Through-Wall UWB Radar Based on Sparse Deconvolution with Arctangent Regularization for Locating Human Subjects
A common problem in through-wall radar is reflected signals much attenuated by wall and environmental noise. The reflected signal is a convolution product of a wavelet and an unknown object time series. This paper aims to extract the object time series from a noisy receiving signal of through-wall u...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 21; no. 7; p. 2488 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
03.04.2021
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A common problem in through-wall radar is reflected signals much attenuated by wall and environmental noise. The reflected signal is a convolution product of a wavelet and an unknown object time series. This paper aims to extract the object time series from a noisy receiving signal of through-wall ultrawideband (UWB) radar by sparse deconvolution based on arctangent regularization. Arctangent regularization is one of the suitably nonconvex regularizations that can provide a reliable solution and more accuracy, compared with convex regularizations. An iterative technique for this deconvolution problem is derived by the majorization–minimization (MM) approach so that the problem can be solved efficiently. In the various experiments, sparse deconvolution with the arctangent regularization can identify human positions from the noisy received signals of through- wall UWB radar. Although the proposed method is an odd concept, the interest of this paper is in applying sparse deconvolution, based on arctangent regularization with an S-band UWB radar, to provide a more accurate detection of a human position behind a concrete wall. |
---|---|
AbstractList | A common problem in through-wall radar is reflected signals much attenuated by wall and environmental noise. The reflected signal is a convolution product of a wavelet and an unknown object time series. This paper aims to extract the object time series from a noisy receiving signal of through-wall ultrawideband (UWB) radar by sparse deconvolution based on arctangent regularization. Arctangent regularization is one of the suitably nonconvex regularizations that can provide a reliable solution and more accuracy, compared with convex regularizations. An iterative technique for this deconvolution problem is derived by the majorization–minimization (MM) approach so that the problem can be solved efficiently. In the various experiments, sparse deconvolution with the arctangent regularization can identify human positions from the noisy received signals of through- wall UWB radar. Although the proposed method is an odd concept, the interest of this paper is in applying sparse deconvolution, based on arctangent regularization with an S-band UWB radar, to provide a more accurate detection of a human position behind a concrete wall. A common problem in through-wall radar is reflected signals much attenuated by wall and environmental noise. The reflected signal is a convolution product of a wavelet and an unknown object time series. This paper aims to extract the object time series from a noisy receiving signal of through-wall ultrawideband (UWB) radar by sparse deconvolution based on arctangent regularization. Arctangent regularization is one of the suitably nonconvex regularizations that can provide a reliable solution and more accuracy, compared with convex regularizations. An iterative technique for this deconvolution problem is derived by the majorization-minimization (MM) approach so that the problem can be solved efficiently. In the various experiments, sparse deconvolution with the arctangent regularization can identify human positions from the noisy received signals of through- wall UWB radar. Although the proposed method is an odd concept, the interest of this paper is in applying sparse deconvolution, based on arctangent regularization with an S-band UWB radar, to provide a more accurate detection of a human position behind a concrete wall.A common problem in through-wall radar is reflected signals much attenuated by wall and environmental noise. The reflected signal is a convolution product of a wavelet and an unknown object time series. This paper aims to extract the object time series from a noisy receiving signal of through-wall ultrawideband (UWB) radar by sparse deconvolution based on arctangent regularization. Arctangent regularization is one of the suitably nonconvex regularizations that can provide a reliable solution and more accuracy, compared with convex regularizations. An iterative technique for this deconvolution problem is derived by the majorization-minimization (MM) approach so that the problem can be solved efficiently. In the various experiments, sparse deconvolution with the arctangent regularization can identify human positions from the noisy received signals of through- wall UWB radar. Although the proposed method is an odd concept, the interest of this paper is in applying sparse deconvolution, based on arctangent regularization with an S-band UWB radar, to provide a more accurate detection of a human position behind a concrete wall. |
Author | Phasukkit, Pattarapong Rittiplang, Artit |
AuthorAffiliation | School of Engineering, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand; 59601306@kmitl.ac.th |
AuthorAffiliation_xml | – name: School of Engineering, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand; 59601306@kmitl.ac.th |
Author_xml | – sequence: 1 givenname: Artit surname: Rittiplang fullname: Rittiplang, Artit – sequence: 2 givenname: Pattarapong orcidid: 0000-0003-2387-6059 surname: Phasukkit fullname: Phasukkit, Pattarapong |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33916649$$D View this record in MEDLINE/PubMed |
BookMark | eNptkk1r3DAQhkVJaT7aQ_9AMfTSHrbRl2X5UkjSjwQWCmlCjkKWR14tWmkj2Sntr6-ymy5J6EnSzDMvM-_oEO2FGAChtwR_YqzFx5kS3FAu5Qt0QDjlM0kp3nt030eHOS8xpowx-QrtlyoiBG8PULxapDgNi9mN9r66vjmtLnWvU3WqM_RVDNXPtU4Zqi9gYriLfhpdCf5y46I6SWbUYYAwVpcwTF4n90dv0jamah5NeYShOp9WushM3RLMmF-jl1b7DG8eziN0_e3r1dn5bP7j-8XZyXxmuGjHWWs5wb0VnelB15hxkDVta6k7SrmtgTIwlluB20Y2RFoiMOU92IYAZkxwdoQutrp91Eu1Tm6l028VtVObQEyD0ml0xoMCKnEvTF9LyzmlTEpCdVfbmgJtgTRF6_NWaz11K-hNmThp_0T0aSa4hRrinZKYyWJ4EfjwIJDi7QR5VCuXDXivA8QpK1pTLAVpWlbQ98_QZZxSKFYVqhhBBSP31LvHHe1a-bfXAnzcAibFnBPYHULwPYXV7s8U9vgZa9y4WWQZxvn_VPwFcRHCEQ |
CitedBy_id | crossref_primary_10_1109_TIM_2022_3204092 crossref_primary_10_1109_JSEN_2023_3266231 crossref_primary_10_3390_inventions7030079 crossref_primary_10_1002_mop_34034 crossref_primary_10_1109_JSEN_2023_3334917 |
Cites_doi | 10.1109/TSP.2014.2298839 10.1109/LSP.2015.2406314 10.3390/s100301743 10.3390/s18010311 10.3390/geosciences8120497 10.3390/s20102844 10.1109/ACCESS.2019.2899131 10.1109/LGRS.2013.2292955 10.3390/s19235065 10.1109/TIM.2010.2047551 10.3390/s20236828 10.1109/TGRS.2018.2886741 10.1109/COMCAS.2008.4562803 10.3390/s20102916 10.3390/s17010174 10.1109/TIP.2007.904387 10.1109/TAP.2010.2050424 10.1109/ACCESS.2019.2932612 10.1007/s12517-019-4686-4 10.1109/ACCESS.2019.2950423 10.1109/TIP.2007.909318 10.3390/s17030542 10.1109/MAES.2014.130137 10.1364/OPTICA.4.001514 10.1109/TUFFC.2016.2609141 10.1109/LSP.2014.2349356 10.3390/geosciences9020096 10.1109/TCI.2018.2875375 10.1109/TAP.2012.2207663 10.3390/s150306924 10.1109/ARRAY.2010.5613313 10.1086/342606 10.1109/JMMCT.2019.2953880 10.1109/TSP.2020.2975935 10.1109/ACCESS.2019.2960865 10.1109/TIP.2016.2518862 10.3390/s19184029 10.3390/en13123074 10.3390/s20133750 10.1109/ACCESS.2018.2880454 10.3390/app11010424 10.1109/TGRS.2012.2189777 10.1109/JSTSP.2016.2543462 10.3390/s18092918 10.1109/ARRAY.2010.5613314 10.1109/BMEiCON47515.2019.8990358 10.1109/TSP.2014.2329274 |
ContentType | Journal Article |
Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 by the authors. 2021 |
Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 by the authors. 2021 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/s21072488 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central (New) ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection PML(ProQuest Medical Library) ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE Publicly Available Content Database MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_e280d6cd58f442238812ab5f52e29e17 PMC8038338 33916649 10_3390_s21072488 |
Genre | Journal Article |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. ABJCF ARAPS CGR CUY CVF ECM EIF HCIFZ KB. M7S NPM PDBOC 7XB 8FK AZQEC DWQXO K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c469t-9f410df6bcdea5034e852958ab224f5e23ecf4f60978718f16024def71e033643 |
IEDL.DBID | 7X7 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:22:07 EDT 2025 Thu Aug 21 13:34:42 EDT 2025 Tue Aug 05 11:03:47 EDT 2025 Fri Jul 25 20:03:52 EDT 2025 Wed Feb 19 02:27:46 EST 2025 Thu Apr 24 22:55:53 EDT 2025 Tue Jul 01 03:56:09 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | through-wall radar majorization–minimization (MM) algorithm arctangent regularization sparse deconvolution UWB radar |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c469t-9f410df6bcdea5034e852958ab224f5e23ecf4f60978718f16024def71e033643 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-2387-6059 |
OpenAccessLink | https://www.proquest.com/docview/2550326313?pq-origsite=%requestingapplication% |
PMID | 33916649 |
PQID | 2550326313 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_e280d6cd58f442238812ab5f52e29e17 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8038338 proquest_miscellaneous_2520861793 proquest_journals_2550326313 pubmed_primary_33916649 crossref_primary_10_3390_s21072488 crossref_citationtrail_10_3390_s21072488 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210403 |
PublicationDateYYYYMMDD | 2021-04-03 |
PublicationDate_xml | – month: 4 year: 2021 text: 20210403 day: 3 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2021 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Zhang (ref_29) 2019; 7 Chen (ref_33) 2014; 62 Charvat (ref_38) 2010; 58 ref_36 Moghaddam (ref_1) 2019; 12 ref_12 Gholami (ref_19) 2012; 50 Ding (ref_22) 2015; 22 ref_10 Uysal (ref_18) 2014; 29 Jazayeri (ref_25) 2019; 57 Zha (ref_8) 2015; 15 Wu (ref_21) 2019; 4 ref_17 Eom (ref_14) 2018; 18 Rittiplang (ref_45) 2020; 20 Lu (ref_13) 2017; 17 Wen (ref_20) 2018; 6 Duan (ref_24) 2016; 63 Marks (ref_5) 2017; 4 Ndoye (ref_30) 2016; 25 Wang (ref_16) 2019; 7 Jacobson (ref_34) 2007; 16 Figueiredo (ref_35) 2007; 16 ref_47 Li (ref_23) 2014; 11 ref_46 Chi (ref_27) 2016; 10 Selesnick (ref_32) 2014; 22 ref_44 Fors (ref_15) 2010; 10 ref_43 ref_42 ref_41 ref_40 Wang (ref_11) 2010; 59 Iqbal (ref_4) 2019; 7 ref_3 Xie (ref_28) 2020; 68 Charvat (ref_39) 2012; 60 ref_2 Starck (ref_9) 2002; 114 Selesnick (ref_37) 2014; 62 Mansour (ref_26) 2018; 4 ref_48 ref_7 Zheng (ref_31) 2019; 7 ref_6 |
References_xml | – volume: 62 start-page: 1078 year: 2014 ident: ref_37 article-title: Sparse Signal Estimation by Maximally Sparse Convex Optimization publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2014.2298839 – volume: 22 start-page: 1364 year: 2015 ident: ref_22 article-title: Artifact-Free Wavelet Denoising: Non-convex Sparse Regularization, Convex Optimization publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2015.2406314 – volume: 10 start-page: 1743 year: 2010 ident: ref_15 article-title: Improving the Ability of Image Sensors to Detect Faint Stars and Moving Objects Using Image Deconvolution Techniques publication-title: Sensors doi: 10.3390/s100301743 – ident: ref_42 doi: 10.3390/s18010311 – ident: ref_17 doi: 10.3390/geosciences8120497 – ident: ref_10 doi: 10.3390/s20102844 – volume: 7 start-page: 23740 year: 2019 ident: ref_4 article-title: Sparse Multichannel Blind Deconvolution of Seismic Data via Spectral Projected-Gradient publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2899131 – volume: 11 start-page: 1330 year: 2014 ident: ref_23 article-title: Sparsity-Promoted Blind Deconvolution of Ground-Penetrating Radar (GPR) Data publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2013.2292955 – ident: ref_6 doi: 10.3390/s19235065 – volume: 59 start-page: 3237 year: 2010 ident: ref_11 article-title: A Deconvolutive Neural Network for Speech Classification with Applications to Home Service Robot publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2010.2047551 – ident: ref_48 doi: 10.3390/s20236828 – volume: 57 start-page: 3703 year: 2019 ident: ref_25 article-title: Sparse Blind Deconvolution of Ground Penetrating Radar Data publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2018.2886741 – ident: ref_47 doi: 10.1109/COMCAS.2008.4562803 – volume: 20 start-page: 2916 year: 2020 ident: ref_45 article-title: Optimal Central Frequency for Non-Contact Vital Sign Detection Using Monocycle UWB Radar publication-title: Sensors doi: 10.3390/s20102916 – ident: ref_12 doi: 10.3390/s17010174 – volume: 16 start-page: 2411 year: 2007 ident: ref_34 article-title: An Expanded Theoretical Treatment of Iteration-Dependent Majorize-Minimize Algorithms publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2007.904387 – volume: 58 start-page: 2594 year: 2010 ident: ref_38 article-title: A Through-Dielectric Radar Imaging System publication-title: IEEE Trans. Antennas Propag. doi: 10.1109/TAP.2010.2050424 – volume: 7 start-page: 105247 year: 2019 ident: ref_29 article-title: Sparse with Fast MM Superresolution Algorithm for Radar Forward-Looking Imaging publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2932612 – volume: 12 start-page: 627 year: 2019 ident: ref_1 article-title: The comparative sense of sparse deconvolution and least-squares deconvolution methods in increasing the temporal resolution of GPR data publication-title: Arab. J. Geosci. doi: 10.1007/s12517-019-4686-4 – volume: 7 start-page: 158492 year: 2019 ident: ref_16 article-title: Noncontact Heart Rate Measurement Based on an Improved Convolutional Sparse Coding Method Using IR-UWB Radar publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2950423 – volume: 16 start-page: 2980 year: 2007 ident: ref_35 article-title: Majorization–Minimization Algorithms for Wavelet-Based Image Restoration publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2007.909318 – volume: 17 start-page: 542 year: 2017 ident: ref_13 article-title: High Resolution Turntable Radar Imaging via two dimensional deconvolution with Matrix Completion publication-title: Sensors doi: 10.3390/s17030542 – volume: 29 start-page: 37 year: 2014 ident: ref_18 article-title: Dynamic clutter mitigation using sparse optimization publication-title: IEEE Aerosp. Electron. Syst. Mag. doi: 10.1109/MAES.2014.130137 – volume: 4 start-page: 1514 year: 2017 ident: ref_5 article-title: Sparse blind deconvolution for imaging through layered media publication-title: Optica doi: 10.1364/OPTICA.4.001514 – volume: 63 start-page: 2045 year: 2016 ident: ref_24 article-title: Increasing Axial Resolution of Ultrasonic Imaging with a Joint Sparse Representation Model publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control. doi: 10.1109/TUFFC.2016.2609141 – volume: 22 start-page: 141 year: 2014 ident: ref_32 article-title: Convex 1-D Total Variation Denoising with Non-convex Regularization publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2014.2349356 – ident: ref_2 doi: 10.3390/geosciences9020096 – volume: 4 start-page: 537 year: 2018 ident: ref_26 article-title: Sparse Blind Deconvolution for Distributed Radar Autofocus Imaging publication-title: IEEE Trans. Comput. Imaging doi: 10.1109/TCI.2018.2875375 – volume: 60 start-page: 5495 year: 2012 ident: ref_39 article-title: A Through-Dielectric Ultrawideband (UWB) Switched-Antenna-Array Radar Imaging System publication-title: IEEE Trans. Antennas Propag. doi: 10.1109/TAP.2012.2207663 – volume: 15 start-page: 6924 year: 2015 ident: ref_8 article-title: Bayesian Deconvolution for Angular Super-Resolution in Forward-Looking Scanning Radar publication-title: Sensors doi: 10.3390/s150306924 – ident: ref_40 doi: 10.1109/ARRAY.2010.5613313 – volume: 114 start-page: 1051 year: 2002 ident: ref_9 article-title: Deconvolution in astronomy: A review publication-title: Publ. Astron. Soc. Pac. doi: 10.1086/342606 – volume: 4 start-page: 290 year: 2019 ident: ref_21 article-title: An Efficient Method on ISAR Image Reconstruction via Norm Regularization publication-title: IEEE J. Multiscale Multiphys. Comput. Tech. doi: 10.1109/JMMCT.2019.2953880 – volume: 68 start-page: 1884 year: 2020 ident: ref_28 article-title: Support Recovery for Sparse Signals with Unknown Non-Stationary Modulation publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2020.2975935 – volume: 7 start-page: 184923 year: 2019 ident: ref_31 article-title: Joint Optimization of Transmit Waveform and Receive Filter for Target Detection in MIMO Radar publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2960865 – volume: 25 start-page: 2206 year: 2016 ident: ref_30 article-title: An MM-Based Algorithm for -Regularized Least-Squares Estimation with an Application to Ground Penetrating Radar Image Reconstruction publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2016.2518862 – ident: ref_7 doi: 10.3390/s19184029 – ident: ref_3 doi: 10.3390/en13123074 – ident: ref_44 doi: 10.3390/s20133750 – volume: 6 start-page: 69883 year: 2018 ident: ref_20 article-title: A Survey on Nonconvex Regularization-Based Sparse and Low-Rank Recovery in Signal Processing, Statistics, and Machine Learning publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2880454 – ident: ref_46 doi: 10.3390/app11010424 – volume: 50 start-page: 4105 year: 2012 ident: ref_19 article-title: A Fast and Automatic Sparse Deconvolution in the Presence of Outliers publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2012.2189777 – volume: 10 start-page: 782 year: 2016 ident: ref_27 article-title: Guaranteed Blind Sparse Spikes Deconvolution via Lifting and Convex Optimization publication-title: IEEE J. Sel. Top. Signal Process. doi: 10.1109/JSTSP.2016.2543462 – volume: 18 start-page: 2918 year: 2018 ident: ref_14 article-title: Three-Dimensional High-Resolution Digital Inline Hologram Reconstruction with a Volumetric Deconvolution Method publication-title: Sensors doi: 10.3390/s18092918 – ident: ref_36 – ident: ref_41 doi: 10.1109/ARRAY.2010.5613314 – ident: ref_43 doi: 10.1109/BMEiCON47515.2019.8990358 – volume: 62 start-page: 3464 year: 2014 ident: ref_33 article-title: Group-Sparse Signal Denoising: Non-Convex Regularization, Convex Optimization publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2014.2329274 |
SSID | ssj0023338 |
Score | 2.3503053 |
Snippet | A common problem in through-wall radar is reflected signals much attenuated by wall and environmental noise. The reflected signal is a convolution product of a... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 2488 |
SubjectTerms | Algorithms arctangent regularization Human subjects Humans majorization–minimization (MM) algorithm Noise Numerical analysis Optimization Radar Research Design Research Subjects Respiration sparse deconvolution Sparsity through-wall radar UWB radar |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hnuCAeLQQKMhUHHqJGj_iOMcuUFUIeihdtbfI8QOQUFLtbvn9nXGy6W5ViQvXeBQ543G--caeGYCPreaOOh3lJnCVI_-qcsu9z4OP0tWtcNpSNvL3M306V1-vyquNVl90J2woDzwo7igIU3jtfGmiUohlBhHJtmUsRRB14CmPHDFvTaZGqiWReQ11hCSS-qMlEptKqNRe5Q59UpH-hzzL-xckNxDn5Bk8HV1FdjxM8Tk8Ct0LeLJRQPAl9BdDm52c4uFsfjlj59bbBZshNnnWd-zHNRLXwD4T7f07Whmj2Cu-1q1sSqxi56kf_WLMyGToxrJvPYXyup8sBfkZ_l4oXrPchfnJl4tPp_nYQiF3qPdVXkfFCx9163ywZSFVMHSyZ2yL0B3LIGRwUUVN2RyIUpFrxGwfYsVDISV6K3uw0_VdeA3MOBtFG2vneVStUNYisZbGei0K64sqg8O1ahs31henNhd_GuQZtArNtAoZHEyi10NRjYeEZrQ-kwDVwU4P0Dqa0Tqaf1lHBvvr1W3GzblskEUV6LVKLjP4MA3jtqKzEtuF_oZkBJI9-ntl8GowhmkmkpKVtaozqLbMZGuq2yPd71-pdLdBjaFpvvkf3_YWHgu6YEPXiOQ-7KwWN-Edekir9n3aDLe9sRAB priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9RADLZKucAB8W6goAFx4BLIPDKZHBBigapClEPpit6iyTwKUpWU7BbBv8dOslGDVlwzVuSM7difZ2wDvKg1dzTpKDWBqxTxV5Fa7n0afJSurIXTlqqRj77ow6X6dJqf7sBmxua4gaut0I7mSS2781e_f_55iwb_hhAnQvbXK4QthUBNvAbX0SEVZJ9HajpMEBJh2NBUaE4-c0V9x_5tYea_tyWvuJ-D23BrjBvZu0HQd2AnNHfh5pVugvegPRlm7qSUHGfLbwt2bL3t2AIdlWdtw75e4KcG9oEw8K9R5RglYvG1bm37Kit23A-n78byTIYxLfvcUl6vOWN9xp_hv4aSN6v7sDz4ePL-MB3nKaQOhbBOy6h45qOunQ82z6QKho75jK3Rj8c8CBlcVFFTaQe6rMg1OnAfYsFDJiWGLg9gt2mbsAfMOBtFHUvneVS1UNYiypbGei0y67MigZebra3c2GycZl6cVwg6SArVJIUEnk-kF0OHjW1EC5LPREBNsfsHbXdWjTZWBWEyr53PTVQKwx6DwYut85iLIMrAkan9jXSrjaJVCKkyDGEllwk8m5bRxujgxDahvSQagciPfmUJPByUYeJEUuWyVmUCxUxNZqzOV5of3_s-3gZ3DFXz0f_Zegw3BN2jodtCch92191leIKB0Lp-2qv5X0vPCX8 priority: 102 providerName: Scholars Portal |
Title | Through-Wall UWB Radar Based on Sparse Deconvolution with Arctangent Regularization for Locating Human Subjects |
URI | https://www.ncbi.nlm.nih.gov/pubmed/33916649 https://www.proquest.com/docview/2550326313 https://www.proquest.com/docview/2520861793 https://pubmed.ncbi.nlm.nih.gov/PMC8038338 https://doaj.org/article/e280d6cd58f442238812ab5f52e29e17 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagvcAB8SZQVgZx4BI1fiRxToilXSpEK7R0xd4ix49SqUqW3S2_nxnHm-1WFZccEiuyPGPP943nQciHpmAGOx2lyjGZAv8qU82sTZ31wlQNN4XGbOTTs-JkJr_N83l0uK1iWOXmTAwHte0M-sgPAfpmADUEE58Wf1LsGoW3q7GFxn2yj6XLMKSrnG8JlwD-1VcTEkDtD1dAb0ouQ5OVrQ0Kpfrvwpe3wyRv2J3JY_IoAkb6uZfwE3LPtU_JwxtlBJ-R7rxvtpOiV5zOfo3pVFu9pGOwUJZ2Lf25APrq6BGS379R1yh6YOG3Zq1DehWdhq70y5iXSQHM0u8dOvTaCxpc_RQOGfTarJ6T2eT4_MtJGhsppAZWf51WXrLM-qIx1mlYRukU3u8p3YAB97njwhkvfYE5HWCrPCvAclvnS-YyIQCzvCB7bde6V4Qqoz1vfGUs87LhUmug10JpW_BM26xMyMfN0tYmVhnHZhdXNbANlEI9SCEh74ehi760xl2DxiifYQBWww4vuuVFHTdX7bjKbGFsrryUgHcUoBbd5D7njleOwaQONtKt4xZd1VuFSsi74TNsLrwx0a3rrnEMB8qHZ1hCXvbKMMxEYMpyIauElDtqsjPV3S_t5e9QwFvBioFqvv7_tN6QBxwDaDBMSByQvfXy2r0FBLRuRkHN4akmX0dkf3x89mM6Ct4EeJ5K9Q-yiQxZ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VcgAOiDeGAgsCiYtVe3f9OiBEKFVK0x5KInIz632klZAdkhTEn-I3MuNXGlRx69VerUY7szPzzc4D4HURh5omHfmpDaWP-CvxVWiMb40TOiu4jhVVIx8dx8OJ_DyNplvwp6uFobTKTifWitpUmmLku-j6BuhqiFC8n__waWoUva52IzQasTi0v38hZFu-O9hD_r7hfP_T-OPQb6cK-BpJWfmZk2FgXFxoYxXuKW1Kj12pKtCauchyYbWTLqYCB1TcLozRjBnrktAGQqABx32vwXU0vAHdqGS6BngC8V7TvUiILNhdIpxKuKyHuqxtXj0a4DJ_9t-0zAt2bv8O3G4dVPahkai7sGXLe3DrQtvC-1CNm-E-PkXh2eTrgJ0ooxZsgBbRsKpkX-YIly3bI7D9s5VtRhFf3FavVF3OxU7sjFJg2zpQhs4zG1UUQCxnrH5aYKjUKEq0fACTKznih7BdVqV9DCzVyvHCZdqEThZcKoVwXqTKxDxQJkg8eNsdba7bruY0XON7juiGuJD3XPDgVb903rTyuGzRgPjTL6Du2_WHajHL28ucW54GJtYmSp2U6F-l6CWpInIRtzyzIRK103E3b1XCMl8LsAcv-994memFRpW2Oqc1HCEm6UwPHjXC0FMiqEQ6lpkHyYaYbJC6-ac8O60bhqd4YiiaT_5P1gu4MRwfjfLRwfHhU7jJKXmHUpTEDmyvFuf2GXpfq-J5LfIMvl31HfsLkoFECQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9NAEB6VIiF4QNwYCiwIJF6s2Lvr6wEhQohaWipUGpE3s94jrYTskKQg_hq_jhlfaVDFW1_t1Wq0O9c3OwfAyyIONU068lMbSh_xV-Kr0BjfGid0VnAdK6pG_nQY707kx2k03YI_XS0MpVV2OrFW1KbSFCMfoOsboKshQjFwbVrE59H47fyHTxOk6KW1G6fRsMi-_f0L4dvyzd4I7_oV5-MPx-93_XbCgK-RrJWfORkGxsWFNlbh_tKm9PCVqgItm4ssF1Y76WIqdkAl7sIYTZqxLgltIAQac9z3ClxNRBSSjCXTNdgTiP2aTkZCZMFgidAq4bIe8LK2f_WYgIt8239TNM_ZvPEtuNk6q-xdw123YcuWd-DGuRaGd6E6bgb9-BSRZ5OvQ3akjFqwIVpHw6qSfZkjdLZsRMD7Z8vnjKK_uK1eqbq0ix3ZGaXDtjWhDB1pdlBRMLGcsfqZgaGCo4jR8h5MLuWI78N2WZX2IbBUK8cLl2kTOllwqRRCe5EqE_NAmSDx4HV3tLluO5zToI3vOSIduoW8vwUPXvRL501bj4sWDel--gXUibv-UC1meSvYueVpYGJtotRJib5Wih6TKiIXccszGyJRO93t5q16WOZrZvbgef8bBZtea1RpqzNawxFukv704EHDDD0lgsqlY5l5kGywyQapm3_K05O6eXiKJ4as-ej_ZD2Dayhd-cHe4f5juM4pj4eylcQObK8WZ_YJOmKr4mnN8Qy-XbaI_QWAvkg_ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Through-Wall+UWB+Radar+Based+on+Sparse+Deconvolution+with+Arctangent+Regularization+for+Locating+Human+Subjects&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Rittiplang%2C+Artit&rft.date=2021-04-03&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=21&rft.issue=7&rft.spage=2488&rft_id=info:doi/10.3390%2Fs21072488&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |