Covariance-Based Estimation for Clustered Sensor Networks Subject to Random Deception Attacks

In this paper, a cluster-based approach is used to address the distributed fusion estimation problem (filtering and fixed-point smoothing) for discrete-time stochastic signals in the presence of random deception attacks. At each sampling time, measured outputs of the signal are provided by a network...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 19; no. 14; p. 3112
Main Authors Caballero-Águila, Raquel, Hermoso-Carazo, Aurora, Linares-Pérez, Josefa
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 14.07.2019
MDPI
Subjects
Online AccessGet full text
ISSN1424-8220
1424-8220
DOI10.3390/s19143112

Cover

Loading…
Abstract In this paper, a cluster-based approach is used to address the distributed fusion estimation problem (filtering and fixed-point smoothing) for discrete-time stochastic signals in the presence of random deception attacks. At each sampling time, measured outputs of the signal are provided by a networked system, whose sensors are grouped into clusters. Each cluster is connected to a local processor which gathers the measured outputs of its sensors and, in turn, the local processors of all clusters are connected with a global fusion center. The proposed cluster-based fusion estimation structure involves two stages. First, every single sensor in a cluster transmits its observations to the corresponding local processor, where least-squares local estimators are designed by an innovation approach. During this transmission, deception attacks to the sensor measurements may be randomly launched by an adversary, with known probabilities of success that may be different at each sensor. In the second stage, the local estimators are sent to the fusion center, where they are combined to generate the proposed fusion estimators. The covariance-based design of the distributed fusion filtering and fixed-point smoothing algorithms does not require full knowledge of the signal evolution model, but only the first and second order moments of the processes involved in the observation model. Simulations are provided to illustrate the theoretical results and analyze the effect of the attack success probability on the estimation performance.
AbstractList In this paper, a cluster-based approach is used to address the distributed fusion estimation problem (filtering and fixed-point smoothing) for discrete-time stochastic signals in the presence of random deception attacks. At each sampling time, measured outputs of the signal are provided by a networked system, whose sensors are grouped into clusters. Each cluster is connected to a local processor which gathers the measured outputs of its sensors and, in turn, the local processors of all clusters are connected with a global fusion center. The proposed cluster-based fusion estimation structure involves two stages. First, every single sensor in a cluster transmits its observations to the corresponding local processor, where least-squares local estimators are designed by an innovation approach. During this transmission, deception attacks to the sensor measurements may be randomly launched by an adversary, with known probabilities of success that may be different at each sensor. In the second stage, the local estimators are sent to the fusion center, where they are combined to generate the proposed fusion estimators. The covariance-based design of the distributed fusion filtering and fixed-point smoothing algorithms does not require full knowledge of the signal evolution model, but only the first and second order moments of the processes involved in the observation model. Simulations are provided to illustrate the theoretical results and analyze the effect of the attack success probability on the estimation performance.
In this paper, a cluster-based approach is used to address the distributed fusion estimation problem (filtering and fixed-point smoothing) for discrete-time stochastic signals in the presence of random deception attacks. At each sampling time, measured outputs of the signal are provided by a networked system, whose sensors are grouped into clusters. Each cluster is connected to a local processor which gathers the measured outputs of its sensors and, in turn, the local processors of all clusters are connected with a global fusion center. The proposed cluster-based fusion estimation structure involves two stages. First, every single sensor in a cluster transmits its observations to the corresponding local processor, where least-squares local estimators are designed by an innovation approach. During this transmission, deception attacks to the sensor measurements may be randomly launched by an adversary, with known probabilities of success that may be different at each sensor. In the second stage, the local estimators are sent to the fusion center, where they are combined to generate the proposed fusion estimators. The covariance-based design of the distributed fusion filtering and fixed-point smoothing algorithms does not require full knowledge of the signal evolution model, but only the first and second order moments of the processes involved in the observation model. Simulations are provided to illustrate the theoretical results and analyze the effect of the attack success probability on the estimation performance.In this paper, a cluster-based approach is used to address the distributed fusion estimation problem (filtering and fixed-point smoothing) for discrete-time stochastic signals in the presence of random deception attacks. At each sampling time, measured outputs of the signal are provided by a networked system, whose sensors are grouped into clusters. Each cluster is connected to a local processor which gathers the measured outputs of its sensors and, in turn, the local processors of all clusters are connected with a global fusion center. The proposed cluster-based fusion estimation structure involves two stages. First, every single sensor in a cluster transmits its observations to the corresponding local processor, where least-squares local estimators are designed by an innovation approach. During this transmission, deception attacks to the sensor measurements may be randomly launched by an adversary, with known probabilities of success that may be different at each sensor. In the second stage, the local estimators are sent to the fusion center, where they are combined to generate the proposed fusion estimators. The covariance-based design of the distributed fusion filtering and fixed-point smoothing algorithms does not require full knowledge of the signal evolution model, but only the first and second order moments of the processes involved in the observation model. Simulations are provided to illustrate the theoretical results and analyze the effect of the attack success probability on the estimation performance.
Author Hermoso-Carazo, Aurora
Caballero-Águila, Raquel
Linares-Pérez, Josefa
AuthorAffiliation 1 Dpto. de Estadística, Universidad de Jaén, Paraje Las Lagunillas, 23071 Jaén, Spain
2 Dpto. de Estadística, Universidad de Granada, Avda. Fuentenueva, 18071 Granada, Spain
AuthorAffiliation_xml – name: 1 Dpto. de Estadística, Universidad de Jaén, Paraje Las Lagunillas, 23071 Jaén, Spain
– name: 2 Dpto. de Estadística, Universidad de Granada, Avda. Fuentenueva, 18071 Granada, Spain
Author_xml – sequence: 1
  givenname: Raquel
  orcidid: 0000-0001-7659-7649
  surname: Caballero-Águila
  fullname: Caballero-Águila, Raquel
– sequence: 2
  givenname: Aurora
  surname: Hermoso-Carazo
  fullname: Hermoso-Carazo, Aurora
– sequence: 3
  givenname: Josefa
  orcidid: 0000-0002-6853-555X
  surname: Linares-Pérez
  fullname: Linares-Pérez, Josefa
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31337128$$D View this record in MEDLINE/PubMed
BookMark eNptkk1v1DAQhi1URNuFA38AReICh21tj53YF6SyFFqpAonCEVmOMynZZu2t7RTx7zG7ZdVWnGzNPPPO5yHZ88EjIS8ZPQLQ9DgxzQQwxp-QAya4mCvO6d69_z45TGlJKQcA9YzsAwNoGFcH5Mci3No4WO9w_t4m7KrTlIeVzUPwVR9itRinlDEWxyX6VAyfMf8K8TpVl1O7RJerHKqv1ndhVX1Ah-tN5EnO1l2n5-Rpb8eEL-7eGfn-8fTb4mx-8eXT-eLkYu5ErfNcW9Eo17V110iKnLtWMakc61rVOA5K9G2PsuW9lK1koFoKvHMWdF9Ly7WEGTnf6nbBLs06lgbibxPsYDaGEK-MjXlwI5qSCjXtFZe1FkIzrUQrmq6m2irRgC1a77Za66ldYefQ52jHB6IPPX74aa7CranrRkOZ8Iy8uROI4WbClM1qSA7H0XoMUzKc1wCswLqgrx-hyzBFX0ZlOFDWNBKYKtSr-xXtSvm3xQK83QIuhpQi9juEUfP3QszuQgp7_Ih1Q96suzQzjP-J-APH5rue
CitedBy_id crossref_primary_10_3390_s22218505
crossref_primary_10_3390_math10040662
crossref_primary_10_3390_s20226445
Cites_doi 10.1080/00207160.2018.1554213
10.1002/rnc.3623
10.1080/00207721.2018.1496301
10.1016/j.inffus.2017.03.006
10.3390/en11071844
10.3390/s18020321
10.1016/j.automatica.2016.12.026
10.1016/j.automatica.2017.09.028
10.3390/s17112472
10.1109/ACCESS.2017.2679207
10.3390/s16060847
10.1109/JSEN.2015.2416511
10.5772/67388
10.3390/s19020322
10.1016/j.jfranklin.2017.11.010
10.1016/j.jnca.2014.09.005
10.1109/JSEN.2017.2654325
10.1016/j.inffus.2016.01.001
10.1016/j.neucom.2016.08.025
10.1007/s12555-015-0407-2
10.3390/s18082697
10.3390/s140712523
10.1016/j.sysconle.2018.10.001
10.3390/s18092976
10.1016/j.dsp.2018.11.010
10.1016/j.inffus.2018.02.006
ContentType Journal Article
Copyright 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2019 by the authors. 2019
Copyright_xml – notice: 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2019 by the authors. 2019
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s19143112
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef


PubMed
MEDLINE - Academic
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_a47e90f825694491984b47d609a8473a
PMC6679323
31337128
10_3390_s19143112
Genre Journal Article
GeographicLocations Spain
GeographicLocations_xml – name: Spain
GrantInformation_xml – fundername: European Regional Development Fund
  grantid: MTM2017-84199-P
– fundername: Ministerio de Economía, Industria y Competitividad, Gobierno de España
  grantid: MTM2017-84199-P
– fundername: Agencia Estatal de Investigación
  grantid: MTM2017-84199-P
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
ABJCF
ARAPS
HCIFZ
KB.
M7S
NPM
PDBOC
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c469t-9a478cdb6d750e22cb8158c1db87c2384fbfe5b2f55b5138b032dca39f65a2953
IEDL.DBID 7X7
ISSN 1424-8220
IngestDate Wed Aug 27 01:26:40 EDT 2025
Thu Aug 21 13:44:39 EDT 2025
Fri Jul 11 07:52:42 EDT 2025
Fri Jul 25 20:35:26 EDT 2025
Wed Feb 19 02:34:06 EST 2025
Tue Jul 01 00:42:01 EDT 2025
Thu Apr 24 22:55:34 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 14
Keywords least-squares filtering
least-squares fixed-point smoothing
cluster-based approach
networked systems
stochastic deception attacks
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c469t-9a478cdb6d750e22cb8158c1db87c2384fbfe5b2f55b5138b032dca39f65a2953
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These authors contributed equally to this work.
ORCID 0000-0001-7659-7649
0000-0002-6853-555X
OpenAccessLink https://www.proquest.com/docview/2301775318?pq-origsite=%requestingapplication%
PMID 31337128
PQID 2301775318
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_a47e90f825694491984b47d609a8473a
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6679323
proquest_miscellaneous_2263316799
proquest_journals_2301775318
pubmed_primary_31337128
crossref_primary_10_3390_s19143112
crossref_citationtrail_10_3390_s19143112
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20190714
PublicationDateYYYYMMDD 2019-07-14
PublicationDate_xml – month: 7
  year: 2019
  text: 20190714
  day: 14
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2019
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Sun (ref_10) 2017; 38
Ding (ref_22) 2017; 78
Din (ref_11) 2017; 5
Pang (ref_1) 2015; 15
ref_19
ref_18
ref_15
Wang (ref_24) 2018; 355
Wang (ref_12) 2014; 14
Wang (ref_4) 2019; 45
Afsar (ref_17) 2014; 46
Hu (ref_20) 2018; 87
Wang (ref_23) 2017; 27
Shang (ref_14) 2017; 15
Song (ref_25) 2018; 49
ref_3
Shang (ref_13) 2016; 216
ref_2
(ref_7) 2019; 85
ref_26
ref_9
Ma (ref_21) 2017; 17
ref_5
Jun (ref_8) 2016; 31
Shang (ref_16) 2018; 122
ref_6
References_xml – ident: ref_2
  doi: 10.1080/00207160.2018.1554213
– volume: 27
  start-page: 1194
  year: 2017
  ident: ref_23
  article-title: Security guaranteed filtering for discrete-time stochastic delayed systems with randomly occurring sensor saturations and deception attacks
  publication-title: Int. J. Robust Nonlinear Control.
  doi: 10.1002/rnc.3623
– volume: 49
  start-page: 2257
  year: 2018
  ident: ref_25
  article-title: Fusion estimation in clustering sensor networks under stochastic deception attacks
  publication-title: Int. J. Syst. Sci.
  doi: 10.1080/00207721.2018.1496301
– volume: 38
  start-page: 122
  year: 2017
  ident: ref_10
  article-title: Multi-sensor distributed fusion estimation with applications in networked systems: A review paper
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2017.03.006
– ident: ref_15
  doi: 10.3390/en11071844
– ident: ref_26
  doi: 10.3390/s18020321
– volume: 78
  start-page: 231
  year: 2017
  ident: ref_22
  article-title: Distributed recursive filtering for stochastic systems under uniform quantizations and deception attacks through sensor networks
  publication-title: Automatica
  doi: 10.1016/j.automatica.2016.12.026
– volume: 87
  start-page: 176
  year: 2018
  ident: ref_20
  article-title: State estimation under false data injection attacks: Security analysis and system protection
  publication-title: Automatica
  doi: 10.1016/j.automatica.2017.09.028
– ident: ref_9
  doi: 10.3390/s17112472
– volume: 5
  start-page: 5069
  year: 2017
  ident: ref_11
  article-title: A Cluster-Based Data Fusion Technique to Analyze Big Data in Wireless Multi-Sensor System
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2679207
– ident: ref_5
  doi: 10.3390/s16060847
– volume: 15
  start-page: 4346
  year: 2015
  ident: ref_1
  article-title: Fusion Predictors for Multisensor Stochastic Uncertain Systems With Missing Measurements and Unknown Measurement Disturbances
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2015.2416511
– ident: ref_18
  doi: 10.5772/67388
– ident: ref_19
  doi: 10.3390/s19020322
– volume: 355
  start-page: 406
  year: 2018
  ident: ref_24
  article-title: Centralized security-guaranteed filtering in multirate-sensor fusion under deception attacks
  publication-title: J. Frankl. Inst.
  doi: 10.1016/j.jfranklin.2017.11.010
– volume: 46
  start-page: 198
  year: 2014
  ident: ref_17
  article-title: Clustering in sensor networks: A literature survey
  publication-title: J. Netw. Comput. Appl.
  doi: 10.1016/j.jnca.2014.09.005
– volume: 17
  start-page: 2279
  year: 2017
  ident: ref_21
  article-title: Variance constrained distributed filtering for time-varying systems with multiplicative noises and deception attacks over sensor networks
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2017.2654325
– volume: 31
  start-page: 65
  year: 2016
  ident: ref_8
  article-title: Estimation, filtering and fusion for networked systems with network-induced phenomena: New progress and prospects
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2016.01.001
– volume: 216
  start-page: 611
  year: 2016
  ident: ref_13
  article-title: combinatorial necessary and sufficient condition for cluster consensus
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.08.025
– volume: 15
  start-page: 933
  year: 2017
  ident: ref_14
  article-title: Finite-time Cluster Average Consensus for Networks via Distributed Iterations
  publication-title: Int. J. Control. Autom. Syst.
  doi: 10.1007/s12555-015-0407-2
– ident: ref_6
  doi: 10.3390/s18082697
– volume: 14
  start-page: 12523
  year: 2014
  ident: ref_12
  article-title: A Study on the Clustering Technology of Underwater Isomorphic Sensor Networks Based on Energy Balance
  publication-title: Sensors
  doi: 10.3390/s140712523
– volume: 122
  start-page: 12
  year: 2018
  ident: ref_16
  article-title: Resilient consensus of switched multi-agent systems
  publication-title: Syst. Control. Lett.
  doi: 10.1016/j.sysconle.2018.10.001
– ident: ref_3
  doi: 10.3390/s18092976
– volume: 85
  start-page: 77
  year: 2019
  ident: ref_7
  article-title: Centralized filtering and smoothing algorithms from outputs with random parameter matrices transmitted through uncertain communication channels
  publication-title: Digit. Signal Process.
  doi: 10.1016/j.dsp.2018.11.010
– volume: 45
  start-page: 324
  year: 2019
  ident: ref_4
  article-title: A new approach to distributed fusion filtering for networked systems with random parameter matrices and correlated noises
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2018.02.006
SSID ssj0023338
Score 2.2793455
Snippet In this paper, a cluster-based approach is used to address the distributed fusion estimation problem (filtering and fixed-point smoothing) for discrete-time...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 3112
SubjectTerms Algorithms
Big Data
cluster-based approach
Clustering
Deception
Design
False information
least-squares filtering
least-squares fixed-point smoothing
networked systems
Sensors
stochastic deception attacks
Wireless networks
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB4hTnCoeLQl5SFT9dBLxPptH2EBISQ4tEXiUkW24wgkSCo2y-9nnGSj3Qqpl17tUeTMjD3zJTOfAb5xwZ1zQuUuao0AhdLcOIZQxUhnQhm5s6lR-OZWXd2J63t5v3TVV6oJ6-mBe8WdOKGjnVQIZJQVwiJGFl7oUk2sw4OVd6kRxrwFmBqgFkfk1fMIcQT1J7PEYsYpZSvRpyPpfy-z_LtAciniXG7BhyFVJKf9ErdhLdY7sLlEILgLv6fNK4LdZLn8DONRSS5wy_bdiATTUTJ9micmBJz4iXgVB277su8ZwRMjfYIhbUN-uLpsnsl5HEpcyGnbptb7j3B3efFrepUPFybkAVFum1tUFirYqxLzgMhY8IZKE2jpjQ4Ym0Xlqyg9q6T0knLjJ5yVwXFbKemYlfwTrNdNHfeAUJSXQdmggxdlle4kNlLHGIyqqAwig-8LRRZhYBNPl1o8FYgqks6LUecZfB1F__QUGu8JnSVrjAKJ9bobQF8oBl8o_uULGRwsbFkMW3FWIMaiGkEZNRkcj9O4idKfEVfHZo4yTPFECWBtBp97048r4YjiNUbxDPSKU6wsdXWmfnzoiLoVPpEz_uV_vNs-bGCulhrOcioOYL19mcdDzIdaf9S5_hu-RgfQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5V5QIHxJtAQQZx4BJYv-1DhdqlVYXUHoCVekGR7ThQaZu0u1kE_77jTTZq0IqrPYqcGU9mvtjzDcA7LrhzTqjcRa0RoFCaG8cQqhjpTCgjdzYVCp-eqZOZ-HIuz3dg02OzV-ByK7RL_aRmi_mHP9d_P6HD7yfEiZD94zJxlHGaeg3fwYCkk3-eiuEwgXGEYR2p0Fh8FIrWjP3b0sx_b0veCj_HD-B-nzeSg87QD2En1o_g3i02wcfwY9r8RuSbzJgfYnAqyRH6b1eaSDA3JdP5KtEi4MQ3BK84cNbdAV8S_Hyk_zGkbchXV5fNJfkc-_su5KBtUx3-E5gdH32fnuR994Q8IORtc-uERm17VWJSEBkL3lBpAi290QEDtah8FaVnlZReUm78hLMyOG4rJR2zkj-F3bqp43MgFOVlUDbo4EVZpQbFRuoYg1EVlUFk8H6jyCL01OKpw8W8QIiRdF4MOs_g7SB61fFpbBM6TNYYBBIF9nqgWfwseo8q8PWinVSIcJUVwlJrhBe6VBPrMOJyl8HexpbFZlsVCLioRoRGTQZvhmn0qHRM4urYrFCGKZ74AazN4Fln-mElHCG9xpCegR5titFSxzP1xa81a7fCJ3LGX_x_WS_hLqZkqa4sp2IPdtvFKr7CtKf1r9eb-gZgZgI_
  priority: 102
  providerName: Scholars Portal
Title Covariance-Based Estimation for Clustered Sensor Networks Subject to Random Deception Attacks
URI https://www.ncbi.nlm.nih.gov/pubmed/31337128
https://www.proquest.com/docview/2301775318
https://www.proquest.com/docview/2263316799
https://pubmed.ncbi.nlm.nih.gov/PMC6679323
https://doaj.org/article/a47e90f825694491984b47d609a8473a
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagvcABlXdoWRnEgUvUdfw-oe52lwqpK1SotBcU2Y5TkEpSull-PzNJNu1WFRcf7FHkeGzPfPb4G0I-cMGdc0KlLmoNAIWx1LgMoIqRzoQicmfxofDpQp2ciy9LuewP3FZ9WOVmT2w36qIOeEZ-CK4y0-BbM_Pp6k-KWaPwdrVPofGQ7CJ1GYZ06eUN4OKAvzo2IQ7Q_nCFXGacsWzLBrVU_ff5l3fDJG_ZnfkeedI7jPSo0_BT8iBWz8jjWzSCz8mPaf0XIC_qL52AVSroDBZu9yaRglNKp5dr5EOAhm-AWqFi0QV_ryjsG3gQQ5uanrmqqH_T49gHutCjpsEH-C_I-Xz2fXqS9mkT0gBYt0mtExqG2asCvIGYZcEbJk1ghTc6gIUWpS-j9FkppZeMGz_mWREct6WSLrOSvyQ7VV3F14QykJdB2aCDF0WJmYmN1DEGo0omg0jIx81A5qHnFMfUFpc5YAsc83wY84S8H0SvOiKN-4QmqI1BALmv24r6-iLvl1IOvxftuARoq6wQllkjvNCFGlsHppa7hBxsdJn3C3KV30yfhLwbmmEp4f2Iq2K9BplMcSQGsDYhrzrVDz3hgOU12PKE6K1JsdXV7Zbq18-WrlvBF3nG3_y_W_vkEfhi-KAsZeKA7DTX6_gW_J3Gj9pJDaWZfx6R3cls8fVs1J4dQHkqzD9cLAUq
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqcgAOiDeBAgaBxCVq_LYPCLXbVlva7gFaaS8o2I5DK5WkdLMg_hS_kXEe2y6quPVqjyLHHs_MZ3u-QegN48xay2Vqg1IAUAhJtaUAVbSw2heBWRMThQ8mcnzEP07FdAX9GXJh4rPKwSa2hrqofTwjX4dQmSiIrYn-cPYjjVWj4u3qUEKjU4u98PsXQLbZ-90tWN-3lO5sH47GaV9VIPUABZvUWK5gFE4W4CwDpd5pIrQnhdPKgwPjpSuDcLQUwgnCtMsYLbxlppTCUhOrRIDJvwGON4s7Sk0vAB4DvNexFzFmsvVZ5E5jhNAln9eWBrgqnv33WeYlP7dzF93pA1S80WnUPbQSqvvo9iXawgfoy6j-CRA76ku6CV6wwNtgKLocSAxBMB6dziP_AnR8BpQMDZPusfkMg52KBz-4qfEnWxX1d7wV-oc1eKNpYsL_Q3R0LRP6CK1WdRWeIExAXnhpvPKOF2WshKyFCsFrWRLheYLeDROZ-57DPJbSOM0By8Q5zxdznqDXC9GzjrjjKqHNuBoLgci13TbU59_yfuvm8HvBZCVAaWk4N8Ro7rgqZGYsuHZmE7Q2rGXeG4BZfqGuCXq16IatG-9jbBXqOchQySIRgTEJetwt_WIkjDCmIHZIkFpSiqWhLvdUJ8ctPbiELzLKnv5_WC_RzfHhwX6-vzvZe4ZuQRwYk9lSwtfQanM-D88h1mrci1bBMfp63TvqL0-uPfA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1baxQxFA6lguiDeHe0ahQFX4bd3JMHkXa3S2t1EbWwLzImmYwKdaZ2ZxX_mr_Ok7m1K8W3vk4OSzY5t2_mnO8g9IxxZq3lMrVBKQAohKTaUoAqWljt88CsiY3Cb-dy75C_XojFBvrT98LEssreJzaOOq98fEc-glSZKMitiR4VXVnEu-ns1fGPNE6Qil9a-3EarYochN-_AL4tX-5P4a6fUzrb_TjZS7sJA6kHWFinxnIFO3Iyh8AZKPVOE6E9yZ1WHoIZL1wRhKOFEE4Qpt2Y0dxbZgopLDVxYgS4_0uKwSLYklqcgj0G2K9lMmLMjEfLyKPGCKFr8a8ZE3BebvtvieaZmDe7jq51ySrebrXrBtoI5U109QyF4S30aVL9BLgddSfdgYiY411wGm0_JIaEGE-OVpGLARY-AGKGB_O28HyJwWfFl0C4rvB7W-bVdzwNXZEN3q7r2Px_Gx1eyIHeQZtlVYZ7CBOQF14ar7zjeRGnImuhQvBaFkR4nqAX_UFmvuMzj2M1jjLANfHMs-HME_R0ED1uSTzOE9qJtzEIRN7t5kF18iXrzDiDvxfMuABYLQ3nhhjNHVe5HBsLYZ7ZBG31d5l1zmCZnapugp4My2DG8duMLUO1AhkqWSQlMCZBd9urH3bCCGMK8ogEqTWlWNvq-kr57WtDFS7hFxll9_-_rcfoMthS9mZ_fvAAXYGUMPa1pYRvoc36ZBUeQtpVu0eNfmP0-aIN6i_tOEIm
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Covariance-Based+Estimation+for+Clustered+Sensor+Networks+Subject+to+Random+Deception+Attacks&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Caballero-%C3%81guila%2C+Raquel&rft.au=Hermoso-Carazo%2C+Aurora&rft.au=Linares-P%C3%A9rez%2C+Josefa&rft.date=2019-07-14&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=19&rft.issue=14&rft_id=info:doi/10.3390%2Fs19143112&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon