Using brain organoids to understand Zika virus-induced microcephaly
Technologies to differentiate human pluripotent stem cells into three-dimensional organized structures that resemble in vivo organs are pushing the frontiers of human disease modeling and drug development. In response to the global health emergency posed by the Zika virus (ZIKV) outbreak, brain orga...
Saved in:
Published in | Development (Cambridge) Vol. 144; no. 6; pp. 952 - 957 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
The Company of Biologists Ltd
15.03.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Technologies to differentiate human pluripotent stem cells into three-dimensional organized structures that resemble in vivo organs are pushing the frontiers of human disease modeling and drug development. In response to the global health emergency posed by the Zika virus (ZIKV) outbreak, brain organoids engineered to mimic the developing human fetal brain have been employed to model ZIKV-induced microcephaly. Here, we discuss the advantages of brain organoids over other model systems to study development and highlight recent advances in understanding ZIKV pathophysiology and its underlying pathogenesis mechanisms. We further discuss perspectives on overcoming limitations of current organoid systems for their future use in ZIKV research. |
---|---|
AbstractList | Technologies to differentiate human pluripotent stem cells into three-dimensional organized structures that resemble in vivo organs are pushing the frontiers of human disease modeling and drug development. In response to the global health emergency posed by the Zika virus (ZIKV) outbreak, brain organoids engineered to mimic the developing human fetal brain have been employed to model ZIKV-induced microcephaly. Here, we discuss the advantages of brain organoids over other model systems to study development and highlight recent advances in understanding ZIKV pathophysiology and its underlying pathogenesis mechanisms. We further discuss perspectives on overcoming limitations of current organoid systems for their future use in ZIKV research.Technologies to differentiate human pluripotent stem cells into three-dimensional organized structures that resemble in vivo organs are pushing the frontiers of human disease modeling and drug development. In response to the global health emergency posed by the Zika virus (ZIKV) outbreak, brain organoids engineered to mimic the developing human fetal brain have been employed to model ZIKV-induced microcephaly. Here, we discuss the advantages of brain organoids over other model systems to study development and highlight recent advances in understanding ZIKV pathophysiology and its underlying pathogenesis mechanisms. We further discuss perspectives on overcoming limitations of current organoid systems for their future use in ZIKV research. Technologies to differentiate human pluripotent stem cells into three-dimensional organized structures that resemble in vivo organs are pushing the frontiers of human disease modeling and drug development. In response to the global health emergency posed by the Zika virus (ZIKV) outbreak, brain organoids engineered to mimic the developing human fetal brain have been employed to model ZIKV-induced microcephaly. Here, we discuss the advantages of brain organoids over other model systems to study development and highlight recent advances in understanding ZIKV pathophysiology and its underlying pathogenesis mechanisms. We further discuss perspectives on overcoming limitations of current organoid systems for their future use in ZIKV research. Technologies to differentiate human pluripotent stem cells into three-dimensional organized structures that resemble in vivo organs are pushing the frontiers of human disease modeling and drug development. In response to the global health emergency posed by the Zika virus (ZIKV) outbreak, brain organoids engineered to mimic the developing human fetal brain have been employed to model ZIKV-induced microcephaly. Here, we discuss the advantages of brain organoids over other model systems to study development and highlight recent advances in understanding ZIKV pathophysiology and its underlying pathogenesis mechanisms. We further discuss perspectives on overcoming limitations of current organoid systems for their future use in ZIKV research. Summary: This Spotlight article summarises the latest advances in using cerebral organoids to model Zika virus infection and the resulting pathology. Technologies to differentiate human pluripotent stem cells into three-dimensional organized structures that resemble in vivo organs are pushing the frontiers of human disease modeling and drug development. In response to the global health emergency posed by the Zika virus (ZIKV) outbreak, brain organoids engineered to mimic the developing human fetal brain have been employed to model ZIKV-induced microcephaly. Here, we discuss the advantages of brain organoids over other model systems to study development and highlight recent advances in understanding ZIKV pathophysiology and its underlying pathogenesis mechanisms. We further discuss perspectives on overcoming limitations of current organoid systems for their future use in ZIKV research. Summary: This Spotlight article summarises the latest advances in using cerebral organoids to model Zika virus infection and the resulting pathology. Technologies to differentiate human pluripotent stem cells into three-dimensional organized structures that resemble organs are pushing the frontiers of human disease modeling and drug development. In response to the global health emergency posed by the Zika virus (ZIKV) outbreak, brain organoids engineered to mimic the developing human fetal brain have been employed to model ZIKV-induced microcephaly. Here, we discuss the advantages of brain organoids over other model systems to study development and highlight recent advances in understanding ZIKV pathophysiology and its underlying pathogenesis mechanisms. We further discuss perspectives on overcoming limitations of current organoid systems for their future use in ZIKV research. |
Author | Ming, Guo-li Nguyen, Ha Nam Qian, Xuyu Jacob, Fadi Song, Hongjun |
AuthorAffiliation | 6 Department of Psychiatry and Behavioral Sciences , Johns Hopkins University School of Medicine , Baltimore, MD 21205 , USA 3 Department of Neurology , Johns Hopkins University School of Medicine , Baltimore, MD 21205 , USA 5 The Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine , Baltimore, MD 21205 , USA 4 The Solomon H. Snyder Department of Neuroscience , Johns Hopkins University School of Medicine , Baltimore, MD 21205 , USA 2 Biomedical Engineering Graduate Program, Johns Hopkins University School of Medicine , Baltimore, MD 21205 , USA 1 Institute for Cell Engineering, Johns Hopkins University School of Medicine , Baltimore, MD 21205 , USA |
AuthorAffiliation_xml | – name: 1 Institute for Cell Engineering, Johns Hopkins University School of Medicine , Baltimore, MD 21205 , USA – name: 3 Department of Neurology , Johns Hopkins University School of Medicine , Baltimore, MD 21205 , USA – name: 6 Department of Psychiatry and Behavioral Sciences , Johns Hopkins University School of Medicine , Baltimore, MD 21205 , USA – name: 2 Biomedical Engineering Graduate Program, Johns Hopkins University School of Medicine , Baltimore, MD 21205 , USA – name: 4 The Solomon H. Snyder Department of Neuroscience , Johns Hopkins University School of Medicine , Baltimore, MD 21205 , USA – name: 5 The Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine , Baltimore, MD 21205 , USA |
Author_xml | – sequence: 1 givenname: Xuyu surname: Qian fullname: Qian, Xuyu organization: Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA, Biomedical Engineering Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA – sequence: 2 givenname: Ha Nam surname: Nguyen fullname: Nguyen, Ha Nam organization: Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA – sequence: 3 givenname: Fadi surname: Jacob fullname: Jacob, Fadi organization: Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA, The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA – sequence: 4 givenname: Hongjun orcidid: 0000-0003-3307-421X surname: Song fullname: Song, Hongjun organization: Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA, Biomedical Engineering Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA, The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA, The Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA – sequence: 5 givenname: Guo-li orcidid: 0000-0002-2517-6075 surname: Ming fullname: Ming, Guo-li organization: Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA, Biomedical Engineering Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA, The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA, The Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28292840$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkU9rGzEQxUVJaBy3l3yAspBLCWw6s5JW0iUQTP5BoJf00ouQJdlRspZcadeQb981TkoacghzmMP85jHz3iHZiyl6Qo4QTrFhzQ_nN6fIQID4RCbIhKgVNmqPTEBxqFEpPCCHpTwAAG2F-EwOGtmoRjKYkNmvEuKymmcTYpXy0sQUXKn6VA3R-Vx6E131OzyaahPyUOoQ3WC9q1bB5mT9-t50T1_I_sJ0xX997lNyd3lxN7uub39e3czOb2vLWtXXyjNpDXCLc6uQG-ZbBpYLJj1IKaiUdEGNow65AqqopZS1zPE5WubA0ik528muh_nKO-tjn02n1zmsTH7SyQT9_ySGe71MG80plwh8FPj-LJDTn8GXXq9Csb7rTPRpKBqlRNFKjh9BhZC8Uaod0eM36EMachyN0KgkZUi3NSXfXh__7-qXJEYAdsDoaynZL7QNvelD2v4SOo2gt2HrMWy9C3tcOXmz8qL6DvwXyaypeQ |
CitedBy_id | crossref_primary_10_1093_nc_niab029 crossref_primary_10_1155_2022_7264649 crossref_primary_10_1186_s13619_021_00103_6 crossref_primary_10_1093_neuros_nyaa171 crossref_primary_10_1093_pnasnexus_pgae179 crossref_primary_10_1128_jvi_01718_22 crossref_primary_10_1016_j_semcdb_2020_05_026 crossref_primary_10_1186_s12964_021_00777_0 crossref_primary_10_1038_nprot_2017_152 crossref_primary_10_53941_ijddp_v1i1_188 crossref_primary_10_1016_j_brainres_2019_146427 crossref_primary_10_14202_vetworld_2022_1835_1842 crossref_primary_10_1007_s13205_021_02815_7 crossref_primary_10_12688_f1000research_131507_1 crossref_primary_10_12688_molpsychol_17521_2 crossref_primary_10_12688_molpsychol_17521_1 crossref_primary_10_30621_jbachs_868837 crossref_primary_10_3390_v15051062 crossref_primary_10_1007_s40778_022_00220_1 crossref_primary_10_1186_s12910_021_00627_1 crossref_primary_10_1016_j_ceb_2019_07_010 crossref_primary_10_3390_pathogens13070555 crossref_primary_10_1016_j_semcdb_2019_07_002 crossref_primary_10_7554_eLife_87306_3 crossref_primary_10_1002_jcp_28591 crossref_primary_10_1038_s41392_022_01024_9 crossref_primary_10_1038_s41467_019_12408_x crossref_primary_10_3389_fncel_2021_695106 crossref_primary_10_1038_s41380_019_0500_7 crossref_primary_10_1371_journal_ppat_1008538 crossref_primary_10_1080_21507740_2023_2173329 crossref_primary_10_1128_JVI_01575_20 crossref_primary_10_1002_adhm_202301067 crossref_primary_10_1146_annurev_neuro_080317_062231 crossref_primary_10_1242_dev_140111 crossref_primary_10_1016_j_biotechadv_2023_108233 crossref_primary_10_1126_science_aam7120 crossref_primary_10_1038_s42003_021_02910_8 crossref_primary_10_1146_annurev_virology_091919_065806 crossref_primary_10_1016_j_bj_2020_11_009 crossref_primary_10_1080_22221751_2019_1578188 crossref_primary_10_1089_scd_2018_0233 crossref_primary_10_3389_fncel_2020_00115 crossref_primary_10_1002_bit_28606 crossref_primary_10_1016_j_cobme_2020_03_004 crossref_primary_10_3389_fmicb_2023_1162554 crossref_primary_10_3389_frai_2023_1307613 crossref_primary_10_1016_j_jmb_2021_167243 crossref_primary_10_1093_infdis_jiy572 crossref_primary_10_4196_kjpp_2020_24_6_441 crossref_primary_10_1007_s11019_022_10082_3 crossref_primary_10_1038_s41598_019_55631_8 crossref_primary_10_3390_v12050510 crossref_primary_10_3390_v16010024 crossref_primary_10_1186_s13287_021_02369_8 crossref_primary_10_1016_j_canlet_2019_04_005 crossref_primary_10_1016_j_stemcr_2020_11_009 crossref_primary_10_1242_dev_140566 crossref_primary_10_1038_s41598_018_31149_3 crossref_primary_10_1016_j_gene_2024_148198 crossref_primary_10_7554_eLife_52904 crossref_primary_10_1016_j_coviro_2018_04_001 crossref_primary_10_1016_j_stemcr_2021_02_007 crossref_primary_10_1002_ibra_12139 crossref_primary_10_1073_pnas_1803647115 crossref_primary_10_3389_fnsyn_2018_00015 crossref_primary_10_1021_acsptsci_3c00127 crossref_primary_10_1016_j_schres_2022_06_028 crossref_primary_10_3390_ijms22168876 crossref_primary_10_3390_cells9051301 crossref_primary_10_3389_fimmu_2022_773191 crossref_primary_10_1002_1873_3468_12906 crossref_primary_10_1002_dvdy_24662 crossref_primary_10_1186_s13024_019_0336_2 crossref_primary_10_1038_s41598_020_77170_3 crossref_primary_10_1007_s00441_020_03249_y crossref_primary_10_1016_j_brainres_2020_147146 crossref_primary_10_1186_s13024_018_0258_4 crossref_primary_10_1080_21505594_2019_1656503 crossref_primary_10_12688_f1000research_131507_2 crossref_primary_10_1007_s13365_023_01123_5 crossref_primary_10_1038_d41586_018_04813_x crossref_primary_10_1242_dev_140731 crossref_primary_10_1186_s13010_022_00119_z crossref_primary_10_1093_brain_awaa268 crossref_primary_10_1515_mr_2023_0047 crossref_primary_10_1186_s13567_021_00931_z crossref_primary_10_1016_j_brain_2022_100062 crossref_primary_10_3390_molecules25082000 crossref_primary_10_1021_acsinfecdis_0c00217 crossref_primary_10_1002_dvdy_176 crossref_primary_10_1186_s13287_024_03944_5 crossref_primary_10_1038_s41467_024_46634_9 crossref_primary_10_1093_jmcb_mjz100 crossref_primary_10_1128_mBio_00680_21 crossref_primary_10_3389_fnins_2019_00582 crossref_primary_10_1242_dev_156166 crossref_primary_10_7554_eLife_87306 crossref_primary_10_1080_19336918_2021_1996749 crossref_primary_10_3390_pathogens10101233 crossref_primary_10_1016_j_xcrp_2022_100974 crossref_primary_10_1016_j_alcohol_2018_03_008 crossref_primary_10_1080_22221751_2020_1838954 crossref_primary_10_33590_emjmicrobiolinfectdis_21_00256 crossref_primary_10_1002_adhm_202302745 crossref_primary_10_1128_JVI_00111_19 crossref_primary_10_1177_09636897241303271 crossref_primary_10_3390_v15010158 crossref_primary_10_1016_j_neuron_2017_10_010 crossref_primary_10_1016_j_bbrc_2018_02_118 crossref_primary_10_1016_j_mtbio_2024_101438 crossref_primary_10_1002_stem_2637 crossref_primary_10_1089_omi_2018_0172 crossref_primary_10_1371_journal_pntd_0009388 crossref_primary_10_1016_j_scr_2020_102065 crossref_primary_10_1002_stem_3156 crossref_primary_10_1038_s41577_020_00474_y crossref_primary_10_3389_fmicb_2018_02766 crossref_primary_10_3389_fmicb_2021_725074 crossref_primary_10_1098_rsob_180177 crossref_primary_10_1016_j_socscimed_2023_115676 crossref_primary_10_1136_medethics_2017_104555 crossref_primary_10_1002_wdev_347 crossref_primary_10_1134_S1062360420040074 crossref_primary_10_3390_ijms26010047 crossref_primary_10_1073_pnas_1714624114 crossref_primary_10_1038_s41578_021_00279_y crossref_primary_10_1134_S0006297919030143 crossref_primary_10_3389_fmicb_2020_00362 crossref_primary_10_1016_j_cmi_2019_04_016 crossref_primary_10_1124_pharmrev_120_000238 crossref_primary_10_3390_ijms222010996 crossref_primary_10_1016_j_neuron_2019_01_024 crossref_primary_10_1016_j_celrep_2021_109351 crossref_primary_10_1021_acsinfecdis_9b00339 crossref_primary_10_1242_dev_150201 crossref_primary_10_1038_s41596_020_0402_9 crossref_primary_10_1371_journal_ppat_1010080 crossref_primary_10_1186_s13578_021_00617_1 crossref_primary_10_1242_dev_166074 crossref_primary_10_3389_fbioe_2022_1066869 crossref_primary_10_1038_s41579_022_00713_0 crossref_primary_10_1016_j_heliyon_2021_e07350 crossref_primary_10_1038_s41596_020_0335_3 crossref_primary_10_1146_annurev_virology_092818_015740 crossref_primary_10_1002_med_21922 crossref_primary_10_1128_JVI_00954_19 crossref_primary_10_1016_j_actatropica_2024_107182 crossref_primary_10_1093_oons_kvad008 crossref_primary_10_1242_dev_150292 crossref_primary_10_1007_s40592_020_00116_y crossref_primary_10_1016_j_celrep_2018_09_076 crossref_primary_10_3389_fmicb_2018_01018 crossref_primary_10_12677_ACM_2024_142488 crossref_primary_10_1016_j_cell_2018_09_010 crossref_primary_10_1002_bdr2_2004 crossref_primary_10_1101_gad_298216_117 crossref_primary_10_1186_s13229_020_00370_1 crossref_primary_10_1128_mBio_02370_19 crossref_primary_10_1177_09636897221124481 crossref_primary_10_3389_fphar_2025_1497861 crossref_primary_10_1017_S096318012300021X crossref_primary_10_1177_1073110519897789 crossref_primary_10_1242_dmm_049060 crossref_primary_10_3389_fimmu_2021_792316 crossref_primary_10_3892_ijo_2023_5536 crossref_primary_10_1002_term_3298 crossref_primary_10_1007_s13770_023_00611_3 crossref_primary_10_1016_j_expneurol_2021_113619 crossref_primary_10_1038_s44222_023_00130_9 crossref_primary_10_3390_v12111341 |
Cites_doi | 10.1016/j.celrep.2016.08.038 10.1093/nar/gkw765 10.1016/j.celrep.2016.05.075 10.1016/j.ijid.2016.02.001 10.1242/dev.117978 10.1016/j.cell.2007.11.019 10.1016/j.stem.2016.11.011 10.1016/j.chom.2016.07.004 10.1038/cr.2016.68 10.1038/nature18296 10.1073/pnas.1618029113 10.1172/JCI79220 10.1126/science.aaf6116 10.1016/j.stem.2016.07.005 10.1038/nature12517 10.1016/0035-9203(52)90042-4 10.3855/jidc.8217 10.1038/ncomms9896 10.1038/nm.4184 10.1016/S1473-3099(16)00095-5 10.1016/j.stem.2016.04.014 10.1016/S0140-6736(16)00006-4 10.1056/NEJMp1600297 10.1016/j.stem.2016.04.017 10.1056/NEJMoa1600651 10.1073/pnas.1315710110 10.1016/j.stem.2016.02.016 10.1016/j.conb.2015.11.003 10.1016/j.cell.2015.06.034 10.1016/j.stem.2016.05.022 10.1016/j.cell.2016.04.032 10.1016/j.cell.2011.06.030 10.1016/j.stem.2016.03.012 10.1016/0035-9203(64)90201-9 10.1016/j.stem.2016.07.019 10.1016/j.neuron.2016.09.005 10.1016/j.stem.2016.11.014 10.1038/nmeth.3415 10.1126/science.aaf5036 10.1016/S0140-6736(16)00320-2 10.1016/j.ebiom.2016.09.020 |
ContentType | Journal Article |
Copyright | 2017. Published by The Company of Biologists Ltd. Copyright The Company of Biologists Ltd Mar 15, 2017 2017. Published by The Company of Biologists Ltd 2017 |
Copyright_xml | – notice: 2017. Published by The Company of Biologists Ltd. – notice: Copyright The Company of Biologists Ltd Mar 15, 2017 – notice: 2017. Published by The Company of Biologists Ltd 2017 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QP 7SS 7TK 7TM 7U9 8FD FR3 H94 P64 RC3 7X8 5PM |
DOI | 10.1242/dev.140707 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Entomology Abstracts (Full archive) Neurosciences Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Engineering Research Database AIDS and Cancer Research Abstracts Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Entomology Abstracts Genetics Abstracts Virology and AIDS Abstracts Technology Research Database Nucleic Acids Abstracts AIDS and Cancer Research Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Genetics Abstracts Entomology Abstracts MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Zoology Biology |
EISSN | 1477-9129 |
EndPage | 957 |
ExternalDocumentID | PMC5358105 28292840 10_1242_dev_140707 |
Genre | Review Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NINDS NIH HHS grantid: P01 NS097206 – fundername: NIMH NIH HHS grantid: U19 MH106434 – fundername: NIGMS NIH HHS grantid: T32 GM008752 – fundername: NINDS NIH HHS grantid: R35 NS097370 – fundername: NIMH NIH HHS grantid: R01 MH105128 – fundername: NIMH NIH HHS grantid: T32 MH015330 – fundername: NIGMS NIH HHS grantid: T32 GM007309 – fundername: NINDS NIH HHS grantid: R37 NS047344 – fundername: ; – fundername: ; grantid: R01MH105128; R35NS097370; R37NS047344; U19MH106434; P01NS097206; T32MH015330 |
GroupedDBID | --- -DZ -ET -~X .55 0R~ 18M 2WC 34G 39C 4.4 53G 5GY 5RE 5VS 85S AAFWJ AAYXX ABZEH ACGFS ACMFV ACPRK ACREN ADBBV ADFRT ADVGF AENEX AFFNX AGGIJ ALMA_UNASSIGNED_HOLDINGS AMTXH BAWUL BTFSW CITATION CS3 DIK DU5 E3Z EBS EJD F5P F9R GX1 H13 HZ~ INIJC KQ8 O9- OK1 P2P R.V RCB RHI SJN TR2 TWZ UPT W8F WH7 WOQ X7M XSW CGR CUY CVF ECM EIF NPM 7QP 7SS 7TK 7TM 7U9 8FD FR3 H94 P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c469t-9e48ca05c1bc915a4e640c5748e08873883f3ad3d1590393c33464d5b1c4d0c3 |
ISSN | 0950-1991 1477-9129 |
IngestDate | Thu Aug 21 13:35:12 EDT 2025 Mon Jul 21 11:33:31 EDT 2025 Fri Jul 11 06:31:55 EDT 2025 Sun Jul 13 05:27:36 EDT 2025 Thu Apr 03 07:06:33 EDT 2025 Tue Jul 01 00:45:08 EDT 2025 Thu Apr 24 23:07:56 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Organoids Microcephaly Cortex iPSC Zika |
Language | English |
License | http://www.biologists.com/user-licence-1-1 2017. Published by The Company of Biologists Ltd. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c469t-9e48ca05c1bc915a4e640c5748e08873883f3ad3d1590393c33464d5b1c4d0c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0003-3307-421X 0000-0002-2517-6075 |
PMID | 28292840 |
PQID | 1983413131 |
PQPubID | 2046254 |
PageCount | 6 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5358105 proquest_miscellaneous_1881768515 proquest_miscellaneous_1877852996 proquest_journals_1983413131 pubmed_primary_28292840 crossref_citationtrail_10_1242_dev_140707 crossref_primary_10_1242_dev_140707 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-03-15 20170315 |
PublicationDateYYYYMMDD | 2017-03-15 |
PublicationDate_xml | – month: 03 year: 2017 text: 2017-03-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | Development (Cambridge) |
PublicationTitleAlternate | Development |
PublicationYear | 2017 |
Publisher | The Company of Biologists Ltd |
Publisher_xml | – name: The Company of Biologists Ltd |
References | Calvet (2021042609090572800_DEV140707C2) 2016; 16 Jo (2021042609090572800_DEV140707C13) 2016; 19 Ventura (2021042609090572800_DEV140707C37) 2016; 387 Li (2021042609090572800_DEV140707C17) 2016; 19 Mariani (2021042609090572800_DEV140707C20) 2015; 162 Tang (2021042609090572800_DEV140707C36) 2016; 18 Wells (2021042609090572800_DEV140707C39) 2016; 19 Takahashi (2021042609090572800_DEV140707C35) 2007; 131 Nguyen (2021042609090572800_DEV140707C24) 2016; 26 Hanners (2021042609090572800_DEV140707C10) 2016; 15 Ming (2021042609090572800_DEV140707C22) 2016; 19 Qian (2021042609090572800_DEV140707C30) 2016; 165 Mlakar (2021042609090572800_DEV140707C23) 2016; 374 Xu (2021042609090572800_DEV140707C41) 2016; 22 Nowakowski (2021042609090572800_DEV140707C25) 2016; 18 Kelava (2021042609090572800_DEV140707C15) 2016; 18 Retallack (2021042609090572800_DEV140707C31) 2016; 113 Heymann (2021042609090572800_DEV140707C12) 2016; 387 Paşca (2021042609090572800_DEV140707C28) 2015; 12 Liang (2021042609090572800_DEV140707C18) 2016; 19 Merkle (2021042609090572800_DEV140707C21) 2015; 142 Lancaster (2021042609090572800_DEV140707C16) 2013; 501 Cugola (2021042609090572800_DEV140707C4) 2016; 534 Wang (2021042609090572800_DEV140707C38) 2015; 125 Dang (2021042609090572800_DEV140707C5) 2016; 19 Faria (2021042609090572800_DEV140707C7) 2016; 352 Garcez (2021042609090572800_DEV140707C9) 2016; 352 Petersen (2021042609090572800_DEV140707C29) 2016; 44 Zhang (2021042609090572800_DEV140707C42) 2016; 44 Lui (2021042609090572800_DEV140707C19) 2011; 146 Simpson (2021042609090572800_DEV140707C34) 1964; 58 Onorati (2021042609090572800_DEV140707C27) 2016; 16 Sakaguchi (2021042609090572800_DEV140707C32) 2015; 6 CDC (2021042609090572800_DEV140707C3) 2016 Simonin (2021042609090572800_DEV140707C33) 2016; 12 Heukelbach (2021042609090572800_DEV140707C11) 2016; 10 Kadoshima (2021042609090572800_DEV140707C14) 2013; 110 Wen (2021042609090572800_DEV140707C40) 2016; 36 Dick (2021042609090572800_DEV140707C6) 1952; 46 Nowakowski (2021042609090572800_DEV140707C26) 2016; 91 Barrows (2021042609090572800_DEV140707C1) 2016; 20 Fauci (2021042609090572800_DEV140707C8) 2016; 374 27118425 - Cell. 2016 May 19;165(5):1238-54 27524440 - Cell Stem Cell. 2016 Nov 3;19(5):663-671 14175744 - Trans R Soc Trop Med Hyg. 1964 Jul;58:335-8 25670790 - Development. 2015 Feb 15;142(4):633-43 27912090 - Cell Stem Cell. 2016 Dec 1;19(6):690-702 26897108 - Lancet Infect Dis. 2016 Jun;16(6):653-60 26876373 - Lancet. 2016 Feb 20;387(10020):719-21 27568284 - Cell Rep. 2016 Sep 6;16(10 ):2576-92 27476966 - Cell Stem Cell. 2016 Aug 4;19(2):248-57 27476412 - Cell Host Microbe. 2016 Aug 10;20(2):259-70 26927450 - J Infect Dev Ctries. 2016 Feb 28;10 (2):116-20 27268504 - Cell Rep. 2016 Jun 14;15(11):2315-22 27162029 - Cell Stem Cell. 2016 Aug 4;19(2):258-65 18035408 - Cell. 2007 Nov 30;131(5):861-72 27013429 - Science. 2016 Apr 15;352(6283):345-9 12995440 - Trans R Soc Trop Med Hyg. 1952 Sep;46(5):509-20 26573335 - Nat Commun. 2015 Nov 17;6:8896 27657449 - Neuron. 2016 Sep 21;91(6):1219-27 26705693 - Curr Opin Neurobiol. 2016 Feb;36:118-27 27912091 - Cell Stem Cell. 2016 Dec 1;19(6):703-708 26952870 - Cell Stem Cell. 2016 May 5;18(5):587-90 27179424 - Cell Stem Cell. 2016 Jul 7;19(1):120-6 27911847 - Proc Natl Acad Sci U S A. 2016 Dec 13;113(50):14408-14413 26775125 - Lancet. 2016 Jan 16;387(10015):228 21729779 - Cell. 2011 Jul 8;146(1):18-36 26862926 - N Engl J Med. 2016 Mar 10;374(10 ):951-8 24277810 - Proc Natl Acad Sci U S A. 2013 Dec 10;110(50):20284-9 27038591 - Cell Stem Cell. 2016 May 5;18(5):591-6 27571349 - Nat Med. 2016 Oct;22(10 ):1101-1107 26761185 - N Engl J Med. 2016 Feb 18;374(7):601-4 27257762 - Cell Stem Cell. 2016 Jun 2;18(6):736-48 27580721 - Nucleic Acids Res. 2016 Oct 14;44(18):8610-8620 23995685 - Nature. 2013 Sep 19;501(7467):373-9 26186191 - Cell. 2015 Jul 16;162(2):375-90 27688094 - EBioMedicine. 2016 Oct;12 :161-169 27064148 - Science. 2016 May 13;352(6287):816-8 25555215 - J Clin Invest. 2015 Feb;125(2):796-808 26005811 - Nat Methods. 2015 Jul;12(7):671-8 26854199 - Int J Infect Dis. 2016 Mar;44:11-5 27279226 - Nature. 2016 May 11;534(7606):267-71 27283801 - Cell Res. 2016 Jul;26(7):753-4 |
References_xml | – volume: 16 start-page: 2576 year: 2016 ident: 2021042609090572800_DEV140707C27 article-title: Zika virus disrupts phospho-TBK1 localization and mitosis in human neuroepithelial stem cells and radial glia publication-title: Cell Rep. doi: 10.1016/j.celrep.2016.08.038 – volume: 44 start-page: 8610 year: 2016 ident: 2021042609090572800_DEV140707C42 article-title: Molecular signatures associated with ZIKV exposure in human cortical neural progenitors publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkw765 – volume: 15 start-page: 2315 year: 2016 ident: 2021042609090572800_DEV140707C10 article-title: Western Zika virus in human fetal neural progenitors persists long term with partial cytopathic and limited immunogenic effects publication-title: Cell Rep. doi: 10.1016/j.celrep.2016.05.075 – volume: 44 start-page: 11 year: 2016 ident: 2021042609090572800_DEV140707C29 article-title: Rapid spread of Zika virus in the Americas-implications for public health preparedness for mass gatherings at the 2016 Brazil Olympic Games publication-title: Int. J. Infect. Dis. doi: 10.1016/j.ijid.2016.02.001 – volume: 142 start-page: 633 year: 2015 ident: 2021042609090572800_DEV140707C21 article-title: Generation of neuropeptidergic hypothalamic neurons from human pluripotent stem cells publication-title: Development doi: 10.1242/dev.117978 – volume: 131 start-page: 861 year: 2007 ident: 2021042609090572800_DEV140707C35 article-title: Induction of pluripotent stem cells from adult human fibroblasts by defined factors publication-title: Cell doi: 10.1016/j.cell.2007.11.019 – volume: 19 start-page: 703 year: 2016 ident: 2021042609090572800_DEV140707C39 article-title: Genetic ablation of AXL does not protect human neural progenitor cells and cerebral organoids from Zika virus infection publication-title: Cell Stem Cell doi: 10.1016/j.stem.2016.11.011 – volume: 20 start-page: 259 year: 2016 ident: 2021042609090572800_DEV140707C1 article-title: A screen of FDA-approved drugs for inhibitors of Zika virus infection publication-title: Cell Host Microbe doi: 10.1016/j.chom.2016.07.004 – volume: 26 start-page: 753 year: 2016 ident: 2021042609090572800_DEV140707C24 article-title: Neural stem cells attacked by Zika virus publication-title: Cell Res. doi: 10.1038/cr.2016.68 – volume: 534 start-page: 267 year: 2016 ident: 2021042609090572800_DEV140707C4 article-title: The Brazilian Zika virus strain causes birth defects in experimental models publication-title: Nature doi: 10.1038/nature18296 – volume: 113 start-page: 14408 year: 2016 ident: 2021042609090572800_DEV140707C31 article-title: Zika virus cell tropism in the developing human brain and inhibition by azithromycin publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1618029113 – volume-title: Zika virus year: 2016 ident: 2021042609090572800_DEV140707C3 – volume: 125 start-page: 796 year: 2015 ident: 2021042609090572800_DEV140707C38 article-title: Differentiation of hypothalamic-like neurons from human pluripotent stem cells publication-title: J. Clin. Invest. doi: 10.1172/JCI79220 – volume: 352 start-page: 816 year: 2016 ident: 2021042609090572800_DEV140707C9 article-title: Zika virus impairs growth in human neurospheres and brain organoids publication-title: Science doi: 10.1126/science.aaf6116 – volume: 19 start-page: 248 year: 2016 ident: 2021042609090572800_DEV140707C13 article-title: Midbrain-like organoids from human pluripotent stem cells contain functional dopaminergic and neuromelanin-producing neurons publication-title: Cell Stem Cell doi: 10.1016/j.stem.2016.07.005 – volume: 501 start-page: 373 year: 2013 ident: 2021042609090572800_DEV140707C16 article-title: Cerebral organoids model human brain development and microcephaly publication-title: Nature doi: 10.1038/nature12517 – volume: 46 start-page: 509 year: 1952 ident: 2021042609090572800_DEV140707C6 article-title: Zika virus (I). Isolations and serological specificity publication-title: Trans. R. Soc. Trop. Med. Hyg. doi: 10.1016/0035-9203(52)90042-4 – volume: 10 start-page: 116 year: 2016 ident: 2021042609090572800_DEV140707C11 article-title: Zika virus outbreak in Brazil publication-title: J. Infect. Dev. Ctries doi: 10.3855/jidc.8217 – volume: 6 start-page: 8896 year: 2015 ident: 2021042609090572800_DEV140707C32 article-title: Generation of functional hippocampal neurons from self-organizing human embryonic stem cell-derived dorsomedial telencephalic tissue publication-title: Nat. Commun. doi: 10.1038/ncomms9896 – volume: 22 start-page: 1101 year: 2016 ident: 2021042609090572800_DEV140707C41 article-title: Identification of small-molecule inhibitors of Zika virus infection and induced neural cell death via a drug repurposing screen publication-title: Nat. Med. doi: 10.1038/nm.4184 – volume: 16 start-page: 653 year: 2016 ident: 2021042609090572800_DEV140707C2 article-title: Detection and sequencing of Zika virus from amniotic fluid of fetuses with microcephaly in Brazil: a case study publication-title: Lancet Infect. Dis. doi: 10.1016/S1473-3099(16)00095-5 – volume: 19 start-page: 258 year: 2016 ident: 2021042609090572800_DEV140707C5 article-title: Zika virus depletes neural progenitors in human cerebral organoids through activation of the innate immune receptor TLR3 publication-title: Cell Stem Cell doi: 10.1016/j.stem.2016.04.014 – volume: 387 start-page: 228 year: 2016 ident: 2021042609090572800_DEV140707C37 article-title: Zika virus in Brazil and macular atrophy in a child with microcephaly publication-title: Lancet doi: 10.1016/S0140-6736(16)00006-4 – volume: 374 start-page: 601 year: 2016 ident: 2021042609090572800_DEV140707C8 article-title: Zika virus in the Americas--yet another arbovirus threat publication-title: N. Engl. J. Med. doi: 10.1056/NEJMp1600297 – volume: 19 start-page: 120 year: 2016 ident: 2021042609090572800_DEV140707C17 article-title: Zika virus disrupts neural progenitor development and leads to microcephaly in mice publication-title: Cell Stem Cell doi: 10.1016/j.stem.2016.04.017 – volume: 374 start-page: 951 year: 2016 ident: 2021042609090572800_DEV140707C23 article-title: Zika virus associated with microcephaly publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1600651 – volume: 110 start-page: 20284 year: 2013 ident: 2021042609090572800_DEV140707C14 article-title: Self-organization of axial polarity, inside-out layer pattern, and species-specific progenitor dynamics in human ES cell-derived neocortex publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1315710110 – volume: 18 start-page: 587 year: 2016 ident: 2021042609090572800_DEV140707C36 article-title: Zika virus infects human cortical neural progenitors and attenuates their growth publication-title: Cell Stem Cell doi: 10.1016/j.stem.2016.02.016 – volume: 36 start-page: 118 year: 2016 ident: 2021042609090572800_DEV140707C40 article-title: Modeling psychiatric disorders with patient-derived iPSCs publication-title: Curr. Opin. Neurobiol. doi: 10.1016/j.conb.2015.11.003 – volume: 162 start-page: 375 year: 2015 ident: 2021042609090572800_DEV140707C20 article-title: FOXG1-dependent dysregulation of GABA/glutamate neuron differentiation in autism spectrum disorders publication-title: Cell doi: 10.1016/j.cell.2015.06.034 – volume: 18 start-page: 736 year: 2016 ident: 2021042609090572800_DEV140707C15 article-title: Stem cell models of human brain development publication-title: Cell Stem Cell doi: 10.1016/j.stem.2016.05.022 – volume: 165 start-page: 1238 year: 2016 ident: 2021042609090572800_DEV140707C30 article-title: Brain-region-specific organoids using mini-bioreactors for modeling ZIKV exposure publication-title: Cell doi: 10.1016/j.cell.2016.04.032 – volume: 146 start-page: 18 year: 2011 ident: 2021042609090572800_DEV140707C19 article-title: Development and evolution of the human neocortex publication-title: Cell doi: 10.1016/j.cell.2011.06.030 – volume: 18 start-page: 591 year: 2016 ident: 2021042609090572800_DEV140707C25 article-title: Expression analysis highlights AXL as a candidate Zika virus entry receptor in neural stem cells publication-title: Cell Stem Cell doi: 10.1016/j.stem.2016.03.012 – volume: 58 start-page: 335 year: 1964 ident: 2021042609090572800_DEV140707C34 article-title: Zika virus infection in man publication-title: Trans. R. Soc. Trop. Med. Hyg. doi: 10.1016/0035-9203(64)90201-9 – volume: 19 start-page: 663 year: 2016 ident: 2021042609090572800_DEV140707C18 article-title: Zika virus NS4A and NS4B proteins deregulate Akt-mTOR signaling in human fetal neural stem cells to inhibit neurogenesis and induce autophagy publication-title: Cell Stem Cell doi: 10.1016/j.stem.2016.07.019 – volume: 91 start-page: 1219 year: 2016 ident: 2021042609090572800_DEV140707C26 article-title: Transformation of the radial glia scaffold demarcates two stages of human cerebral cortex development publication-title: Neuron doi: 10.1016/j.neuron.2016.09.005 – volume: 19 start-page: 690 year: 2016 ident: 2021042609090572800_DEV140707C22 article-title: Advances in Zika virus research: stem cell models, challenges, and opportunities publication-title: Cell Stem Cell doi: 10.1016/j.stem.2016.11.014 – volume: 12 start-page: 671 year: 2015 ident: 2021042609090572800_DEV140707C28 article-title: Functional cortical neurons and astrocytes from human pluripotent stem cells in 3D culture publication-title: Nat. Methods doi: 10.1038/nmeth.3415 – volume: 352 start-page: 345 year: 2016 ident: 2021042609090572800_DEV140707C7 article-title: Zika virus in the Americas: early epidemiological and genetic findings publication-title: Science doi: 10.1126/science.aaf5036 – volume: 387 start-page: 719 year: 2016 ident: 2021042609090572800_DEV140707C12 article-title: Zika virus and microcephaly: why is this situation a PHEIC? publication-title: Lancet doi: 10.1016/S0140-6736(16)00320-2 – volume: 12 start-page: 161 year: 2016 ident: 2021042609090572800_DEV140707C33 article-title: Zika virus strains potentially display different infectious profiles in human neural cells publication-title: EBioMedicine doi: 10.1016/j.ebiom.2016.09.020 – reference: 27064148 - Science. 2016 May 13;352(6287):816-8 – reference: 27476412 - Cell Host Microbe. 2016 Aug 10;20(2):259-70 – reference: 26775125 - Lancet. 2016 Jan 16;387(10015):228 – reference: 27279226 - Nature. 2016 May 11;534(7606):267-71 – reference: 27038591 - Cell Stem Cell. 2016 May 5;18(5):591-6 – reference: 12995440 - Trans R Soc Trop Med Hyg. 1952 Sep;46(5):509-20 – reference: 27257762 - Cell Stem Cell. 2016 Jun 2;18(6):736-48 – reference: 26854199 - Int J Infect Dis. 2016 Mar;44:11-5 – reference: 26862926 - N Engl J Med. 2016 Mar 10;374(10 ):951-8 – reference: 21729779 - Cell. 2011 Jul 8;146(1):18-36 – reference: 25555215 - J Clin Invest. 2015 Feb;125(2):796-808 – reference: 27571349 - Nat Med. 2016 Oct;22(10 ):1101-1107 – reference: 27118425 - Cell. 2016 May 19;165(5):1238-54 – reference: 26927450 - J Infect Dev Ctries. 2016 Feb 28;10 (2):116-20 – reference: 23995685 - Nature. 2013 Sep 19;501(7467):373-9 – reference: 26186191 - Cell. 2015 Jul 16;162(2):375-90 – reference: 26761185 - N Engl J Med. 2016 Feb 18;374(7):601-4 – reference: 27657449 - Neuron. 2016 Sep 21;91(6):1219-27 – reference: 26005811 - Nat Methods. 2015 Jul;12(7):671-8 – reference: 14175744 - Trans R Soc Trop Med Hyg. 1964 Jul;58:335-8 – reference: 26952870 - Cell Stem Cell. 2016 May 5;18(5):587-90 – reference: 26705693 - Curr Opin Neurobiol. 2016 Feb;36:118-27 – reference: 27476966 - Cell Stem Cell. 2016 Aug 4;19(2):248-57 – reference: 27580721 - Nucleic Acids Res. 2016 Oct 14;44(18):8610-8620 – reference: 27283801 - Cell Res. 2016 Jul;26(7):753-4 – reference: 27268504 - Cell Rep. 2016 Jun 14;15(11):2315-22 – reference: 27524440 - Cell Stem Cell. 2016 Nov 3;19(5):663-671 – reference: 26897108 - Lancet Infect Dis. 2016 Jun;16(6):653-60 – reference: 25670790 - Development. 2015 Feb 15;142(4):633-43 – reference: 27013429 - Science. 2016 Apr 15;352(6283):345-9 – reference: 27162029 - Cell Stem Cell. 2016 Aug 4;19(2):258-65 – reference: 18035408 - Cell. 2007 Nov 30;131(5):861-72 – reference: 26573335 - Nat Commun. 2015 Nov 17;6:8896 – reference: 27912091 - Cell Stem Cell. 2016 Dec 1;19(6):703-708 – reference: 26876373 - Lancet. 2016 Feb 20;387(10020):719-21 – reference: 27179424 - Cell Stem Cell. 2016 Jul 7;19(1):120-6 – reference: 27688094 - EBioMedicine. 2016 Oct;12 :161-169 – reference: 27911847 - Proc Natl Acad Sci U S A. 2016 Dec 13;113(50):14408-14413 – reference: 27912090 - Cell Stem Cell. 2016 Dec 1;19(6):690-702 – reference: 24277810 - Proc Natl Acad Sci U S A. 2013 Dec 10;110(50):20284-9 – reference: 27568284 - Cell Rep. 2016 Sep 6;16(10 ):2576-92 |
SSID | ssj0003677 |
Score | 2.5928786 |
SecondaryResourceType | review_article |
Snippet | Technologies to differentiate human pluripotent stem cells into three-dimensional organized structures that resemble in vivo organs are pushing the frontiers... Technologies to differentiate human pluripotent stem cells into three-dimensional organized structures that resemble organs are pushing the frontiers of human... Technologies to differentiate human pluripotent stem cells into three-dimensional organized structures that resemble in vivo organs are pushing the frontiers... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 952 |
SubjectTerms | Animals Brain - pathology Drug development Fetuses Flavivirus Humans Microcephaly Microcephaly - pathology Microcephaly - virology Microencephaly Organoids Organoids - pathology Outbreaks Pathogenesis Pluripotency Spotlight Stem cells Zika virus Zika Virus - physiology Zika Virus Infection - virology |
Title | Using brain organoids to understand Zika virus-induced microcephaly |
URI | https://www.ncbi.nlm.nih.gov/pubmed/28292840 https://www.proquest.com/docview/1983413131 https://www.proquest.com/docview/1877852996 https://www.proquest.com/docview/1881768515 https://pubmed.ncbi.nlm.nih.gov/PMC5358105 |
Volume | 144 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3batRAdNCK0hfRemm0SkRfpMQmO5edPEq1rEoFYYWlL2EymbXRNiltUli_3jOXTJJukSoL2WUyk01yzpz7BaE3wHN5PmE4whNBIgI4FPF8WkR8SQuZUuBZpmnf4Vc2-04-L-iiDxsz2SVN_k7-vjav5H-gCmMAV50l-w-Q9ReFAfgN8IUjQBiON4Kx9ffnusuDbc9Ul4Wp2ND6lJXdo_KX2L0sz9uLCNTvVrv7T3UQnlRnx-Jk5NQdBBAZ526XzjWwFnwrrcF00a5ab0f-0a4s8ZoJoNanPigHiK3x9hyIovSWHBcCPIPvn201NDoAI9MRbHRkPYx1jIpFC2VpJ9He4MTdUkdcbXVHh0VDUpnayrWO66a2TPUaQQcJAqBQqEsg6boyUc-2Olf9FW7mYwy1dgOrM1ib2bW30Z0JKBO6z8WHT188v8bM9Of0j-SK2MLavf5_x2LLmi5yNaR2IKPMH6D7TrkI31tMeYhuqWoL3bXtRldb6N6hC6SAwaPaDD5C-waJQoNEoUeisKnDHolCjUThCInCIRI9RvODj_P9WeQ6a0SSsLSJUkW4FDGVSS7ThAqiGIkl7EyuNNfBnOMlFgUuQNjVydsSY8JIQfNEkiKW-AnaqOpKbaMwn8QwoBLFYa8vCROCFalkywTDtXCeBOht994y6arO6-YnJ9k6fAL02s89s7VWrp21073-zO3FiyxJuRbH4BOgV_40UErt_hKVqluYw6dTTkH8Yn-bwxNQwEHID9BTC1F_KzrmAIS5OEDTEaz9BF2pfXymKo9NxXaqqwzG9NmNHvA52uy33A7aaM5b9QIk3yZ_aRD3D9nvrcA |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+brain+organoids+to+understand+Zika+virus-induced+microcephaly&rft.jtitle=Development+%28Cambridge%29&rft.au=Qian%2C+Xuyu&rft.au=Nguyen%2C+Ha+Nam&rft.au=Jacob%2C+Fadi&rft.au=Song%2C+Hongjun&rft.date=2017-03-15&rft.issn=0950-1991&rft.eissn=1477-9129&rft.volume=144&rft.issue=6&rft.spage=952&rft.epage=957&rft_id=info:doi/10.1242%2Fdev.140707&rft.externalDBID=n%2Fa&rft.externalDocID=10_1242_dev_140707 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-1991&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-1991&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-1991&client=summon |