Covariance-Based Estimation for Clustered Sensor Networks Subject to Random Deception Attacks
In this paper, a cluster-based approach is used to address the distributed fusion estimation problem (filtering and fixed-point smoothing) for discrete-time stochastic signals in the presence of random deception attacks. At each sampling time, measured outputs of the signal are provided by a network...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 19; no. 14; p. 3112 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
14.07.2019
MDPI |
Subjects | |
Online Access | Get full text |
ISSN | 1424-8220 1424-8220 |
DOI | 10.3390/s19143112 |
Cover
Loading…
Abstract | In this paper, a cluster-based approach is used to address the distributed fusion estimation problem (filtering and fixed-point smoothing) for discrete-time stochastic signals in the presence of random deception attacks. At each sampling time, measured outputs of the signal are provided by a networked system, whose sensors are grouped into clusters. Each cluster is connected to a local processor which gathers the measured outputs of its sensors and, in turn, the local processors of all clusters are connected with a global fusion center. The proposed cluster-based fusion estimation structure involves two stages. First, every single sensor in a cluster transmits its observations to the corresponding local processor, where least-squares local estimators are designed by an innovation approach. During this transmission, deception attacks to the sensor measurements may be randomly launched by an adversary, with known probabilities of success that may be different at each sensor. In the second stage, the local estimators are sent to the fusion center, where they are combined to generate the proposed fusion estimators. The covariance-based design of the distributed fusion filtering and fixed-point smoothing algorithms does not require full knowledge of the signal evolution model, but only the first and second order moments of the processes involved in the observation model. Simulations are provided to illustrate the theoretical results and analyze the effect of the attack success probability on the estimation performance. |
---|---|
AbstractList | In this paper, a cluster-based approach is used to address the distributed fusion estimation problem (filtering and fixed-point smoothing) for discrete-time stochastic signals in the presence of random deception attacks. At each sampling time, measured outputs of the signal are provided by a networked system, whose sensors are grouped into clusters. Each cluster is connected to a local processor which gathers the measured outputs of its sensors and, in turn, the local processors of all clusters are connected with a global fusion center. The proposed cluster-based fusion estimation structure involves two stages. First, every single sensor in a cluster transmits its observations to the corresponding local processor, where least-squares local estimators are designed by an innovation approach. During this transmission, deception attacks to the sensor measurements may be randomly launched by an adversary, with known probabilities of success that may be different at each sensor. In the second stage, the local estimators are sent to the fusion center, where they are combined to generate the proposed fusion estimators. The covariance-based design of the distributed fusion filtering and fixed-point smoothing algorithms does not require full knowledge of the signal evolution model, but only the first and second order moments of the processes involved in the observation model. Simulations are provided to illustrate the theoretical results and analyze the effect of the attack success probability on the estimation performance. In this paper, a cluster-based approach is used to address the distributed fusion estimation problem (filtering and fixed-point smoothing) for discrete-time stochastic signals in the presence of random deception attacks. At each sampling time, measured outputs of the signal are provided by a networked system, whose sensors are grouped into clusters. Each cluster is connected to a local processor which gathers the measured outputs of its sensors and, in turn, the local processors of all clusters are connected with a global fusion center. The proposed cluster-based fusion estimation structure involves two stages. First, every single sensor in a cluster transmits its observations to the corresponding local processor, where least-squares local estimators are designed by an innovation approach. During this transmission, deception attacks to the sensor measurements may be randomly launched by an adversary, with known probabilities of success that may be different at each sensor. In the second stage, the local estimators are sent to the fusion center, where they are combined to generate the proposed fusion estimators. The covariance-based design of the distributed fusion filtering and fixed-point smoothing algorithms does not require full knowledge of the signal evolution model, but only the first and second order moments of the processes involved in the observation model. Simulations are provided to illustrate the theoretical results and analyze the effect of the attack success probability on the estimation performance.In this paper, a cluster-based approach is used to address the distributed fusion estimation problem (filtering and fixed-point smoothing) for discrete-time stochastic signals in the presence of random deception attacks. At each sampling time, measured outputs of the signal are provided by a networked system, whose sensors are grouped into clusters. Each cluster is connected to a local processor which gathers the measured outputs of its sensors and, in turn, the local processors of all clusters are connected with a global fusion center. The proposed cluster-based fusion estimation structure involves two stages. First, every single sensor in a cluster transmits its observations to the corresponding local processor, where least-squares local estimators are designed by an innovation approach. During this transmission, deception attacks to the sensor measurements may be randomly launched by an adversary, with known probabilities of success that may be different at each sensor. In the second stage, the local estimators are sent to the fusion center, where they are combined to generate the proposed fusion estimators. The covariance-based design of the distributed fusion filtering and fixed-point smoothing algorithms does not require full knowledge of the signal evolution model, but only the first and second order moments of the processes involved in the observation model. Simulations are provided to illustrate the theoretical results and analyze the effect of the attack success probability on the estimation performance. |
Author | Hermoso-Carazo, Aurora Caballero-Águila, Raquel Linares-Pérez, Josefa |
AuthorAffiliation | 1 Dpto. de Estadística, Universidad de Jaén, Paraje Las Lagunillas, 23071 Jaén, Spain 2 Dpto. de Estadística, Universidad de Granada, Avda. Fuentenueva, 18071 Granada, Spain |
AuthorAffiliation_xml | – name: 1 Dpto. de Estadística, Universidad de Jaén, Paraje Las Lagunillas, 23071 Jaén, Spain – name: 2 Dpto. de Estadística, Universidad de Granada, Avda. Fuentenueva, 18071 Granada, Spain |
Author_xml | – sequence: 1 givenname: Raquel orcidid: 0000-0001-7659-7649 surname: Caballero-Águila fullname: Caballero-Águila, Raquel – sequence: 2 givenname: Aurora surname: Hermoso-Carazo fullname: Hermoso-Carazo, Aurora – sequence: 3 givenname: Josefa orcidid: 0000-0002-6853-555X surname: Linares-Pérez fullname: Linares-Pérez, Josefa |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31337128$$D View this record in MEDLINE/PubMed |
BookMark | eNptkk1v1DAQhi1URNuFA38AReICh21tj53YF6SyFFqpAonCEVmOMynZZu2t7RTx7zG7ZdVWnGzNPPPO5yHZ88EjIS8ZPQLQ9DgxzQQwxp-QAya4mCvO6d69_z45TGlJKQcA9YzsAwNoGFcH5Mci3No4WO9w_t4m7KrTlIeVzUPwVR9itRinlDEWxyX6VAyfMf8K8TpVl1O7RJerHKqv1ndhVX1Ah-tN5EnO1l2n5-Rpb8eEL-7eGfn-8fTb4mx-8eXT-eLkYu5ErfNcW9Eo17V110iKnLtWMakc61rVOA5K9G2PsuW9lK1koFoKvHMWdF9Ly7WEGTnf6nbBLs06lgbibxPsYDaGEK-MjXlwI5qSCjXtFZe1FkIzrUQrmq6m2irRgC1a77Za66ldYefQ52jHB6IPPX74aa7CranrRkOZ8Iy8uROI4WbClM1qSA7H0XoMUzKc1wCswLqgrx-hyzBFX0ZlOFDWNBKYKtSr-xXtSvm3xQK83QIuhpQi9juEUfP3QszuQgp7_Ih1Q96suzQzjP-J-APH5rue |
CitedBy_id | crossref_primary_10_3390_s22218505 crossref_primary_10_3390_math10040662 crossref_primary_10_3390_s20226445 |
Cites_doi | 10.1080/00207160.2018.1554213 10.1002/rnc.3623 10.1080/00207721.2018.1496301 10.1016/j.inffus.2017.03.006 10.3390/en11071844 10.3390/s18020321 10.1016/j.automatica.2016.12.026 10.1016/j.automatica.2017.09.028 10.3390/s17112472 10.1109/ACCESS.2017.2679207 10.3390/s16060847 10.1109/JSEN.2015.2416511 10.5772/67388 10.3390/s19020322 10.1016/j.jfranklin.2017.11.010 10.1016/j.jnca.2014.09.005 10.1109/JSEN.2017.2654325 10.1016/j.inffus.2016.01.001 10.1016/j.neucom.2016.08.025 10.1007/s12555-015-0407-2 10.3390/s18082697 10.3390/s140712523 10.1016/j.sysconle.2018.10.001 10.3390/s18092976 10.1016/j.dsp.2018.11.010 10.1016/j.inffus.2018.02.006 |
ContentType | Journal Article |
Copyright | 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2019 by the authors. 2019 |
Copyright_xml | – notice: 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2019 by the authors. 2019 |
DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/s19143112 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection PML(ProQuest Medical Library) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed MEDLINE - Academic Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_a47e90f825694491984b47d609a8473a PMC6679323 31337128 10_3390_s19143112 |
Genre | Journal Article |
GeographicLocations | Spain |
GeographicLocations_xml | – name: Spain |
GrantInformation_xml | – fundername: European Regional Development Fund grantid: MTM2017-84199-P – fundername: Ministerio de Economía, Industria y Competitividad, Gobierno de España grantid: MTM2017-84199-P – fundername: Agencia Estatal de Investigación grantid: MTM2017-84199-P |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. ABJCF ARAPS HCIFZ KB. M7S NPM PDBOC 7XB 8FK AZQEC DWQXO K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c469t-9a478cdb6d750e22cb8158c1db87c2384fbfe5b2f55b5138b032dca39f65a2953 |
IEDL.DBID | 7X7 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:26:40 EDT 2025 Thu Aug 21 13:44:39 EDT 2025 Fri Jul 11 07:52:42 EDT 2025 Fri Jul 25 20:35:26 EDT 2025 Wed Feb 19 02:34:06 EST 2025 Tue Jul 01 00:42:01 EDT 2025 Thu Apr 24 22:55:34 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Keywords | least-squares filtering least-squares fixed-point smoothing cluster-based approach networked systems stochastic deception attacks |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c469t-9a478cdb6d750e22cb8158c1db87c2384fbfe5b2f55b5138b032dca39f65a2953 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 These authors contributed equally to this work. |
ORCID | 0000-0001-7659-7649 0000-0002-6853-555X |
OpenAccessLink | https://www.proquest.com/docview/2301775318?pq-origsite=%requestingapplication% |
PMID | 31337128 |
PQID | 2301775318 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_a47e90f825694491984b47d609a8473a pubmedcentral_primary_oai_pubmedcentral_nih_gov_6679323 proquest_miscellaneous_2263316799 proquest_journals_2301775318 pubmed_primary_31337128 crossref_primary_10_3390_s19143112 crossref_citationtrail_10_3390_s19143112 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20190714 |
PublicationDateYYYYMMDD | 2019-07-14 |
PublicationDate_xml | – month: 7 year: 2019 text: 20190714 day: 14 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2019 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Sun (ref_10) 2017; 38 Ding (ref_22) 2017; 78 Din (ref_11) 2017; 5 Pang (ref_1) 2015; 15 ref_19 ref_18 ref_15 Wang (ref_24) 2018; 355 Wang (ref_12) 2014; 14 Wang (ref_4) 2019; 45 Afsar (ref_17) 2014; 46 Hu (ref_20) 2018; 87 Wang (ref_23) 2017; 27 Shang (ref_14) 2017; 15 Song (ref_25) 2018; 49 ref_3 Shang (ref_13) 2016; 216 ref_2 (ref_7) 2019; 85 ref_26 ref_9 Ma (ref_21) 2017; 17 ref_5 Jun (ref_8) 2016; 31 Shang (ref_16) 2018; 122 ref_6 |
References_xml | – ident: ref_2 doi: 10.1080/00207160.2018.1554213 – volume: 27 start-page: 1194 year: 2017 ident: ref_23 article-title: Security guaranteed filtering for discrete-time stochastic delayed systems with randomly occurring sensor saturations and deception attacks publication-title: Int. J. Robust Nonlinear Control. doi: 10.1002/rnc.3623 – volume: 49 start-page: 2257 year: 2018 ident: ref_25 article-title: Fusion estimation in clustering sensor networks under stochastic deception attacks publication-title: Int. J. Syst. Sci. doi: 10.1080/00207721.2018.1496301 – volume: 38 start-page: 122 year: 2017 ident: ref_10 article-title: Multi-sensor distributed fusion estimation with applications in networked systems: A review paper publication-title: Inf. Fusion doi: 10.1016/j.inffus.2017.03.006 – ident: ref_15 doi: 10.3390/en11071844 – ident: ref_26 doi: 10.3390/s18020321 – volume: 78 start-page: 231 year: 2017 ident: ref_22 article-title: Distributed recursive filtering for stochastic systems under uniform quantizations and deception attacks through sensor networks publication-title: Automatica doi: 10.1016/j.automatica.2016.12.026 – volume: 87 start-page: 176 year: 2018 ident: ref_20 article-title: State estimation under false data injection attacks: Security analysis and system protection publication-title: Automatica doi: 10.1016/j.automatica.2017.09.028 – ident: ref_9 doi: 10.3390/s17112472 – volume: 5 start-page: 5069 year: 2017 ident: ref_11 article-title: A Cluster-Based Data Fusion Technique to Analyze Big Data in Wireless Multi-Sensor System publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2679207 – ident: ref_5 doi: 10.3390/s16060847 – volume: 15 start-page: 4346 year: 2015 ident: ref_1 article-title: Fusion Predictors for Multisensor Stochastic Uncertain Systems With Missing Measurements and Unknown Measurement Disturbances publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2015.2416511 – ident: ref_18 doi: 10.5772/67388 – ident: ref_19 doi: 10.3390/s19020322 – volume: 355 start-page: 406 year: 2018 ident: ref_24 article-title: Centralized security-guaranteed filtering in multirate-sensor fusion under deception attacks publication-title: J. Frankl. Inst. doi: 10.1016/j.jfranklin.2017.11.010 – volume: 46 start-page: 198 year: 2014 ident: ref_17 article-title: Clustering in sensor networks: A literature survey publication-title: J. Netw. Comput. Appl. doi: 10.1016/j.jnca.2014.09.005 – volume: 17 start-page: 2279 year: 2017 ident: ref_21 article-title: Variance constrained distributed filtering for time-varying systems with multiplicative noises and deception attacks over sensor networks publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2017.2654325 – volume: 31 start-page: 65 year: 2016 ident: ref_8 article-title: Estimation, filtering and fusion for networked systems with network-induced phenomena: New progress and prospects publication-title: Inf. Fusion doi: 10.1016/j.inffus.2016.01.001 – volume: 216 start-page: 611 year: 2016 ident: ref_13 article-title: combinatorial necessary and sufficient condition for cluster consensus publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.08.025 – volume: 15 start-page: 933 year: 2017 ident: ref_14 article-title: Finite-time Cluster Average Consensus for Networks via Distributed Iterations publication-title: Int. J. Control. Autom. Syst. doi: 10.1007/s12555-015-0407-2 – ident: ref_6 doi: 10.3390/s18082697 – volume: 14 start-page: 12523 year: 2014 ident: ref_12 article-title: A Study on the Clustering Technology of Underwater Isomorphic Sensor Networks Based on Energy Balance publication-title: Sensors doi: 10.3390/s140712523 – volume: 122 start-page: 12 year: 2018 ident: ref_16 article-title: Resilient consensus of switched multi-agent systems publication-title: Syst. Control. Lett. doi: 10.1016/j.sysconle.2018.10.001 – ident: ref_3 doi: 10.3390/s18092976 – volume: 85 start-page: 77 year: 2019 ident: ref_7 article-title: Centralized filtering and smoothing algorithms from outputs with random parameter matrices transmitted through uncertain communication channels publication-title: Digit. Signal Process. doi: 10.1016/j.dsp.2018.11.010 – volume: 45 start-page: 324 year: 2019 ident: ref_4 article-title: A new approach to distributed fusion filtering for networked systems with random parameter matrices and correlated noises publication-title: Inf. Fusion doi: 10.1016/j.inffus.2018.02.006 |
SSID | ssj0023338 |
Score | 2.2793455 |
Snippet | In this paper, a cluster-based approach is used to address the distributed fusion estimation problem (filtering and fixed-point smoothing) for discrete-time... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 3112 |
SubjectTerms | Algorithms Big Data cluster-based approach Clustering Deception Design False information least-squares filtering least-squares fixed-point smoothing networked systems Sensors stochastic deception attacks Wireless networks |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB4hTnCoeLQl5SFT9dBLxPptH2EBISQ4tEXiUkW24wgkSCo2y-9nnGSj3Qqpl17tUeTMjD3zJTOfAb5xwZ1zQuUuao0AhdLcOIZQxUhnQhm5s6lR-OZWXd2J63t5v3TVV6oJ6-mBe8WdOKGjnVQIZJQVwiJGFl7oUk2sw4OVd6kRxrwFmBqgFkfk1fMIcQT1J7PEYsYpZSvRpyPpfy-z_LtAciniXG7BhyFVJKf9ErdhLdY7sLlEILgLv6fNK4LdZLn8DONRSS5wy_bdiATTUTJ9micmBJz4iXgVB277su8ZwRMjfYIhbUN-uLpsnsl5HEpcyGnbptb7j3B3efFrepUPFybkAVFum1tUFirYqxLzgMhY8IZKE2jpjQ4Ym0Xlqyg9q6T0knLjJ5yVwXFbKemYlfwTrNdNHfeAUJSXQdmggxdlle4kNlLHGIyqqAwig-8LRRZhYBNPl1o8FYgqks6LUecZfB1F__QUGu8JnSVrjAKJ9bobQF8oBl8o_uULGRwsbFkMW3FWIMaiGkEZNRkcj9O4idKfEVfHZo4yTPFECWBtBp97048r4YjiNUbxDPSKU6wsdXWmfnzoiLoVPpEz_uV_vNs-bGCulhrOcioOYL19mcdDzIdaf9S5_hu-RgfQ priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5V5QIHxJtAQQZx4BJYv-1DhdqlVYXUHoCVekGR7ThQaZu0u1kE_77jTTZq0IqrPYqcGU9mvtjzDcA7LrhzTqjcRa0RoFCaG8cQqhjpTCgjdzYVCp-eqZOZ-HIuz3dg02OzV-ByK7RL_aRmi_mHP9d_P6HD7yfEiZD94zJxlHGaeg3fwYCkk3-eiuEwgXGEYR2p0Fh8FIrWjP3b0sx_b0veCj_HD-B-nzeSg87QD2En1o_g3i02wcfwY9r8RuSbzJgfYnAqyRH6b1eaSDA3JdP5KtEi4MQ3BK84cNbdAV8S_Hyk_zGkbchXV5fNJfkc-_su5KBtUx3-E5gdH32fnuR994Q8IORtc-uERm17VWJSEBkL3lBpAi290QEDtah8FaVnlZReUm78hLMyOG4rJR2zkj-F3bqp43MgFOVlUDbo4EVZpQbFRuoYg1EVlUFk8H6jyCL01OKpw8W8QIiRdF4MOs_g7SB61fFpbBM6TNYYBBIF9nqgWfwseo8q8PWinVSIcJUVwlJrhBe6VBPrMOJyl8HexpbFZlsVCLioRoRGTQZvhmn0qHRM4urYrFCGKZ74AazN4Fln-mElHCG9xpCegR5titFSxzP1xa81a7fCJ3LGX_x_WS_hLqZkqa4sp2IPdtvFKr7CtKf1r9eb-gZgZgI_ priority: 102 providerName: Scholars Portal |
Title | Covariance-Based Estimation for Clustered Sensor Networks Subject to Random Deception Attacks |
URI | https://www.ncbi.nlm.nih.gov/pubmed/31337128 https://www.proquest.com/docview/2301775318 https://www.proquest.com/docview/2263316799 https://pubmed.ncbi.nlm.nih.gov/PMC6679323 https://doaj.org/article/a47e90f825694491984b47d609a8473a |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagvcABlXdoWRnEgUvUdfw-oe52lwqpK1SotBcU2Y5TkEpSull-PzNJNu1WFRcf7FHkeGzPfPb4G0I-cMGdc0KlLmoNAIWx1LgMoIqRzoQicmfxofDpQp2ciy9LuewP3FZ9WOVmT2w36qIOeEZ-CK4y0-BbM_Pp6k-KWaPwdrVPofGQ7CJ1GYZ06eUN4OKAvzo2IQ7Q_nCFXGacsWzLBrVU_ff5l3fDJG_ZnfkeedI7jPSo0_BT8iBWz8jjWzSCz8mPaf0XIC_qL52AVSroDBZu9yaRglNKp5dr5EOAhm-AWqFi0QV_ryjsG3gQQ5uanrmqqH_T49gHutCjpsEH-C_I-Xz2fXqS9mkT0gBYt0mtExqG2asCvIGYZcEbJk1ghTc6gIUWpS-j9FkppZeMGz_mWREct6WSLrOSvyQ7VV3F14QykJdB2aCDF0WJmYmN1DEGo0omg0jIx81A5qHnFMfUFpc5YAsc83wY84S8H0SvOiKN-4QmqI1BALmv24r6-iLvl1IOvxftuARoq6wQllkjvNCFGlsHppa7hBxsdJn3C3KV30yfhLwbmmEp4f2Iq2K9BplMcSQGsDYhrzrVDz3hgOU12PKE6K1JsdXV7Zbq18-WrlvBF3nG3_y_W_vkEfhi-KAsZeKA7DTX6_gW_J3Gj9pJDaWZfx6R3cls8fVs1J4dQHkqzD9cLAUq |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqcgAOiDeBAgaBxCVq_LYPCLXbVlva7gFaaS8o2I5DK5WkdLMg_hS_kXEe2y6quPVqjyLHHs_MZ3u-QegN48xay2Vqg1IAUAhJtaUAVbSw2heBWRMThQ8mcnzEP07FdAX9GXJh4rPKwSa2hrqofTwjX4dQmSiIrYn-cPYjjVWj4u3qUEKjU4u98PsXQLbZ-90tWN-3lO5sH47GaV9VIPUABZvUWK5gFE4W4CwDpd5pIrQnhdPKgwPjpSuDcLQUwgnCtMsYLbxlppTCUhOrRIDJvwGON4s7Sk0vAB4DvNexFzFmsvVZ5E5jhNAln9eWBrgqnv33WeYlP7dzF93pA1S80WnUPbQSqvvo9iXawgfoy6j-CRA76ku6CV6wwNtgKLocSAxBMB6dziP_AnR8BpQMDZPusfkMg52KBz-4qfEnWxX1d7wV-oc1eKNpYsL_Q3R0LRP6CK1WdRWeIExAXnhpvPKOF2WshKyFCsFrWRLheYLeDROZ-57DPJbSOM0By8Q5zxdznqDXC9GzjrjjKqHNuBoLgci13TbU59_yfuvm8HvBZCVAaWk4N8Ro7rgqZGYsuHZmE7Q2rGXeG4BZfqGuCXq16IatG-9jbBXqOchQySIRgTEJetwt_WIkjDCmIHZIkFpSiqWhLvdUJ8ctPbiELzLKnv5_WC_RzfHhwX6-vzvZe4ZuQRwYk9lSwtfQanM-D88h1mrci1bBMfp63TvqL0-uPfA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1baxQxFA6lguiDeHe0ahQFX4bd3JMHkXa3S2t1EbWwLzImmYwKdaZ2ZxX_mr_Ok7m1K8W3vk4OSzY5t2_mnO8g9IxxZq3lMrVBKQAohKTaUoAqWljt88CsiY3Cb-dy75C_XojFBvrT98LEssreJzaOOq98fEc-glSZKMitiR4VXVnEu-ns1fGPNE6Qil9a-3EarYochN-_AL4tX-5P4a6fUzrb_TjZS7sJA6kHWFinxnIFO3Iyh8AZKPVOE6E9yZ1WHoIZL1wRhKOFEE4Qpt2Y0dxbZgopLDVxYgS4_0uKwSLYklqcgj0G2K9lMmLMjEfLyKPGCKFr8a8ZE3BebvtvieaZmDe7jq51ySrebrXrBtoI5U109QyF4S30aVL9BLgddSfdgYiY411wGm0_JIaEGE-OVpGLARY-AGKGB_O28HyJwWfFl0C4rvB7W-bVdzwNXZEN3q7r2Px_Gx1eyIHeQZtlVYZ7CBOQF14ar7zjeRGnImuhQvBaFkR4nqAX_UFmvuMzj2M1jjLANfHMs-HME_R0ED1uSTzOE9qJtzEIRN7t5kF18iXrzDiDvxfMuABYLQ3nhhjNHVe5HBsLYZ7ZBG31d5l1zmCZnapugp4My2DG8duMLUO1AhkqWSQlMCZBd9urH3bCCGMK8ogEqTWlWNvq-kr57WtDFS7hFxll9_-_rcfoMthS9mZ_fvAAXYGUMPa1pYRvoc36ZBUeQtpVu0eNfmP0-aIN6i_tOEIm |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Covariance-Based+Estimation+for+Clustered+Sensor+Networks+Subject+to+Random+Deception+Attacks&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Caballero-%C3%81guila%2C+Raquel&rft.au=Hermoso-Carazo%2C+Aurora&rft.au=Linares-P%C3%A9rez%2C+Josefa&rft.date=2019-07-14&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=19&rft.issue=14&rft_id=info:doi/10.3390%2Fs19143112&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |