Remaining Useful Life Estimation of Insulated Gate Biploar Transistors (IGBTs) Based on a Novel Volterra k-Nearest Neighbor Optimally Pruned Extreme Learning Machine (VKOPP) Model Using Degradation Data
The insulated gate bipolar transistor (IGBT) is a kind of excellent performance switching device used widely in power electronic systems. How to estimate the remaining useful life (RUL) of an IGBT to ensure the safety and reliability of the power electronics system is currently a challenging issue i...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 17; no. 11; p. 2524 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
03.11.2017
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The insulated gate bipolar transistor (IGBT) is a kind of excellent performance switching device used widely in power electronic systems. How to estimate the remaining useful life (RUL) of an IGBT to ensure the safety and reliability of the power electronics system is currently a challenging issue in the field of IGBT reliability. The aim of this paper is to develop a prognostic technique for estimating IGBTs’ RUL. There is a need for an efficient prognostic algorithm that is able to support in-situ decision-making. In this paper, a novel prediction model with a complete structure based on optimally pruned extreme learning machine (OPELM) and Volterra series is proposed to track the IGBT’s degradation trace and estimate its RUL; we refer to this model as Volterra k-nearest neighbor OPELM prediction (VKOPP) model. This model uses the minimum entropy rate method and Volterra series to reconstruct phase space for IGBTs’ ageing samples, and a new weight update algorithm, which can effectively reduce the influence of the outliers and noises, is utilized to establish the VKOPP network; then a combination of the k-nearest neighbor method (KNN) and least squares estimation (LSE) method is used to calculate the output weights of OPELM and predict the RUL of the IGBT. The prognostic results show that the proposed approach can predict the RUL of IGBT modules with small error and achieve higher prediction precision and lower time cost than some classic prediction approaches. |
---|---|
AbstractList | The insulated gate bipolar transistor (IGBT) is a kind of excellent performance switching device used widely in power electronic systems. How to estimate the remaining useful life (RUL) of an IGBT to ensure the safety and reliability of the power electronics system is currently a challenging issue in the field of IGBT reliability. The aim of this paper is to develop a prognostic technique for estimating IGBTs’ RUL. There is a need for an efficient prognostic algorithm that is able to support in-situ decision-making. In this paper, a novel prediction model with a complete structure based on optimally pruned extreme learning machine (OPELM) and Volterra series is proposed to track the IGBT’s degradation trace and estimate its RUL; we refer to this model as Volterra k-nearest neighbor OPELM prediction (VKOPP) model. This model uses the minimum entropy rate method and Volterra series to reconstruct phase space for IGBTs’ ageing samples, and a new weight update algorithm, which can effectively reduce the influence of the outliers and noises, is utilized to establish the VKOPP network; then a combination of the
k
-nearest neighbor method (KNN) and least squares estimation (LSE) method is used to calculate the output weights of OPELM and predict the RUL of the IGBT. The prognostic results show that the proposed approach can predict the RUL of IGBT modules with small error and achieve higher prediction precision and lower time cost than some classic prediction approaches. The insulated gate bipolar transistor (IGBT) is a kind of excellent performance switching device used widely in power electronic systems. How to estimate the remaining useful life (RUL) of an IGBT to ensure the safety and reliability of the power electronics system is currently a challenging issue in the field of IGBT reliability. The aim of this paper is to develop a prognostic technique for estimating IGBTs' RUL. There is a need for an efficient prognostic algorithm that is able to support in-situ decision-making. In this paper, a novel prediction model with a complete structure based on optimally pruned extreme learning machine (OPELM) and Volterra series is proposed to track the IGBT's degradation trace and estimate its RUL; we refer to this model as Volterra k-nearest neighbor OPELM prediction (VKOPP) model. This model uses the minimum entropy rate method and Volterra series to reconstruct phase space for IGBTs' ageing samples, and a new weight update algorithm, which can effectively reduce the influence of the outliers and noises, is utilized to establish the VKOPP network; then a combination of the -nearest neighbor method (KNN) and least squares estimation (LSE) method is used to calculate the output weights of OPELM and predict the RUL of the IGBT. The prognostic results show that the proposed approach can predict the RUL of IGBT modules with small error and achieve higher prediction precision and lower time cost than some classic prediction approaches. The insulated gate bipolar transistor (IGBT) is a kind of excellent performance switching device used widely in power electronic systems. How to estimate the remaining useful life (RUL) of an IGBT to ensure the safety and reliability of the power electronics system is currently a challenging issue in the field of IGBT reliability. The aim of this paper is to develop a prognostic technique for estimating IGBTs' RUL. There is a need for an efficient prognostic algorithm that is able to support in-situ decision-making. In this paper, a novel prediction model with a complete structure based on optimally pruned extreme learning machine (OPELM) and Volterra series is proposed to track the IGBT's degradation trace and estimate its RUL; we refer to this model as Volterra k-nearest neighbor OPELM prediction (VKOPP) model. This model uses the minimum entropy rate method and Volterra series to reconstruct phase space for IGBTs' ageing samples, and a new weight update algorithm, which can effectively reduce the influence of the outliers and noises, is utilized to establish the VKOPP network; then a combination of the k-nearest neighbor method (KNN) and least squares estimation (LSE) method is used to calculate the output weights of OPELM and predict the RUL of the IGBT. The prognostic results show that the proposed approach can predict the RUL of IGBT modules with small error and achieve higher prediction precision and lower time cost than some classic prediction approaches.The insulated gate bipolar transistor (IGBT) is a kind of excellent performance switching device used widely in power electronic systems. How to estimate the remaining useful life (RUL) of an IGBT to ensure the safety and reliability of the power electronics system is currently a challenging issue in the field of IGBT reliability. The aim of this paper is to develop a prognostic technique for estimating IGBTs' RUL. There is a need for an efficient prognostic algorithm that is able to support in-situ decision-making. In this paper, a novel prediction model with a complete structure based on optimally pruned extreme learning machine (OPELM) and Volterra series is proposed to track the IGBT's degradation trace and estimate its RUL; we refer to this model as Volterra k-nearest neighbor OPELM prediction (VKOPP) model. This model uses the minimum entropy rate method and Volterra series to reconstruct phase space for IGBTs' ageing samples, and a new weight update algorithm, which can effectively reduce the influence of the outliers and noises, is utilized to establish the VKOPP network; then a combination of the k-nearest neighbor method (KNN) and least squares estimation (LSE) method is used to calculate the output weights of OPELM and predict the RUL of the IGBT. The prognostic results show that the proposed approach can predict the RUL of IGBT modules with small error and achieve higher prediction precision and lower time cost than some classic prediction approaches. The insulated gate bipolar transistor (IGBT) is a kind of excellent performance switching device used widely in power electronic systems. How to estimate the remaining useful life (RUL) of an IGBT to ensure the safety and reliability of the power electronics system is currently a challenging issue in the field of IGBT reliability. The aim of this paper is to develop a prognostic technique for estimating IGBTs’ RUL. There is a need for an efficient prognostic algorithm that is able to support in-situ decision-making. In this paper, a novel prediction model with a complete structure based on optimally pruned extreme learning machine (OPELM) and Volterra series is proposed to track the IGBT’s degradation trace and estimate its RUL; we refer to this model as Volterra k-nearest neighbor OPELM prediction (VKOPP) model. This model uses the minimum entropy rate method and Volterra series to reconstruct phase space for IGBTs’ ageing samples, and a new weight update algorithm, which can effectively reduce the influence of the outliers and noises, is utilized to establish the VKOPP network; then a combination of the k-nearest neighbor method (KNN) and least squares estimation (LSE) method is used to calculate the output weights of OPELM and predict the RUL of the IGBT. The prognostic results show that the proposed approach can predict the RUL of IGBT modules with small error and achieve higher prediction precision and lower time cost than some classic prediction approaches. |
Author | Yang, Chenglin Zhou, Xiuyun Liu, Zhen Mei, Wenjuan Zeng, Xianping |
AuthorAffiliation | 2 Quanzhou Institute of Equipment Manufacturing, Haixi Institutes, Chinese Academy of Sciences, Quanzhou 362200, China; 201321070144@std.uestc.edu.cn 1 School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China; 2015070903035@std.uestc.edu.cn (W.M.); yangclin@uestc.edu.cn (C.Y.); zhouxy@uestc.edu.cn (X.Z.) |
AuthorAffiliation_xml | – name: 2 Quanzhou Institute of Equipment Manufacturing, Haixi Institutes, Chinese Academy of Sciences, Quanzhou 362200, China; 201321070144@std.uestc.edu.cn – name: 1 School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China; 2015070903035@std.uestc.edu.cn (W.M.); yangclin@uestc.edu.cn (C.Y.); zhouxy@uestc.edu.cn (X.Z.) |
Author_xml | – sequence: 1 givenname: Zhen orcidid: 0000-0003-3406-0039 surname: Liu fullname: Liu, Zhen – sequence: 2 givenname: Wenjuan surname: Mei fullname: Mei, Wenjuan – sequence: 3 givenname: Xianping surname: Zeng fullname: Zeng, Xianping – sequence: 4 givenname: Chenglin surname: Yang fullname: Yang, Chenglin – sequence: 5 givenname: Xiuyun surname: Zhou fullname: Zhou, Xiuyun |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29099811$$D View this record in MEDLINE/PubMed |
BookMark | eNptkk1vEzEQhleoiH7AgT-ALHFJDqHr9X75gkTaUCLSJEJpr6vZ9Wzi4NjB9lb0L_KrcJJStRUX2_I88_qd8ZxGR9pojKL3NP7EGI_PHS0oTbIkfRWd0DRJB2WSxEdPzsfRqXPrOE4YY-Wb6DjhMeclpSfRnx-4AamlXpIbh22nyES2SEbOyw14aTQxLRlr1ynwKMhVWMlQbpUBSxYWtJPOG-tIb3w1XLg-GYILWEgDMjV3qMitUR6tBfJzMEWw6DyZolyuamPJbLt7Ral7MredDnmj397iBskkkHtP19CspEbSu_0-m8_75NqIoHnjdrFLXFoQB5OX4OFt9LoF5fDdw34W3XwdLS6-DSazq_HFl8mgSXPuB8AgF6IGnpcJQJM3KcvyOPQx5alAzlnblnXWiLRsi5aKDNI2LzjLsG6RQ8HYWTQ-6AoD62prQwn2vjIgq_2FscsKrJeNwoqyIucoKApRpEmdcp6IlGYFwybOamiC1ueD1rarNyga1N6Ceib6PKLlqlqauyoraMLLIgj0HgSs-dWF7lYb6RpUCjSazlWUF1mc5GWZB_TjC3RtOqtDq3ZUUWYsK8pAfXjq6NHKv5EJQP8ANNY4Z7F9RGhc7caxehzHwJ6_YBvp9z8WipHqPxl_Affa4tw |
CitedBy_id | crossref_primary_10_1109_TED_2020_3037266 crossref_primary_10_3390_s19061472 crossref_primary_10_1007_s13369_024_08854_5 crossref_primary_10_1109_JESTPE_2023_3288125 crossref_primary_10_3390_s21030972 crossref_primary_10_3390_s24103215 crossref_primary_10_1109_JESTPE_2021_3128017 crossref_primary_10_1093_jigpal_jzae017 crossref_primary_10_1109_ACCESS_2021_3052465 crossref_primary_10_3390_app11167322 crossref_primary_10_1109_TIM_2023_3291001 crossref_primary_10_3390_electronics11071125 crossref_primary_10_1016_j_neucom_2020_03_054 crossref_primary_10_3390_electronics12071744 crossref_primary_10_3390_s20247109 crossref_primary_10_1016_j_iswa_2023_200251 crossref_primary_10_1109_ACCESS_2018_2873627 crossref_primary_10_1016_j_microrel_2020_113824 crossref_primary_10_1007_s40710_019_00385_8 crossref_primary_10_1016_j_neucom_2018_04_043 crossref_primary_10_12677_SEA_2023_126092 crossref_primary_10_1088_1361_6501_ad2bcc crossref_primary_10_1016_j_knosys_2021_107902 crossref_primary_10_1088_1361_6501_ad8e76 crossref_primary_10_1016_j_icheatmasstransfer_2024_107241 crossref_primary_10_3390_en11030595 |
Cites_doi | 10.1109/ITEC-AP.2016.7513023 10.1109/TASE.2006.876609 10.1109/ICIEA.2015.7334314 10.1109/PESC.2007.4342127 10.6113/JPE.2017.17.3.811 10.1007/978-3-642-03040-6_83 10.1007/978-3-642-34038-3_32 10.1016/j.microrel.2013.01.006 10.1214/009053604000000067 10.1103/PhysRevLett.45.712 10.1109/TPEL.2016.2633578 10.1109/TNN.2009.2036259 10.1016/j.neucom.2006.06.015 10.1109/TR.2015.2499960 10.1002/0471725250 10.1109/PHM.2008.4711417 10.1049/PBPO080E 10.1016/j.neucom.2005.12.126 10.1109/EPE.2013.6634482 10.1109/AERO.2015.7118982 10.1126/science.267326 10.1109/APEC.2011.5744845 10.1109/TIA.2011.2168556 10.1016/j.amc.2006.10.015 10.1016/j.neunet.2013.12.002 10.5370/JEET.2014.9.3.970 10.1109/ESTC.2008.4684552 10.1016/j.neucom.2009.11.033 10.1002/9780470385845 10.1016/j.apenergy.2012.05.055 10.1109/TIE.2008.918399 |
ContentType | Journal Article |
Copyright | Copyright MDPI AG 2017 2017 by the authors. 2017 |
Copyright_xml | – notice: Copyright MDPI AG 2017 – notice: 2017 by the authors. 2017 |
DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/s17112524 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_13769ed1edd742b4992d41573ec05bac PMC5712987 29099811 10_3390_s17112524 |
Genre | Journal Article |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS ADRAZ AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IPNFZ KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RIG RNS RPM TUS UKHRP XSB ~8M NPM 3V. 7XB 8FK AZQEC DWQXO K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c469t-a3a6ddba9682aac6c43560339494de993ff8b5cd48f7f1d5a4f67935ebfe9a733 |
IEDL.DBID | M48 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:15:02 EDT 2025 Thu Aug 21 14:04:05 EDT 2025 Fri Jul 11 11:41:18 EDT 2025 Fri Jul 25 20:01:59 EDT 2025 Thu Apr 03 07:07:09 EDT 2025 Thu Apr 24 23:04:07 EDT 2025 Tue Jul 01 01:36:43 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | IGBT prediction model remaining useful life VKOPP degradation data |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c469t-a3a6ddba9682aac6c43560339494de993ff8b5cd48f7f1d5a4f67935ebfe9a733 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-3406-0039 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s17112524 |
PMID | 29099811 |
PQID | 1977853578 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_13769ed1edd742b4992d41573ec05bac pubmedcentral_primary_oai_pubmedcentral_nih_gov_5712987 proquest_miscellaneous_1975026886 proquest_journals_1977853578 pubmed_primary_29099811 crossref_primary_10_3390_s17112524 crossref_citationtrail_10_3390_s17112524 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-11-03 |
PublicationDateYYYYMMDD | 2017-11-03 |
PublicationDate_xml | – month: 11 year: 2017 text: 2017-11-03 day: 03 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2017 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Sorjamaa (ref_33) 2007; 70 ref_14 ref_36 ref_35 Choi (ref_1) 2017; 32 Ghasemi (ref_15) 2007; 188 ref_10 Thakur (ref_12) 2013; 2 Suykens (ref_44) 2002; 2 ref_16 Wu (ref_13) 2014; 9 ref_37 Sovilj (ref_20) 2010; 73 Long (ref_38) 2013; 53 Huang (ref_17) 2006; 70 Mackey (ref_39) 1977; 197 Cheng (ref_4) 2017; 17 Efron (ref_34) 2004; 32 Alghassi (ref_2) 2016; 65 Li (ref_11) 2014; 981 Liu (ref_40) 2009; 37 ref_25 ref_24 Gebraeel (ref_42) 2006; 3 ref_22 Xiong (ref_26) 2008; 55 Packard (ref_30) 1980; 45 ref_21 Dai (ref_29) 2012; 99 ref_43 ref_41 Takens (ref_31) 1981; 898 ref_3 ref_28 ref_27 Qiao (ref_32) 2014; 30 ref_9 ref_8 Xiang (ref_23) 2011; 47 ref_5 Grigorievskiy (ref_19) 2014; 51 ref_7 Miche (ref_18) 2010; 21 ref_6 20007026 - IEEE Trans Neural Netw. 2010 Jan;21(1):158-62 267326 - Science. 1977 Jul 15;197(4300):287-9 24365536 - Neural Netw. 2014 Mar;51:50-6 |
References_xml | – ident: ref_6 doi: 10.1109/ITEC-AP.2016.7513023 – volume: 2 start-page: 1 year: 2002 ident: ref_44 article-title: Least squares support vector machines publication-title: World Sci. – ident: ref_5 – volume: 3 start-page: 382 year: 2006 ident: ref_42 article-title: Sensory-updated residual life distributions for components with exponential degradation patterns publication-title: IEEE Trans. Autom. Sci. Eng. doi: 10.1109/TASE.2006.876609 – ident: ref_3 doi: 10.1109/ICIEA.2015.7334314 – ident: ref_24 doi: 10.1109/PESC.2007.4342127 – volume: 17 start-page: 811 year: 2017 ident: ref_4 article-title: Investigation on intermittent life testing program for IGBT publication-title: J. Power Electron. doi: 10.6113/JPE.2017.17.3.811 – ident: ref_16 doi: 10.1007/978-3-642-03040-6_83 – ident: ref_21 doi: 10.1007/978-3-642-34038-3_32 – volume: 53 start-page: 821 year: 2013 ident: ref_38 article-title: An improved autoregressive model by particle swarm optimization for prognostics of lithium-ion batteries publication-title: Microelectron. Reliab. doi: 10.1016/j.microrel.2013.01.006 – volume: 32 start-page: 407 year: 2004 ident: ref_34 article-title: Least angle regression publication-title: Ann. Stat. doi: 10.1214/009053604000000067 – ident: ref_37 – ident: ref_14 – volume: 45 start-page: 712 year: 1980 ident: ref_30 article-title: Shaw geometry from a time series publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.45.712 – volume: 32 start-page: 7990 year: 2017 ident: ref_1 article-title: Reliability improvement of power converters by means of condition monitoring of IGBT modules publication-title: IEEE Trans. Power Electr. doi: 10.1109/TPEL.2016.2633578 – volume: 21 start-page: 158 year: 2010 ident: ref_18 article-title: OP-ELM: Optimally Pruned Extreme Learning Machine publication-title: IEEE Trans. Neural Netw. doi: 10.1109/TNN.2009.2036259 – volume: 70 start-page: 2861 year: 2007 ident: ref_33 article-title: Methodology for long-term prediction of time series publication-title: Neurocomputing doi: 10.1016/j.neucom.2006.06.015 – volume: 65 start-page: 558 year: 2016 ident: ref_2 article-title: Stochastic RUL calculation enhanced with TDNN-based IGBT failure modeling publication-title: IEEE Trans. Reliab. doi: 10.1109/TR.2015.2499960 – ident: ref_35 doi: 10.1002/0471725250 – ident: ref_28 doi: 10.1109/PHM.2008.4711417 – ident: ref_25 – ident: ref_27 doi: 10.1049/PBPO080E – volume: 70 start-page: 489 year: 2006 ident: ref_17 article-title: Extreme learning machine: Theory and applications publication-title: Neurocomputing doi: 10.1016/j.neucom.2005.12.126 – ident: ref_10 doi: 10.1109/EPE.2013.6634482 – ident: ref_22 doi: 10.1109/AERO.2015.7118982 – volume: 197 start-page: 287 year: 1977 ident: ref_39 article-title: Oscillations and chaos in physiological control systems publication-title: Science doi: 10.1126/science.267326 – volume: 30 start-page: 31 year: 2014 ident: ref_32 article-title: Chaos Time-series prediction based on reconstructed phase space using the entropy rate publication-title: Micro Appl. – ident: ref_41 – ident: ref_8 doi: 10.1109/APEC.2011.5744845 – volume: 47 start-page: 2578 year: 2011 ident: ref_23 article-title: Monitoring solder fatigue in a power module using case-above-ambient temperature rise publication-title: IEEE Trans. Ind. Appl. doi: 10.1109/TIA.2011.2168556 – volume: 981 start-page: 86 year: 2014 ident: ref_11 article-title: Particle filter approach for IGBT remaining useful life publication-title: Adv. Mater. – volume: 188 start-page: 446 year: 2007 ident: ref_15 article-title: Numerical solutions of the nonlinear Volterra–Fredholm integral equations by using homotopy perturbation method publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2006.10.015 – volume: 51 start-page: 50 year: 2014 ident: ref_19 article-title: Long-term time series prediction using OP-ELM publication-title: Neural Netw. doi: 10.1016/j.neunet.2013.12.002 – volume: 898 start-page: 361 year: 1981 ident: ref_31 article-title: Determining strange attractors in turbulence publication-title: Lect. Notes Math. – volume: 9 start-page: 970 year: 2014 ident: ref_13 article-title: Junction temperature prediction of IGBT power module based on BP neural network publication-title: J. Electr. Eng. Tech. doi: 10.5370/JEET.2014.9.3.970 – ident: ref_36 – ident: ref_43 – ident: ref_9 doi: 10.1109/ESTC.2008.4684552 – volume: 37 start-page: 2113 year: 2009 ident: ref_40 article-title: Research on condition trend prediction based on weighed hidden markov and autoregressive model publication-title: Acta Electron. Sin. – volume: 73 start-page: 1976 year: 2010 ident: ref_20 article-title: OPELM and OPKNN in long-term prediction of time series using projected input data publication-title: Neurocomputing doi: 10.1016/j.neucom.2009.11.033 – ident: ref_7 doi: 10.1002/9780470385845 – volume: 2 start-page: 2595 year: 2013 ident: ref_12 article-title: Modeling of IGBT using temperature prediction method publication-title: Int. J. Adv. Res. Comp. Eng. Tech. – volume: 99 start-page: 423 year: 2012 ident: ref_29 article-title: Prognostics-based risk mitigation for telecom equipment under free air cooling conditions publication-title: Appl. Energy doi: 10.1016/j.apenergy.2012.05.055 – volume: 55 start-page: 2268 year: 2008 ident: ref_26 article-title: Prognostic and warning system for power-electronic modules in electric, Hybrid Electric, and Fuel-Cell Vehicles publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2008.918399 – reference: 20007026 - IEEE Trans Neural Netw. 2010 Jan;21(1):158-62 – reference: 267326 - Science. 1977 Jul 15;197(4300):287-9 – reference: 24365536 - Neural Netw. 2014 Mar;51:50-6 |
SSID | ssj0023338 |
Score | 2.3870168 |
Snippet | The insulated gate bipolar transistor (IGBT) is a kind of excellent performance switching device used widely in power electronic systems. How to estimate the... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 2524 |
SubjectTerms | degradation data IGBT prediction model remaining useful life Useful life VKOPP |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF6hnuCAKE_TggbEIT1Yzfq5PhKa0gJNI9RUvVn7hAhjR7GD4C_yq5ixnShBlbhwtdfyendm5_t2x98w9ibkgc64U75B9uBHWoV-JkzgZ1qIyGpuAkknuheT5GwWfbiJb7ZKfVFOWCcP3A3cMUcPyKzh1hhkcQoBemAw6KSh1cNYSU2rL8a8NZnqqVaIzKvTEQqR1B_XPEVcEQfRTvRpRfpvQ5Z_J0huRZzTB-x-DxXhbdfFfXbHlg_ZvS0BwUfs92f7vSvxALPaulUBn-bOwhj9tvslESoH55RujpDSAG2VwWi-KCq5hDZKtSIhNQzO34-u6iMYYUwzgI9JmFQ_bAHXFZ2mLyV88yekdls3MKHNVLQcuFzQW4riF0yXK1ytYfyzod1G6DVbv8BFm6lpYXD98XI6PQIqvFZAm6UAJ6RS0RV0ghPZyMdsdjq-enfm99UZfI2UuvFlKBNjlMwSEUipE43AKxnicEdZZCzCHueEirWJhEsdN7GMXIKLQWyVs5lMw_AJ2yur0j5joGxilZFDo9BiWgXEzBikUpy04CMuPTZYz1que-lyqqBR5EhhaILzzQR77PWm6aLT67it0YimftOAJLbbC2h4eW94-b8Mz2OHa8PJe7-vc45wGgEQLoMee7W5jR5LxzCytNWqbRMj8xUi8djTzs42PQnw0zPBucfSHQvc6erunXL-tVUFj1OEbiJ9_j--7YDdDQi-0PZ5eMj2muXKvkDw1aiXrZ_9AXCnMKU priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEF5BucAB8cZQ0IA4pAerWb99QoQmbYGmEWqq3qx9uUQYO8QOgr_Ir2Jm7ZgGVVyzG2XjeX0zO_6GsTc-91TKc-lqzB7cQEnfTRPtualKksAorj1BN7on0-hoHny4CC-6glvdtVVufKJ11LpSVCPf5whUMLSggr1dfndpahTdrnYjNG6yWxwjDbV0JZPDPuHyMf9q2YR8TO33ax4jugi9YCsGWar-6_Dlv22SV-LO5B672wFGeNdK-D67YcoH7M4VGsGH7Pdn860d9ADz2uTrAj4tcgNjtN72xUSocjimpnMElhqoYAajxbKoxApsrLJUITUMjg9HZ_UejDCyacCvCZhWP0wB5xXdqa8EfHWnxHlbNzClkirqD5wu6VeK4hfMVmv02TD-2VDNETrm1ks4sf2aBgbnH09nsz2g8WsF2F4FOCCuinasExyIRjxi88n47P2R281ocBUm1o0rfBFpLUUaJZ4QKlIIv6IhPu4gDbRB8JPniQyVDpI8zrkORZBH6BJCI3OTitj3H7OdsirNUwbSREZqMdQS9cbyIKZaY0LFiRE-4MJhg43UMtURmNMcjSLDRIYEnPUCdtjrfuuyZe24btOIRN9vIKJt-0G1usw6u804OuDUaG60jgNPYn7oacQ8sW_UMJRCOWx3ozhZZ_119ldXHfaqX0a7pcsYUZpqbfeEmP8mSeSwJ62e9Sfx8K-nCecOi7c0cOuo2yvl4ovlBg9jBHBJ_Oz_x3rObnsET6g87u-ynWa1Ni8QXDXypbWgP3BeKC8 priority: 102 providerName: ProQuest |
Title | Remaining Useful Life Estimation of Insulated Gate Biploar Transistors (IGBTs) Based on a Novel Volterra k-Nearest Neighbor Optimally Pruned Extreme Learning Machine (VKOPP) Model Using Degradation Data |
URI | https://www.ncbi.nlm.nih.gov/pubmed/29099811 https://www.proquest.com/docview/1977853578 https://www.proquest.com/docview/1975026886 https://pubmed.ncbi.nlm.nih.gov/PMC5712987 https://doaj.org/article/13769ed1edd742b4992d41573ec05bac |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEF71cYED4l1DiQbEIT0YsvbaXh8QIjRpCySNqqbKzVp71yXCxMF2UPsX-VXMrh2rQTlwySFey4-Z2fm-2fU3hLx1qZOENI1tiezBZkns2iGXjh0mnDOVUOkIvaI7GvunU_Zl5s12yLrHZvMCy63UTveTmhbZu5tftx8x4D9oxomU_X1JA0QNnsN2yT4mpEA3MhixdjHBcV3T0Fp_02VjPuzVAkObp26kJaPevw1y_rtz8k4qGj4kDxoMCZ9qoz8iO2rxmNy_oyz4hPy5UD_r3g8wLVW6yuDbPFUwwICuv1WEPIUzvQ8dsaYEXUOD_nyZ5aIAk76MekgJ3bOT_mV5BH1MdhLwNAHj_LfK4CrXy-yFgB_2WMvglhWMdZUVXQrOl_oqWXYLk2KF0zgMbipdhoRGzPUaRmYLp4Lu1dfzyeQIdEe2DMz2BTjW8hV1pyc4FpV4SqbDweXnU7tp22AnyLUrW7jClzIWoc8dIRI_QUTm9_B1s5BJhXgoTXnsJZLxNEip9ARLfZwlPBWnKhSB6z4je4t8oQ4IxMpXsRQ9GaMrGWnEUErkWFSLxDMqLNJdWy1KGk1z3Voji5DbaANHrYEt8qYduqyFPLYN6mvTtwO09rb5Iy-uoyaUI4pzcqgkVVIGzImRMjoSYVDgqqTnxSKxyOHacaK1P0cUcTYiI5wfLfK6PYyhrNdnxELlKzPGQ0rMuW-R57WftXfi4KOHnFKLBBseuHGrm0cW8-9GLtwLENPx4MV_XPcluedo2KLL5u4h2auKlXqFoKuKO2Q3mAX4y4cnHbLfH4wnFx1TwOiYYPsLywQxsw |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5V5QAcEG8MBQYEUnqwmvXbB4QISZqQRyOUVr2Z9e66RJg4xAnQP8UP4VcxYzumQRW3XrNreaOZnfm-2fU3jL2yuSVDnsSmQvZgOjK2zTBQlhnKIHC05MoSdKI7Gnu9Y-fDqXu6w35tvoWha5WbmFgEapVJqpEfcAQqmFrQwd4uvpnUNYpOVzctNEq3GOjzH0jZ8jf9Ntr3tWV1O9P3PbPqKmBKpIIrU9jCUyoWoRdYQkhPImDwmrYdOqGjNKbrJAliVyonSPyEK1c4iYdO7Oo40aHwqQCKIf-ag08Q2Qu6hzXBs5HvlepFONg8yLmPaMa1nK2cV7QGuAzP_nst80Ke695mtyqACu9Kj7rDdvT8Lrt5QbbwHvv9UX8tG0vAca6TdQrDWaKhg9Gi_BASsgT6dMkdgawCKtBBa7ZIM7GEIjcW0iQ5NPqHrWm-Dy3MpArwMQHj7LtO4SSjM_ylgC_mmDR28xWMqYSL_gpHC3pLmp7DZLnGHAGdnyuqcUKlFHsGo-J-qIbGyeBoMtkHaveWQnE3AtqkjVG2kYK2WIn77PhKrPeA7c6zuX7EINaejpVoqhj9tNBdDJVCAsdJgd7hwmCNjdUiWQmmU9-ONELiRAaOagMb7GU9dVGqhFw2qUWmryeQsHfxQ7Y8i6o4EXEM-KFWXCvlO1aMfNRSiLF8W8umGwtpsL2N40RVtMmjv3vDYC_qYYwTdPgj5jpbF3Nc5NtB4BnsYeln9Uos_OthwLnB_C0P3Frq9sh89rnQInd9BIyB__j_y3rOrvemo2E07I8HT9gNi6ARlebtPba7Wq71UwR2q_hZsZuAfbrq7fsHoDBmTQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9NAEF1VqYTggPjGUGBAIKUHK_G3fUCIkISGtG5UNVVv7np3XSJMHGIH6F_jJ_CrmLEd06CKW6_xJnEyszPvzY7fMPbaMkwRGEmsS2QPui1iSw98aeqB8H1bCUOanE50D0J3b2p_OnVOt9iv9bMw1Fa5jolloJaZoBp5x0CggqkFHayT1G0Rk_7w3eKbThOk6KR1PU6jcpGxuviB9C1_O-qjrd-Y5nBw_GFPrycM6AJpYaFzi7tSxjxwfZNz4QoED27XsgI7sKXC1J0kfuwIafuJlxjS4XbiokM7Kk5UwD0qhmL43_aIFbXYdm8QTo4aumch-6u0jPADu53c8BDbOKa9kQHLQQFXodt_mzQvZb3hHXa7hqvwvvKvu2xLze-xW5dEDO-z30fqazVmAqa5wn8N9meJggHGjuqxSMgSGFHLO8JaCVSug95skWZ8CWWmLIVKcmiPPvaO813oYV6VgG_jEGbfVQonGZ3oLzl80UNS3M0LCKmgi94Lhwv6ljS9gMlyhRkDBj8LqnhCrRt7Dgdlt6iC9sn4cDLZBRr-lkLZKQF9UsqohkpBnxf8AZtei_0estY8m6vHDGLlqljyrozRa0sVxkBKpHMG6dHbBtdYe221SNTy6TTFI42QRpGBo8bAGnvVLF1UmiFXLeqR6ZsFJPNdvpAtz6M6akQGhv9ASUNJ6dlmjOzUlIi4PEuJrhNzobGdteNEdezJo787RWMvm8sYNegoiM9VtirXOMi-fd_V2KPKz5o7MfGnB75haMzb8MCNW928Mp99LpXJHQ_ho-89-f9tvWA3cOtG-6Nw_JTdNAknUZ3e2mGtYrlSzxDlFfHzejsBO7vuHfwH8tdr3w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Remaining+Useful+Life+Estimation+of+Insulated+Gate+Biploar+Transistors+%28IGBTs%29+Based+on+a+Novel+Volterra+k-Nearest+Neighbor+Optimally+Pruned+Extreme+Learning+Machine+%28VKOPP%29+Model+Using+Degradation+Data&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Liu%2C+Zhen&rft.au=Mei%2C+Wenjuan&rft.au=Zeng%2C+Xianping&rft.au=Yang%2C+Chenglin&rft.date=2017-11-03&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=17&rft.issue=11&rft_id=info:doi/10.3390%2Fs17112524&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |