Insulin-like growth factor 1 supplementation supports motor coordination and affects myelination in preterm pigs
Preterm infants have increased risk of impaired neurodevelopment to which reduced systemic levels of insulin-like growth factor 1 (IGF-1) in the weeks after birth may play a role. Hence, we hypothesized that postnatal IGF-1 supplementation would improve brain development in preterm pigs, used as a m...
Saved in:
Published in | Frontiers in neuroscience Vol. 17; p. 1205819 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Media S.A
19.06.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 1662-453X 1662-4548 1662-453X |
DOI | 10.3389/fnins.2023.1205819 |
Cover
Loading…
Abstract | Preterm infants have increased risk of impaired neurodevelopment to which reduced systemic levels of insulin-like growth factor 1 (IGF-1) in the weeks after birth may play a role. Hence, we hypothesized that postnatal IGF-1 supplementation would improve brain development in preterm pigs, used as a model for preterm infants.
Preterm pigs delivered by cesarean section received recombinant human IGF-1/IGF binding protein-3 complex (rhIGF-1/rhIGFBP-3, 2.25 mg/kg/day) or vehicle from birth to postnatal day 19. Motor function and cognition were assessed by monitoring of in-cage and open field activities, balance beam test, gait parameters, novel object recognition and operant conditioning tests. Collected brains were subject to magnetic resonance imaging (MRI), immunohistochemistry, gene expression analyses and protein synthesis measurements.
The IGF-1 treatment increased cerebellar protein synthesis rates (both
and
). Performance in the balance beam test was improved by IGF-1 but not in other neurofunctional tests. The treatment decreased total and relative caudate nucleus weights, without any effects to total brain weight or grey/white matter volumes. Supplementation with IGF-1 reduced myelination in caudate nucleus, cerebellum, and white matter regions and decreased hilar synapse formation, without effects to oligodendrocyte maturation or neuron differentiation. Gene expression analyses indicated enhanced maturation of the GABAergic system in the caudate nucleus (decreased
ratio) with limited effects in cerebellum or hippocampus.
Supplemental IGF-1 during the first three weeks after preterm birth may support motor function by enhancing GABAergic maturation in the caudate nucleus, despite reduced myelination. Supplemental IGF-1 may support postnatal brain development in preterm infants, but more studies are required to identify optimal treatment regimens for subgroups of very or extremely preterm infants. |
---|---|
AbstractList | IntroductionPreterm infants have increased risk of impaired neurodevelopment to which reduced systemic levels of insulin-like growth factor 1 (IGF-1) in the weeks after birth may play a role. Hence, we hypothesized that postnatal IGF-1 supplementation would improve brain development in preterm pigs, used as a model for preterm infants.MethodsPreterm pigs delivered by cesarean section received recombinant human IGF-1/IGF binding protein-3 complex (rhIGF-1/rhIGFBP-3, 2.25 mg/kg/day) or vehicle from birth to postnatal day 19. Motor function and cognition were assessed by monitoring of in-cage and open field activities, balance beam test, gait parameters, novel object recognition and operant conditioning tests. Collected brains were subject to magnetic resonance imaging (MRI), immunohistochemistry, gene expression analyses and protein synthesis measurements.ResultsThe IGF-1 treatment increased cerebellar protein synthesis rates (both in vivo and ex vivo). Performance in the balance beam test was improved by IGF-1 but not in other neurofunctional tests. The treatment decreased total and relative caudate nucleus weights, without any effects to total brain weight or grey/white matter volumes. Supplementation with IGF-1 reduced myelination in caudate nucleus, cerebellum, and white matter regions and decreased hilar synapse formation, without effects to oligodendrocyte maturation or neuron differentiation. Gene expression analyses indicated enhanced maturation of the GABAergic system in the caudate nucleus (decreased NKCC1:KCC2 ratio) with limited effects in cerebellum or hippocampus.ConclusionSupplemental IGF-1 during the first three weeks after preterm birth may support motor function by enhancing GABAergic maturation in the caudate nucleus, despite reduced myelination. Supplemental IGF-1 may support postnatal brain development in preterm infants, but more studies are required to identify optimal treatment regimens for subgroups of very or extremely preterm infants. Preterm infants have increased risk of impaired neurodevelopment to which reduced systemic levels of insulin-like growth factor 1 (IGF-1) in the weeks after birth may play a role. Hence, we hypothesized that postnatal IGF-1 supplementation would improve brain development in preterm pigs, used as a model for preterm infants.IntroductionPreterm infants have increased risk of impaired neurodevelopment to which reduced systemic levels of insulin-like growth factor 1 (IGF-1) in the weeks after birth may play a role. Hence, we hypothesized that postnatal IGF-1 supplementation would improve brain development in preterm pigs, used as a model for preterm infants.Preterm pigs delivered by cesarean section received recombinant human IGF-1/IGF binding protein-3 complex (rhIGF-1/rhIGFBP-3, 2.25 mg/kg/day) or vehicle from birth to postnatal day 19. Motor function and cognition were assessed by monitoring of in-cage and open field activities, balance beam test, gait parameters, novel object recognition and operant conditioning tests. Collected brains were subject to magnetic resonance imaging (MRI), immunohistochemistry, gene expression analyses and protein synthesis measurements.MethodsPreterm pigs delivered by cesarean section received recombinant human IGF-1/IGF binding protein-3 complex (rhIGF-1/rhIGFBP-3, 2.25 mg/kg/day) or vehicle from birth to postnatal day 19. Motor function and cognition were assessed by monitoring of in-cage and open field activities, balance beam test, gait parameters, novel object recognition and operant conditioning tests. Collected brains were subject to magnetic resonance imaging (MRI), immunohistochemistry, gene expression analyses and protein synthesis measurements.The IGF-1 treatment increased cerebellar protein synthesis rates (both in vivo and ex vivo). Performance in the balance beam test was improved by IGF-1 but not in other neurofunctional tests. The treatment decreased total and relative caudate nucleus weights, without any effects to total brain weight or grey/white matter volumes. Supplementation with IGF-1 reduced myelination in caudate nucleus, cerebellum, and white matter regions and decreased hilar synapse formation, without effects to oligodendrocyte maturation or neuron differentiation. Gene expression analyses indicated enhanced maturation of the GABAergic system in the caudate nucleus (decreased NKCC1:KCC2 ratio) with limited effects in cerebellum or hippocampus.ResultsThe IGF-1 treatment increased cerebellar protein synthesis rates (both in vivo and ex vivo). Performance in the balance beam test was improved by IGF-1 but not in other neurofunctional tests. The treatment decreased total and relative caudate nucleus weights, without any effects to total brain weight or grey/white matter volumes. Supplementation with IGF-1 reduced myelination in caudate nucleus, cerebellum, and white matter regions and decreased hilar synapse formation, without effects to oligodendrocyte maturation or neuron differentiation. Gene expression analyses indicated enhanced maturation of the GABAergic system in the caudate nucleus (decreased NKCC1:KCC2 ratio) with limited effects in cerebellum or hippocampus.Supplemental IGF-1 during the first three weeks after preterm birth may support motor function by enhancing GABAergic maturation in the caudate nucleus, despite reduced myelination. Supplemental IGF-1 may support postnatal brain development in preterm infants, but more studies are required to identify optimal treatment regimens for subgroups of very or extremely preterm infants.ConclusionSupplemental IGF-1 during the first three weeks after preterm birth may support motor function by enhancing GABAergic maturation in the caudate nucleus, despite reduced myelination. Supplemental IGF-1 may support postnatal brain development in preterm infants, but more studies are required to identify optimal treatment regimens for subgroups of very or extremely preterm infants. Preterm infants have increased risk of impaired neurodevelopment to which reduced systemic levels of insulin-like growth factor 1 (IGF-1) in the weeks after birth may play a role. Hence, we hypothesized that postnatal IGF-1 supplementation would improve brain development in preterm pigs, used as a model for preterm infants. Preterm pigs delivered by cesarean section received recombinant human IGF-1/IGF binding protein-3 complex (rhIGF-1/rhIGFBP-3, 2.25 mg/kg/day) or vehicle from birth to postnatal day 19. Motor function and cognition were assessed by monitoring of in-cage and open field activities, balance beam test, gait parameters, novel object recognition and operant conditioning tests. Collected brains were subject to magnetic resonance imaging (MRI), immunohistochemistry, gene expression analyses and protein synthesis measurements. The IGF-1 treatment increased cerebellar protein synthesis rates (both and ). Performance in the balance beam test was improved by IGF-1 but not in other neurofunctional tests. The treatment decreased total and relative caudate nucleus weights, without any effects to total brain weight or grey/white matter volumes. Supplementation with IGF-1 reduced myelination in caudate nucleus, cerebellum, and white matter regions and decreased hilar synapse formation, without effects to oligodendrocyte maturation or neuron differentiation. Gene expression analyses indicated enhanced maturation of the GABAergic system in the caudate nucleus (decreased ratio) with limited effects in cerebellum or hippocampus. Supplemental IGF-1 during the first three weeks after preterm birth may support motor function by enhancing GABAergic maturation in the caudate nucleus, despite reduced myelination. Supplemental IGF-1 may support postnatal brain development in preterm infants, but more studies are required to identify optimal treatment regimens for subgroups of very or extremely preterm infants. |
Author | Christiansen, Line I. Sangild, Per T. Ventura, Gemma C. Aasmul-Olsen, Karoline Thymann, Thomas Secher, Jan Bojsen-Møller Pankratova, Stanislava Lycas, Matthew D. Holmqvist, Bo Mori, Yuki Burrin, Douglas G. Lindholm, Sandy E. H. |
AuthorAffiliation | 8 Department of Pediatrics, Odense University Hospital , Odense , Denmark 5 Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen , Frederiksberg , Denmark 4 Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark 7 Department of Neonatology, Rigshospitalet , Copenhagen , Denmark 9 Faculty of Theology, University of Copenhagen , Copenhagen , Denmark 6 United States Department of Agriculture, Agricultural Research Service Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine , Houston, TX , United States 2 ImaGene-iT AB , Lund , Sweden 3 Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark 1 Comparative Pediatrics and Nutrition, Department of Veterinary and Animals Sciences, Faculty of Health and Medical Sciences, University of Copenhagen , Frederiksberg , Denmark |
AuthorAffiliation_xml | – name: 1 Comparative Pediatrics and Nutrition, Department of Veterinary and Animals Sciences, Faculty of Health and Medical Sciences, University of Copenhagen , Frederiksberg , Denmark – name: 8 Department of Pediatrics, Odense University Hospital , Odense , Denmark – name: 5 Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen , Frederiksberg , Denmark – name: 7 Department of Neonatology, Rigshospitalet , Copenhagen , Denmark – name: 3 Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark – name: 2 ImaGene-iT AB , Lund , Sweden – name: 6 United States Department of Agriculture, Agricultural Research Service Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine , Houston, TX , United States – name: 9 Faculty of Theology, University of Copenhagen , Copenhagen , Denmark – name: 4 Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark |
Author_xml | – sequence: 1 givenname: Line I. surname: Christiansen fullname: Christiansen, Line I. – sequence: 2 givenname: Gemma C. surname: Ventura fullname: Ventura, Gemma C. – sequence: 3 givenname: Bo surname: Holmqvist fullname: Holmqvist, Bo – sequence: 4 givenname: Karoline surname: Aasmul-Olsen fullname: Aasmul-Olsen, Karoline – sequence: 5 givenname: Sandy E. H. surname: Lindholm fullname: Lindholm, Sandy E. H. – sequence: 6 givenname: Matthew D. surname: Lycas fullname: Lycas, Matthew D. – sequence: 7 givenname: Yuki surname: Mori fullname: Mori, Yuki – sequence: 8 givenname: Jan Bojsen-Møller surname: Secher fullname: Secher, Jan Bojsen-Møller – sequence: 9 givenname: Douglas G. surname: Burrin fullname: Burrin, Douglas G. – sequence: 10 givenname: Thomas surname: Thymann fullname: Thymann, Thomas – sequence: 11 givenname: Per T. surname: Sangild fullname: Sangild, Per T. – sequence: 12 givenname: Stanislava surname: Pankratova fullname: Pankratova, Stanislava |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37404461$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kk1v1DAQhi3Uin7AH-CAcuSSrb_iOCeEKqArVeLSSr1ZjjPeujh2sBNQ_z3JZlu1HDjZnnnnGdvznqGjEAMg9IHgDWOyubDBhbyhmLINobiSpHmDTokQtOQVuzt6sT9BZzk_YCyo5PQtOmE1x5wLcoqGbciTd6H07icUuxT_jPeF1WaMqSBFnobBQw9h1KOLYX-OacxFHxeBiTF1Lqw5HbpCWwtmST-Cf4q7UAwJRkh9MbhdfoeOrfYZ3h_Wc3T77evN5VV5_eP79vLLdWm4aMZSE8OAg6SG1I2QUHMLXdvKRjQAdUcp0S0hllQd5YLWVMi6BkNs1VBRCQLsHG1Xbhf1gxqS63V6VFE7tQ_EtFM6jc54ULyTtp2BnRTAW9y0pJU1s5hbgXltFtbnlTVMbQ-dmf8jaf8K-joT3L3axd-KYEYq3lQz4dOBkOKvCfKoepcNeK8DxCkrKhkT80MqMks_vmz23OVpZrOArgKTYs4J7LOEYLUYQ-2NoRZjqIMx5iL5T5Fx61DnCzv_v9K_eEjCVA |
CitedBy_id | crossref_primary_10_1113_EP092010 crossref_primary_10_1038_s41598_024_51225_1 crossref_primary_10_1093_braincomms_fcae373 crossref_primary_10_1126_sciadv_adk8123 crossref_primary_10_1038_s41598_023_46611_0 crossref_primary_10_1038_s41390_023_02949_9 |
Cites_doi | 10.1023/A:1018581407804 10.1016/j.jpeds.2018.10.033 10.1210/mend-5-8-1158 10.1016/0896-6273(95)90216-3 10.1038/s41596-019-0176-0 10.1186/1742-2094-10-37 10.1016/j.neuropharm.2016.02.034 10.1523/jneurosci.21-21-08339.2001 10.1159/000054584 10.1152/physrev.00017.2006 10.1038/s41598-019-53518-2 10.14814/PHY2.15368 10.1016/j.brainres.2005.09.042 10.1016/0378-3782(79)90022-7 10.1210/jc.2010-2440 10.1523/jneurosci.20-08-02926.2000 10.1212/WNL.0000000000004680 10.1016/S0149-7634(03)00005-8 10.1111/apa.13350 10.1016/j.neuroimage.2014.03.072 10.1016/j.yfrne.2012.06.002 10.1152/ajpregu.00349.2015 10.1016/j.neubiorev.2021.01.024 10.1002/(SICI)1097-4695(199904)39:1<142::AID-NEU11>3.0.CO;2-H 10.1203/PDR.0b013e3181dc240f 10.3389/fped.2020.602047 10.1016/j.neubiorev.2010.05.004 10.1097/01.WCB.0000067720.12805.6F 10.1203/01.PDR.0000117843.21534.49 10.1152/AJPENDO.00236.2021 10.1210/EDRV.18.6.0321 10.3389/FPED.2021.626101 10.1016/j.neuron.2010.08.007 10.1016/S2214-109X(18)30451-0 10.1159/000499127 10.1016/j.neuroscience.2011.08.003 10.1210/endo.135.5.7525251 10.3390/nu13030718 10.1038/s41598-022-07133-3 10.1203/00006450-198905000-00005 10.1016/S0140-6736(12)60820-4 10.3389/fncel.2011.00024 10.1007/s11910-018-0862-2 10.1038/nrendo.2014.208 10.3389/fped.2020.517207 10.1523/JNEUROSCI.3401-04.2005 10.1038/s41390-022-02134-4 10.1542/peds.2005-1926 10.1016/j.beem.2010.08.005 10.1159/000468926 10.1016/0378-3782(86)90096-4 10.1016/0896-6273(93)90173-O 10.1111/j.1471-4159.1976.tb12256.x 10.1016/j.applanim.2019.104853 10.1038/nmeth.1314 10.1210/jcem.80.8.7543116 10.1073/pnas.1316911111 10.1002/syn.21628 10.1002/glia.20469 10.1016/S0361-9230(99)00012-X 10.1203/00006450-199410000-00020 10.2527/jas.2013-6359 10.1523/ENEURO.0430-22.2023 10.1093/cercor/6.4.551 10.1007/s00401-017-1718-6 10.1523/jneurosci.22-14-06041.2002 10.1038/pr.2015.73 10.1523/jneurosci.22-02-00455.2002 10.1523/jneurosci.15-11-07344.1995 10.1016/j.pneurobio.2008.09.004 10.1038/pr.2013.135 10.3389/fnins.2015.00040 10.1096/fj.10-168799 |
ContentType | Journal Article |
Copyright | Copyright © 2023 Christiansen, Ventura, Holmqvist, Aasmul-Olsen, Lindholm, Lycas, Mori, Secher, Burrin, Thymann, Sangild and Pankratova. Copyright © 2023 Christiansen, Ventura, Holmqvist, Aasmul-Olsen, Lindholm, Lycas, Mori, Secher, Burrin, Thymann, Sangild and Pankratova. 2023 Christiansen, Ventura, Holmqvist, Aasmul-Olsen, Lindholm, Lycas, Mori, Secher, Burrin, Thymann, Sangild and Pankratova |
Copyright_xml | – notice: Copyright © 2023 Christiansen, Ventura, Holmqvist, Aasmul-Olsen, Lindholm, Lycas, Mori, Secher, Burrin, Thymann, Sangild and Pankratova. – notice: Copyright © 2023 Christiansen, Ventura, Holmqvist, Aasmul-Olsen, Lindholm, Lycas, Mori, Secher, Burrin, Thymann, Sangild and Pankratova. 2023 Christiansen, Ventura, Holmqvist, Aasmul-Olsen, Lindholm, Lycas, Mori, Secher, Burrin, Thymann, Sangild and Pankratova |
DBID | AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.3389/fnins.2023.1205819 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1662-453X |
ExternalDocumentID | oai_doaj_org_article_4d8fb21ad86e4b09b1b873f04f6047ce PMC10315495 37404461 10_3389_fnins_2023_1205819 |
Genre | Journal Article |
GroupedDBID | --- 29H 2WC 53G 5GY 5VS 88I 8FE 8FH 9T4 AAFWJ AAYXX ABUWG ACGFO ACGFS ACXDI ADRAZ AEGXH AENEX AFKRA AFPKN AIAGR ALMA_UNASSIGNED_HOLDINGS AZQEC BBNVY BENPR BHPHI BPHCQ CCPQU CITATION CS3 DIK DU5 DWQXO E3Z EBS EJD EMOBN F5P FRP GNUQQ GROUPED_DOAJ GX1 HCIFZ HYE KQ8 LK8 M2P M48 M7P O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC RNS RPM W2D C1A NPM PQGLB 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c469t-a1c3e4e82c17968e74fedbb8969ee7d221ab11f15d2462726877ec1f5926561e3 |
IEDL.DBID | M48 |
ISSN | 1662-453X 1662-4548 |
IngestDate | Wed Aug 27 01:28:55 EDT 2025 Thu Aug 21 18:37:31 EDT 2025 Fri Sep 05 08:23:21 EDT 2025 Mon Jul 21 06:05:04 EDT 2025 Thu Apr 24 23:03:41 EDT 2025 Tue Jul 01 03:02:25 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | caudate nucleus myelination IGF-1 motor function preterm neonates hippocampus |
Language | English |
License | Copyright © 2023 Christiansen, Ventura, Holmqvist, Aasmul-Olsen, Lindholm, Lycas, Mori, Secher, Burrin, Thymann, Sangild and Pankratova. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c469t-a1c3e4e82c17968e74fedbb8969ee7d221ab11f15d2462726877ec1f5926561e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Reviewed by: Eduardo Farias Sanches, Universitéde Genève, Switzerland; Helen B. Stolp, Royal Veterinary College, United Kingdom Edited by: Kazuhiko Sawada, Tsukuba International University, Japan |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fnins.2023.1205819 |
PMID | 37404461 |
PQID | 2833646251 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_4d8fb21ad86e4b09b1b873f04f6047ce pubmedcentral_primary_oai_pubmedcentral_nih_gov_10315495 proquest_miscellaneous_2833646251 pubmed_primary_37404461 crossref_primary_10_3389_fnins_2023_1205819 crossref_citationtrail_10_3389_fnins_2023_1205819 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-06-19 |
PublicationDateYYYYMMDD | 2023-06-19 |
PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-19 day: 19 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Frontiers in neuroscience |
PublicationTitleAlternate | Front Neurosci |
PublicationYear | 2023 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Henriksen (ref33) 2021; 13 Pan (ref55) 2000; 72 Garcia-Segura (ref24) 1997; 26 Seger (ref66) 2005; 25 Andersen (ref2) 2003; 27 Netchine (ref51) 2011; 25 Lineham (ref45) 1986; 13 Ream (ref60) 2017; 18 Pang (ref56) 2010; 67 Félix (ref22) 1999; 49 Lin (ref44) 2005; 1063 Chawanpaiboon (ref17) 2019; 7 Juul (ref39) 1995; 80 Hellström (ref32) 2016; 105 Kornum (ref41) 2011; 35 Beck (ref9) 1995; 14 Cao (ref14) 2003; 23 Back (ref5) 2002; 22 Baroncelli (ref8) 2017; 113 Miller (ref48) 2017; 39 Abernethy (ref1) 2004; 55 Henriksen (ref35); 10 Ye (ref71) 2002; 22 Nath (ref50) 2019; 14 Coquery (ref19) 2019; 9 Holme Nielsen (ref37) 2019; 40 Andersen (ref3) 2016; 310 Bang (ref7) 1994; 36 Cao (ref13) 2015; 78 Cai (ref12) 2011; 194 Wierenga (ref69) 2014; 96 Ye (ref70) 1995; 15 Back (ref4) 2017; 134 Ben-Ari (ref10) 2007; 87 Hansen-Pupp (ref29) 2011; 96 Bæk (ref6) 2021; 9 Reinhardt (ref61) 1994; 135 Moretti (ref49) 2015; 9 Schmidt (ref65) 2009; 6 Ziegler (ref73) 2015; 11 Christiansen (ref18) 2023; 10 Graff-Radford (ref27) 2017; 89 Grahn (ref28) 2008; 86 Löfqvist (ref46) 2006; 117 Gao (ref23) 1999; 39 Blencowe (ref11) 2012; 379 Marks (ref47) 1991; 5 Raznahan (ref59) 2014; 111 Horsch (ref38) 2020; 8 Goodman (ref26) 2011; 25 Lee (ref42) 1989; 25 Carson (ref16) 1993; 10 Hellström (ref31) 2022; 93 Novak (ref53) 2013; 67 Giedd (ref25) 1996; 6 Holgersen (ref36) 2021; 8 Suh (ref67) 2013; 10 Carro (ref15) 2000; 20 Sangild (ref64) 2013; 91 Hansen-Pupp (ref30) 2013; 74 Ley (ref43) 2019; 206 Rudar (ref63) 2021; 321 Nishijima (ref52) 2010; 67 Rajaram (ref58) 1997; 18 Zeger (ref72) 2007; 55 O’Kusky (ref54) 2012; 33 Dehorter (ref20) 2011; 5 Dobbing (ref21) 1979; 3 Kelsch (ref40) 2001; 21 Sweasey (ref68) 1976; 27 Henriksen (ref34); 12 Roelofs (ref62) 2019; 220 Peerboom (ref57) 2021; 124 |
References_xml | – volume: 26 start-page: 479 year: 1997 ident: ref24 article-title: Localization of the insulin-like growth factor I receptor in the cerebellum and hypothalamus of adult rats: an electron microscopic study publication-title: J. Neurocytol. doi: 10.1023/A:1018581407804 – volume: 206 start-page: 56 year: 2019 ident: ref43 article-title: rhIGF-1/rhIGFBP-3 in preterm infants: a phase 2 randomized controlled trial publication-title: J. Pediatr. doi: 10.1016/j.jpeds.2018.10.033 – volume: 5 start-page: 1158 year: 1991 ident: ref47 article-title: Localization of type I insulin-like growth factor receptor messenger RNA in the adult rat brain by in situ hybridization publication-title: Mol. Endocrinol. doi: 10.1210/mend-5-8-1158 – volume: 14 start-page: 717 year: 1995 ident: ref9 article-title: Igf 1 gene disruption results in reduced brain size, CNS hypomyelination, and loss of hippocampal granule and striatal parvalbumin-containing neurons publication-title: Neuron doi: 10.1016/0896-6273(95)90216-3 – volume: 14 start-page: 2152 year: 2019 ident: ref50 article-title: Using deep LabCut for 3D markerless pose estimation across species and behaviors publication-title: Nat. Protoc. doi: 10.1038/s41596-019-0176-0 – volume: 10 start-page: 37 year: 2013 ident: ref67 article-title: Insulin-like growth factor 1 and 2 (IGF1, IGF2) expression in human microglia: differential regulation by inflammatory mediators publication-title: J. Neuroinflammation doi: 10.1186/1742-2094-10-37 – volume: 113 start-page: 167 year: 2017 ident: ref8 article-title: Early IGF-1 primes visual cortex maturation and accelerates developmental switch between NKCC1 and KCC2 chloride transporters in enriched animals publication-title: Neuropharmacology doi: 10.1016/j.neuropharm.2016.02.034 – volume: 21 start-page: 8339 year: 2001 ident: ref40 article-title: Insulin-like growth factor 1 and a cytosolic tyrosine kinase activate chloride outward transport during maturation of hippocampal neurons publication-title: J. Neurosci. doi: 10.1523/jneurosci.21-21-08339.2001 – volume: 72 start-page: 171 year: 2000 ident: ref55 article-title: Interactions of IGF-1 with the blood-brain barrier in vivo and in situ publication-title: Neuroendocrinology doi: 10.1159/000054584 – volume: 87 start-page: 1215 year: 2007 ident: ref10 article-title: GABA: a pioneer transmitter that excites immature neurons and generates primitive oscillations publication-title: Physiol. Rev. doi: 10.1152/physrev.00017.2006 – volume: 9 start-page: 17082 year: 2019 ident: ref19 article-title: Locomotion and eating behavior changes in Yucatan minipigs after unilateral radio-induced ablation of the caudate nucleus publication-title: Sci. Rep. doi: 10.1038/s41598-019-53518-2 – volume: 10 start-page: e15368 ident: ref35 article-title: Cholestasis alters brain lipid and bile acid composition and compromises motor function in neonatal piglets publication-title: Physiol. Rep. doi: 10.14814/PHY2.15368 – volume: 1063 start-page: 15 year: 2005 ident: ref44 article-title: IGF-1 protects oligodendrocyte progenitor cells and improves neurological functions following cerebral hypoxia-ischemia in the neonatal rat publication-title: Brain Res. doi: 10.1016/j.brainres.2005.09.042 – volume: 3 start-page: 79 year: 1979 ident: ref21 article-title: Comparative aspects of the brain growth spurt publication-title: Early Hum. Dev. doi: 10.1016/0378-3782(79)90022-7 – volume: 96 start-page: 1129 year: 2011 ident: ref29 article-title: Postnatal decrease in circulating insulin-like growth factor-I and low brain volumes in very preterm infants publication-title: J. Clin. Endocrinol. Metab. doi: 10.1210/jc.2010-2440 – volume: 20 start-page: 2926 year: 2000 ident: ref15 article-title: Circulating insulin-like growth factor I mediates effects of exercise on the brain publication-title: J. Neurosci. doi: 10.1523/jneurosci.20-08-02926.2000 – volume: 89 start-page: 2192 year: 2017 ident: ref27 article-title: Caudate nucleus as a component of networks controlling behavior publication-title: Neurology doi: 10.1212/WNL.0000000000004680 – volume: 27 start-page: 3 year: 2003 ident: ref2 article-title: Trajectories of brain development: point of vulnerability or window of opportunity? publication-title: Neurosci. Biobehav. Rev. doi: 10.1016/S0149-7634(03)00005-8 – volume: 105 start-page: 576 year: 2016 ident: ref32 article-title: Insulin-like growth factor 1 has multisystem effects on foetal and preterm infant development. N publication-title: Int. J. Paediatr. doi: 10.1111/apa.13350 – volume: 96 start-page: 67 year: 2014 ident: ref69 article-title: Typical development of basal ganglia, hippocampus, amygdala and cerebellum from age 7 to 24 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2014.03.072 – volume: 33 start-page: 230 year: 2012 ident: ref54 article-title: Neurodevelopmental effects of insulin-like growth factor signaling publication-title: Front. Neuroendocrinol. doi: 10.1016/j.yfrne.2012.06.002 – volume: 310 start-page: R481 year: 2016 ident: ref3 article-title: Delayed growth, motor function and learning in preterm pigs during early postnatal life publication-title: Am. J. Physiol. Regul. Integr. Comp. Physiol. doi: 10.1152/ajpregu.00349.2015 – volume: 124 start-page: 179 year: 2021 ident: ref57 article-title: The postnatal GABA shift: a developmental perspective publication-title: Neurosci. Biobehav. Rev. doi: 10.1016/j.neubiorev.2021.01.024 – volume: 39 start-page: 142 year: 1999 ident: ref23 article-title: IGF-I deficient mice show reduced peripheral nerve conduction velocities and decreased axonal diameters and respond to exogenous IGF-I treatment publication-title: J. Neurobiol. doi: 10.1002/(SICI)1097-4695(199904)39:1<142::AID-NEU11>3.0.CO;2-H – volume: 67 start-page: 579 year: 2010 ident: ref56 article-title: IGF-1 can either protect against or increase LPS-induced damage in the developing rat brain publication-title: Pediatr. Res. doi: 10.1203/PDR.0b013e3181dc240f – volume: 8 start-page: 2047 year: 2021 ident: ref36 article-title: Supplemental insulin-like growth Factor-1 and necrotizing enterocolitis in preterm pigs publication-title: Front. Pediatr. doi: 10.3389/fped.2020.602047 – volume: 35 start-page: 437 year: 2011 ident: ref41 article-title: Cognitive testing of pigs (Sus scrofa) in translational biobehavioral research publication-title: Neurosci. Biobehav. Rev. doi: 10.1016/j.neubiorev.2010.05.004 – volume: 23 start-page: 739 year: 2003 ident: ref14 article-title: Insulin-like growth factor (IGF)-1 suppresses oligodendrocyte caspase-3 activation and increases glial proliferation after ischemia in near-term fetal sheep publication-title: J. Cereb. Blood Flow Metab. doi: 10.1097/01.WCB.0000067720.12805.6F – volume: 55 start-page: 884 year: 2004 ident: ref1 article-title: Caudate and hippocampal volumes, intelligence, and motor impairment in 7-year-old children who were born preterm publication-title: Pediatr. Res. doi: 10.1203/01.PDR.0000117843.21534.49 – volume: 321 start-page: E737 year: 2021 ident: ref63 article-title: Intermittent bolus feeding does not enhance protein synthesis, myonuclear accretion, or lean growth more than continuous feeding in a premature piglet model publication-title: Am. J. Physiol. Endocrinol. Metab. doi: 10.1152/AJPENDO.00236.2021 – volume: 18 start-page: 801 year: 1997 ident: ref58 article-title: Insulin-like growth factor-binding proteins in serum and other biological fluids: regulation and functions publication-title: Endocr. Rev. doi: 10.1210/EDRV.18.6.0321 – volume: 9 start-page: 626101 year: 2021 ident: ref6 article-title: Sex-specific survival, growth, immunity and organ development in preterm pigs as models for immature newborns publication-title: Front. Pediatr. doi: 10.3389/FPED.2021.626101 – volume: 67 start-page: 834 year: 2010 ident: ref52 article-title: Neuronal activity drives localized blood-brain-barrier transport of serum insulin-like growth factor-I into the CNS publication-title: Neuron doi: 10.1016/j.neuron.2010.08.007 – volume: 7 start-page: e37 year: 2019 ident: ref17 article-title: Global, regional, and national estimates of levels of preterm birth in 2014: a systematic review and modelling analysis publication-title: Lancet Glob. Heal. doi: 10.1016/S2214-109X(18)30451-0 – volume: 40 start-page: 586 year: 2019 ident: ref37 article-title: Rapid postnatal adaptation of neurodevelopment in pigs born late preterm publication-title: Dev. Neurosci. doi: 10.1159/000499127 – volume: 194 start-page: 195 year: 2011 ident: ref12 article-title: Intranasal administration of insulin-like growth factor-1 protects against lipopolysaccharide-induced injury in the developing rat brain publication-title: Neuroscience doi: 10.1016/j.neuroscience.2011.08.003 – volume: 135 start-page: 1753 year: 1994 ident: ref61 article-title: Insulin-like growth factors cross the blood-brain barrier publication-title: Endocrinology doi: 10.1210/endo.135.5.7525251 – volume: 13 start-page: 1 year: 2021 ident: ref33 article-title: Dairy-derived emulsifiers in infant formula show marginal effects on the plasma lipid profile and brain structure in preterm piglets relative to soy lecithin publication-title: Nutrients doi: 10.3390/nu13030718 – volume: 12 start-page: 3303 ident: ref34 article-title: Brain lipidomics and neurodevelopmental outcomes in intrauterine growth restricted piglets fed dairy or vegetable fat diets publication-title: Sci. Rep. doi: 10.1038/s41598-022-07133-3 – volume: 25 start-page: 452 year: 1989 ident: ref42 article-title: Permeability of the blood brain barrier for 125i-albumin-bound bilirubin in newborn piglets publication-title: Pediatr. Res. doi: 10.1203/00006450-198905000-00005 – volume: 379 start-page: 2162 year: 2012 ident: ref11 article-title: National, regional, and worldwide estimates of preterm birth rates in the year 2010 with time trends since 1990 for selected countries: a systematic analysis and implications publication-title: Lancet doi: 10.1016/S0140-6736(12)60820-4 – volume: 5 start-page: 1 year: 2011 ident: ref20 article-title: Onset of pup locomotion coincides with loss of NR2C/D-mediated cortico-striatal EPSCs and dampening of striatal network immature activity publication-title: Front. Cell. Neurosci. doi: 10.3389/fncel.2011.00024 – volume: 18 start-page: 1 year: 2017 ident: ref60 article-title: Neurologic consequences of preterm birth publication-title: Curr. Neurol. Neurosci. Rep. doi: 10.1007/s11910-018-0862-2 – volume: 11 start-page: 161 year: 2015 ident: ref73 article-title: Insulin and IGF receptor signalling in neural-stem-cell homeostasis publication-title: Nat. Rev. Endocrinol. doi: 10.1038/nrendo.2014.208 – volume: 8 start-page: 517207 year: 2020 ident: ref38 article-title: Randomized control trial of postnatal rh IGF-1/rhIGFBP-3 replacement in preterm infants: post-hoc analysis of its effect on brain injury publication-title: Front. Pediatr. doi: 10.3389/fped.2020.517207 – volume: 25 start-page: 2941 year: 2005 ident: ref66 article-title: The roles of the caudate nucleus in human classification learning publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.3401-04.2005 – volume: 93 start-page: 666 year: 2022 ident: ref31 article-title: Postnatal serum IGF-1 levels associate with brain volumes at term in extremely preterm infants publication-title: Pediatr. Res. doi: 10.1038/s41390-022-02134-4 – volume: 117 start-page: 1930 year: 2006 ident: ref46 article-title: Postnatal head growth deficit among premature infants parallels retinopathy of prematurity and insulin-like growth factor-1 deficit publication-title: Pediatrics doi: 10.1542/peds.2005-1926 – volume: 25 start-page: 181 year: 2011 ident: ref51 article-title: IGF1 molecular anomalies demonstrate its critical role in fetal, postnatal growth and brain development publication-title: Best Pract. Res. Clin. Endocrinol. Metab. doi: 10.1016/j.beem.2010.08.005 – volume: 39 start-page: 375 year: 2017 ident: ref48 article-title: Developmental changes in expression of GABAA receptor subunits α1, α2, and α3 in the pig brain publication-title: Dev. Neurosci. doi: 10.1159/000468926 – volume: 13 start-page: 37 year: 1986 ident: ref45 article-title: Circulating insulin-like growth factor I levels in newborn premature and full-term infants followed longitudinally publication-title: Early Hum. Dev. doi: 10.1016/0378-3782(86)90096-4 – volume: 10 start-page: 729 year: 1993 ident: ref16 article-title: Insulin-like growth factor I increases brain growth and central nervous system myelination in tTransgenic mice publication-title: Neuron doi: 10.1016/0896-6273(93)90173-O – volume: 27 start-page: 375 year: 1976 ident: ref68 article-title: Biphasic myelination and the fatty acid composition of Cerebrosides and cholesterol esters in the developing central nervous system of the domestic pig publication-title: J. Neurochem. doi: 10.1111/j.1471-4159.1976.tb12256.x – volume: 220 start-page: 104853 year: 2019 ident: ref62 article-title: Neurological functioning and fear responses in low and normal birth weight piglets publication-title: Appl. Anim. Behav. Sci. doi: 10.1016/j.applanim.2019.104853 – volume: 6 start-page: 275 year: 2009 ident: ref65 article-title: SUnSET, a nonradioactive method to monitor protein synthesis publication-title: Nat. Methods doi: 10.1038/nmeth.1314 – volume: 80 start-page: 2534 year: 1995 ident: ref39 article-title: Serum levels of insulin-like growth factor (IGF)-binding protein-3 (IGFBP-3) in healthy infants, children, and adolescents: the relation to IGF-I, IGF-II, IGFBP-1, IGFBP-2, age, sex, body mass index, and pubertal maturation publication-title: J. Clin. Endocrinol. Metab. doi: 10.1210/jcem.80.8.7543116 – volume: 111 start-page: 1592 year: 2014 ident: ref59 article-title: Longitudinal four-dimensional mapping of subcortical anatomy in human development publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1316911111 – volume: 67 start-page: 179 year: 2013 ident: ref53 article-title: Striatal development involves a switch in gene expression networks, followed by a myelination event: implications for neuropsychiatric disease publication-title: Synapse doi: 10.1002/syn.21628 – volume: 55 start-page: 400 year: 2007 ident: ref72 article-title: Insulin-like growth factor type 1 receptor signaling in the cells of oligodendrocyte lineage is required for normal in vivo oligodendrocyte development and myelination publication-title: Glia doi: 10.1002/glia.20469 – volume: 49 start-page: 1 year: 1999 ident: ref22 article-title: Stereotaxic atlas of the pig brain publication-title: Brain Res. Bull. doi: 10.1016/S0361-9230(99)00012-X – volume: 36 start-page: 528 year: 1994 ident: ref7 article-title: Ontogeny of insulin-like growth factor-binding protein-1, −2, and-3: quantitative measurements by radioimmunoassay in human fetal serum publication-title: Pediatr. Res. doi: 10.1203/00006450-199410000-00020 – volume: 91 start-page: 4713 year: 2013 ident: ref64 article-title: Invited review: the preterm pig as a model in pediatric gastroenterology publication-title: J. Anim. Sci. doi: 10.2527/jas.2013-6359 – volume: 10 start-page: ENEURO.0430 year: 2023 ident: ref18 article-title: Insulin-like growth factor-1 supplementation promotes brain maturation in preterm pigs publication-title: eNeuro doi: 10.1523/ENEURO.0430-22.2023 – volume: 6 start-page: 551 year: 1996 ident: ref25 article-title: Quantitative magnetic resonance imaging of human brain development: ages 4-18 publication-title: Cereb. Cortex doi: 10.1093/cercor/6.4.551 – volume: 134 start-page: 331 year: 2017 ident: ref4 article-title: White matter injury in the preterm infant: pathology and mechanisms publication-title: Acta Neuropathol. doi: 10.1007/s00401-017-1718-6 – volume: 22 start-page: 6041 year: 2002 ident: ref71 article-title: Myelination is altered in insulin-like growth factor-I null mutant mice publication-title: J. Neurosci. doi: 10.1523/jneurosci.22-14-06041.2002 – volume: 78 start-page: 137 year: 2015 ident: ref13 article-title: Physical activity level is impaired and diet dependent in preterm newborn pigs publication-title: Pediatr. Res. doi: 10.1038/pr.2015.73 – volume: 22 start-page: 455 year: 2002 ident: ref5 article-title: Selective vulnerability of late oligodendrocyte progenitors to hypoxia-ischemia publication-title: J. Neurosci. doi: 10.1523/jneurosci.22-02-00455.2002 – volume: 15 start-page: 7344 year: 1995 ident: ref70 article-title: In vivo actions of insulin-like growth factor-I (IGF-I) on brain myelination: studies of IGF-I and IGF binding protein-1 (IGFBP-1) transgenic mice publication-title: J. Neurosci. doi: 10.1523/jneurosci.15-11-07344.1995 – volume: 86 start-page: 141 year: 2008 ident: ref28 article-title: The cognitive functions of the caudate nucleus publication-title: Prog. Neurobiol. doi: 10.1016/j.pneurobio.2008.09.004 – volume: 74 start-page: 564 year: 2013 ident: ref30 article-title: Circulatory insulin-like growth factor-I and brain volumes in relation to neurodevelopmental outcome in very preterm infants publication-title: Pediatr. Res. doi: 10.1038/pr.2013.135 – volume: 9 start-page: 1 year: 2015 ident: ref49 article-title: Blood-brain barrier dysfunction in disorders of the developing brain publication-title: Front. Neurosci. doi: 10.3389/fnins.2015.00040 – volume: 25 start-page: 1028 year: 2011 ident: ref26 article-title: Novel insights into the regulation of skeletal muscle protein synthesis as revealed by a new nonradioactive in vivo technique publication-title: FASEB J. doi: 10.1096/fj.10-168799 |
SSID | ssj0062842 |
Score | 2.3682933 |
Snippet | Preterm infants have increased risk of impaired neurodevelopment to which reduced systemic levels of insulin-like growth factor 1 (IGF-1) in the weeks after... IntroductionPreterm infants have increased risk of impaired neurodevelopment to which reduced systemic levels of insulin-like growth factor 1 (IGF-1) in the... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1205819 |
SubjectTerms | caudate nucleus hippocampus IGF-1 motor function myelination Neuroscience preterm neonates |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT1wQtDwWWmQkxAWFxo7jx7GgVgUJTlTqLYrjcRvReld0e-i_74ydXe2iCi4c4ziyM9_YnrHH3zD2HlTrVQ-yUm0NlRpUwCFVtxUl69a26Z3JbPvff-jTM_XtvD3fSPVFMWGFHrgI7lAFG70UfbAalK-dF96aJtYq6lqZAWj2xTVv5UyVOVjjpCvLFRl0wdxhTGMibm7ZfBKybi3x6mwsQ5mt_yET889IyY2l5-QpezLZjPyo9PUZewRpl-0dJfSXr-_4B56jOPP2-B5bfC3B5dXV-Av4BTrZy0tekupwwW8oh2eJFydA8jMdGXAEDCsMc3RFx7I_yPsUeF-iPfj1HV1bL-Vj4hSkiDM6X4wXN8_Z2cnxzy-n1ZRVoRrQFV5WvRgaUGDlgGNRWzAqQvDeOu0ATJAoay9EFG2QSkuDiBkDg4itk2j7CWhesJ00T_CKce1ckDZoI1RUjVEIEtpXzkXn-z4KNWNiJeRumCjHKfPFVYeuBwHTZWA6AqabgJmxj-tvFoVw46-1PxN265pElp0LUIW6SYW6f6nQjL1bId_h4KITkz7B_Babsk2jUQqtmLGXRRPWTeH_0mE4vrFbOrLVl-03abzMBN45tQZ6pq__R-_fsMckEQpfE26f7Sx_38IBGkpL_zaPiXsn3hP4 priority: 102 providerName: Directory of Open Access Journals |
Title | Insulin-like growth factor 1 supplementation supports motor coordination and affects myelination in preterm pigs |
URI | https://www.ncbi.nlm.nih.gov/pubmed/37404461 https://www.proquest.com/docview/2833646251 https://pubmed.ncbi.nlm.nih.gov/PMC10315495 https://doaj.org/article/4d8fb21ad86e4b09b1b873f04f6047ce |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELem7YUXBIyP8lEZCfGCMuLEsZ0HhDa0MZA2IUSlvkV2bHcRnVvaTqL_PXd2WlE0kHiJFMeJY_98tn--8x0hrxyvDNeuyHiVu4y33IJI5VWGwbqFKnUto7f9i0txPuKfx9V4j2zCHfUNuLyV2mE8qdFievTzx_o9CPw7ZJww3771oQvoebsoj1iRVwq9gB7AzCSwl1_wrVZBwFActZ8CTwpV5TgdovnLN3YmqujP_7ZF6J-2lL9NTmf3yN1-VUmPUze4T_ZceEAOjwMw6us1fU2jnWfcQD8k80_J_Dybdt8dnQANX13RFHaHMrrEKJ_Johwhi_eoVKAAKWRoZ0BWu7SDSHWwVCd7EHq9xoPtKb0LFM0YYcyn826yfEhGZ6ffPpxnfdyFrAWyvMo0a0vHnSpakFahnOTeWWNULWrnpC0Kpg1jnlW24KKQgKmUrmW-qgtYHTJXPiL7YRbcE0JFXdtCWSEZ97yUXFugM0CyfG209owPCNs0ctP2TskxNsa0AXKCwDQRmAaBaXpgBuTN9p15csnxz9wniN02J7rTjgmzxaTppbPhVnkD1bJKOG7y2jCjZOlz7kXOZesG5OUG-QbED3UqOrjZDRSlylJAK1RsQB6nnrAtCuqL6nJ4onb6yM6_7D4J3VV08R2DbwB3ffpfdX1G7uAtWrKx-jnZXy1u3AtYM63MkBycnF5--TqMew5w_ThmwygcvwD0fhkd |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Insulin-like+growth+factor+1+supplementation+supports+motor+coordination+and+affects+myelination+in+preterm+pigs&rft.jtitle=Frontiers+in+neuroscience&rft.au=Christiansen%2C+Line+I.&rft.au=Ventura%2C+Gemma+C.&rft.au=Holmqvist%2C+Bo&rft.au=Aasmul-Olsen%2C+Karoline&rft.date=2023-06-19&rft.issn=1662-453X&rft.eissn=1662-453X&rft.volume=17&rft_id=info:doi/10.3389%2Ffnins.2023.1205819&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fnins_2023_1205819 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-453X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-453X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-453X&client=summon |