Remaining Useful Life Estimation of Insulated Gate Biploar Transistors (IGBTs) Based on a Novel Volterra k-Nearest Neighbor Optimally Pruned Extreme Learning Machine (VKOPP) Model Using Degradation Data

The insulated gate bipolar transistor (IGBT) is a kind of excellent performance switching device used widely in power electronic systems. How to estimate the remaining useful life (RUL) of an IGBT to ensure the safety and reliability of the power electronics system is currently a challenging issue i...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 17; no. 11; p. 2524
Main Authors Liu, Zhen, Mei, Wenjuan, Zeng, Xianping, Yang, Chenglin, Zhou, Xiuyun
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 03.11.2017
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The insulated gate bipolar transistor (IGBT) is a kind of excellent performance switching device used widely in power electronic systems. How to estimate the remaining useful life (RUL) of an IGBT to ensure the safety and reliability of the power electronics system is currently a challenging issue in the field of IGBT reliability. The aim of this paper is to develop a prognostic technique for estimating IGBTs’ RUL. There is a need for an efficient prognostic algorithm that is able to support in-situ decision-making. In this paper, a novel prediction model with a complete structure based on optimally pruned extreme learning machine (OPELM) and Volterra series is proposed to track the IGBT’s degradation trace and estimate its RUL; we refer to this model as Volterra k-nearest neighbor OPELM prediction (VKOPP) model. This model uses the minimum entropy rate method and Volterra series to reconstruct phase space for IGBTs’ ageing samples, and a new weight update algorithm, which can effectively reduce the influence of the outliers and noises, is utilized to establish the VKOPP network; then a combination of the k-nearest neighbor method (KNN) and least squares estimation (LSE) method is used to calculate the output weights of OPELM and predict the RUL of the IGBT. The prognostic results show that the proposed approach can predict the RUL of IGBT modules with small error and achieve higher prediction precision and lower time cost than some classic prediction approaches.
AbstractList The insulated gate bipolar transistor (IGBT) is a kind of excellent performance switching device used widely in power electronic systems. How to estimate the remaining useful life (RUL) of an IGBT to ensure the safety and reliability of the power electronics system is currently a challenging issue in the field of IGBT reliability. The aim of this paper is to develop a prognostic technique for estimating IGBTs’ RUL. There is a need for an efficient prognostic algorithm that is able to support in-situ decision-making. In this paper, a novel prediction model with a complete structure based on optimally pruned extreme learning machine (OPELM) and Volterra series is proposed to track the IGBT’s degradation trace and estimate its RUL; we refer to this model as Volterra k-nearest neighbor OPELM prediction (VKOPP) model. This model uses the minimum entropy rate method and Volterra series to reconstruct phase space for IGBTs’ ageing samples, and a new weight update algorithm, which can effectively reduce the influence of the outliers and noises, is utilized to establish the VKOPP network; then a combination of the k -nearest neighbor method (KNN) and least squares estimation (LSE) method is used to calculate the output weights of OPELM and predict the RUL of the IGBT. The prognostic results show that the proposed approach can predict the RUL of IGBT modules with small error and achieve higher prediction precision and lower time cost than some classic prediction approaches.
The insulated gate bipolar transistor (IGBT) is a kind of excellent performance switching device used widely in power electronic systems. How to estimate the remaining useful life (RUL) of an IGBT to ensure the safety and reliability of the power electronics system is currently a challenging issue in the field of IGBT reliability. The aim of this paper is to develop a prognostic technique for estimating IGBTs' RUL. There is a need for an efficient prognostic algorithm that is able to support in-situ decision-making. In this paper, a novel prediction model with a complete structure based on optimally pruned extreme learning machine (OPELM) and Volterra series is proposed to track the IGBT's degradation trace and estimate its RUL; we refer to this model as Volterra k-nearest neighbor OPELM prediction (VKOPP) model. This model uses the minimum entropy rate method and Volterra series to reconstruct phase space for IGBTs' ageing samples, and a new weight update algorithm, which can effectively reduce the influence of the outliers and noises, is utilized to establish the VKOPP network; then a combination of the -nearest neighbor method (KNN) and least squares estimation (LSE) method is used to calculate the output weights of OPELM and predict the RUL of the IGBT. The prognostic results show that the proposed approach can predict the RUL of IGBT modules with small error and achieve higher prediction precision and lower time cost than some classic prediction approaches.
The insulated gate bipolar transistor (IGBT) is a kind of excellent performance switching device used widely in power electronic systems. How to estimate the remaining useful life (RUL) of an IGBT to ensure the safety and reliability of the power electronics system is currently a challenging issue in the field of IGBT reliability. The aim of this paper is to develop a prognostic technique for estimating IGBTs' RUL. There is a need for an efficient prognostic algorithm that is able to support in-situ decision-making. In this paper, a novel prediction model with a complete structure based on optimally pruned extreme learning machine (OPELM) and Volterra series is proposed to track the IGBT's degradation trace and estimate its RUL; we refer to this model as Volterra k-nearest neighbor OPELM prediction (VKOPP) model. This model uses the minimum entropy rate method and Volterra series to reconstruct phase space for IGBTs' ageing samples, and a new weight update algorithm, which can effectively reduce the influence of the outliers and noises, is utilized to establish the VKOPP network; then a combination of the k-nearest neighbor method (KNN) and least squares estimation (LSE) method is used to calculate the output weights of OPELM and predict the RUL of the IGBT. The prognostic results show that the proposed approach can predict the RUL of IGBT modules with small error and achieve higher prediction precision and lower time cost than some classic prediction approaches.The insulated gate bipolar transistor (IGBT) is a kind of excellent performance switching device used widely in power electronic systems. How to estimate the remaining useful life (RUL) of an IGBT to ensure the safety and reliability of the power electronics system is currently a challenging issue in the field of IGBT reliability. The aim of this paper is to develop a prognostic technique for estimating IGBTs' RUL. There is a need for an efficient prognostic algorithm that is able to support in-situ decision-making. In this paper, a novel prediction model with a complete structure based on optimally pruned extreme learning machine (OPELM) and Volterra series is proposed to track the IGBT's degradation trace and estimate its RUL; we refer to this model as Volterra k-nearest neighbor OPELM prediction (VKOPP) model. This model uses the minimum entropy rate method and Volterra series to reconstruct phase space for IGBTs' ageing samples, and a new weight update algorithm, which can effectively reduce the influence of the outliers and noises, is utilized to establish the VKOPP network; then a combination of the k-nearest neighbor method (KNN) and least squares estimation (LSE) method is used to calculate the output weights of OPELM and predict the RUL of the IGBT. The prognostic results show that the proposed approach can predict the RUL of IGBT modules with small error and achieve higher prediction precision and lower time cost than some classic prediction approaches.
The insulated gate bipolar transistor (IGBT) is a kind of excellent performance switching device used widely in power electronic systems. How to estimate the remaining useful life (RUL) of an IGBT to ensure the safety and reliability of the power electronics system is currently a challenging issue in the field of IGBT reliability. The aim of this paper is to develop a prognostic technique for estimating IGBTs’ RUL. There is a need for an efficient prognostic algorithm that is able to support in-situ decision-making. In this paper, a novel prediction model with a complete structure based on optimally pruned extreme learning machine (OPELM) and Volterra series is proposed to track the IGBT’s degradation trace and estimate its RUL; we refer to this model as Volterra k-nearest neighbor OPELM prediction (VKOPP) model. This model uses the minimum entropy rate method and Volterra series to reconstruct phase space for IGBTs’ ageing samples, and a new weight update algorithm, which can effectively reduce the influence of the outliers and noises, is utilized to establish the VKOPP network; then a combination of the k-nearest neighbor method (KNN) and least squares estimation (LSE) method is used to calculate the output weights of OPELM and predict the RUL of the IGBT. The prognostic results show that the proposed approach can predict the RUL of IGBT modules with small error and achieve higher prediction precision and lower time cost than some classic prediction approaches.
Author Yang, Chenglin
Zhou, Xiuyun
Liu, Zhen
Mei, Wenjuan
Zeng, Xianping
AuthorAffiliation 2 Quanzhou Institute of Equipment Manufacturing, Haixi Institutes, Chinese Academy of Sciences, Quanzhou 362200, China; 201321070144@std.uestc.edu.cn
1 School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China; 2015070903035@std.uestc.edu.cn (W.M.); yangclin@uestc.edu.cn (C.Y.); zhouxy@uestc.edu.cn (X.Z.)
AuthorAffiliation_xml – name: 2 Quanzhou Institute of Equipment Manufacturing, Haixi Institutes, Chinese Academy of Sciences, Quanzhou 362200, China; 201321070144@std.uestc.edu.cn
– name: 1 School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China; 2015070903035@std.uestc.edu.cn (W.M.); yangclin@uestc.edu.cn (C.Y.); zhouxy@uestc.edu.cn (X.Z.)
Author_xml – sequence: 1
  givenname: Zhen
  orcidid: 0000-0003-3406-0039
  surname: Liu
  fullname: Liu, Zhen
– sequence: 2
  givenname: Wenjuan
  surname: Mei
  fullname: Mei, Wenjuan
– sequence: 3
  givenname: Xianping
  surname: Zeng
  fullname: Zeng, Xianping
– sequence: 4
  givenname: Chenglin
  surname: Yang
  fullname: Yang, Chenglin
– sequence: 5
  givenname: Xiuyun
  surname: Zhou
  fullname: Zhou, Xiuyun
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29099811$$D View this record in MEDLINE/PubMed
BookMark eNptkk1vEzEQhleoiH7AgT-ALHFJDqHr9X75gkTaUCLSJEJpr6vZ9Wzi4NjB9lb0L_KrcJJStRUX2_I88_qd8ZxGR9pojKL3NP7EGI_PHS0oTbIkfRWd0DRJB2WSxEdPzsfRqXPrOE4YY-Wb6DjhMeclpSfRnx-4AamlXpIbh22nyES2SEbOyw14aTQxLRlr1ynwKMhVWMlQbpUBSxYWtJPOG-tIb3w1XLg-GYILWEgDMjV3qMitUR6tBfJzMEWw6DyZolyuamPJbLt7Ral7MredDnmj397iBskkkHtP19CspEbSu_0-m8_75NqIoHnjdrFLXFoQB5OX4OFt9LoF5fDdw34W3XwdLS6-DSazq_HFl8mgSXPuB8AgF6IGnpcJQJM3KcvyOPQx5alAzlnblnXWiLRsi5aKDNI2LzjLsG6RQ8HYWTQ-6AoD62prQwn2vjIgq_2FscsKrJeNwoqyIucoKApRpEmdcp6IlGYFwybOamiC1ueD1rarNyga1N6Ceib6PKLlqlqauyoraMLLIgj0HgSs-dWF7lYb6RpUCjSazlWUF1mc5GWZB_TjC3RtOqtDq3ZUUWYsK8pAfXjq6NHKv5EJQP8ANNY4Z7F9RGhc7caxehzHwJ6_YBvp9z8WipHqPxl_Affa4tw
CitedBy_id crossref_primary_10_1109_TED_2020_3037266
crossref_primary_10_3390_s19061472
crossref_primary_10_1007_s13369_024_08854_5
crossref_primary_10_1109_JESTPE_2023_3288125
crossref_primary_10_3390_s21030972
crossref_primary_10_3390_s24103215
crossref_primary_10_1109_JESTPE_2021_3128017
crossref_primary_10_1093_jigpal_jzae017
crossref_primary_10_1109_ACCESS_2021_3052465
crossref_primary_10_3390_app11167322
crossref_primary_10_1109_TIM_2023_3291001
crossref_primary_10_3390_electronics11071125
crossref_primary_10_1016_j_neucom_2020_03_054
crossref_primary_10_3390_electronics12071744
crossref_primary_10_3390_s20247109
crossref_primary_10_1016_j_iswa_2023_200251
crossref_primary_10_1109_ACCESS_2018_2873627
crossref_primary_10_1016_j_microrel_2020_113824
crossref_primary_10_1007_s40710_019_00385_8
crossref_primary_10_1016_j_neucom_2018_04_043
crossref_primary_10_12677_SEA_2023_126092
crossref_primary_10_1088_1361_6501_ad2bcc
crossref_primary_10_1016_j_knosys_2021_107902
crossref_primary_10_1088_1361_6501_ad8e76
crossref_primary_10_1016_j_icheatmasstransfer_2024_107241
crossref_primary_10_3390_en11030595
Cites_doi 10.1109/ITEC-AP.2016.7513023
10.1109/TASE.2006.876609
10.1109/ICIEA.2015.7334314
10.1109/PESC.2007.4342127
10.6113/JPE.2017.17.3.811
10.1007/978-3-642-03040-6_83
10.1007/978-3-642-34038-3_32
10.1016/j.microrel.2013.01.006
10.1214/009053604000000067
10.1103/PhysRevLett.45.712
10.1109/TPEL.2016.2633578
10.1109/TNN.2009.2036259
10.1016/j.neucom.2006.06.015
10.1109/TR.2015.2499960
10.1002/0471725250
10.1109/PHM.2008.4711417
10.1049/PBPO080E
10.1016/j.neucom.2005.12.126
10.1109/EPE.2013.6634482
10.1109/AERO.2015.7118982
10.1126/science.267326
10.1109/APEC.2011.5744845
10.1109/TIA.2011.2168556
10.1016/j.amc.2006.10.015
10.1016/j.neunet.2013.12.002
10.5370/JEET.2014.9.3.970
10.1109/ESTC.2008.4684552
10.1016/j.neucom.2009.11.033
10.1002/9780470385845
10.1016/j.apenergy.2012.05.055
10.1109/TIE.2008.918399
ContentType Journal Article
Copyright Copyright MDPI AG 2017
2017 by the authors. 2017
Copyright_xml – notice: Copyright MDPI AG 2017
– notice: 2017 by the authors. 2017
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s17112524
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic

Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_13769ed1edd742b4992d41573ec05bac
PMC5712987
29099811
10_3390_s17112524
Genre Journal Article
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
ADRAZ
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IPNFZ
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RIG
RNS
RPM
TUS
UKHRP
XSB
~8M
NPM
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c469t-a3a6ddba9682aac6c43560339494de993ff8b5cd48f7f1d5a4f67935ebfe9a733
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 01:15:02 EDT 2025
Thu Aug 21 14:04:05 EDT 2025
Fri Jul 11 11:41:18 EDT 2025
Fri Jul 25 20:01:59 EDT 2025
Thu Apr 03 07:07:09 EDT 2025
Thu Apr 24 23:04:07 EDT 2025
Tue Jul 01 01:36:43 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords IGBT
prediction model
remaining useful life
VKOPP
degradation data
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c469t-a3a6ddba9682aac6c43560339494de993ff8b5cd48f7f1d5a4f67935ebfe9a733
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3406-0039
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s17112524
PMID 29099811
PQID 1977853578
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_13769ed1edd742b4992d41573ec05bac
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5712987
proquest_miscellaneous_1975026886
proquest_journals_1977853578
pubmed_primary_29099811
crossref_primary_10_3390_s17112524
crossref_citationtrail_10_3390_s17112524
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-11-03
PublicationDateYYYYMMDD 2017-11-03
PublicationDate_xml – month: 11
  year: 2017
  text: 2017-11-03
  day: 03
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2017
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Sorjamaa (ref_33) 2007; 70
ref_14
ref_36
ref_35
Choi (ref_1) 2017; 32
Ghasemi (ref_15) 2007; 188
ref_10
Thakur (ref_12) 2013; 2
Suykens (ref_44) 2002; 2
ref_16
Wu (ref_13) 2014; 9
ref_37
Sovilj (ref_20) 2010; 73
Long (ref_38) 2013; 53
Huang (ref_17) 2006; 70
Mackey (ref_39) 1977; 197
Cheng (ref_4) 2017; 17
Efron (ref_34) 2004; 32
Alghassi (ref_2) 2016; 65
Li (ref_11) 2014; 981
Liu (ref_40) 2009; 37
ref_25
ref_24
Gebraeel (ref_42) 2006; 3
ref_22
Xiong (ref_26) 2008; 55
Packard (ref_30) 1980; 45
ref_21
Dai (ref_29) 2012; 99
ref_43
ref_41
Takens (ref_31) 1981; 898
ref_3
ref_28
ref_27
Qiao (ref_32) 2014; 30
ref_9
ref_8
Xiang (ref_23) 2011; 47
ref_5
Grigorievskiy (ref_19) 2014; 51
ref_7
Miche (ref_18) 2010; 21
ref_6
20007026 - IEEE Trans Neural Netw. 2010 Jan;21(1):158-62
267326 - Science. 1977 Jul 15;197(4300):287-9
24365536 - Neural Netw. 2014 Mar;51:50-6
References_xml – ident: ref_6
  doi: 10.1109/ITEC-AP.2016.7513023
– volume: 2
  start-page: 1
  year: 2002
  ident: ref_44
  article-title: Least squares support vector machines
  publication-title: World Sci.
– ident: ref_5
– volume: 3
  start-page: 382
  year: 2006
  ident: ref_42
  article-title: Sensory-updated residual life distributions for components with exponential degradation patterns
  publication-title: IEEE Trans. Autom. Sci. Eng.
  doi: 10.1109/TASE.2006.876609
– ident: ref_3
  doi: 10.1109/ICIEA.2015.7334314
– ident: ref_24
  doi: 10.1109/PESC.2007.4342127
– volume: 17
  start-page: 811
  year: 2017
  ident: ref_4
  article-title: Investigation on intermittent life testing program for IGBT
  publication-title: J. Power Electron.
  doi: 10.6113/JPE.2017.17.3.811
– ident: ref_16
  doi: 10.1007/978-3-642-03040-6_83
– ident: ref_21
  doi: 10.1007/978-3-642-34038-3_32
– volume: 53
  start-page: 821
  year: 2013
  ident: ref_38
  article-title: An improved autoregressive model by particle swarm optimization for prognostics of lithium-ion batteries
  publication-title: Microelectron. Reliab.
  doi: 10.1016/j.microrel.2013.01.006
– volume: 32
  start-page: 407
  year: 2004
  ident: ref_34
  article-title: Least angle regression
  publication-title: Ann. Stat.
  doi: 10.1214/009053604000000067
– ident: ref_37
– ident: ref_14
– volume: 45
  start-page: 712
  year: 1980
  ident: ref_30
  article-title: Shaw geometry from a time series
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.45.712
– volume: 32
  start-page: 7990
  year: 2017
  ident: ref_1
  article-title: Reliability improvement of power converters by means of condition monitoring of IGBT modules
  publication-title: IEEE Trans. Power Electr.
  doi: 10.1109/TPEL.2016.2633578
– volume: 21
  start-page: 158
  year: 2010
  ident: ref_18
  article-title: OP-ELM: Optimally Pruned Extreme Learning Machine
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2009.2036259
– volume: 70
  start-page: 2861
  year: 2007
  ident: ref_33
  article-title: Methodology for long-term prediction of time series
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2006.06.015
– volume: 65
  start-page: 558
  year: 2016
  ident: ref_2
  article-title: Stochastic RUL calculation enhanced with TDNN-based IGBT failure modeling
  publication-title: IEEE Trans. Reliab.
  doi: 10.1109/TR.2015.2499960
– ident: ref_35
  doi: 10.1002/0471725250
– ident: ref_28
  doi: 10.1109/PHM.2008.4711417
– ident: ref_25
– ident: ref_27
  doi: 10.1049/PBPO080E
– volume: 70
  start-page: 489
  year: 2006
  ident: ref_17
  article-title: Extreme learning machine: Theory and applications
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2005.12.126
– ident: ref_10
  doi: 10.1109/EPE.2013.6634482
– ident: ref_22
  doi: 10.1109/AERO.2015.7118982
– volume: 197
  start-page: 287
  year: 1977
  ident: ref_39
  article-title: Oscillations and chaos in physiological control systems
  publication-title: Science
  doi: 10.1126/science.267326
– volume: 30
  start-page: 31
  year: 2014
  ident: ref_32
  article-title: Chaos Time-series prediction based on reconstructed phase space using the entropy rate
  publication-title: Micro Appl.
– ident: ref_41
– ident: ref_8
  doi: 10.1109/APEC.2011.5744845
– volume: 47
  start-page: 2578
  year: 2011
  ident: ref_23
  article-title: Monitoring solder fatigue in a power module using case-above-ambient temperature rise
  publication-title: IEEE Trans. Ind. Appl.
  doi: 10.1109/TIA.2011.2168556
– volume: 981
  start-page: 86
  year: 2014
  ident: ref_11
  article-title: Particle filter approach for IGBT remaining useful life
  publication-title: Adv. Mater.
– volume: 188
  start-page: 446
  year: 2007
  ident: ref_15
  article-title: Numerical solutions of the nonlinear Volterra–Fredholm integral equations by using homotopy perturbation method
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2006.10.015
– volume: 51
  start-page: 50
  year: 2014
  ident: ref_19
  article-title: Long-term time series prediction using OP-ELM
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2013.12.002
– volume: 898
  start-page: 361
  year: 1981
  ident: ref_31
  article-title: Determining strange attractors in turbulence
  publication-title: Lect. Notes Math.
– volume: 9
  start-page: 970
  year: 2014
  ident: ref_13
  article-title: Junction temperature prediction of IGBT power module based on BP neural network
  publication-title: J. Electr. Eng. Tech.
  doi: 10.5370/JEET.2014.9.3.970
– ident: ref_36
– ident: ref_43
– ident: ref_9
  doi: 10.1109/ESTC.2008.4684552
– volume: 37
  start-page: 2113
  year: 2009
  ident: ref_40
  article-title: Research on condition trend prediction based on weighed hidden markov and autoregressive model
  publication-title: Acta Electron. Sin.
– volume: 73
  start-page: 1976
  year: 2010
  ident: ref_20
  article-title: OPELM and OPKNN in long-term prediction of time series using projected input data
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2009.11.033
– ident: ref_7
  doi: 10.1002/9780470385845
– volume: 2
  start-page: 2595
  year: 2013
  ident: ref_12
  article-title: Modeling of IGBT using temperature prediction method
  publication-title: Int. J. Adv. Res. Comp. Eng. Tech.
– volume: 99
  start-page: 423
  year: 2012
  ident: ref_29
  article-title: Prognostics-based risk mitigation for telecom equipment under free air cooling conditions
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2012.05.055
– volume: 55
  start-page: 2268
  year: 2008
  ident: ref_26
  article-title: Prognostic and warning system for power-electronic modules in electric, Hybrid Electric, and Fuel-Cell Vehicles
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2008.918399
– reference: 20007026 - IEEE Trans Neural Netw. 2010 Jan;21(1):158-62
– reference: 267326 - Science. 1977 Jul 15;197(4300):287-9
– reference: 24365536 - Neural Netw. 2014 Mar;51:50-6
SSID ssj0023338
Score 2.3870168
Snippet The insulated gate bipolar transistor (IGBT) is a kind of excellent performance switching device used widely in power electronic systems. How to estimate the...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 2524
SubjectTerms degradation data
IGBT
prediction model
remaining useful life
Useful life
VKOPP
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF6hnuCAKE_TggbEIT1Yzfq5PhKa0gJNI9RUvVn7hAhjR7GD4C_yq5ixnShBlbhwtdfyendm5_t2x98w9ibkgc64U75B9uBHWoV-JkzgZ1qIyGpuAkknuheT5GwWfbiJb7ZKfVFOWCcP3A3cMUcPyKzh1hhkcQoBemAw6KSh1cNYSU2rL8a8NZnqqVaIzKvTEQqR1B_XPEVcEQfRTvRpRfpvQ5Z_J0huRZzTB-x-DxXhbdfFfXbHlg_ZvS0BwUfs92f7vSvxALPaulUBn-bOwhj9tvslESoH55RujpDSAG2VwWi-KCq5hDZKtSIhNQzO34-u6iMYYUwzgI9JmFQ_bAHXFZ2mLyV88yekdls3MKHNVLQcuFzQW4riF0yXK1ytYfyzod1G6DVbv8BFm6lpYXD98XI6PQIqvFZAm6UAJ6RS0RV0ghPZyMdsdjq-enfm99UZfI2UuvFlKBNjlMwSEUipE43AKxnicEdZZCzCHueEirWJhEsdN7GMXIKLQWyVs5lMw_AJ2yur0j5joGxilZFDo9BiWgXEzBikUpy04CMuPTZYz1que-lyqqBR5EhhaILzzQR77PWm6aLT67it0YimftOAJLbbC2h4eW94-b8Mz2OHa8PJe7-vc45wGgEQLoMee7W5jR5LxzCytNWqbRMj8xUi8djTzs42PQnw0zPBucfSHQvc6erunXL-tVUFj1OEbiJ9_j--7YDdDQi-0PZ5eMj2muXKvkDw1aiXrZ_9AXCnMKU
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEF5BucAB8cZQ0IA4pAerWb99QoQmbYGmEWqq3qx9uUQYO8QOgr_Ir2Jm7ZgGVVyzG2XjeX0zO_6GsTc-91TKc-lqzB7cQEnfTRPtualKksAorj1BN7on0-hoHny4CC-6glvdtVVufKJ11LpSVCPf5whUMLSggr1dfndpahTdrnYjNG6yWxwjDbV0JZPDPuHyMf9q2YR8TO33ax4jugi9YCsGWar-6_Dlv22SV-LO5B672wFGeNdK-D67YcoH7M4VGsGH7Pdn860d9ADz2uTrAj4tcgNjtN72xUSocjimpnMElhqoYAajxbKoxApsrLJUITUMjg9HZ_UejDCyacCvCZhWP0wB5xXdqa8EfHWnxHlbNzClkirqD5wu6VeK4hfMVmv02TD-2VDNETrm1ks4sf2aBgbnH09nsz2g8WsF2F4FOCCuinasExyIRjxi88n47P2R281ocBUm1o0rfBFpLUUaJZ4QKlIIv6IhPu4gDbRB8JPniQyVDpI8zrkORZBH6BJCI3OTitj3H7OdsirNUwbSREZqMdQS9cbyIKZaY0LFiRE-4MJhg43UMtURmNMcjSLDRIYEnPUCdtjrfuuyZe24btOIRN9vIKJt-0G1usw6u804OuDUaG60jgNPYn7oacQ8sW_UMJRCOWx3ozhZZ_119ldXHfaqX0a7pcsYUZpqbfeEmP8mSeSwJ62e9Sfx8K-nCecOi7c0cOuo2yvl4ovlBg9jBHBJ_Oz_x3rObnsET6g87u-ynWa1Ni8QXDXypbWgP3BeKC8
  priority: 102
  providerName: ProQuest
Title Remaining Useful Life Estimation of Insulated Gate Biploar Transistors (IGBTs) Based on a Novel Volterra k-Nearest Neighbor Optimally Pruned Extreme Learning Machine (VKOPP) Model Using Degradation Data
URI https://www.ncbi.nlm.nih.gov/pubmed/29099811
https://www.proquest.com/docview/1977853578
https://www.proquest.com/docview/1975026886
https://pubmed.ncbi.nlm.nih.gov/PMC5712987
https://doaj.org/article/13769ed1edd742b4992d41573ec05bac
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEF71cYED4l1DiQbEIT0YsvbaXh8QIjRpCySNqqbKzVp71yXCxMF2UPsX-VXMrh2rQTlwySFey4-Z2fm-2fU3hLx1qZOENI1tiezBZkns2iGXjh0mnDOVUOkIvaI7GvunU_Zl5s12yLrHZvMCy63UTveTmhbZu5tftx8x4D9oxomU_X1JA0QNnsN2yT4mpEA3MhixdjHBcV3T0Fp_02VjPuzVAkObp26kJaPevw1y_rtz8k4qGj4kDxoMCZ9qoz8iO2rxmNy_oyz4hPy5UD_r3g8wLVW6yuDbPFUwwICuv1WEPIUzvQ8dsaYEXUOD_nyZ5aIAk76MekgJ3bOT_mV5BH1MdhLwNAHj_LfK4CrXy-yFgB_2WMvglhWMdZUVXQrOl_oqWXYLk2KF0zgMbipdhoRGzPUaRmYLp4Lu1dfzyeQIdEe2DMz2BTjW8hV1pyc4FpV4SqbDweXnU7tp22AnyLUrW7jClzIWoc8dIRI_QUTm9_B1s5BJhXgoTXnsJZLxNEip9ARLfZwlPBWnKhSB6z4je4t8oQ4IxMpXsRQ9GaMrGWnEUErkWFSLxDMqLNJdWy1KGk1z3Voji5DbaANHrYEt8qYduqyFPLYN6mvTtwO09rb5Iy-uoyaUI4pzcqgkVVIGzImRMjoSYVDgqqTnxSKxyOHacaK1P0cUcTYiI5wfLfK6PYyhrNdnxELlKzPGQ0rMuW-R57WftXfi4KOHnFKLBBseuHGrm0cW8-9GLtwLENPx4MV_XPcluedo2KLL5u4h2auKlXqFoKuKO2Q3mAX4y4cnHbLfH4wnFx1TwOiYYPsLywQxsw
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5V5QAcEG8MBQYEUnqwmvXbB4QISZqQRyOUVr2Z9e66RJg4xAnQP8UP4VcxYzumQRW3XrNreaOZnfm-2fU3jL2yuSVDnsSmQvZgOjK2zTBQlhnKIHC05MoSdKI7Gnu9Y-fDqXu6w35tvoWha5WbmFgEapVJqpEfcAQqmFrQwd4uvpnUNYpOVzctNEq3GOjzH0jZ8jf9Ntr3tWV1O9P3PbPqKmBKpIIrU9jCUyoWoRdYQkhPImDwmrYdOqGjNKbrJAliVyonSPyEK1c4iYdO7Oo40aHwqQCKIf-ag08Q2Qu6hzXBs5HvlepFONg8yLmPaMa1nK2cV7QGuAzP_nst80Ke695mtyqACu9Kj7rDdvT8Lrt5QbbwHvv9UX8tG0vAca6TdQrDWaKhg9Gi_BASsgT6dMkdgawCKtBBa7ZIM7GEIjcW0iQ5NPqHrWm-Dy3MpArwMQHj7LtO4SSjM_ylgC_mmDR28xWMqYSL_gpHC3pLmp7DZLnGHAGdnyuqcUKlFHsGo-J-qIbGyeBoMtkHaveWQnE3AtqkjVG2kYK2WIn77PhKrPeA7c6zuX7EINaejpVoqhj9tNBdDJVCAsdJgd7hwmCNjdUiWQmmU9-ONELiRAaOagMb7GU9dVGqhFw2qUWmryeQsHfxQ7Y8i6o4EXEM-KFWXCvlO1aMfNRSiLF8W8umGwtpsL2N40RVtMmjv3vDYC_qYYwTdPgj5jpbF3Nc5NtB4BnsYeln9Uos_OthwLnB_C0P3Frq9sh89rnQInd9BIyB__j_y3rOrvemo2E07I8HT9gNi6ARlebtPba7Wq71UwR2q_hZsZuAfbrq7fsHoDBmTQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9NAEF1VqYTggPjGUGBAIKUHK_G3fUCIkISGtG5UNVVv7np3XSJMHGIH6F_jJ_CrmLEd06CKW6_xJnEyszPvzY7fMPbaMkwRGEmsS2QPui1iSw98aeqB8H1bCUOanE50D0J3b2p_OnVOt9iv9bMw1Fa5jolloJaZoBp5x0CggqkFHayT1G0Rk_7w3eKbThOk6KR1PU6jcpGxuviB9C1_O-qjrd-Y5nBw_GFPrycM6AJpYaFzi7tSxjxwfZNz4QoED27XsgI7sKXC1J0kfuwIafuJlxjS4XbiokM7Kk5UwD0qhmL43_aIFbXYdm8QTo4aumch-6u0jPADu53c8BDbOKa9kQHLQQFXodt_mzQvZb3hHXa7hqvwvvKvu2xLze-xW5dEDO-z30fqazVmAqa5wn8N9meJggHGjuqxSMgSGFHLO8JaCVSug95skWZ8CWWmLIVKcmiPPvaO813oYV6VgG_jEGbfVQonGZ3oLzl80UNS3M0LCKmgi94Lhwv6ljS9gMlyhRkDBj8LqnhCrRt7Dgdlt6iC9sn4cDLZBRr-lkLZKQF9UsqohkpBnxf8AZtei_0estY8m6vHDGLlqljyrozRa0sVxkBKpHMG6dHbBtdYe221SNTy6TTFI42QRpGBo8bAGnvVLF1UmiFXLeqR6ZsFJPNdvpAtz6M6akQGhv9ASUNJ6dlmjOzUlIi4PEuJrhNzobGdteNEdezJo787RWMvm8sYNegoiM9VtirXOMi-fd_V2KPKz5o7MfGnB75haMzb8MCNW928Mp99LpXJHQ_ho-89-f9tvWA3cOtG-6Nw_JTdNAknUZ3e2mGtYrlSzxDlFfHzejsBO7vuHfwH8tdr3w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Remaining+Useful+Life+Estimation+of+Insulated+Gate+Biploar+Transistors+%28IGBTs%29+Based+on+a+Novel+Volterra+k-Nearest+Neighbor+Optimally+Pruned+Extreme+Learning+Machine+%28VKOPP%29+Model+Using+Degradation+Data&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Liu%2C+Zhen&rft.au=Mei%2C+Wenjuan&rft.au=Zeng%2C+Xianping&rft.au=Yang%2C+Chenglin&rft.date=2017-11-03&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=17&rft.issue=11&rft_id=info:doi/10.3390%2Fs17112524&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon