Through-Wall UWB Radar Based on Sparse Deconvolution with Arctangent Regularization for Locating Human Subjects

A common problem in through-wall radar is reflected signals much attenuated by wall and environmental noise. The reflected signal is a convolution product of a wavelet and an unknown object time series. This paper aims to extract the object time series from a noisy receiving signal of through-wall u...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 21; no. 7; p. 2488
Main Authors Rittiplang, Artit, Phasukkit, Pattarapong
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 03.04.2021
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A common problem in through-wall radar is reflected signals much attenuated by wall and environmental noise. The reflected signal is a convolution product of a wavelet and an unknown object time series. This paper aims to extract the object time series from a noisy receiving signal of through-wall ultrawideband (UWB) radar by sparse deconvolution based on arctangent regularization. Arctangent regularization is one of the suitably nonconvex regularizations that can provide a reliable solution and more accuracy, compared with convex regularizations. An iterative technique for this deconvolution problem is derived by the majorization–minimization (MM) approach so that the problem can be solved efficiently. In the various experiments, sparse deconvolution with the arctangent regularization can identify human positions from the noisy received signals of through- wall UWB radar. Although the proposed method is an odd concept, the interest of this paper is in applying sparse deconvolution, based on arctangent regularization with an S-band UWB radar, to provide a more accurate detection of a human position behind a concrete wall.
AbstractList A common problem in through-wall radar is reflected signals much attenuated by wall and environmental noise. The reflected signal is a convolution product of a wavelet and an unknown object time series. This paper aims to extract the object time series from a noisy receiving signal of through-wall ultrawideband (UWB) radar by sparse deconvolution based on arctangent regularization. Arctangent regularization is one of the suitably nonconvex regularizations that can provide a reliable solution and more accuracy, compared with convex regularizations. An iterative technique for this deconvolution problem is derived by the majorization–minimization (MM) approach so that the problem can be solved efficiently. In the various experiments, sparse deconvolution with the arctangent regularization can identify human positions from the noisy received signals of through- wall UWB radar. Although the proposed method is an odd concept, the interest of this paper is in applying sparse deconvolution, based on arctangent regularization with an S-band UWB radar, to provide a more accurate detection of a human position behind a concrete wall.
A common problem in through-wall radar is reflected signals much attenuated by wall and environmental noise. The reflected signal is a convolution product of a wavelet and an unknown object time series. This paper aims to extract the object time series from a noisy receiving signal of through-wall ultrawideband (UWB) radar by sparse deconvolution based on arctangent regularization. Arctangent regularization is one of the suitably nonconvex regularizations that can provide a reliable solution and more accuracy, compared with convex regularizations. An iterative technique for this deconvolution problem is derived by the majorization-minimization (MM) approach so that the problem can be solved efficiently. In the various experiments, sparse deconvolution with the arctangent regularization can identify human positions from the noisy received signals of through- wall UWB radar. Although the proposed method is an odd concept, the interest of this paper is in applying sparse deconvolution, based on arctangent regularization with an S-band UWB radar, to provide a more accurate detection of a human position behind a concrete wall.A common problem in through-wall radar is reflected signals much attenuated by wall and environmental noise. The reflected signal is a convolution product of a wavelet and an unknown object time series. This paper aims to extract the object time series from a noisy receiving signal of through-wall ultrawideband (UWB) radar by sparse deconvolution based on arctangent regularization. Arctangent regularization is one of the suitably nonconvex regularizations that can provide a reliable solution and more accuracy, compared with convex regularizations. An iterative technique for this deconvolution problem is derived by the majorization-minimization (MM) approach so that the problem can be solved efficiently. In the various experiments, sparse deconvolution with the arctangent regularization can identify human positions from the noisy received signals of through- wall UWB radar. Although the proposed method is an odd concept, the interest of this paper is in applying sparse deconvolution, based on arctangent regularization with an S-band UWB radar, to provide a more accurate detection of a human position behind a concrete wall.
Author Phasukkit, Pattarapong
Rittiplang, Artit
AuthorAffiliation School of Engineering, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand; 59601306@kmitl.ac.th
AuthorAffiliation_xml – name: School of Engineering, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand; 59601306@kmitl.ac.th
Author_xml – sequence: 1
  givenname: Artit
  surname: Rittiplang
  fullname: Rittiplang, Artit
– sequence: 2
  givenname: Pattarapong
  orcidid: 0000-0003-2387-6059
  surname: Phasukkit
  fullname: Phasukkit, Pattarapong
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33916649$$D View this record in MEDLINE/PubMed
BookMark eNptkk1r3DAQhkVJaT7aQ_9AMfTSHrbRl2X5UkjSjwQWCmlCjkKWR14tWmkj2Sntr6-ymy5J6EnSzDMvM-_oEO2FGAChtwR_YqzFx5kS3FAu5Qt0QDjlM0kp3nt030eHOS8xpowx-QrtlyoiBG8PULxapDgNi9mN9r66vjmtLnWvU3WqM_RVDNXPtU4Zqi9gYriLfhpdCf5y46I6SWbUYYAwVpcwTF4n90dv0jamah5NeYShOp9WushM3RLMmF-jl1b7DG8eziN0_e3r1dn5bP7j-8XZyXxmuGjHWWs5wb0VnelB15hxkDVta6k7SrmtgTIwlluB20Y2RFoiMOU92IYAZkxwdoQutrp91Eu1Tm6l028VtVObQEyD0ml0xoMCKnEvTF9LyzmlTEpCdVfbmgJtgTRF6_NWaz11K-hNmThp_0T0aSa4hRrinZKYyWJ4EfjwIJDi7QR5VCuXDXivA8QpK1pTLAVpWlbQ98_QZZxSKFYVqhhBBSP31LvHHe1a-bfXAnzcAibFnBPYHULwPYXV7s8U9vgZa9y4WWQZxvn_VPwFcRHCEQ
CitedBy_id crossref_primary_10_1109_TIM_2022_3204092
crossref_primary_10_1109_JSEN_2023_3266231
crossref_primary_10_3390_inventions7030079
crossref_primary_10_1002_mop_34034
crossref_primary_10_1109_JSEN_2023_3334917
Cites_doi 10.1109/TSP.2014.2298839
10.1109/LSP.2015.2406314
10.3390/s100301743
10.3390/s18010311
10.3390/geosciences8120497
10.3390/s20102844
10.1109/ACCESS.2019.2899131
10.1109/LGRS.2013.2292955
10.3390/s19235065
10.1109/TIM.2010.2047551
10.3390/s20236828
10.1109/TGRS.2018.2886741
10.1109/COMCAS.2008.4562803
10.3390/s20102916
10.3390/s17010174
10.1109/TIP.2007.904387
10.1109/TAP.2010.2050424
10.1109/ACCESS.2019.2932612
10.1007/s12517-019-4686-4
10.1109/ACCESS.2019.2950423
10.1109/TIP.2007.909318
10.3390/s17030542
10.1109/MAES.2014.130137
10.1364/OPTICA.4.001514
10.1109/TUFFC.2016.2609141
10.1109/LSP.2014.2349356
10.3390/geosciences9020096
10.1109/TCI.2018.2875375
10.1109/TAP.2012.2207663
10.3390/s150306924
10.1109/ARRAY.2010.5613313
10.1086/342606
10.1109/JMMCT.2019.2953880
10.1109/TSP.2020.2975935
10.1109/ACCESS.2019.2960865
10.1109/TIP.2016.2518862
10.3390/s19184029
10.3390/en13123074
10.3390/s20133750
10.1109/ACCESS.2018.2880454
10.3390/app11010424
10.1109/TGRS.2012.2189777
10.1109/JSTSP.2016.2543462
10.3390/s18092918
10.1109/ARRAY.2010.5613314
10.1109/BMEiCON47515.2019.8990358
10.1109/TSP.2014.2329274
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 by the authors. 2021
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 by the authors. 2021
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s21072488
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central (New)
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
Publicly Available Content Database

MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_e280d6cd58f442238812ab5f52e29e17
PMC8038338
33916649
10_3390_s21072488
Genre Journal Article
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
ABJCF
ARAPS
CGR
CUY
CVF
ECM
EIF
HCIFZ
KB.
M7S
NPM
PDBOC
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c469t-9f410df6bcdea5034e852958ab224f5e23ecf4f60978718f16024def71e033643
IEDL.DBID 7X7
ISSN 1424-8220
IngestDate Wed Aug 27 01:22:07 EDT 2025
Thu Aug 21 13:34:42 EDT 2025
Tue Aug 05 11:03:47 EDT 2025
Fri Jul 25 20:03:52 EDT 2025
Wed Feb 19 02:27:46 EST 2025
Thu Apr 24 22:55:53 EDT 2025
Tue Jul 01 03:56:09 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords through-wall radar
majorization–minimization (MM) algorithm
arctangent regularization
sparse deconvolution
UWB radar
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c469t-9f410df6bcdea5034e852958ab224f5e23ecf4f60978718f16024def71e033643
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2387-6059
OpenAccessLink https://www.proquest.com/docview/2550326313?pq-origsite=%requestingapplication%
PMID 33916649
PQID 2550326313
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_e280d6cd58f442238812ab5f52e29e17
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8038338
proquest_miscellaneous_2520861793
proquest_journals_2550326313
pubmed_primary_33916649
crossref_primary_10_3390_s21072488
crossref_citationtrail_10_3390_s21072488
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210403
PublicationDateYYYYMMDD 2021-04-03
PublicationDate_xml – month: 4
  year: 2021
  text: 20210403
  day: 3
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2021
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Zhang (ref_29) 2019; 7
Chen (ref_33) 2014; 62
Charvat (ref_38) 2010; 58
ref_36
Moghaddam (ref_1) 2019; 12
ref_12
Gholami (ref_19) 2012; 50
Ding (ref_22) 2015; 22
ref_10
Uysal (ref_18) 2014; 29
Jazayeri (ref_25) 2019; 57
Zha (ref_8) 2015; 15
Wu (ref_21) 2019; 4
ref_17
Eom (ref_14) 2018; 18
Rittiplang (ref_45) 2020; 20
Lu (ref_13) 2017; 17
Wen (ref_20) 2018; 6
Duan (ref_24) 2016; 63
Marks (ref_5) 2017; 4
Ndoye (ref_30) 2016; 25
Wang (ref_16) 2019; 7
Jacobson (ref_34) 2007; 16
Figueiredo (ref_35) 2007; 16
ref_47
Li (ref_23) 2014; 11
ref_46
Chi (ref_27) 2016; 10
Selesnick (ref_32) 2014; 22
ref_44
Fors (ref_15) 2010; 10
ref_43
ref_42
ref_41
ref_40
Wang (ref_11) 2010; 59
Iqbal (ref_4) 2019; 7
ref_3
Xie (ref_28) 2020; 68
Charvat (ref_39) 2012; 60
ref_2
Starck (ref_9) 2002; 114
Selesnick (ref_37) 2014; 62
Mansour (ref_26) 2018; 4
ref_48
ref_7
Zheng (ref_31) 2019; 7
ref_6
References_xml – volume: 62
  start-page: 1078
  year: 2014
  ident: ref_37
  article-title: Sparse Signal Estimation by Maximally Sparse Convex Optimization
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2014.2298839
– volume: 22
  start-page: 1364
  year: 2015
  ident: ref_22
  article-title: Artifact-Free Wavelet Denoising: Non-convex Sparse Regularization, Convex Optimization
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2015.2406314
– volume: 10
  start-page: 1743
  year: 2010
  ident: ref_15
  article-title: Improving the Ability of Image Sensors to Detect Faint Stars and Moving Objects Using Image Deconvolution Techniques
  publication-title: Sensors
  doi: 10.3390/s100301743
– ident: ref_42
  doi: 10.3390/s18010311
– ident: ref_17
  doi: 10.3390/geosciences8120497
– ident: ref_10
  doi: 10.3390/s20102844
– volume: 7
  start-page: 23740
  year: 2019
  ident: ref_4
  article-title: Sparse Multichannel Blind Deconvolution of Seismic Data via Spectral Projected-Gradient
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2899131
– volume: 11
  start-page: 1330
  year: 2014
  ident: ref_23
  article-title: Sparsity-Promoted Blind Deconvolution of Ground-Penetrating Radar (GPR) Data
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2013.2292955
– ident: ref_6
  doi: 10.3390/s19235065
– volume: 59
  start-page: 3237
  year: 2010
  ident: ref_11
  article-title: A Deconvolutive Neural Network for Speech Classification with Applications to Home Service Robot
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2010.2047551
– ident: ref_48
  doi: 10.3390/s20236828
– volume: 57
  start-page: 3703
  year: 2019
  ident: ref_25
  article-title: Sparse Blind Deconvolution of Ground Penetrating Radar Data
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2018.2886741
– ident: ref_47
  doi: 10.1109/COMCAS.2008.4562803
– volume: 20
  start-page: 2916
  year: 2020
  ident: ref_45
  article-title: Optimal Central Frequency for Non-Contact Vital Sign Detection Using Monocycle UWB Radar
  publication-title: Sensors
  doi: 10.3390/s20102916
– ident: ref_12
  doi: 10.3390/s17010174
– volume: 16
  start-page: 2411
  year: 2007
  ident: ref_34
  article-title: An Expanded Theoretical Treatment of Iteration-Dependent Majorize-Minimize Algorithms
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2007.904387
– volume: 58
  start-page: 2594
  year: 2010
  ident: ref_38
  article-title: A Through-Dielectric Radar Imaging System
  publication-title: IEEE Trans. Antennas Propag.
  doi: 10.1109/TAP.2010.2050424
– volume: 7
  start-page: 105247
  year: 2019
  ident: ref_29
  article-title: Sparse with Fast MM Superresolution Algorithm for Radar Forward-Looking Imaging
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2932612
– volume: 12
  start-page: 627
  year: 2019
  ident: ref_1
  article-title: The comparative sense of sparse deconvolution and least-squares deconvolution methods in increasing the temporal resolution of GPR data
  publication-title: Arab. J. Geosci.
  doi: 10.1007/s12517-019-4686-4
– volume: 7
  start-page: 158492
  year: 2019
  ident: ref_16
  article-title: Noncontact Heart Rate Measurement Based on an Improved Convolutional Sparse Coding Method Using IR-UWB Radar
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2950423
– volume: 16
  start-page: 2980
  year: 2007
  ident: ref_35
  article-title: Majorization–Minimization Algorithms for Wavelet-Based Image Restoration
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2007.909318
– volume: 17
  start-page: 542
  year: 2017
  ident: ref_13
  article-title: High Resolution Turntable Radar Imaging via two dimensional deconvolution with Matrix Completion
  publication-title: Sensors
  doi: 10.3390/s17030542
– volume: 29
  start-page: 37
  year: 2014
  ident: ref_18
  article-title: Dynamic clutter mitigation using sparse optimization
  publication-title: IEEE Aerosp. Electron. Syst. Mag.
  doi: 10.1109/MAES.2014.130137
– volume: 4
  start-page: 1514
  year: 2017
  ident: ref_5
  article-title: Sparse blind deconvolution for imaging through layered media
  publication-title: Optica
  doi: 10.1364/OPTICA.4.001514
– volume: 63
  start-page: 2045
  year: 2016
  ident: ref_24
  article-title: Increasing Axial Resolution of Ultrasonic Imaging with a Joint Sparse Representation Model
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control.
  doi: 10.1109/TUFFC.2016.2609141
– volume: 22
  start-page: 141
  year: 2014
  ident: ref_32
  article-title: Convex 1-D Total Variation Denoising with Non-convex Regularization
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2014.2349356
– ident: ref_2
  doi: 10.3390/geosciences9020096
– volume: 4
  start-page: 537
  year: 2018
  ident: ref_26
  article-title: Sparse Blind Deconvolution for Distributed Radar Autofocus Imaging
  publication-title: IEEE Trans. Comput. Imaging
  doi: 10.1109/TCI.2018.2875375
– volume: 60
  start-page: 5495
  year: 2012
  ident: ref_39
  article-title: A Through-Dielectric Ultrawideband (UWB) Switched-Antenna-Array Radar Imaging System
  publication-title: IEEE Trans. Antennas Propag.
  doi: 10.1109/TAP.2012.2207663
– volume: 15
  start-page: 6924
  year: 2015
  ident: ref_8
  article-title: Bayesian Deconvolution for Angular Super-Resolution in Forward-Looking Scanning Radar
  publication-title: Sensors
  doi: 10.3390/s150306924
– ident: ref_40
  doi: 10.1109/ARRAY.2010.5613313
– volume: 114
  start-page: 1051
  year: 2002
  ident: ref_9
  article-title: Deconvolution in astronomy: A review
  publication-title: Publ. Astron. Soc. Pac.
  doi: 10.1086/342606
– volume: 4
  start-page: 290
  year: 2019
  ident: ref_21
  article-title: An Efficient Method on ISAR Image Reconstruction via Norm Regularization
  publication-title: IEEE J. Multiscale Multiphys. Comput. Tech.
  doi: 10.1109/JMMCT.2019.2953880
– volume: 68
  start-page: 1884
  year: 2020
  ident: ref_28
  article-title: Support Recovery for Sparse Signals with Unknown Non-Stationary Modulation
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2020.2975935
– volume: 7
  start-page: 184923
  year: 2019
  ident: ref_31
  article-title: Joint Optimization of Transmit Waveform and Receive Filter for Target Detection in MIMO Radar
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2960865
– volume: 25
  start-page: 2206
  year: 2016
  ident: ref_30
  article-title: An MM-Based Algorithm for -Regularized Least-Squares Estimation with an Application to Ground Penetrating Radar Image Reconstruction
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2016.2518862
– ident: ref_7
  doi: 10.3390/s19184029
– ident: ref_3
  doi: 10.3390/en13123074
– ident: ref_44
  doi: 10.3390/s20133750
– volume: 6
  start-page: 69883
  year: 2018
  ident: ref_20
  article-title: A Survey on Nonconvex Regularization-Based Sparse and Low-Rank Recovery in Signal Processing, Statistics, and Machine Learning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2880454
– ident: ref_46
  doi: 10.3390/app11010424
– volume: 50
  start-page: 4105
  year: 2012
  ident: ref_19
  article-title: A Fast and Automatic Sparse Deconvolution in the Presence of Outliers
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2012.2189777
– volume: 10
  start-page: 782
  year: 2016
  ident: ref_27
  article-title: Guaranteed Blind Sparse Spikes Deconvolution via Lifting and Convex Optimization
  publication-title: IEEE J. Sel. Top. Signal Process.
  doi: 10.1109/JSTSP.2016.2543462
– volume: 18
  start-page: 2918
  year: 2018
  ident: ref_14
  article-title: Three-Dimensional High-Resolution Digital Inline Hologram Reconstruction with a Volumetric Deconvolution Method
  publication-title: Sensors
  doi: 10.3390/s18092918
– ident: ref_36
– ident: ref_41
  doi: 10.1109/ARRAY.2010.5613314
– ident: ref_43
  doi: 10.1109/BMEiCON47515.2019.8990358
– volume: 62
  start-page: 3464
  year: 2014
  ident: ref_33
  article-title: Group-Sparse Signal Denoising: Non-Convex Regularization, Convex Optimization
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2014.2329274
SSID ssj0023338
Score 2.3503053
Snippet A common problem in through-wall radar is reflected signals much attenuated by wall and environmental noise. The reflected signal is a convolution product of a...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 2488
SubjectTerms Algorithms
arctangent regularization
Human subjects
Humans
majorization–minimization (MM) algorithm
Noise
Numerical analysis
Optimization
Radar
Research Design
Research Subjects
Respiration
sparse deconvolution
Sparsity
through-wall radar
UWB radar
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hnuCAeLQQKMhUHHqJGj_iOMcuUFUIeihdtbfI8QOQUFLtbvn9nXGy6W5ViQvXeBQ543G--caeGYCPreaOOh3lJnCVI_-qcsu9z4OP0tWtcNpSNvL3M306V1-vyquNVl90J2woDzwo7igIU3jtfGmiUohlBhHJtmUsRRB14CmPHDFvTaZGqiWReQ11hCSS-qMlEptKqNRe5Q59UpH-hzzL-xckNxDn5Bk8HV1FdjxM8Tk8Ct0LeLJRQPAl9BdDm52c4uFsfjlj59bbBZshNnnWd-zHNRLXwD4T7f07Whmj2Cu-1q1sSqxi56kf_WLMyGToxrJvPYXyup8sBfkZ_l4oXrPchfnJl4tPp_nYQiF3qPdVXkfFCx9163ywZSFVMHSyZ2yL0B3LIGRwUUVN2RyIUpFrxGwfYsVDISV6K3uw0_VdeA3MOBtFG2vneVStUNYisZbGei0K64sqg8O1ahs31henNhd_GuQZtArNtAoZHEyi10NRjYeEZrQ-kwDVwU4P0Dqa0Tqaf1lHBvvr1W3GzblskEUV6LVKLjP4MA3jtqKzEtuF_oZkBJI9-ntl8GowhmkmkpKVtaozqLbMZGuq2yPd71-pdLdBjaFpvvkf3_YWHgu6YEPXiOQ-7KwWN-Edekir9n3aDLe9sRAB
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9RADLZKucAB8W6goAFx4BLIPDKZHBBigapClEPpit6iyTwKUpWU7BbBv8dOslGDVlwzVuSM7difZ2wDvKg1dzTpKDWBqxTxV5Fa7n0afJSurIXTlqqRj77ow6X6dJqf7sBmxua4gaut0I7mSS2781e_f_55iwb_hhAnQvbXK4QthUBNvAbX0SEVZJ9HajpMEBJh2NBUaE4-c0V9x_5tYea_tyWvuJ-D23BrjBvZu0HQd2AnNHfh5pVugvegPRlm7qSUHGfLbwt2bL3t2AIdlWdtw75e4KcG9oEw8K9R5RglYvG1bm37Kit23A-n78byTIYxLfvcUl6vOWN9xp_hv4aSN6v7sDz4ePL-MB3nKaQOhbBOy6h45qOunQ82z6QKho75jK3Rj8c8CBlcVFFTaQe6rMg1OnAfYsFDJiWGLg9gt2mbsAfMOBtFHUvneVS1UNYiypbGei0y67MigZebra3c2GycZl6cVwg6SArVJIUEnk-kF0OHjW1EC5LPREBNsfsHbXdWjTZWBWEyr53PTVQKwx6DwYut85iLIMrAkan9jXSrjaJVCKkyDGEllwk8m5bRxujgxDahvSQagciPfmUJPByUYeJEUuWyVmUCxUxNZqzOV5of3_s-3gZ3DFXz0f_Zegw3BN2jodtCch92191leIKB0Lp-2qv5X0vPCX8
  priority: 102
  providerName: Scholars Portal
Title Through-Wall UWB Radar Based on Sparse Deconvolution with Arctangent Regularization for Locating Human Subjects
URI https://www.ncbi.nlm.nih.gov/pubmed/33916649
https://www.proquest.com/docview/2550326313
https://www.proquest.com/docview/2520861793
https://pubmed.ncbi.nlm.nih.gov/PMC8038338
https://doaj.org/article/e280d6cd58f442238812ab5f52e29e17
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagvcAB8SZQVgZx4BI1fiRxToilXSpEK7R0xd4ix49SqUqW3S2_nxnHm-1WFZccEiuyPGPP943nQciHpmAGOx2lyjGZAv8qU82sTZ31wlQNN4XGbOTTs-JkJr_N83l0uK1iWOXmTAwHte0M-sgPAfpmADUEE58Wf1LsGoW3q7GFxn2yj6XLMKSrnG8JlwD-1VcTEkDtD1dAb0ouQ5OVrQ0Kpfrvwpe3wyRv2J3JY_IoAkb6uZfwE3LPtU_JwxtlBJ-R7rxvtpOiV5zOfo3pVFu9pGOwUJZ2Lf25APrq6BGS379R1yh6YOG3Zq1DehWdhq70y5iXSQHM0u8dOvTaCxpc_RQOGfTarJ6T2eT4_MtJGhsppAZWf51WXrLM-qIx1mlYRukU3u8p3YAB97njwhkvfYE5HWCrPCvAclvnS-YyIQCzvCB7bde6V4Qqoz1vfGUs87LhUmug10JpW_BM26xMyMfN0tYmVhnHZhdXNbANlEI9SCEh74ehi760xl2DxiifYQBWww4vuuVFHTdX7bjKbGFsrryUgHcUoBbd5D7njleOwaQONtKt4xZd1VuFSsi74TNsLrwx0a3rrnEMB8qHZ1hCXvbKMMxEYMpyIauElDtqsjPV3S_t5e9QwFvBioFqvv7_tN6QBxwDaDBMSByQvfXy2r0FBLRuRkHN4akmX0dkf3x89mM6Ct4EeJ5K9Q-yiQxZ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VcgAOiDeGAgsCiYtVe3f9OiBEKFVK0x5KInIz632klZAdkhTEn-I3MuNXGlRx69VerUY7szPzzc4D4HURh5omHfmpDaWP-CvxVWiMb40TOiu4jhVVIx8dx8OJ_DyNplvwp6uFobTKTifWitpUmmLku-j6BuhqiFC8n__waWoUva52IzQasTi0v38hZFu-O9hD_r7hfP_T-OPQb6cK-BpJWfmZk2FgXFxoYxXuKW1Kj12pKtCauchyYbWTLqYCB1TcLozRjBnrktAGQqABx32vwXU0vAHdqGS6BngC8V7TvUiILNhdIpxKuKyHuqxtXj0a4DJ_9t-0zAt2bv8O3G4dVPahkai7sGXLe3DrQtvC-1CNm-E-PkXh2eTrgJ0ooxZsgBbRsKpkX-YIly3bI7D9s5VtRhFf3FavVF3OxU7sjFJg2zpQhs4zG1UUQCxnrH5aYKjUKEq0fACTKznih7BdVqV9DCzVyvHCZdqEThZcKoVwXqTKxDxQJkg8eNsdba7bruY0XON7juiGuJD3XPDgVb903rTyuGzRgPjTL6Du2_WHajHL28ucW54GJtYmSp2U6F-l6CWpInIRtzyzIRK103E3b1XCMl8LsAcv-994memFRpW2Oqc1HCEm6UwPHjXC0FMiqEQ6lpkHyYaYbJC6-ac8O60bhqd4YiiaT_5P1gu4MRwfjfLRwfHhU7jJKXmHUpTEDmyvFuf2GXpfq-J5LfIMvl31HfsLkoFECQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9NAEB6VIiF4QNwYCiwIJF6s2Lvr6wEhQohaWipUGpE3s94jrYTskKQg_hq_jhlfaVDFW1_t1Wq0O9c3OwfAyyIONU068lMbSh_xV-Kr0BjfGid0VnAdK6pG_nQY707kx2k03YI_XS0MpVV2OrFW1KbSFCMfoOsboKshQjFwbVrE59H47fyHTxOk6KW1G6fRsMi-_f0L4dvyzd4I7_oV5-MPx-93_XbCgK-RrJWfORkGxsWFNlbh_tKm9PCVqgItm4ssF1Y76WIqdkAl7sIYTZqxLgltIAQac9z3ClxNRBSSjCXTNdgTiP2aTkZCZMFgidAq4bIe8LK2f_WYgIt8239TNM_ZvPEtuNk6q-xdw123YcuWd-DGuRaGd6E6bgb9-BSRZ5OvQ3akjFqwIVpHw6qSfZkjdLZsRMD7Z8vnjKK_uK1eqbq0ix3ZGaXDtjWhDB1pdlBRMLGcsfqZgaGCo4jR8h5MLuWI78N2WZX2IbBUK8cLl2kTOllwqRRCe5EqE_NAmSDx4HV3tLluO5zToI3vOSIduoW8vwUPXvRL501bj4sWDel--gXUibv-UC1meSvYueVpYGJtotRJib5Wih6TKiIXccszGyJRO93t5q16WOZrZvbgef8bBZtea1RpqzNawxFukv704EHDDD0lgsqlY5l5kGywyQapm3_K05O6eXiKJ4as-ej_ZD2Dayhd-cHe4f5juM4pj4eylcQObK8WZ_YJOmKr4mnN8Qy-XbaI_QWAvkg_
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Through-Wall+UWB+Radar+Based+on+Sparse+Deconvolution+with+Arctangent+Regularization+for+Locating+Human+Subjects&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Rittiplang%2C+Artit&rft.date=2021-04-03&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=21&rft.issue=7&rft.spage=2488&rft_id=info:doi/10.3390%2Fs21072488&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon