Insulin-like growth factor 1 supplementation supports motor coordination and affects myelination in preterm pigs

Preterm infants have increased risk of impaired neurodevelopment to which reduced systemic levels of insulin-like growth factor 1 (IGF-1) in the weeks after birth may play a role. Hence, we hypothesized that postnatal IGF-1 supplementation would improve brain development in preterm pigs, used as a m...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in neuroscience Vol. 17; p. 1205819
Main Authors Christiansen, Line I., Ventura, Gemma C., Holmqvist, Bo, Aasmul-Olsen, Karoline, Lindholm, Sandy E. H., Lycas, Matthew D., Mori, Yuki, Secher, Jan Bojsen-Møller, Burrin, Douglas G., Thymann, Thomas, Sangild, Per T., Pankratova, Stanislava
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media S.A 19.06.2023
Subjects
Online AccessGet full text
ISSN1662-453X
1662-4548
1662-453X
DOI10.3389/fnins.2023.1205819

Cover

Loading…
Abstract Preterm infants have increased risk of impaired neurodevelopment to which reduced systemic levels of insulin-like growth factor 1 (IGF-1) in the weeks after birth may play a role. Hence, we hypothesized that postnatal IGF-1 supplementation would improve brain development in preterm pigs, used as a model for preterm infants. Preterm pigs delivered by cesarean section received recombinant human IGF-1/IGF binding protein-3 complex (rhIGF-1/rhIGFBP-3, 2.25 mg/kg/day) or vehicle from birth to postnatal day 19. Motor function and cognition were assessed by monitoring of in-cage and open field activities, balance beam test, gait parameters, novel object recognition and operant conditioning tests. Collected brains were subject to magnetic resonance imaging (MRI), immunohistochemistry, gene expression analyses and protein synthesis measurements. The IGF-1 treatment increased cerebellar protein synthesis rates (both and ). Performance in the balance beam test was improved by IGF-1 but not in other neurofunctional tests. The treatment decreased total and relative caudate nucleus weights, without any effects to total brain weight or grey/white matter volumes. Supplementation with IGF-1 reduced myelination in caudate nucleus, cerebellum, and white matter regions and decreased hilar synapse formation, without effects to oligodendrocyte maturation or neuron differentiation. Gene expression analyses indicated enhanced maturation of the GABAergic system in the caudate nucleus (decreased ratio) with limited effects in cerebellum or hippocampus. Supplemental IGF-1 during the first three weeks after preterm birth may support motor function by enhancing GABAergic maturation in the caudate nucleus, despite reduced myelination. Supplemental IGF-1 may support postnatal brain development in preterm infants, but more studies are required to identify optimal treatment regimens for subgroups of very or extremely preterm infants.
AbstractList IntroductionPreterm infants have increased risk of impaired neurodevelopment to which reduced systemic levels of insulin-like growth factor 1 (IGF-1) in the weeks after birth may play a role. Hence, we hypothesized that postnatal IGF-1 supplementation would improve brain development in preterm pigs, used as a model for preterm infants.MethodsPreterm pigs delivered by cesarean section received recombinant human IGF-1/IGF binding protein-3 complex (rhIGF-1/rhIGFBP-3, 2.25 mg/kg/day) or vehicle from birth to postnatal day 19. Motor function and cognition were assessed by monitoring of in-cage and open field activities, balance beam test, gait parameters, novel object recognition and operant conditioning tests. Collected brains were subject to magnetic resonance imaging (MRI), immunohistochemistry, gene expression analyses and protein synthesis measurements.ResultsThe IGF-1 treatment increased cerebellar protein synthesis rates (both in vivo and ex vivo). Performance in the balance beam test was improved by IGF-1 but not in other neurofunctional tests. The treatment decreased total and relative caudate nucleus weights, without any effects to total brain weight or grey/white matter volumes. Supplementation with IGF-1 reduced myelination in caudate nucleus, cerebellum, and white matter regions and decreased hilar synapse formation, without effects to oligodendrocyte maturation or neuron differentiation. Gene expression analyses indicated enhanced maturation of the GABAergic system in the caudate nucleus (decreased NKCC1:KCC2 ratio) with limited effects in cerebellum or hippocampus.ConclusionSupplemental IGF-1 during the first three weeks after preterm birth may support motor function by enhancing GABAergic maturation in the caudate nucleus, despite reduced myelination. Supplemental IGF-1 may support postnatal brain development in preterm infants, but more studies are required to identify optimal treatment regimens for subgroups of very or extremely preterm infants.
Preterm infants have increased risk of impaired neurodevelopment to which reduced systemic levels of insulin-like growth factor 1 (IGF-1) in the weeks after birth may play a role. Hence, we hypothesized that postnatal IGF-1 supplementation would improve brain development in preterm pigs, used as a model for preterm infants.IntroductionPreterm infants have increased risk of impaired neurodevelopment to which reduced systemic levels of insulin-like growth factor 1 (IGF-1) in the weeks after birth may play a role. Hence, we hypothesized that postnatal IGF-1 supplementation would improve brain development in preterm pigs, used as a model for preterm infants.Preterm pigs delivered by cesarean section received recombinant human IGF-1/IGF binding protein-3 complex (rhIGF-1/rhIGFBP-3, 2.25 mg/kg/day) or vehicle from birth to postnatal day 19. Motor function and cognition were assessed by monitoring of in-cage and open field activities, balance beam test, gait parameters, novel object recognition and operant conditioning tests. Collected brains were subject to magnetic resonance imaging (MRI), immunohistochemistry, gene expression analyses and protein synthesis measurements.MethodsPreterm pigs delivered by cesarean section received recombinant human IGF-1/IGF binding protein-3 complex (rhIGF-1/rhIGFBP-3, 2.25 mg/kg/day) or vehicle from birth to postnatal day 19. Motor function and cognition were assessed by monitoring of in-cage and open field activities, balance beam test, gait parameters, novel object recognition and operant conditioning tests. Collected brains were subject to magnetic resonance imaging (MRI), immunohistochemistry, gene expression analyses and protein synthesis measurements.The IGF-1 treatment increased cerebellar protein synthesis rates (both in vivo and ex vivo). Performance in the balance beam test was improved by IGF-1 but not in other neurofunctional tests. The treatment decreased total and relative caudate nucleus weights, without any effects to total brain weight or grey/white matter volumes. Supplementation with IGF-1 reduced myelination in caudate nucleus, cerebellum, and white matter regions and decreased hilar synapse formation, without effects to oligodendrocyte maturation or neuron differentiation. Gene expression analyses indicated enhanced maturation of the GABAergic system in the caudate nucleus (decreased NKCC1:KCC2 ratio) with limited effects in cerebellum or hippocampus.ResultsThe IGF-1 treatment increased cerebellar protein synthesis rates (both in vivo and ex vivo). Performance in the balance beam test was improved by IGF-1 but not in other neurofunctional tests. The treatment decreased total and relative caudate nucleus weights, without any effects to total brain weight or grey/white matter volumes. Supplementation with IGF-1 reduced myelination in caudate nucleus, cerebellum, and white matter regions and decreased hilar synapse formation, without effects to oligodendrocyte maturation or neuron differentiation. Gene expression analyses indicated enhanced maturation of the GABAergic system in the caudate nucleus (decreased NKCC1:KCC2 ratio) with limited effects in cerebellum or hippocampus.Supplemental IGF-1 during the first three weeks after preterm birth may support motor function by enhancing GABAergic maturation in the caudate nucleus, despite reduced myelination. Supplemental IGF-1 may support postnatal brain development in preterm infants, but more studies are required to identify optimal treatment regimens for subgroups of very or extremely preterm infants.ConclusionSupplemental IGF-1 during the first three weeks after preterm birth may support motor function by enhancing GABAergic maturation in the caudate nucleus, despite reduced myelination. Supplemental IGF-1 may support postnatal brain development in preterm infants, but more studies are required to identify optimal treatment regimens for subgroups of very or extremely preterm infants.
Preterm infants have increased risk of impaired neurodevelopment to which reduced systemic levels of insulin-like growth factor 1 (IGF-1) in the weeks after birth may play a role. Hence, we hypothesized that postnatal IGF-1 supplementation would improve brain development in preterm pigs, used as a model for preterm infants. Preterm pigs delivered by cesarean section received recombinant human IGF-1/IGF binding protein-3 complex (rhIGF-1/rhIGFBP-3, 2.25 mg/kg/day) or vehicle from birth to postnatal day 19. Motor function and cognition were assessed by monitoring of in-cage and open field activities, balance beam test, gait parameters, novel object recognition and operant conditioning tests. Collected brains were subject to magnetic resonance imaging (MRI), immunohistochemistry, gene expression analyses and protein synthesis measurements. The IGF-1 treatment increased cerebellar protein synthesis rates (both and ). Performance in the balance beam test was improved by IGF-1 but not in other neurofunctional tests. The treatment decreased total and relative caudate nucleus weights, without any effects to total brain weight or grey/white matter volumes. Supplementation with IGF-1 reduced myelination in caudate nucleus, cerebellum, and white matter regions and decreased hilar synapse formation, without effects to oligodendrocyte maturation or neuron differentiation. Gene expression analyses indicated enhanced maturation of the GABAergic system in the caudate nucleus (decreased ratio) with limited effects in cerebellum or hippocampus. Supplemental IGF-1 during the first three weeks after preterm birth may support motor function by enhancing GABAergic maturation in the caudate nucleus, despite reduced myelination. Supplemental IGF-1 may support postnatal brain development in preterm infants, but more studies are required to identify optimal treatment regimens for subgroups of very or extremely preterm infants.
Author Christiansen, Line I.
Sangild, Per T.
Ventura, Gemma C.
Aasmul-Olsen, Karoline
Thymann, Thomas
Secher, Jan Bojsen-Møller
Pankratova, Stanislava
Lycas, Matthew D.
Holmqvist, Bo
Mori, Yuki
Burrin, Douglas G.
Lindholm, Sandy E. H.
AuthorAffiliation 8 Department of Pediatrics, Odense University Hospital , Odense , Denmark
5 Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen , Frederiksberg , Denmark
4 Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
7 Department of Neonatology, Rigshospitalet , Copenhagen , Denmark
9 Faculty of Theology, University of Copenhagen , Copenhagen , Denmark
6 United States Department of Agriculture, Agricultural Research Service Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine , Houston, TX , United States
2 ImaGene-iT AB , Lund , Sweden
3 Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
1 Comparative Pediatrics and Nutrition, Department of Veterinary and Animals Sciences, Faculty of Health and Medical Sciences, University of Copenhagen , Frederiksberg , Denmark
AuthorAffiliation_xml – name: 1 Comparative Pediatrics and Nutrition, Department of Veterinary and Animals Sciences, Faculty of Health and Medical Sciences, University of Copenhagen , Frederiksberg , Denmark
– name: 8 Department of Pediatrics, Odense University Hospital , Odense , Denmark
– name: 5 Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen , Frederiksberg , Denmark
– name: 7 Department of Neonatology, Rigshospitalet , Copenhagen , Denmark
– name: 3 Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
– name: 2 ImaGene-iT AB , Lund , Sweden
– name: 6 United States Department of Agriculture, Agricultural Research Service Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine , Houston, TX , United States
– name: 9 Faculty of Theology, University of Copenhagen , Copenhagen , Denmark
– name: 4 Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
Author_xml – sequence: 1
  givenname: Line I.
  surname: Christiansen
  fullname: Christiansen, Line I.
– sequence: 2
  givenname: Gemma C.
  surname: Ventura
  fullname: Ventura, Gemma C.
– sequence: 3
  givenname: Bo
  surname: Holmqvist
  fullname: Holmqvist, Bo
– sequence: 4
  givenname: Karoline
  surname: Aasmul-Olsen
  fullname: Aasmul-Olsen, Karoline
– sequence: 5
  givenname: Sandy E. H.
  surname: Lindholm
  fullname: Lindholm, Sandy E. H.
– sequence: 6
  givenname: Matthew D.
  surname: Lycas
  fullname: Lycas, Matthew D.
– sequence: 7
  givenname: Yuki
  surname: Mori
  fullname: Mori, Yuki
– sequence: 8
  givenname: Jan Bojsen-Møller
  surname: Secher
  fullname: Secher, Jan Bojsen-Møller
– sequence: 9
  givenname: Douglas G.
  surname: Burrin
  fullname: Burrin, Douglas G.
– sequence: 10
  givenname: Thomas
  surname: Thymann
  fullname: Thymann, Thomas
– sequence: 11
  givenname: Per T.
  surname: Sangild
  fullname: Sangild, Per T.
– sequence: 12
  givenname: Stanislava
  surname: Pankratova
  fullname: Pankratova, Stanislava
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37404461$$D View this record in MEDLINE/PubMed
BookMark eNp9kk1v1DAQhi3Uin7AH-CAcuSSrb_iOCeEKqArVeLSSr1ZjjPeujh2sBNQ_z3JZlu1HDjZnnnnGdvznqGjEAMg9IHgDWOyubDBhbyhmLINobiSpHmDTokQtOQVuzt6sT9BZzk_YCyo5PQtOmE1x5wLcoqGbciTd6H07icUuxT_jPeF1WaMqSBFnobBQw9h1KOLYX-OacxFHxeBiTF1Lqw5HbpCWwtmST-Cf4q7UAwJRkh9MbhdfoeOrfYZ3h_Wc3T77evN5VV5_eP79vLLdWm4aMZSE8OAg6SG1I2QUHMLXdvKRjQAdUcp0S0hllQd5YLWVMi6BkNs1VBRCQLsHG1Xbhf1gxqS63V6VFE7tQ_EtFM6jc54ULyTtp2BnRTAW9y0pJU1s5hbgXltFtbnlTVMbQ-dmf8jaf8K-joT3L3axd-KYEYq3lQz4dOBkOKvCfKoepcNeK8DxCkrKhkT80MqMks_vmz23OVpZrOArgKTYs4J7LOEYLUYQ-2NoRZjqIMx5iL5T5Fx61DnCzv_v9K_eEjCVA
CitedBy_id crossref_primary_10_1113_EP092010
crossref_primary_10_1038_s41598_024_51225_1
crossref_primary_10_1093_braincomms_fcae373
crossref_primary_10_1126_sciadv_adk8123
crossref_primary_10_1038_s41598_023_46611_0
crossref_primary_10_1038_s41390_023_02949_9
Cites_doi 10.1023/A:1018581407804
10.1016/j.jpeds.2018.10.033
10.1210/mend-5-8-1158
10.1016/0896-6273(95)90216-3
10.1038/s41596-019-0176-0
10.1186/1742-2094-10-37
10.1016/j.neuropharm.2016.02.034
10.1523/jneurosci.21-21-08339.2001
10.1159/000054584
10.1152/physrev.00017.2006
10.1038/s41598-019-53518-2
10.14814/PHY2.15368
10.1016/j.brainres.2005.09.042
10.1016/0378-3782(79)90022-7
10.1210/jc.2010-2440
10.1523/jneurosci.20-08-02926.2000
10.1212/WNL.0000000000004680
10.1016/S0149-7634(03)00005-8
10.1111/apa.13350
10.1016/j.neuroimage.2014.03.072
10.1016/j.yfrne.2012.06.002
10.1152/ajpregu.00349.2015
10.1016/j.neubiorev.2021.01.024
10.1002/(SICI)1097-4695(199904)39:1<142::AID-NEU11>3.0.CO;2-H
10.1203/PDR.0b013e3181dc240f
10.3389/fped.2020.602047
10.1016/j.neubiorev.2010.05.004
10.1097/01.WCB.0000067720.12805.6F
10.1203/01.PDR.0000117843.21534.49
10.1152/AJPENDO.00236.2021
10.1210/EDRV.18.6.0321
10.3389/FPED.2021.626101
10.1016/j.neuron.2010.08.007
10.1016/S2214-109X(18)30451-0
10.1159/000499127
10.1016/j.neuroscience.2011.08.003
10.1210/endo.135.5.7525251
10.3390/nu13030718
10.1038/s41598-022-07133-3
10.1203/00006450-198905000-00005
10.1016/S0140-6736(12)60820-4
10.3389/fncel.2011.00024
10.1007/s11910-018-0862-2
10.1038/nrendo.2014.208
10.3389/fped.2020.517207
10.1523/JNEUROSCI.3401-04.2005
10.1038/s41390-022-02134-4
10.1542/peds.2005-1926
10.1016/j.beem.2010.08.005
10.1159/000468926
10.1016/0378-3782(86)90096-4
10.1016/0896-6273(93)90173-O
10.1111/j.1471-4159.1976.tb12256.x
10.1016/j.applanim.2019.104853
10.1038/nmeth.1314
10.1210/jcem.80.8.7543116
10.1073/pnas.1316911111
10.1002/syn.21628
10.1002/glia.20469
10.1016/S0361-9230(99)00012-X
10.1203/00006450-199410000-00020
10.2527/jas.2013-6359
10.1523/ENEURO.0430-22.2023
10.1093/cercor/6.4.551
10.1007/s00401-017-1718-6
10.1523/jneurosci.22-14-06041.2002
10.1038/pr.2015.73
10.1523/jneurosci.22-02-00455.2002
10.1523/jneurosci.15-11-07344.1995
10.1016/j.pneurobio.2008.09.004
10.1038/pr.2013.135
10.3389/fnins.2015.00040
10.1096/fj.10-168799
ContentType Journal Article
Copyright Copyright © 2023 Christiansen, Ventura, Holmqvist, Aasmul-Olsen, Lindholm, Lycas, Mori, Secher, Burrin, Thymann, Sangild and Pankratova.
Copyright © 2023 Christiansen, Ventura, Holmqvist, Aasmul-Olsen, Lindholm, Lycas, Mori, Secher, Burrin, Thymann, Sangild and Pankratova. 2023 Christiansen, Ventura, Holmqvist, Aasmul-Olsen, Lindholm, Lycas, Mori, Secher, Burrin, Thymann, Sangild and Pankratova
Copyright_xml – notice: Copyright © 2023 Christiansen, Ventura, Holmqvist, Aasmul-Olsen, Lindholm, Lycas, Mori, Secher, Burrin, Thymann, Sangild and Pankratova.
– notice: Copyright © 2023 Christiansen, Ventura, Holmqvist, Aasmul-Olsen, Lindholm, Lycas, Mori, Secher, Burrin, Thymann, Sangild and Pankratova. 2023 Christiansen, Ventura, Holmqvist, Aasmul-Olsen, Lindholm, Lycas, Mori, Secher, Burrin, Thymann, Sangild and Pankratova
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.3389/fnins.2023.1205819
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1662-453X
ExternalDocumentID oai_doaj_org_article_4d8fb21ad86e4b09b1b873f04f6047ce
PMC10315495
37404461
10_3389_fnins_2023_1205819
Genre Journal Article
GroupedDBID ---
29H
2WC
53G
5GY
5VS
88I
8FE
8FH
9T4
AAFWJ
AAYXX
ABUWG
ACGFO
ACGFS
ACXDI
ADRAZ
AEGXH
AENEX
AFKRA
AFPKN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BBNVY
BENPR
BHPHI
BPHCQ
CCPQU
CITATION
CS3
DIK
DU5
DWQXO
E3Z
EBS
EJD
EMOBN
F5P
FRP
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HYE
KQ8
LK8
M2P
M48
M7P
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
RNS
RPM
W2D
C1A
NPM
PQGLB
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c469t-a1c3e4e82c17968e74fedbb8969ee7d221ab11f15d2462726877ec1f5926561e3
IEDL.DBID M48
ISSN 1662-453X
1662-4548
IngestDate Wed Aug 27 01:28:55 EDT 2025
Thu Aug 21 18:37:31 EDT 2025
Fri Sep 05 08:23:21 EDT 2025
Mon Jul 21 06:05:04 EDT 2025
Thu Apr 24 23:03:41 EDT 2025
Tue Jul 01 03:02:25 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords caudate nucleus
myelination
IGF-1
motor function
preterm neonates
hippocampus
Language English
License Copyright © 2023 Christiansen, Ventura, Holmqvist, Aasmul-Olsen, Lindholm, Lycas, Mori, Secher, Burrin, Thymann, Sangild and Pankratova.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c469t-a1c3e4e82c17968e74fedbb8969ee7d221ab11f15d2462726877ec1f5926561e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Reviewed by: Eduardo Farias Sanches, Universitéde Genève, Switzerland; Helen B. Stolp, Royal Veterinary College, United Kingdom
Edited by: Kazuhiko Sawada, Tsukuba International University, Japan
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fnins.2023.1205819
PMID 37404461
PQID 2833646251
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_4d8fb21ad86e4b09b1b873f04f6047ce
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10315495
proquest_miscellaneous_2833646251
pubmed_primary_37404461
crossref_primary_10_3389_fnins_2023_1205819
crossref_citationtrail_10_3389_fnins_2023_1205819
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-06-19
PublicationDateYYYYMMDD 2023-06-19
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-19
  day: 19
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in neuroscience
PublicationTitleAlternate Front Neurosci
PublicationYear 2023
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Henriksen (ref33) 2021; 13
Pan (ref55) 2000; 72
Garcia-Segura (ref24) 1997; 26
Seger (ref66) 2005; 25
Andersen (ref2) 2003; 27
Netchine (ref51) 2011; 25
Lineham (ref45) 1986; 13
Ream (ref60) 2017; 18
Pang (ref56) 2010; 67
Félix (ref22) 1999; 49
Lin (ref44) 2005; 1063
Chawanpaiboon (ref17) 2019; 7
Juul (ref39) 1995; 80
Hellström (ref32) 2016; 105
Kornum (ref41) 2011; 35
Beck (ref9) 1995; 14
Cao (ref14) 2003; 23
Back (ref5) 2002; 22
Baroncelli (ref8) 2017; 113
Miller (ref48) 2017; 39
Abernethy (ref1) 2004; 55
Henriksen (ref35); 10
Ye (ref71) 2002; 22
Nath (ref50) 2019; 14
Coquery (ref19) 2019; 9
Holme Nielsen (ref37) 2019; 40
Andersen (ref3) 2016; 310
Bang (ref7) 1994; 36
Cao (ref13) 2015; 78
Cai (ref12) 2011; 194
Wierenga (ref69) 2014; 96
Ye (ref70) 1995; 15
Back (ref4) 2017; 134
Ben-Ari (ref10) 2007; 87
Hansen-Pupp (ref29) 2011; 96
Bæk (ref6) 2021; 9
Reinhardt (ref61) 1994; 135
Moretti (ref49) 2015; 9
Schmidt (ref65) 2009; 6
Ziegler (ref73) 2015; 11
Christiansen (ref18) 2023; 10
Graff-Radford (ref27) 2017; 89
Grahn (ref28) 2008; 86
Löfqvist (ref46) 2006; 117
Gao (ref23) 1999; 39
Blencowe (ref11) 2012; 379
Marks (ref47) 1991; 5
Raznahan (ref59) 2014; 111
Horsch (ref38) 2020; 8
Goodman (ref26) 2011; 25
Lee (ref42) 1989; 25
Carson (ref16) 1993; 10
Hellström (ref31) 2022; 93
Novak (ref53) 2013; 67
Giedd (ref25) 1996; 6
Holgersen (ref36) 2021; 8
Suh (ref67) 2013; 10
Carro (ref15) 2000; 20
Sangild (ref64) 2013; 91
Hansen-Pupp (ref30) 2013; 74
Ley (ref43) 2019; 206
Rudar (ref63) 2021; 321
Nishijima (ref52) 2010; 67
Rajaram (ref58) 1997; 18
Zeger (ref72) 2007; 55
O’Kusky (ref54) 2012; 33
Dehorter (ref20) 2011; 5
Dobbing (ref21) 1979; 3
Kelsch (ref40) 2001; 21
Sweasey (ref68) 1976; 27
Henriksen (ref34); 12
Roelofs (ref62) 2019; 220
Peerboom (ref57) 2021; 124
References_xml – volume: 26
  start-page: 479
  year: 1997
  ident: ref24
  article-title: Localization of the insulin-like growth factor I receptor in the cerebellum and hypothalamus of adult rats: an electron microscopic study
  publication-title: J. Neurocytol.
  doi: 10.1023/A:1018581407804
– volume: 206
  start-page: 56
  year: 2019
  ident: ref43
  article-title: rhIGF-1/rhIGFBP-3 in preterm infants: a phase 2 randomized controlled trial
  publication-title: J. Pediatr.
  doi: 10.1016/j.jpeds.2018.10.033
– volume: 5
  start-page: 1158
  year: 1991
  ident: ref47
  article-title: Localization of type I insulin-like growth factor receptor messenger RNA in the adult rat brain by in situ hybridization
  publication-title: Mol. Endocrinol.
  doi: 10.1210/mend-5-8-1158
– volume: 14
  start-page: 717
  year: 1995
  ident: ref9
  article-title: Igf 1 gene disruption results in reduced brain size, CNS hypomyelination, and loss of hippocampal granule and striatal parvalbumin-containing neurons
  publication-title: Neuron
  doi: 10.1016/0896-6273(95)90216-3
– volume: 14
  start-page: 2152
  year: 2019
  ident: ref50
  article-title: Using deep LabCut for 3D markerless pose estimation across species and behaviors
  publication-title: Nat. Protoc.
  doi: 10.1038/s41596-019-0176-0
– volume: 10
  start-page: 37
  year: 2013
  ident: ref67
  article-title: Insulin-like growth factor 1 and 2 (IGF1, IGF2) expression in human microglia: differential regulation by inflammatory mediators
  publication-title: J. Neuroinflammation
  doi: 10.1186/1742-2094-10-37
– volume: 113
  start-page: 167
  year: 2017
  ident: ref8
  article-title: Early IGF-1 primes visual cortex maturation and accelerates developmental switch between NKCC1 and KCC2 chloride transporters in enriched animals
  publication-title: Neuropharmacology
  doi: 10.1016/j.neuropharm.2016.02.034
– volume: 21
  start-page: 8339
  year: 2001
  ident: ref40
  article-title: Insulin-like growth factor 1 and a cytosolic tyrosine kinase activate chloride outward transport during maturation of hippocampal neurons
  publication-title: J. Neurosci.
  doi: 10.1523/jneurosci.21-21-08339.2001
– volume: 72
  start-page: 171
  year: 2000
  ident: ref55
  article-title: Interactions of IGF-1 with the blood-brain barrier in vivo and in situ
  publication-title: Neuroendocrinology
  doi: 10.1159/000054584
– volume: 87
  start-page: 1215
  year: 2007
  ident: ref10
  article-title: GABA: a pioneer transmitter that excites immature neurons and generates primitive oscillations
  publication-title: Physiol. Rev.
  doi: 10.1152/physrev.00017.2006
– volume: 9
  start-page: 17082
  year: 2019
  ident: ref19
  article-title: Locomotion and eating behavior changes in Yucatan minipigs after unilateral radio-induced ablation of the caudate nucleus
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-53518-2
– volume: 10
  start-page: e15368
  ident: ref35
  article-title: Cholestasis alters brain lipid and bile acid composition and compromises motor function in neonatal piglets
  publication-title: Physiol. Rep.
  doi: 10.14814/PHY2.15368
– volume: 1063
  start-page: 15
  year: 2005
  ident: ref44
  article-title: IGF-1 protects oligodendrocyte progenitor cells and improves neurological functions following cerebral hypoxia-ischemia in the neonatal rat
  publication-title: Brain Res.
  doi: 10.1016/j.brainres.2005.09.042
– volume: 3
  start-page: 79
  year: 1979
  ident: ref21
  article-title: Comparative aspects of the brain growth spurt
  publication-title: Early Hum. Dev.
  doi: 10.1016/0378-3782(79)90022-7
– volume: 96
  start-page: 1129
  year: 2011
  ident: ref29
  article-title: Postnatal decrease in circulating insulin-like growth factor-I and low brain volumes in very preterm infants
  publication-title: J. Clin. Endocrinol. Metab.
  doi: 10.1210/jc.2010-2440
– volume: 20
  start-page: 2926
  year: 2000
  ident: ref15
  article-title: Circulating insulin-like growth factor I mediates effects of exercise on the brain
  publication-title: J. Neurosci.
  doi: 10.1523/jneurosci.20-08-02926.2000
– volume: 89
  start-page: 2192
  year: 2017
  ident: ref27
  article-title: Caudate nucleus as a component of networks controlling behavior
  publication-title: Neurology
  doi: 10.1212/WNL.0000000000004680
– volume: 27
  start-page: 3
  year: 2003
  ident: ref2
  article-title: Trajectories of brain development: point of vulnerability or window of opportunity?
  publication-title: Neurosci. Biobehav. Rev.
  doi: 10.1016/S0149-7634(03)00005-8
– volume: 105
  start-page: 576
  year: 2016
  ident: ref32
  article-title: Insulin-like growth factor 1 has multisystem effects on foetal and preterm infant development. N
  publication-title: Int. J. Paediatr.
  doi: 10.1111/apa.13350
– volume: 96
  start-page: 67
  year: 2014
  ident: ref69
  article-title: Typical development of basal ganglia, hippocampus, amygdala and cerebellum from age 7 to 24
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2014.03.072
– volume: 33
  start-page: 230
  year: 2012
  ident: ref54
  article-title: Neurodevelopmental effects of insulin-like growth factor signaling
  publication-title: Front. Neuroendocrinol.
  doi: 10.1016/j.yfrne.2012.06.002
– volume: 310
  start-page: R481
  year: 2016
  ident: ref3
  article-title: Delayed growth, motor function and learning in preterm pigs during early postnatal life
  publication-title: Am. J. Physiol. Regul. Integr. Comp. Physiol.
  doi: 10.1152/ajpregu.00349.2015
– volume: 124
  start-page: 179
  year: 2021
  ident: ref57
  article-title: The postnatal GABA shift: a developmental perspective
  publication-title: Neurosci. Biobehav. Rev.
  doi: 10.1016/j.neubiorev.2021.01.024
– volume: 39
  start-page: 142
  year: 1999
  ident: ref23
  article-title: IGF-I deficient mice show reduced peripheral nerve conduction velocities and decreased axonal diameters and respond to exogenous IGF-I treatment
  publication-title: J. Neurobiol.
  doi: 10.1002/(SICI)1097-4695(199904)39:1<142::AID-NEU11>3.0.CO;2-H
– volume: 67
  start-page: 579
  year: 2010
  ident: ref56
  article-title: IGF-1 can either protect against or increase LPS-induced damage in the developing rat brain
  publication-title: Pediatr. Res.
  doi: 10.1203/PDR.0b013e3181dc240f
– volume: 8
  start-page: 2047
  year: 2021
  ident: ref36
  article-title: Supplemental insulin-like growth Factor-1 and necrotizing enterocolitis in preterm pigs
  publication-title: Front. Pediatr.
  doi: 10.3389/fped.2020.602047
– volume: 35
  start-page: 437
  year: 2011
  ident: ref41
  article-title: Cognitive testing of pigs (Sus scrofa) in translational biobehavioral research
  publication-title: Neurosci. Biobehav. Rev.
  doi: 10.1016/j.neubiorev.2010.05.004
– volume: 23
  start-page: 739
  year: 2003
  ident: ref14
  article-title: Insulin-like growth factor (IGF)-1 suppresses oligodendrocyte caspase-3 activation and increases glial proliferation after ischemia in near-term fetal sheep
  publication-title: J. Cereb. Blood Flow Metab.
  doi: 10.1097/01.WCB.0000067720.12805.6F
– volume: 55
  start-page: 884
  year: 2004
  ident: ref1
  article-title: Caudate and hippocampal volumes, intelligence, and motor impairment in 7-year-old children who were born preterm
  publication-title: Pediatr. Res.
  doi: 10.1203/01.PDR.0000117843.21534.49
– volume: 321
  start-page: E737
  year: 2021
  ident: ref63
  article-title: Intermittent bolus feeding does not enhance protein synthesis, myonuclear accretion, or lean growth more than continuous feeding in a premature piglet model
  publication-title: Am. J. Physiol. Endocrinol. Metab.
  doi: 10.1152/AJPENDO.00236.2021
– volume: 18
  start-page: 801
  year: 1997
  ident: ref58
  article-title: Insulin-like growth factor-binding proteins in serum and other biological fluids: regulation and functions
  publication-title: Endocr. Rev.
  doi: 10.1210/EDRV.18.6.0321
– volume: 9
  start-page: 626101
  year: 2021
  ident: ref6
  article-title: Sex-specific survival, growth, immunity and organ development in preterm pigs as models for immature newborns
  publication-title: Front. Pediatr.
  doi: 10.3389/FPED.2021.626101
– volume: 67
  start-page: 834
  year: 2010
  ident: ref52
  article-title: Neuronal activity drives localized blood-brain-barrier transport of serum insulin-like growth factor-I into the CNS
  publication-title: Neuron
  doi: 10.1016/j.neuron.2010.08.007
– volume: 7
  start-page: e37
  year: 2019
  ident: ref17
  article-title: Global, regional, and national estimates of levels of preterm birth in 2014: a systematic review and modelling analysis
  publication-title: Lancet Glob. Heal.
  doi: 10.1016/S2214-109X(18)30451-0
– volume: 40
  start-page: 586
  year: 2019
  ident: ref37
  article-title: Rapid postnatal adaptation of neurodevelopment in pigs born late preterm
  publication-title: Dev. Neurosci.
  doi: 10.1159/000499127
– volume: 194
  start-page: 195
  year: 2011
  ident: ref12
  article-title: Intranasal administration of insulin-like growth factor-1 protects against lipopolysaccharide-induced injury in the developing rat brain
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2011.08.003
– volume: 135
  start-page: 1753
  year: 1994
  ident: ref61
  article-title: Insulin-like growth factors cross the blood-brain barrier
  publication-title: Endocrinology
  doi: 10.1210/endo.135.5.7525251
– volume: 13
  start-page: 1
  year: 2021
  ident: ref33
  article-title: Dairy-derived emulsifiers in infant formula show marginal effects on the plasma lipid profile and brain structure in preterm piglets relative to soy lecithin
  publication-title: Nutrients
  doi: 10.3390/nu13030718
– volume: 12
  start-page: 3303
  ident: ref34
  article-title: Brain lipidomics and neurodevelopmental outcomes in intrauterine growth restricted piglets fed dairy or vegetable fat diets
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-07133-3
– volume: 25
  start-page: 452
  year: 1989
  ident: ref42
  article-title: Permeability of the blood brain barrier for 125i-albumin-bound bilirubin in newborn piglets
  publication-title: Pediatr. Res.
  doi: 10.1203/00006450-198905000-00005
– volume: 379
  start-page: 2162
  year: 2012
  ident: ref11
  article-title: National, regional, and worldwide estimates of preterm birth rates in the year 2010 with time trends since 1990 for selected countries: a systematic analysis and implications
  publication-title: Lancet
  doi: 10.1016/S0140-6736(12)60820-4
– volume: 5
  start-page: 1
  year: 2011
  ident: ref20
  article-title: Onset of pup locomotion coincides with loss of NR2C/D-mediated cortico-striatal EPSCs and dampening of striatal network immature activity
  publication-title: Front. Cell. Neurosci.
  doi: 10.3389/fncel.2011.00024
– volume: 18
  start-page: 1
  year: 2017
  ident: ref60
  article-title: Neurologic consequences of preterm birth
  publication-title: Curr. Neurol. Neurosci. Rep.
  doi: 10.1007/s11910-018-0862-2
– volume: 11
  start-page: 161
  year: 2015
  ident: ref73
  article-title: Insulin and IGF receptor signalling in neural-stem-cell homeostasis
  publication-title: Nat. Rev. Endocrinol.
  doi: 10.1038/nrendo.2014.208
– volume: 8
  start-page: 517207
  year: 2020
  ident: ref38
  article-title: Randomized control trial of postnatal rh IGF-1/rhIGFBP-3 replacement in preterm infants: post-hoc analysis of its effect on brain injury
  publication-title: Front. Pediatr.
  doi: 10.3389/fped.2020.517207
– volume: 25
  start-page: 2941
  year: 2005
  ident: ref66
  article-title: The roles of the caudate nucleus in human classification learning
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.3401-04.2005
– volume: 93
  start-page: 666
  year: 2022
  ident: ref31
  article-title: Postnatal serum IGF-1 levels associate with brain volumes at term in extremely preterm infants
  publication-title: Pediatr. Res.
  doi: 10.1038/s41390-022-02134-4
– volume: 117
  start-page: 1930
  year: 2006
  ident: ref46
  article-title: Postnatal head growth deficit among premature infants parallels retinopathy of prematurity and insulin-like growth factor-1 deficit
  publication-title: Pediatrics
  doi: 10.1542/peds.2005-1926
– volume: 25
  start-page: 181
  year: 2011
  ident: ref51
  article-title: IGF1 molecular anomalies demonstrate its critical role in fetal, postnatal growth and brain development
  publication-title: Best Pract. Res. Clin. Endocrinol. Metab.
  doi: 10.1016/j.beem.2010.08.005
– volume: 39
  start-page: 375
  year: 2017
  ident: ref48
  article-title: Developmental changes in expression of GABAA receptor subunits α1, α2, and α3 in the pig brain
  publication-title: Dev. Neurosci.
  doi: 10.1159/000468926
– volume: 13
  start-page: 37
  year: 1986
  ident: ref45
  article-title: Circulating insulin-like growth factor I levels in newborn premature and full-term infants followed longitudinally
  publication-title: Early Hum. Dev.
  doi: 10.1016/0378-3782(86)90096-4
– volume: 10
  start-page: 729
  year: 1993
  ident: ref16
  article-title: Insulin-like growth factor I increases brain growth and central nervous system myelination in tTransgenic mice
  publication-title: Neuron
  doi: 10.1016/0896-6273(93)90173-O
– volume: 27
  start-page: 375
  year: 1976
  ident: ref68
  article-title: Biphasic myelination and the fatty acid composition of Cerebrosides and cholesterol esters in the developing central nervous system of the domestic pig
  publication-title: J. Neurochem.
  doi: 10.1111/j.1471-4159.1976.tb12256.x
– volume: 220
  start-page: 104853
  year: 2019
  ident: ref62
  article-title: Neurological functioning and fear responses in low and normal birth weight piglets
  publication-title: Appl. Anim. Behav. Sci.
  doi: 10.1016/j.applanim.2019.104853
– volume: 6
  start-page: 275
  year: 2009
  ident: ref65
  article-title: SUnSET, a nonradioactive method to monitor protein synthesis
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1314
– volume: 80
  start-page: 2534
  year: 1995
  ident: ref39
  article-title: Serum levels of insulin-like growth factor (IGF)-binding protein-3 (IGFBP-3) in healthy infants, children, and adolescents: the relation to IGF-I, IGF-II, IGFBP-1, IGFBP-2, age, sex, body mass index, and pubertal maturation
  publication-title: J. Clin. Endocrinol. Metab.
  doi: 10.1210/jcem.80.8.7543116
– volume: 111
  start-page: 1592
  year: 2014
  ident: ref59
  article-title: Longitudinal four-dimensional mapping of subcortical anatomy in human development
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1316911111
– volume: 67
  start-page: 179
  year: 2013
  ident: ref53
  article-title: Striatal development involves a switch in gene expression networks, followed by a myelination event: implications for neuropsychiatric disease
  publication-title: Synapse
  doi: 10.1002/syn.21628
– volume: 55
  start-page: 400
  year: 2007
  ident: ref72
  article-title: Insulin-like growth factor type 1 receptor signaling in the cells of oligodendrocyte lineage is required for normal in vivo oligodendrocyte development and myelination
  publication-title: Glia
  doi: 10.1002/glia.20469
– volume: 49
  start-page: 1
  year: 1999
  ident: ref22
  article-title: Stereotaxic atlas of the pig brain
  publication-title: Brain Res. Bull.
  doi: 10.1016/S0361-9230(99)00012-X
– volume: 36
  start-page: 528
  year: 1994
  ident: ref7
  article-title: Ontogeny of insulin-like growth factor-binding protein-1, −2, and-3: quantitative measurements by radioimmunoassay in human fetal serum
  publication-title: Pediatr. Res.
  doi: 10.1203/00006450-199410000-00020
– volume: 91
  start-page: 4713
  year: 2013
  ident: ref64
  article-title: Invited review: the preterm pig as a model in pediatric gastroenterology
  publication-title: J. Anim. Sci.
  doi: 10.2527/jas.2013-6359
– volume: 10
  start-page: ENEURO.0430
  year: 2023
  ident: ref18
  article-title: Insulin-like growth factor-1 supplementation promotes brain maturation in preterm pigs
  publication-title: eNeuro
  doi: 10.1523/ENEURO.0430-22.2023
– volume: 6
  start-page: 551
  year: 1996
  ident: ref25
  article-title: Quantitative magnetic resonance imaging of human brain development: ages 4-18
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/6.4.551
– volume: 134
  start-page: 331
  year: 2017
  ident: ref4
  article-title: White matter injury in the preterm infant: pathology and mechanisms
  publication-title: Acta Neuropathol.
  doi: 10.1007/s00401-017-1718-6
– volume: 22
  start-page: 6041
  year: 2002
  ident: ref71
  article-title: Myelination is altered in insulin-like growth factor-I null mutant mice
  publication-title: J. Neurosci.
  doi: 10.1523/jneurosci.22-14-06041.2002
– volume: 78
  start-page: 137
  year: 2015
  ident: ref13
  article-title: Physical activity level is impaired and diet dependent in preterm newborn pigs
  publication-title: Pediatr. Res.
  doi: 10.1038/pr.2015.73
– volume: 22
  start-page: 455
  year: 2002
  ident: ref5
  article-title: Selective vulnerability of late oligodendrocyte progenitors to hypoxia-ischemia
  publication-title: J. Neurosci.
  doi: 10.1523/jneurosci.22-02-00455.2002
– volume: 15
  start-page: 7344
  year: 1995
  ident: ref70
  article-title: In vivo actions of insulin-like growth factor-I (IGF-I) on brain myelination: studies of IGF-I and IGF binding protein-1 (IGFBP-1) transgenic mice
  publication-title: J. Neurosci.
  doi: 10.1523/jneurosci.15-11-07344.1995
– volume: 86
  start-page: 141
  year: 2008
  ident: ref28
  article-title: The cognitive functions of the caudate nucleus
  publication-title: Prog. Neurobiol.
  doi: 10.1016/j.pneurobio.2008.09.004
– volume: 74
  start-page: 564
  year: 2013
  ident: ref30
  article-title: Circulatory insulin-like growth factor-I and brain volumes in relation to neurodevelopmental outcome in very preterm infants
  publication-title: Pediatr. Res.
  doi: 10.1038/pr.2013.135
– volume: 9
  start-page: 1
  year: 2015
  ident: ref49
  article-title: Blood-brain barrier dysfunction in disorders of the developing brain
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2015.00040
– volume: 25
  start-page: 1028
  year: 2011
  ident: ref26
  article-title: Novel insights into the regulation of skeletal muscle protein synthesis as revealed by a new nonradioactive in vivo technique
  publication-title: FASEB J.
  doi: 10.1096/fj.10-168799
SSID ssj0062842
Score 2.3682933
Snippet Preterm infants have increased risk of impaired neurodevelopment to which reduced systemic levels of insulin-like growth factor 1 (IGF-1) in the weeks after...
IntroductionPreterm infants have increased risk of impaired neurodevelopment to which reduced systemic levels of insulin-like growth factor 1 (IGF-1) in the...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1205819
SubjectTerms caudate nucleus
hippocampus
IGF-1
motor function
myelination
Neuroscience
preterm neonates
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT1wQtDwWWmQkxAWFxo7jx7GgVgUJTlTqLYrjcRvReld0e-i_74ydXe2iCi4c4ziyM9_YnrHH3zD2HlTrVQ-yUm0NlRpUwCFVtxUl69a26Z3JbPvff-jTM_XtvD3fSPVFMWGFHrgI7lAFG70UfbAalK-dF96aJtYq6lqZAWj2xTVv5UyVOVjjpCvLFRl0wdxhTGMibm7ZfBKybi3x6mwsQ5mt_yET889IyY2l5-QpezLZjPyo9PUZewRpl-0dJfSXr-_4B56jOPP2-B5bfC3B5dXV-Av4BTrZy0tekupwwW8oh2eJFydA8jMdGXAEDCsMc3RFx7I_yPsUeF-iPfj1HV1bL-Vj4hSkiDM6X4wXN8_Z2cnxzy-n1ZRVoRrQFV5WvRgaUGDlgGNRWzAqQvDeOu0ATJAoay9EFG2QSkuDiBkDg4itk2j7CWhesJ00T_CKce1ckDZoI1RUjVEIEtpXzkXn-z4KNWNiJeRumCjHKfPFVYeuBwHTZWA6AqabgJmxj-tvFoVw46-1PxN265pElp0LUIW6SYW6f6nQjL1bId_h4KITkz7B_Babsk2jUQqtmLGXRRPWTeH_0mE4vrFbOrLVl-03abzMBN45tQZ6pq__R-_fsMckEQpfE26f7Sx_38IBGkpL_zaPiXsn3hP4
  priority: 102
  providerName: Directory of Open Access Journals
Title Insulin-like growth factor 1 supplementation supports motor coordination and affects myelination in preterm pigs
URI https://www.ncbi.nlm.nih.gov/pubmed/37404461
https://www.proquest.com/docview/2833646251
https://pubmed.ncbi.nlm.nih.gov/PMC10315495
https://doaj.org/article/4d8fb21ad86e4b09b1b873f04f6047ce
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELem7YUXBIyP8lEZCfGCMuLEsZ0HhDa0MZA2IUSlvkV2bHcRnVvaTqL_PXd2WlE0kHiJFMeJY_98tn--8x0hrxyvDNeuyHiVu4y33IJI5VWGwbqFKnUto7f9i0txPuKfx9V4j2zCHfUNuLyV2mE8qdFievTzx_o9CPw7ZJww3771oQvoebsoj1iRVwq9gB7AzCSwl1_wrVZBwFActZ8CTwpV5TgdovnLN3YmqujP_7ZF6J-2lL9NTmf3yN1-VUmPUze4T_ZceEAOjwMw6us1fU2jnWfcQD8k80_J_Dybdt8dnQANX13RFHaHMrrEKJ_Johwhi_eoVKAAKWRoZ0BWu7SDSHWwVCd7EHq9xoPtKb0LFM0YYcyn826yfEhGZ6ffPpxnfdyFrAWyvMo0a0vHnSpakFahnOTeWWNULWrnpC0Kpg1jnlW24KKQgKmUrmW-qgtYHTJXPiL7YRbcE0JFXdtCWSEZ97yUXFugM0CyfG209owPCNs0ctP2TskxNsa0AXKCwDQRmAaBaXpgBuTN9p15csnxz9wniN02J7rTjgmzxaTppbPhVnkD1bJKOG7y2jCjZOlz7kXOZesG5OUG-QbED3UqOrjZDRSlylJAK1RsQB6nnrAtCuqL6nJ4onb6yM6_7D4J3VV08R2DbwB3ffpfdX1G7uAtWrKx-jnZXy1u3AtYM63MkBycnF5--TqMew5w_ThmwygcvwD0fhkd
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Insulin-like+growth+factor+1+supplementation+supports+motor+coordination+and+affects+myelination+in+preterm+pigs&rft.jtitle=Frontiers+in+neuroscience&rft.au=Christiansen%2C+Line+I.&rft.au=Ventura%2C+Gemma+C.&rft.au=Holmqvist%2C+Bo&rft.au=Aasmul-Olsen%2C+Karoline&rft.date=2023-06-19&rft.issn=1662-453X&rft.eissn=1662-453X&rft.volume=17&rft_id=info:doi/10.3389%2Ffnins.2023.1205819&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fnins_2023_1205819
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-453X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-453X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-453X&client=summon