest.com/docview/2768226779
https://pubmed.ncbi.nlm.nih.gov/PMC9862128
https://doaj.org/article/2aa185f25cb44ab49b762b9245380046
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9swED_68bI9jHWf3tqgjT3sxVssyZL9MEZSknSDllEayJuRZLktdE7npLD997uzHVOXPPbFGPsMtu5O9_udrDuATxhUiyjKdZjHhlI3sQgtnobCUU8UWcSa0-bk0zN1Mpc_F_FiBzY9NtsBXG2ldtRPal7dfPn75993dPhvxDiRsn9dIYzmyMz1LuxjQFJk3KeyW0zgAmlYU1SoL94LRXXF_m0w8-HfkvfCz_Q5PGtxIxs1ij6AHV--gKf3qgm-hNvJ8Yw1G2-LNhPHxhikcoYniPPYrDK_0RrYqKT-8xWb0t9rzJQ5u6iznoySsuxHt0Vrxa5Ldk5lOMrLWmzkml4TrIGor2A-nVwcn4RtQ4XQIQteh0Z7qscnlDU2p3Us5H5R7KKkUE5wxxHsFTJxfmhRTalPXSosuqjU3utkqLx4DXvlsvRvgeFTWg9zkXrjpSh4mtg4yZNhgsNk8kgH8Hkztplrq41T04ubDFkHqSHr1BDAx070timxsU1oTArqBKgqdn1hWV1mrZNl3BiEHwWPnZXSWJlanOotMkyc1SkREMDhRr3ZxtIyrhUSDJqKAvjQ3UYno5UTU_rlXS2DQEppjTJvGmvo3kQopVMtRAC6Zye9V-3fKa-v6kLeKdJJxAfvHuPb3sMTjqZO2aFIHMLeurrzR4iX1nYAu3qh8ZhMZwPYH0_Ofp0P6tzDoPaT_5wVGCk
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiDeBUgwCiUvUxE7i-IDQtnQf9HFAW6m31HacUqnNLrtbVf1T_EZm8uouqrj1Fq1nE8vz2fPN2J4B-IRGtQjDXPp5rCl0Ewvf4KMvLNVEiYpYcrqcfHCYDI-iH8fx8Rr8ae_C0LHKdk2sFup8YilGvsVlgjyQEPNt-tunqlG0u9qW0Khhseeur9Blm38dfUf9fua8vzveGfpNVQHfoiu48LV0lJROJEabnDZz0AEKYxumRWIFtxwZTxGl1gUG-6qcskoY_GoknZNpkDiB770H9yMhFOXqT_uDzsET6O_V2YuwMdiaI73ngaIS60s2ryoNcBuf_fdY5pKd6z-Bxw1BZb0aUU9hzZXP4NFS2sLnMN3dGbD6hm_RhPzYNlrDnOEDEko2mOkLhB3rlVTofsb6dEyO6TJn4yq8yij6y0bdXbA5OyvZT8r3UZ5WYj1bF7VgNRd-AUd3MsYvYb2clO41MPyXlEEulNMuEgVXqYnTPA1SHCadh9KDL-3YZrZJa07VNc4zdG9IDVmnBg8-dqLTOpfHbULbpKBOgNJvVz9MZqdZM5szrjXynILH1kSRNpEyaFMMurJoPiji4MFGq96sWRPm2Q2CPfjQNeNspi0aXbrJZSWDjC2REmVe1WjoeiKSRCophAdyBScrXV1tKc9-VRnDFfqtSETe_L9b7-HBcHywn-2PDvfewkOOgKZgUyg2YH0xu3TvkH4tzGaFeQYndz3J_gJL90Et
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTkLwgPgmMMAgkHiJmthJHD8g1G7tVgbVNG3S3oLtOGMSpKXthPjX-Ou4yxctmnjbW9RcqpPv7Pvd2b4fwBsMqkUY5tLPY02lm1j4Bh99YYkTJSpiyely8udpcnAafTyLz7bgd3sXho5VtmtitVDnM0s18j6XCeJA8ph-0RyLONobf5j_8IlBinZaWzqN2kUO3a-fmL4t30_20NZvOR-PTnYP_IZhwLeYFq58LR01qBOJ0SanjR1MhsLYhmmRWMEtR_RTRKl1gUG9lVNWCYMaRNI5mQaJE_i_N2BbYlRMe7A9HE2Pjrt0T2D2V_cyEkIF_SWCfR4oIlxfi4AVUcBV6PbfQ5prUW98F-40cJUNav-6B1uuvA-315oYPoD5aHef1fd9i6YAyIYYG3OGDwgv2f5Cf0cnZIOSaO8XbEyH5pguc3ZSFVsZ1YLZpLsZtmQXJTum7h_leSU2sDXFBauR8UM4vZZRfgS9cla6J8DwKymDXCinXSQKrlITp3kapDhMOg-lB-_asc1s0-ScuDa-ZZjskBmyzgwevO5E53Vnj6uEhmSgToCacVc_zBbnWTO3M641op6Cx9ZEkTaRMhhhDCa2GEyo_uDBTmverFkhltlff_bgVfca5zZt2OjSzS4rGcRviZQo87j2hk4TkSRSSSE8kBt-sqHq5pvy4mvVP1xhFouw5On_1XoJN3GCZZ8m08NncIujP1PlKRQ70FstLt1zxGIr86JxegZfrnue_QG570bI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ECG+Identification+Based+on+the+Gramian+Angular+Field+and+Tested+with+Individuals+in+Resting+and+Activity+States&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Carmen+Camara&rft.au=Pedro+Peris-Lopez&rft.au=Masoumeh+Safkhani&rft.au=Nasour+Bagheri&rft.date=2023-01-13&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=23&rft.issue=2&rft.spage=937&rft_id=info:doi/10.3390%2Fs23020937&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_2aa185f25cb44ab49b762b9245380046
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon