Using brain organoids to understand Zika virus-induced microcephaly

Technologies to differentiate human pluripotent stem cells into three-dimensional organized structures that resemble in vivo organs are pushing the frontiers of human disease modeling and drug development. In response to the global health emergency posed by the Zika virus (ZIKV) outbreak, brain orga...

Full description

Saved in:
Bibliographic Details
Published inDevelopment (Cambridge) Vol. 144; no. 6; pp. 952 - 957
Main Authors Qian, Xuyu, Nguyen, Ha Nam, Jacob, Fadi, Song, Hongjun, Ming, Guo-li
Format Journal Article
LanguageEnglish
Published England The Company of Biologists Ltd 15.03.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Technologies to differentiate human pluripotent stem cells into three-dimensional organized structures that resemble in vivo organs are pushing the frontiers of human disease modeling and drug development. In response to the global health emergency posed by the Zika virus (ZIKV) outbreak, brain organoids engineered to mimic the developing human fetal brain have been employed to model ZIKV-induced microcephaly. Here, we discuss the advantages of brain organoids over other model systems to study development and highlight recent advances in understanding ZIKV pathophysiology and its underlying pathogenesis mechanisms. We further discuss perspectives on overcoming limitations of current organoid systems for their future use in ZIKV research.
AbstractList Technologies to differentiate human pluripotent stem cells into three-dimensional organized structures that resemble in vivo organs are pushing the frontiers of human disease modeling and drug development. In response to the global health emergency posed by the Zika virus (ZIKV) outbreak, brain organoids engineered to mimic the developing human fetal brain have been employed to model ZIKV-induced microcephaly. Here, we discuss the advantages of brain organoids over other model systems to study development and highlight recent advances in understanding ZIKV pathophysiology and its underlying pathogenesis mechanisms. We further discuss perspectives on overcoming limitations of current organoid systems for their future use in ZIKV research.Technologies to differentiate human pluripotent stem cells into three-dimensional organized structures that resemble in vivo organs are pushing the frontiers of human disease modeling and drug development. In response to the global health emergency posed by the Zika virus (ZIKV) outbreak, brain organoids engineered to mimic the developing human fetal brain have been employed to model ZIKV-induced microcephaly. Here, we discuss the advantages of brain organoids over other model systems to study development and highlight recent advances in understanding ZIKV pathophysiology and its underlying pathogenesis mechanisms. We further discuss perspectives on overcoming limitations of current organoid systems for their future use in ZIKV research.
Technologies to differentiate human pluripotent stem cells into three-dimensional organized structures that resemble in vivo organs are pushing the frontiers of human disease modeling and drug development. In response to the global health emergency posed by the Zika virus (ZIKV) outbreak, brain organoids engineered to mimic the developing human fetal brain have been employed to model ZIKV-induced microcephaly. Here, we discuss the advantages of brain organoids over other model systems to study development and highlight recent advances in understanding ZIKV pathophysiology and its underlying pathogenesis mechanisms. We further discuss perspectives on overcoming limitations of current organoid systems for their future use in ZIKV research.
Technologies to differentiate human pluripotent stem cells into three-dimensional organized structures that resemble in vivo organs are pushing the frontiers of human disease modeling and drug development. In response to the global health emergency posed by the Zika virus (ZIKV) outbreak, brain organoids engineered to mimic the developing human fetal brain have been employed to model ZIKV-induced microcephaly. Here, we discuss the advantages of brain organoids over other model systems to study development and highlight recent advances in understanding ZIKV pathophysiology and its underlying pathogenesis mechanisms. We further discuss perspectives on overcoming limitations of current organoid systems for their future use in ZIKV research. Summary: This Spotlight article summarises the latest advances in using cerebral organoids to model Zika virus infection and the resulting pathology.
Technologies to differentiate human pluripotent stem cells into three-dimensional organized structures that resemble in vivo organs are pushing the frontiers of human disease modeling and drug development. In response to the global health emergency posed by the Zika virus (ZIKV) outbreak, brain organoids engineered to mimic the developing human fetal brain have been employed to model ZIKV-induced microcephaly. Here, we discuss the advantages of brain organoids over other model systems to study development and highlight recent advances in understanding ZIKV pathophysiology and its underlying pathogenesis mechanisms. We further discuss perspectives on overcoming limitations of current organoid systems for their future use in ZIKV research. Summary: This Spotlight article summarises the latest advances in using cerebral organoids to model Zika virus infection and the resulting pathology.
Technologies to differentiate human pluripotent stem cells into three-dimensional organized structures that resemble organs are pushing the frontiers of human disease modeling and drug development. In response to the global health emergency posed by the Zika virus (ZIKV) outbreak, brain organoids engineered to mimic the developing human fetal brain have been employed to model ZIKV-induced microcephaly. Here, we discuss the advantages of brain organoids over other model systems to study development and highlight recent advances in understanding ZIKV pathophysiology and its underlying pathogenesis mechanisms. We further discuss perspectives on overcoming limitations of current organoid systems for their future use in ZIKV research.
Author Ming, Guo-li
Nguyen, Ha Nam
Qian, Xuyu
Jacob, Fadi
Song, Hongjun
AuthorAffiliation 6 Department of Psychiatry and Behavioral Sciences , Johns Hopkins University School of Medicine , Baltimore, MD 21205 , USA
3 Department of Neurology , Johns Hopkins University School of Medicine , Baltimore, MD 21205 , USA
5 The Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine , Baltimore, MD 21205 , USA
4 The Solomon H. Snyder Department of Neuroscience , Johns Hopkins University School of Medicine , Baltimore, MD 21205 , USA
2 Biomedical Engineering Graduate Program, Johns Hopkins University School of Medicine , Baltimore, MD 21205 , USA
1 Institute for Cell Engineering, Johns Hopkins University School of Medicine , Baltimore, MD 21205 , USA
AuthorAffiliation_xml – name: 1 Institute for Cell Engineering, Johns Hopkins University School of Medicine , Baltimore, MD 21205 , USA
– name: 3 Department of Neurology , Johns Hopkins University School of Medicine , Baltimore, MD 21205 , USA
– name: 6 Department of Psychiatry and Behavioral Sciences , Johns Hopkins University School of Medicine , Baltimore, MD 21205 , USA
– name: 2 Biomedical Engineering Graduate Program, Johns Hopkins University School of Medicine , Baltimore, MD 21205 , USA
– name: 4 The Solomon H. Snyder Department of Neuroscience , Johns Hopkins University School of Medicine , Baltimore, MD 21205 , USA
– name: 5 The Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine , Baltimore, MD 21205 , USA
Author_xml – sequence: 1
  givenname: Xuyu
  surname: Qian
  fullname: Qian, Xuyu
  organization: Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA, Biomedical Engineering Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
– sequence: 2
  givenname: Ha Nam
  surname: Nguyen
  fullname: Nguyen, Ha Nam
  organization: Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
– sequence: 3
  givenname: Fadi
  surname: Jacob
  fullname: Jacob, Fadi
  organization: Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA, The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
– sequence: 4
  givenname: Hongjun
  orcidid: 0000-0003-3307-421X
  surname: Song
  fullname: Song, Hongjun
  organization: Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA, Biomedical Engineering Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA, The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA, The Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
– sequence: 5
  givenname: Guo-li
  orcidid: 0000-0002-2517-6075
  surname: Ming
  fullname: Ming, Guo-li
  organization: Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA, Biomedical Engineering Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA, The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA, The Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28292840$$D View this record in MEDLINE/PubMed
BookMark eNqNkU9rGzEQxUVJaBy3l3yAspBLCWw6s5JW0iUQTP5BoJf00ouQJdlRspZcadeQb981TkoacghzmMP85jHz3iHZiyl6Qo4QTrFhzQ_nN6fIQID4RCbIhKgVNmqPTEBxqFEpPCCHpTwAAG2F-EwOGtmoRjKYkNmvEuKymmcTYpXy0sQUXKn6VA3R-Vx6E131OzyaahPyUOoQ3WC9q1bB5mT9-t50T1_I_sJ0xX997lNyd3lxN7uub39e3czOb2vLWtXXyjNpDXCLc6uQG-ZbBpYLJj1IKaiUdEGNow65AqqopZS1zPE5WubA0ik528muh_nKO-tjn02n1zmsTH7SyQT9_ySGe71MG80plwh8FPj-LJDTn8GXXq9Csb7rTPRpKBqlRNFKjh9BhZC8Uaod0eM36EMachyN0KgkZUi3NSXfXh__7-qXJEYAdsDoaynZL7QNvelD2v4SOo2gt2HrMWy9C3tcOXmz8qL6DvwXyaypeQ
CitedBy_id crossref_primary_10_1093_nc_niab029
crossref_primary_10_1155_2022_7264649
crossref_primary_10_1186_s13619_021_00103_6
crossref_primary_10_1093_neuros_nyaa171
crossref_primary_10_1093_pnasnexus_pgae179
crossref_primary_10_1128_jvi_01718_22
crossref_primary_10_1016_j_semcdb_2020_05_026
crossref_primary_10_1186_s12964_021_00777_0
crossref_primary_10_1038_nprot_2017_152
crossref_primary_10_53941_ijddp_v1i1_188
crossref_primary_10_1016_j_brainres_2019_146427
crossref_primary_10_14202_vetworld_2022_1835_1842
crossref_primary_10_1007_s13205_021_02815_7
crossref_primary_10_12688_f1000research_131507_1
crossref_primary_10_12688_molpsychol_17521_2
crossref_primary_10_12688_molpsychol_17521_1
crossref_primary_10_30621_jbachs_868837
crossref_primary_10_3390_v15051062
crossref_primary_10_1007_s40778_022_00220_1
crossref_primary_10_1186_s12910_021_00627_1
crossref_primary_10_1016_j_ceb_2019_07_010
crossref_primary_10_3390_pathogens13070555
crossref_primary_10_1016_j_semcdb_2019_07_002
crossref_primary_10_7554_eLife_87306_3
crossref_primary_10_1002_jcp_28591
crossref_primary_10_1038_s41392_022_01024_9
crossref_primary_10_1038_s41467_019_12408_x
crossref_primary_10_3389_fncel_2021_695106
crossref_primary_10_1038_s41380_019_0500_7
crossref_primary_10_1371_journal_ppat_1008538
crossref_primary_10_1080_21507740_2023_2173329
crossref_primary_10_1128_JVI_01575_20
crossref_primary_10_1002_adhm_202301067
crossref_primary_10_1146_annurev_neuro_080317_062231
crossref_primary_10_1242_dev_140111
crossref_primary_10_1016_j_biotechadv_2023_108233
crossref_primary_10_1126_science_aam7120
crossref_primary_10_1038_s42003_021_02910_8
crossref_primary_10_1146_annurev_virology_091919_065806
crossref_primary_10_1016_j_bj_2020_11_009
crossref_primary_10_1080_22221751_2019_1578188
crossref_primary_10_1089_scd_2018_0233
crossref_primary_10_3389_fncel_2020_00115
crossref_primary_10_1002_bit_28606
crossref_primary_10_1016_j_cobme_2020_03_004
crossref_primary_10_3389_fmicb_2023_1162554
crossref_primary_10_3389_frai_2023_1307613
crossref_primary_10_1016_j_jmb_2021_167243
crossref_primary_10_1093_infdis_jiy572
crossref_primary_10_4196_kjpp_2020_24_6_441
crossref_primary_10_1007_s11019_022_10082_3
crossref_primary_10_1038_s41598_019_55631_8
crossref_primary_10_3390_v12050510
crossref_primary_10_3390_v16010024
crossref_primary_10_1186_s13287_021_02369_8
crossref_primary_10_1016_j_canlet_2019_04_005
crossref_primary_10_1016_j_stemcr_2020_11_009
crossref_primary_10_1242_dev_140566
crossref_primary_10_1038_s41598_018_31149_3
crossref_primary_10_1016_j_gene_2024_148198
crossref_primary_10_7554_eLife_52904
crossref_primary_10_1016_j_coviro_2018_04_001
crossref_primary_10_1016_j_stemcr_2021_02_007
crossref_primary_10_1002_ibra_12139
crossref_primary_10_1073_pnas_1803647115
crossref_primary_10_3389_fnsyn_2018_00015
crossref_primary_10_1021_acsptsci_3c00127
crossref_primary_10_1016_j_schres_2022_06_028
crossref_primary_10_3390_ijms22168876
crossref_primary_10_3390_cells9051301
crossref_primary_10_3389_fimmu_2022_773191
crossref_primary_10_1002_1873_3468_12906
crossref_primary_10_1002_dvdy_24662
crossref_primary_10_1186_s13024_019_0336_2
crossref_primary_10_1038_s41598_020_77170_3
crossref_primary_10_1007_s00441_020_03249_y
crossref_primary_10_1016_j_brainres_2020_147146
crossref_primary_10_1186_s13024_018_0258_4
crossref_primary_10_1080_21505594_2019_1656503
crossref_primary_10_12688_f1000research_131507_2
crossref_primary_10_1007_s13365_023_01123_5
crossref_primary_10_1038_d41586_018_04813_x
crossref_primary_10_1242_dev_140731
crossref_primary_10_1186_s13010_022_00119_z
crossref_primary_10_1093_brain_awaa268
crossref_primary_10_1515_mr_2023_0047
crossref_primary_10_1186_s13567_021_00931_z
crossref_primary_10_1016_j_brain_2022_100062
crossref_primary_10_3390_molecules25082000
crossref_primary_10_1021_acsinfecdis_0c00217
crossref_primary_10_1002_dvdy_176
crossref_primary_10_1186_s13287_024_03944_5
crossref_primary_10_1038_s41467_024_46634_9
crossref_primary_10_1093_jmcb_mjz100
crossref_primary_10_1128_mBio_00680_21
crossref_primary_10_3389_fnins_2019_00582
crossref_primary_10_1242_dev_156166
crossref_primary_10_7554_eLife_87306
crossref_primary_10_1080_19336918_2021_1996749
crossref_primary_10_3390_pathogens10101233
crossref_primary_10_1016_j_xcrp_2022_100974
crossref_primary_10_1016_j_alcohol_2018_03_008
crossref_primary_10_1080_22221751_2020_1838954
crossref_primary_10_33590_emjmicrobiolinfectdis_21_00256
crossref_primary_10_1002_adhm_202302745
crossref_primary_10_1128_JVI_00111_19
crossref_primary_10_1177_09636897241303271
crossref_primary_10_3390_v15010158
crossref_primary_10_1016_j_neuron_2017_10_010
crossref_primary_10_1016_j_bbrc_2018_02_118
crossref_primary_10_1016_j_mtbio_2024_101438
crossref_primary_10_1002_stem_2637
crossref_primary_10_1089_omi_2018_0172
crossref_primary_10_1371_journal_pntd_0009388
crossref_primary_10_1016_j_scr_2020_102065
crossref_primary_10_1002_stem_3156
crossref_primary_10_1038_s41577_020_00474_y
crossref_primary_10_3389_fmicb_2018_02766
crossref_primary_10_3389_fmicb_2021_725074
crossref_primary_10_1098_rsob_180177
crossref_primary_10_1016_j_socscimed_2023_115676
crossref_primary_10_1136_medethics_2017_104555
crossref_primary_10_1002_wdev_347
crossref_primary_10_1134_S1062360420040074
crossref_primary_10_3390_ijms26010047
crossref_primary_10_1073_pnas_1714624114
crossref_primary_10_1038_s41578_021_00279_y
crossref_primary_10_1134_S0006297919030143
crossref_primary_10_3389_fmicb_2020_00362
crossref_primary_10_1016_j_cmi_2019_04_016
crossref_primary_10_1124_pharmrev_120_000238
crossref_primary_10_3390_ijms222010996
crossref_primary_10_1016_j_neuron_2019_01_024
crossref_primary_10_1016_j_celrep_2021_109351
crossref_primary_10_1021_acsinfecdis_9b00339
crossref_primary_10_1242_dev_150201
crossref_primary_10_1038_s41596_020_0402_9
crossref_primary_10_1371_journal_ppat_1010080
crossref_primary_10_1186_s13578_021_00617_1
crossref_primary_10_1242_dev_166074
crossref_primary_10_3389_fbioe_2022_1066869
crossref_primary_10_1038_s41579_022_00713_0
crossref_primary_10_1016_j_heliyon_2021_e07350
crossref_primary_10_1038_s41596_020_0335_3
crossref_primary_10_1146_annurev_virology_092818_015740
crossref_primary_10_1002_med_21922
crossref_primary_10_1128_JVI_00954_19
crossref_primary_10_1016_j_actatropica_2024_107182
crossref_primary_10_1093_oons_kvad008
crossref_primary_10_1242_dev_150292
crossref_primary_10_1007_s40592_020_00116_y
crossref_primary_10_1016_j_celrep_2018_09_076
crossref_primary_10_3389_fmicb_2018_01018
crossref_primary_10_12677_ACM_2024_142488
crossref_primary_10_1016_j_cell_2018_09_010
crossref_primary_10_1002_bdr2_2004
crossref_primary_10_1101_gad_298216_117
crossref_primary_10_1186_s13229_020_00370_1
crossref_primary_10_1128_mBio_02370_19
crossref_primary_10_1177_09636897221124481
crossref_primary_10_3389_fphar_2025_1497861
crossref_primary_10_1017_S096318012300021X
crossref_primary_10_1177_1073110519897789
crossref_primary_10_1242_dmm_049060
crossref_primary_10_3389_fimmu_2021_792316
crossref_primary_10_3892_ijo_2023_5536
crossref_primary_10_1002_term_3298
crossref_primary_10_1007_s13770_023_00611_3
crossref_primary_10_1016_j_expneurol_2021_113619
crossref_primary_10_1038_s44222_023_00130_9
crossref_primary_10_3390_v12111341
Cites_doi 10.1016/j.celrep.2016.08.038
10.1093/nar/gkw765
10.1016/j.celrep.2016.05.075
10.1016/j.ijid.2016.02.001
10.1242/dev.117978
10.1016/j.cell.2007.11.019
10.1016/j.stem.2016.11.011
10.1016/j.chom.2016.07.004
10.1038/cr.2016.68
10.1038/nature18296
10.1073/pnas.1618029113
10.1172/JCI79220
10.1126/science.aaf6116
10.1016/j.stem.2016.07.005
10.1038/nature12517
10.1016/0035-9203(52)90042-4
10.3855/jidc.8217
10.1038/ncomms9896
10.1038/nm.4184
10.1016/S1473-3099(16)00095-5
10.1016/j.stem.2016.04.014
10.1016/S0140-6736(16)00006-4
10.1056/NEJMp1600297
10.1016/j.stem.2016.04.017
10.1056/NEJMoa1600651
10.1073/pnas.1315710110
10.1016/j.stem.2016.02.016
10.1016/j.conb.2015.11.003
10.1016/j.cell.2015.06.034
10.1016/j.stem.2016.05.022
10.1016/j.cell.2016.04.032
10.1016/j.cell.2011.06.030
10.1016/j.stem.2016.03.012
10.1016/0035-9203(64)90201-9
10.1016/j.stem.2016.07.019
10.1016/j.neuron.2016.09.005
10.1016/j.stem.2016.11.014
10.1038/nmeth.3415
10.1126/science.aaf5036
10.1016/S0140-6736(16)00320-2
10.1016/j.ebiom.2016.09.020
ContentType Journal Article
Copyright 2017. Published by The Company of Biologists Ltd.
Copyright The Company of Biologists Ltd Mar 15, 2017
2017. Published by The Company of Biologists Ltd 2017
Copyright_xml – notice: 2017. Published by The Company of Biologists Ltd.
– notice: Copyright The Company of Biologists Ltd Mar 15, 2017
– notice: 2017. Published by The Company of Biologists Ltd 2017
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7SS
7TK
7TM
7U9
8FD
FR3
H94
P64
RC3
7X8
5PM
DOI 10.1242/dev.140707
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Entomology Abstracts (Full archive)
Neurosciences Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Engineering Research Database
AIDS and Cancer Research Abstracts
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Entomology Abstracts
Genetics Abstracts
Virology and AIDS Abstracts
Technology Research Database
Nucleic Acids Abstracts
AIDS and Cancer Research Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef

Genetics Abstracts
Entomology Abstracts
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Zoology
Biology
EISSN 1477-9129
EndPage 957
ExternalDocumentID PMC5358105
28292840
10_1242_dev_140707
Genre Review
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NINDS NIH HHS
  grantid: P01 NS097206
– fundername: NIMH NIH HHS
  grantid: U19 MH106434
– fundername: NIGMS NIH HHS
  grantid: T32 GM008752
– fundername: NINDS NIH HHS
  grantid: R35 NS097370
– fundername: NIMH NIH HHS
  grantid: R01 MH105128
– fundername: NIMH NIH HHS
  grantid: T32 MH015330
– fundername: NIGMS NIH HHS
  grantid: T32 GM007309
– fundername: NINDS NIH HHS
  grantid: R37 NS047344
– fundername: ;
– fundername: ;
  grantid: R01MH105128; R35NS097370; R37NS047344; U19MH106434; P01NS097206; T32MH015330
GroupedDBID ---
-DZ
-ET
-~X
.55
0R~
18M
2WC
34G
39C
4.4
53G
5GY
5RE
5VS
85S
AAFWJ
AAYXX
ABZEH
ACGFS
ACMFV
ACPRK
ACREN
ADBBV
ADFRT
ADVGF
AENEX
AFFNX
AGGIJ
ALMA_UNASSIGNED_HOLDINGS
AMTXH
BAWUL
BTFSW
CITATION
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
F9R
GX1
H13
HZ~
INIJC
KQ8
O9-
OK1
P2P
R.V
RCB
RHI
SJN
TR2
TWZ
UPT
W8F
WH7
WOQ
X7M
XSW
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7SS
7TK
7TM
7U9
8FD
FR3
H94
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c469t-9e48ca05c1bc915a4e640c5748e08873883f3ad3d1590393c33464d5b1c4d0c3
ISSN 0950-1991
1477-9129
IngestDate Thu Aug 21 13:35:12 EDT 2025
Mon Jul 21 11:33:31 EDT 2025
Fri Jul 11 06:31:55 EDT 2025
Sun Jul 13 05:27:36 EDT 2025
Thu Apr 03 07:06:33 EDT 2025
Tue Jul 01 00:45:08 EDT 2025
Thu Apr 24 23:07:56 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Organoids
Microcephaly
Cortex
iPSC
Zika
Language English
License http://www.biologists.com/user-licence-1-1
2017. Published by The Company of Biologists Ltd.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c469t-9e48ca05c1bc915a4e640c5748e08873883f3ad3d1590393c33464d5b1c4d0c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0003-3307-421X
0000-0002-2517-6075
PMID 28292840
PQID 1983413131
PQPubID 2046254
PageCount 6
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5358105
proquest_miscellaneous_1881768515
proquest_miscellaneous_1877852996
proquest_journals_1983413131
pubmed_primary_28292840
crossref_citationtrail_10_1242_dev_140707
crossref_primary_10_1242_dev_140707
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-03-15
20170315
PublicationDateYYYYMMDD 2017-03-15
PublicationDate_xml – month: 03
  year: 2017
  text: 2017-03-15
  day: 15
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Development (Cambridge)
PublicationTitleAlternate Development
PublicationYear 2017
Publisher The Company of Biologists Ltd
Publisher_xml – name: The Company of Biologists Ltd
References Calvet (2021042609090572800_DEV140707C2) 2016; 16
Jo (2021042609090572800_DEV140707C13) 2016; 19
Ventura (2021042609090572800_DEV140707C37) 2016; 387
Li (2021042609090572800_DEV140707C17) 2016; 19
Mariani (2021042609090572800_DEV140707C20) 2015; 162
Tang (2021042609090572800_DEV140707C36) 2016; 18
Wells (2021042609090572800_DEV140707C39) 2016; 19
Takahashi (2021042609090572800_DEV140707C35) 2007; 131
Nguyen (2021042609090572800_DEV140707C24) 2016; 26
Hanners (2021042609090572800_DEV140707C10) 2016; 15
Ming (2021042609090572800_DEV140707C22) 2016; 19
Qian (2021042609090572800_DEV140707C30) 2016; 165
Mlakar (2021042609090572800_DEV140707C23) 2016; 374
Xu (2021042609090572800_DEV140707C41) 2016; 22
Nowakowski (2021042609090572800_DEV140707C25) 2016; 18
Kelava (2021042609090572800_DEV140707C15) 2016; 18
Retallack (2021042609090572800_DEV140707C31) 2016; 113
Heymann (2021042609090572800_DEV140707C12) 2016; 387
Paşca (2021042609090572800_DEV140707C28) 2015; 12
Liang (2021042609090572800_DEV140707C18) 2016; 19
Merkle (2021042609090572800_DEV140707C21) 2015; 142
Lancaster (2021042609090572800_DEV140707C16) 2013; 501
Cugola (2021042609090572800_DEV140707C4) 2016; 534
Wang (2021042609090572800_DEV140707C38) 2015; 125
Dang (2021042609090572800_DEV140707C5) 2016; 19
Faria (2021042609090572800_DEV140707C7) 2016; 352
Garcez (2021042609090572800_DEV140707C9) 2016; 352
Petersen (2021042609090572800_DEV140707C29) 2016; 44
Zhang (2021042609090572800_DEV140707C42) 2016; 44
Lui (2021042609090572800_DEV140707C19) 2011; 146
Simpson (2021042609090572800_DEV140707C34) 1964; 58
Onorati (2021042609090572800_DEV140707C27) 2016; 16
Sakaguchi (2021042609090572800_DEV140707C32) 2015; 6
CDC (2021042609090572800_DEV140707C3) 2016
Simonin (2021042609090572800_DEV140707C33) 2016; 12
Heukelbach (2021042609090572800_DEV140707C11) 2016; 10
Kadoshima (2021042609090572800_DEV140707C14) 2013; 110
Wen (2021042609090572800_DEV140707C40) 2016; 36
Dick (2021042609090572800_DEV140707C6) 1952; 46
Nowakowski (2021042609090572800_DEV140707C26) 2016; 91
Barrows (2021042609090572800_DEV140707C1) 2016; 20
Fauci (2021042609090572800_DEV140707C8) 2016; 374
27118425 - Cell. 2016 May 19;165(5):1238-54
27524440 - Cell Stem Cell. 2016 Nov 3;19(5):663-671
14175744 - Trans R Soc Trop Med Hyg. 1964 Jul;58:335-8
25670790 - Development. 2015 Feb 15;142(4):633-43
27912090 - Cell Stem Cell. 2016 Dec 1;19(6):690-702
26897108 - Lancet Infect Dis. 2016 Jun;16(6):653-60
26876373 - Lancet. 2016 Feb 20;387(10020):719-21
27568284 - Cell Rep. 2016 Sep 6;16(10 ):2576-92
27476966 - Cell Stem Cell. 2016 Aug 4;19(2):248-57
27476412 - Cell Host Microbe. 2016 Aug 10;20(2):259-70
26927450 - J Infect Dev Ctries. 2016 Feb 28;10 (2):116-20
27268504 - Cell Rep. 2016 Jun 14;15(11):2315-22
27162029 - Cell Stem Cell. 2016 Aug 4;19(2):258-65
18035408 - Cell. 2007 Nov 30;131(5):861-72
27013429 - Science. 2016 Apr 15;352(6283):345-9
12995440 - Trans R Soc Trop Med Hyg. 1952 Sep;46(5):509-20
26573335 - Nat Commun. 2015 Nov 17;6:8896
27657449 - Neuron. 2016 Sep 21;91(6):1219-27
26705693 - Curr Opin Neurobiol. 2016 Feb;36:118-27
27912091 - Cell Stem Cell. 2016 Dec 1;19(6):703-708
26952870 - Cell Stem Cell. 2016 May 5;18(5):587-90
27179424 - Cell Stem Cell. 2016 Jul 7;19(1):120-6
27911847 - Proc Natl Acad Sci U S A. 2016 Dec 13;113(50):14408-14413
26775125 - Lancet. 2016 Jan 16;387(10015):228
21729779 - Cell. 2011 Jul 8;146(1):18-36
26862926 - N Engl J Med. 2016 Mar 10;374(10 ):951-8
24277810 - Proc Natl Acad Sci U S A. 2013 Dec 10;110(50):20284-9
27038591 - Cell Stem Cell. 2016 May 5;18(5):591-6
27571349 - Nat Med. 2016 Oct;22(10 ):1101-1107
26761185 - N Engl J Med. 2016 Feb 18;374(7):601-4
27257762 - Cell Stem Cell. 2016 Jun 2;18(6):736-48
27580721 - Nucleic Acids Res. 2016 Oct 14;44(18):8610-8620
23995685 - Nature. 2013 Sep 19;501(7467):373-9
26186191 - Cell. 2015 Jul 16;162(2):375-90
27688094 - EBioMedicine. 2016 Oct;12 :161-169
27064148 - Science. 2016 May 13;352(6287):816-8
25555215 - J Clin Invest. 2015 Feb;125(2):796-808
26005811 - Nat Methods. 2015 Jul;12(7):671-8
26854199 - Int J Infect Dis. 2016 Mar;44:11-5
27279226 - Nature. 2016 May 11;534(7606):267-71
27283801 - Cell Res. 2016 Jul;26(7):753-4
References_xml – volume: 16
  start-page: 2576
  year: 2016
  ident: 2021042609090572800_DEV140707C27
  article-title: Zika virus disrupts phospho-TBK1 localization and mitosis in human neuroepithelial stem cells and radial glia
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2016.08.038
– volume: 44
  start-page: 8610
  year: 2016
  ident: 2021042609090572800_DEV140707C42
  article-title: Molecular signatures associated with ZIKV exposure in human cortical neural progenitors
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkw765
– volume: 15
  start-page: 2315
  year: 2016
  ident: 2021042609090572800_DEV140707C10
  article-title: Western Zika virus in human fetal neural progenitors persists long term with partial cytopathic and limited immunogenic effects
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2016.05.075
– volume: 44
  start-page: 11
  year: 2016
  ident: 2021042609090572800_DEV140707C29
  article-title: Rapid spread of Zika virus in the Americas-implications for public health preparedness for mass gatherings at the 2016 Brazil Olympic Games
  publication-title: Int. J. Infect. Dis.
  doi: 10.1016/j.ijid.2016.02.001
– volume: 142
  start-page: 633
  year: 2015
  ident: 2021042609090572800_DEV140707C21
  article-title: Generation of neuropeptidergic hypothalamic neurons from human pluripotent stem cells
  publication-title: Development
  doi: 10.1242/dev.117978
– volume: 131
  start-page: 861
  year: 2007
  ident: 2021042609090572800_DEV140707C35
  article-title: Induction of pluripotent stem cells from adult human fibroblasts by defined factors
  publication-title: Cell
  doi: 10.1016/j.cell.2007.11.019
– volume: 19
  start-page: 703
  year: 2016
  ident: 2021042609090572800_DEV140707C39
  article-title: Genetic ablation of AXL does not protect human neural progenitor cells and cerebral organoids from Zika virus infection
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2016.11.011
– volume: 20
  start-page: 259
  year: 2016
  ident: 2021042609090572800_DEV140707C1
  article-title: A screen of FDA-approved drugs for inhibitors of Zika virus infection
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2016.07.004
– volume: 26
  start-page: 753
  year: 2016
  ident: 2021042609090572800_DEV140707C24
  article-title: Neural stem cells attacked by Zika virus
  publication-title: Cell Res.
  doi: 10.1038/cr.2016.68
– volume: 534
  start-page: 267
  year: 2016
  ident: 2021042609090572800_DEV140707C4
  article-title: The Brazilian Zika virus strain causes birth defects in experimental models
  publication-title: Nature
  doi: 10.1038/nature18296
– volume: 113
  start-page: 14408
  year: 2016
  ident: 2021042609090572800_DEV140707C31
  article-title: Zika virus cell tropism in the developing human brain and inhibition by azithromycin
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1618029113
– volume-title: Zika virus
  year: 2016
  ident: 2021042609090572800_DEV140707C3
– volume: 125
  start-page: 796
  year: 2015
  ident: 2021042609090572800_DEV140707C38
  article-title: Differentiation of hypothalamic-like neurons from human pluripotent stem cells
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI79220
– volume: 352
  start-page: 816
  year: 2016
  ident: 2021042609090572800_DEV140707C9
  article-title: Zika virus impairs growth in human neurospheres and brain organoids
  publication-title: Science
  doi: 10.1126/science.aaf6116
– volume: 19
  start-page: 248
  year: 2016
  ident: 2021042609090572800_DEV140707C13
  article-title: Midbrain-like organoids from human pluripotent stem cells contain functional dopaminergic and neuromelanin-producing neurons
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2016.07.005
– volume: 501
  start-page: 373
  year: 2013
  ident: 2021042609090572800_DEV140707C16
  article-title: Cerebral organoids model human brain development and microcephaly
  publication-title: Nature
  doi: 10.1038/nature12517
– volume: 46
  start-page: 509
  year: 1952
  ident: 2021042609090572800_DEV140707C6
  article-title: Zika virus (I). Isolations and serological specificity
  publication-title: Trans. R. Soc. Trop. Med. Hyg.
  doi: 10.1016/0035-9203(52)90042-4
– volume: 10
  start-page: 116
  year: 2016
  ident: 2021042609090572800_DEV140707C11
  article-title: Zika virus outbreak in Brazil
  publication-title: J. Infect. Dev. Ctries
  doi: 10.3855/jidc.8217
– volume: 6
  start-page: 8896
  year: 2015
  ident: 2021042609090572800_DEV140707C32
  article-title: Generation of functional hippocampal neurons from self-organizing human embryonic stem cell-derived dorsomedial telencephalic tissue
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9896
– volume: 22
  start-page: 1101
  year: 2016
  ident: 2021042609090572800_DEV140707C41
  article-title: Identification of small-molecule inhibitors of Zika virus infection and induced neural cell death via a drug repurposing screen
  publication-title: Nat. Med.
  doi: 10.1038/nm.4184
– volume: 16
  start-page: 653
  year: 2016
  ident: 2021042609090572800_DEV140707C2
  article-title: Detection and sequencing of Zika virus from amniotic fluid of fetuses with microcephaly in Brazil: a case study
  publication-title: Lancet Infect. Dis.
  doi: 10.1016/S1473-3099(16)00095-5
– volume: 19
  start-page: 258
  year: 2016
  ident: 2021042609090572800_DEV140707C5
  article-title: Zika virus depletes neural progenitors in human cerebral organoids through activation of the innate immune receptor TLR3
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2016.04.014
– volume: 387
  start-page: 228
  year: 2016
  ident: 2021042609090572800_DEV140707C37
  article-title: Zika virus in Brazil and macular atrophy in a child with microcephaly
  publication-title: Lancet
  doi: 10.1016/S0140-6736(16)00006-4
– volume: 374
  start-page: 601
  year: 2016
  ident: 2021042609090572800_DEV140707C8
  article-title: Zika virus in the Americas--yet another arbovirus threat
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMp1600297
– volume: 19
  start-page: 120
  year: 2016
  ident: 2021042609090572800_DEV140707C17
  article-title: Zika virus disrupts neural progenitor development and leads to microcephaly in mice
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2016.04.017
– volume: 374
  start-page: 951
  year: 2016
  ident: 2021042609090572800_DEV140707C23
  article-title: Zika virus associated with microcephaly
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1600651
– volume: 110
  start-page: 20284
  year: 2013
  ident: 2021042609090572800_DEV140707C14
  article-title: Self-organization of axial polarity, inside-out layer pattern, and species-specific progenitor dynamics in human ES cell-derived neocortex
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1315710110
– volume: 18
  start-page: 587
  year: 2016
  ident: 2021042609090572800_DEV140707C36
  article-title: Zika virus infects human cortical neural progenitors and attenuates their growth
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2016.02.016
– volume: 36
  start-page: 118
  year: 2016
  ident: 2021042609090572800_DEV140707C40
  article-title: Modeling psychiatric disorders with patient-derived iPSCs
  publication-title: Curr. Opin. Neurobiol.
  doi: 10.1016/j.conb.2015.11.003
– volume: 162
  start-page: 375
  year: 2015
  ident: 2021042609090572800_DEV140707C20
  article-title: FOXG1-dependent dysregulation of GABA/glutamate neuron differentiation in autism spectrum disorders
  publication-title: Cell
  doi: 10.1016/j.cell.2015.06.034
– volume: 18
  start-page: 736
  year: 2016
  ident: 2021042609090572800_DEV140707C15
  article-title: Stem cell models of human brain development
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2016.05.022
– volume: 165
  start-page: 1238
  year: 2016
  ident: 2021042609090572800_DEV140707C30
  article-title: Brain-region-specific organoids using mini-bioreactors for modeling ZIKV exposure
  publication-title: Cell
  doi: 10.1016/j.cell.2016.04.032
– volume: 146
  start-page: 18
  year: 2011
  ident: 2021042609090572800_DEV140707C19
  article-title: Development and evolution of the human neocortex
  publication-title: Cell
  doi: 10.1016/j.cell.2011.06.030
– volume: 18
  start-page: 591
  year: 2016
  ident: 2021042609090572800_DEV140707C25
  article-title: Expression analysis highlights AXL as a candidate Zika virus entry receptor in neural stem cells
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2016.03.012
– volume: 58
  start-page: 335
  year: 1964
  ident: 2021042609090572800_DEV140707C34
  article-title: Zika virus infection in man
  publication-title: Trans. R. Soc. Trop. Med. Hyg.
  doi: 10.1016/0035-9203(64)90201-9
– volume: 19
  start-page: 663
  year: 2016
  ident: 2021042609090572800_DEV140707C18
  article-title: Zika virus NS4A and NS4B proteins deregulate Akt-mTOR signaling in human fetal neural stem cells to inhibit neurogenesis and induce autophagy
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2016.07.019
– volume: 91
  start-page: 1219
  year: 2016
  ident: 2021042609090572800_DEV140707C26
  article-title: Transformation of the radial glia scaffold demarcates two stages of human cerebral cortex development
  publication-title: Neuron
  doi: 10.1016/j.neuron.2016.09.005
– volume: 19
  start-page: 690
  year: 2016
  ident: 2021042609090572800_DEV140707C22
  article-title: Advances in Zika virus research: stem cell models, challenges, and opportunities
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2016.11.014
– volume: 12
  start-page: 671
  year: 2015
  ident: 2021042609090572800_DEV140707C28
  article-title: Functional cortical neurons and astrocytes from human pluripotent stem cells in 3D culture
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3415
– volume: 352
  start-page: 345
  year: 2016
  ident: 2021042609090572800_DEV140707C7
  article-title: Zika virus in the Americas: early epidemiological and genetic findings
  publication-title: Science
  doi: 10.1126/science.aaf5036
– volume: 387
  start-page: 719
  year: 2016
  ident: 2021042609090572800_DEV140707C12
  article-title: Zika virus and microcephaly: why is this situation a PHEIC?
  publication-title: Lancet
  doi: 10.1016/S0140-6736(16)00320-2
– volume: 12
  start-page: 161
  year: 2016
  ident: 2021042609090572800_DEV140707C33
  article-title: Zika virus strains potentially display different infectious profiles in human neural cells
  publication-title: EBioMedicine
  doi: 10.1016/j.ebiom.2016.09.020
– reference: 27064148 - Science. 2016 May 13;352(6287):816-8
– reference: 27476412 - Cell Host Microbe. 2016 Aug 10;20(2):259-70
– reference: 26775125 - Lancet. 2016 Jan 16;387(10015):228
– reference: 27279226 - Nature. 2016 May 11;534(7606):267-71
– reference: 27038591 - Cell Stem Cell. 2016 May 5;18(5):591-6
– reference: 12995440 - Trans R Soc Trop Med Hyg. 1952 Sep;46(5):509-20
– reference: 27257762 - Cell Stem Cell. 2016 Jun 2;18(6):736-48
– reference: 26854199 - Int J Infect Dis. 2016 Mar;44:11-5
– reference: 26862926 - N Engl J Med. 2016 Mar 10;374(10 ):951-8
– reference: 21729779 - Cell. 2011 Jul 8;146(1):18-36
– reference: 25555215 - J Clin Invest. 2015 Feb;125(2):796-808
– reference: 27571349 - Nat Med. 2016 Oct;22(10 ):1101-1107
– reference: 27118425 - Cell. 2016 May 19;165(5):1238-54
– reference: 26927450 - J Infect Dev Ctries. 2016 Feb 28;10 (2):116-20
– reference: 23995685 - Nature. 2013 Sep 19;501(7467):373-9
– reference: 26186191 - Cell. 2015 Jul 16;162(2):375-90
– reference: 26761185 - N Engl J Med. 2016 Feb 18;374(7):601-4
– reference: 27657449 - Neuron. 2016 Sep 21;91(6):1219-27
– reference: 26005811 - Nat Methods. 2015 Jul;12(7):671-8
– reference: 14175744 - Trans R Soc Trop Med Hyg. 1964 Jul;58:335-8
– reference: 26952870 - Cell Stem Cell. 2016 May 5;18(5):587-90
– reference: 26705693 - Curr Opin Neurobiol. 2016 Feb;36:118-27
– reference: 27476966 - Cell Stem Cell. 2016 Aug 4;19(2):248-57
– reference: 27580721 - Nucleic Acids Res. 2016 Oct 14;44(18):8610-8620
– reference: 27283801 - Cell Res. 2016 Jul;26(7):753-4
– reference: 27268504 - Cell Rep. 2016 Jun 14;15(11):2315-22
– reference: 27524440 - Cell Stem Cell. 2016 Nov 3;19(5):663-671
– reference: 26897108 - Lancet Infect Dis. 2016 Jun;16(6):653-60
– reference: 25670790 - Development. 2015 Feb 15;142(4):633-43
– reference: 27013429 - Science. 2016 Apr 15;352(6283):345-9
– reference: 27162029 - Cell Stem Cell. 2016 Aug 4;19(2):258-65
– reference: 18035408 - Cell. 2007 Nov 30;131(5):861-72
– reference: 26573335 - Nat Commun. 2015 Nov 17;6:8896
– reference: 27912091 - Cell Stem Cell. 2016 Dec 1;19(6):703-708
– reference: 26876373 - Lancet. 2016 Feb 20;387(10020):719-21
– reference: 27179424 - Cell Stem Cell. 2016 Jul 7;19(1):120-6
– reference: 27688094 - EBioMedicine. 2016 Oct;12 :161-169
– reference: 27911847 - Proc Natl Acad Sci U S A. 2016 Dec 13;113(50):14408-14413
– reference: 27912090 - Cell Stem Cell. 2016 Dec 1;19(6):690-702
– reference: 24277810 - Proc Natl Acad Sci U S A. 2013 Dec 10;110(50):20284-9
– reference: 27568284 - Cell Rep. 2016 Sep 6;16(10 ):2576-92
SSID ssj0003677
Score 2.5928786
SecondaryResourceType review_article
Snippet Technologies to differentiate human pluripotent stem cells into three-dimensional organized structures that resemble in vivo organs are pushing the frontiers...
Technologies to differentiate human pluripotent stem cells into three-dimensional organized structures that resemble organs are pushing the frontiers of human...
Technologies to differentiate human pluripotent stem cells into three-dimensional organized structures that resemble in vivo organs are pushing the frontiers...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 952
SubjectTerms Animals
Brain - pathology
Drug development
Fetuses
Flavivirus
Humans
Microcephaly
Microcephaly - pathology
Microcephaly - virology
Microencephaly
Organoids
Organoids - pathology
Outbreaks
Pathogenesis
Pluripotency
Spotlight
Stem cells
Zika virus
Zika Virus - physiology
Zika Virus Infection - virology
Title Using brain organoids to understand Zika virus-induced microcephaly
URI https://www.ncbi.nlm.nih.gov/pubmed/28292840
https://www.proquest.com/docview/1983413131
https://www.proquest.com/docview/1877852996
https://www.proquest.com/docview/1881768515
https://pubmed.ncbi.nlm.nih.gov/PMC5358105
Volume 144
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3batRAdNCK0hfRemm0SkRfpMQmO5edPEq1rEoFYYWlL2EymbXRNiltUli_3jOXTJJukSoL2WUyk01yzpz7BaE3wHN5PmE4whNBIgI4FPF8WkR8SQuZUuBZpmnf4Vc2-04-L-iiDxsz2SVN_k7-vjav5H-gCmMAV50l-w-Q9ReFAfgN8IUjQBiON4Kx9ffnusuDbc9Ul4Wp2ND6lJXdo_KX2L0sz9uLCNTvVrv7T3UQnlRnx-Jk5NQdBBAZ526XzjWwFnwrrcF00a5ab0f-0a4s8ZoJoNanPigHiK3x9hyIovSWHBcCPIPvn201NDoAI9MRbHRkPYx1jIpFC2VpJ9He4MTdUkdcbXVHh0VDUpnayrWO66a2TPUaQQcJAqBQqEsg6boyUc-2Olf9FW7mYwy1dgOrM1ib2bW30Z0JKBO6z8WHT188v8bM9Of0j-SK2MLavf5_x2LLmi5yNaR2IKPMH6D7TrkI31tMeYhuqWoL3bXtRldb6N6hC6SAwaPaDD5C-waJQoNEoUeisKnDHolCjUThCInCIRI9RvODj_P9WeQ6a0SSsLSJUkW4FDGVSS7ThAqiGIkl7EyuNNfBnOMlFgUuQNjVydsSY8JIQfNEkiKW-AnaqOpKbaMwn8QwoBLFYa8vCROCFalkywTDtXCeBOht994y6arO6-YnJ9k6fAL02s89s7VWrp21073-zO3FiyxJuRbH4BOgV_40UErt_hKVqluYw6dTTkH8Yn-bwxNQwEHID9BTC1F_KzrmAIS5OEDTEaz9BF2pfXymKo9NxXaqqwzG9NmNHvA52uy33A7aaM5b9QIk3yZ_aRD3D9nvrcA
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+brain+organoids+to+understand+Zika+virus-induced+microcephaly&rft.jtitle=Development+%28Cambridge%29&rft.au=Qian%2C+Xuyu&rft.au=Nguyen%2C+Ha+Nam&rft.au=Jacob%2C+Fadi&rft.au=Song%2C+Hongjun&rft.date=2017-03-15&rft.issn=0950-1991&rft.eissn=1477-9129&rft.volume=144&rft.issue=6&rft.spage=952&rft.epage=957&rft_id=info:doi/10.1242%2Fdev.140707&rft.externalDBID=n%2Fa&rft.externalDocID=10_1242_dev_140707
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-1991&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-1991&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-1991&client=summon