Safe and Robust Mobile Robot Navigation in Uneven Indoor Environments
Complex environments pose great challenges for autonomous mobile robot navigation. In this study, we address the problem of autonomous navigation in 3D environments with staircases and slopes. An integrated system for safe mobile robot navigation in 3D complex environments is presented and both the...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 19; no. 13; p. 2993 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
07.07.2019
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Complex environments pose great challenges for autonomous mobile robot navigation. In this study, we address the problem of autonomous navigation in 3D environments with staircases and slopes. An integrated system for safe mobile robot navigation in 3D complex environments is presented and both the perception and navigation capabilities are incorporated into the modular and reusable framework. Firstly, to distinguish the slope from the staircase in the environment, the robot builds a 3D OctoMap of the environment with a novel Simultaneously Localization and Mapping (SLAM) framework using the information of wheel odometry, a 2D laser scanner, and an RGB-D camera. Then, we introduce the traversable map, which is generated by the multi-layer 2D maps extracted from the 3D OctoMap. This traversable map serves as the input for autonomous navigation when the robot faces slopes and staircases. Moreover, to enable robust robot navigation in 3D environments, a novel camera re-localization method based on regression forest towards stable 3D localization is incorporated into this framework. In addition, we utilize a variable step size Rapidly-exploring Random Tree (RRT) method which can adjust the exploring step size automatically without tuning this parameter manually according to the environment, so that the navigation efficiency is improved. The experiments are conducted in different kinds of environments and the output results demonstrate that the proposed system enables the robot to navigate efficiently and robustly in complex 3D environments. |
---|---|
AbstractList | Complex environments pose great challenges for autonomous mobile robot navigation. In this study, we address the problem of autonomous navigation in 3D environments with staircases and slopes. An integrated system for safe mobile robot navigation in 3D complex environments is presented and both the perception and navigation capabilities are incorporated into the modular and reusable framework. Firstly, to distinguish the slope from the staircase in the environment, the robot builds a 3D OctoMap of the environment with a novel Simultaneously Localization and Mapping (SLAM) framework using the information of wheel odometry, a 2D laser scanner, and an RGB-D camera. Then, we introduce the traversable map, which is generated by the multi-layer 2D maps extracted from the 3D OctoMap. This traversable map serves as the input for autonomous navigation when the robot faces slopes and staircases. Moreover, to enable robust robot navigation in 3D environments, a novel camera re-localization method based on regression forest towards stable 3D localization is incorporated into this framework. In addition, we utilize a variable step size Rapidly-exploring Random Tree (RRT) method which can adjust the exploring step size automatically without tuning this parameter manually according to the environment, so that the navigation efficiency is improved. The experiments are conducted in different kinds of environments and the output results demonstrate that the proposed system enables the robot to navigate efficiently and robustly in complex 3D environments. Complex environments pose great challenges for autonomous mobile robot navigation. In this study, we address the problem of autonomous navigation in 3D environments with staircases and slopes. An integrated system for safe mobile robot navigation in 3D complex environments is presented and both the perception and navigation capabilities are incorporated into the modular and reusable framework. Firstly, to distinguish the slope from the staircase in the environment, the robot builds a 3D OctoMap of the environment with a novel Simultaneously Localization and Mapping (SLAM) framework using the information of wheel odometry, a 2D laser scanner, and an RGB-D camera. Then, we introduce the traversable map, which is generated by the multi-layer 2D maps extracted from the 3D OctoMap. This traversable map serves as the input for autonomous navigation when the robot faces slopes and staircases. Moreover, to enable robust robot navigation in 3D environments, a novel camera re-localization method based on regression forest towards stable 3D localization is incorporated into this framework. In addition, we utilize a variable step size Rapidly-exploring Random Tree (RRT) method which can adjust the exploring step size automatically without tuning this parameter manually according to the environment, so that the navigation efficiency is improved. The experiments are conducted in different kinds of environments and the output results demonstrate that the proposed system enables the robot to navigate efficiently and robustly in complex 3D environments.Complex environments pose great challenges for autonomous mobile robot navigation. In this study, we address the problem of autonomous navigation in 3D environments with staircases and slopes. An integrated system for safe mobile robot navigation in 3D complex environments is presented and both the perception and navigation capabilities are incorporated into the modular and reusable framework. Firstly, to distinguish the slope from the staircase in the environment, the robot builds a 3D OctoMap of the environment with a novel Simultaneously Localization and Mapping (SLAM) framework using the information of wheel odometry, a 2D laser scanner, and an RGB-D camera. Then, we introduce the traversable map, which is generated by the multi-layer 2D maps extracted from the 3D OctoMap. This traversable map serves as the input for autonomous navigation when the robot faces slopes and staircases. Moreover, to enable robust robot navigation in 3D environments, a novel camera re-localization method based on regression forest towards stable 3D localization is incorporated into this framework. In addition, we utilize a variable step size Rapidly-exploring Random Tree (RRT) method which can adjust the exploring step size automatically without tuning this parameter manually according to the environment, so that the navigation efficiency is improved. The experiments are conducted in different kinds of environments and the output results demonstrate that the proposed system enables the robot to navigate efficiently and robustly in complex 3D environments. |
Author | Wang, Jiankun Wang, Chaoqun Cheng, Jiyu Meng, Lili Ho, Danny Yan, Tingfang Li, Chenming Meng, Max Q.-H. |
AuthorAffiliation | 1 Department of Electronic Engineering, The Chinese University of Hong Kong, Hong Kong, China 2 Computer Science Department, University of British Columbia, Vancouver, BC V6T 1Z4, Canada |
AuthorAffiliation_xml | – name: 2 Computer Science Department, University of British Columbia, Vancouver, BC V6T 1Z4, Canada – name: 1 Department of Electronic Engineering, The Chinese University of Hong Kong, Hong Kong, China |
Author_xml | – sequence: 1 givenname: Chaoqun orcidid: 0000-0001-5780-7284 surname: Wang fullname: Wang, Chaoqun – sequence: 2 givenname: Jiankun surname: Wang fullname: Wang, Jiankun – sequence: 3 givenname: Chenming orcidid: 0000-0001-6322-0834 surname: Li fullname: Li, Chenming – sequence: 4 givenname: Danny surname: Ho fullname: Ho, Danny – sequence: 5 givenname: Jiyu surname: Cheng fullname: Cheng, Jiyu – sequence: 6 givenname: Tingfang surname: Yan fullname: Yan, Tingfang – sequence: 7 givenname: Lili surname: Meng fullname: Meng, Lili – sequence: 8 givenname: Max Q.-H. surname: Meng fullname: Meng, Max Q.-H. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31284648$$D View this record in MEDLINE/PubMed |
BookMark | eNptkktvEzEQgC1URNvAgT-AVuICh9DxYx3vBQlVASIVkICeLds7Gxxt7GJ7I_HvcZoStRUnvz5_nvHMOTkJMSAhLym847yDi0w7ylnX8SfkjAom5ooxOLk3PyXnOW8AGOdcPSOnnDIlpFBnZPnDDNiY0Dffo51yab5E60fcr2JpvpqdX5viY2h8aK4D7jA0q9DHmJpl2PkUwxZDyc_J08GMGV_cjTNy_XH58_Lz_Orbp9Xlh6u5E7Ir884AFZ1C0bcUoFeuFUCdEqA6rph1VsnWITc9RQu0XTgLg2RccMMAsZN8RlYHbx_NRt8kvzXpj47G69uNmNbapOLdiNoxi71DKZloReuYMgIsqAEGa7jsF9X1_uC6mex2j4aSzPhA-vAk-F96HXdaypYKCVXw5k6Q4u8Jc9Fbnx2OowkYp6wZqw_DgtXkZuT1I3QTpxTqV2nGgS4krXClXt2P6BjKv2pV4O0BcCnmnHA4IhT0vhP0sRMqe_GIdb7clrIm48f_3PgLPnyy1A |
CitedBy_id | crossref_primary_10_1016_j_fusengdes_2021_112691 crossref_primary_10_1109_JSEN_2021_3088007 crossref_primary_10_1680_jenhh_24_00005 crossref_primary_10_1109_ACCESS_2022_3219416 crossref_primary_10_17163_ings_n32_2024_08 crossref_primary_10_1155_2022_3340529 crossref_primary_10_1016_j_asoc_2023_111154 crossref_primary_10_1109_ACCESS_2023_3344218 crossref_primary_10_3390_app14177831 crossref_primary_10_3390_robotics12050139 crossref_primary_10_3390_robotics12020047 crossref_primary_10_3390_app10217682 crossref_primary_10_3390_en16135127 crossref_primary_10_1007_s11370_025_00591_4 crossref_primary_10_3390_s20154331 crossref_primary_10_1109_TVT_2020_3009979 crossref_primary_10_3390_app10082763 |
Cites_doi | 10.1109/TRO.2015.2463671 10.1016/S0921-8890(03)00006-X 10.1109/HUMANOIDS.2012.6651595 10.1109/CVPR.2013.377 10.1109/IROS.2017.8206611 10.1109/COMST.2016.2632427 10.1109/ICRA.2016.7487679 10.3390/s19122759 10.1002/rob.20258 10.1177/027836402320556458 10.1109/ROBIO.2016.7866392 10.1109/ICInfA.2015.7279555 10.1109/TPAMI.2016.2611662 10.1109/ISMAR.2007.4538852 10.1109/LRA.2018.2849610 10.1109/CVPR.2015.7299069 10.1109/IROS.2012.6385773 10.1109/SCOPES.2016.7955636 10.1109/TASE.2015.2487881 10.1109/ICCV.2011.6126517 10.1109/ICRA.2012.6225029 10.1109/CVPR.2014.146 10.1109/ICCV.2015.336 10.1017/S0263574719000195 10.1016/j.robot.2013.07.008 10.5244/C.30.59 10.1109/TASE.2019.2894748 10.1109/TRO.2010.2049527 10.21236/ADA352295 10.1177/0278364909100586 10.1109/RCAR.2016.7784090 10.1109/3DV.2016.41 10.1109/IROS.2014.6942976 |
ContentType | Journal Article |
Copyright | 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2019 by the authors. 2019 |
Copyright_xml | – notice: 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2019 by the authors. 2019 |
DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/s19132993 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef MEDLINE - Academic Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_c2bedce6624545c28a40b08f0fba36d7 PMC6651460 31284648 10_3390_s19132993 |
Genre | Journal Article |
GeographicLocations | Canada United States--US India |
GeographicLocations_xml | – name: Canada – name: United States--US – name: India |
GrantInformation_xml | – fundername: Hong Kong ITC MRP grant grantid: # MRP/011/18 – fundername: Shenzhen Science and Technology Innovation projects grantid: JCYJ20170413161616163 – fundername: Hong Kong ITC ITSP Tier 2 grant grantid: # ITS/105/18FP |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M NPM 3V. 7XB 8FK AZQEC DWQXO K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c469t-9a01498e4d5100d8c5401c84089382bcb865ce3ad1eb0157cb0f62343a20ee963 |
IEDL.DBID | M48 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:28:14 EDT 2025 Thu Aug 21 18:29:55 EDT 2025 Fri Jul 11 03:57:41 EDT 2025 Fri Jul 25 20:21:09 EDT 2025 Thu Apr 03 07:04:14 EDT 2025 Thu Apr 24 23:02:52 EDT 2025 Tue Jul 01 00:42:01 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13 |
Keywords | regression forest traversable map path planning and navigation image-based localization |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c469t-9a01498e4d5100d8c5401c84089382bcb865ce3ad1eb0157cb0f62343a20ee963 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Authors have contributed equally and names are in alphabetical order. |
ORCID | 0000-0001-6322-0834 0000-0001-5780-7284 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s19132993 |
PMID | 31284648 |
PQID | 2301761225 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_c2bedce6624545c28a40b08f0fba36d7 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6651460 proquest_miscellaneous_2254507289 proquest_journals_2301761225 pubmed_primary_31284648 crossref_primary_10_3390_s19132993 crossref_citationtrail_10_3390_s19132993 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20190707 |
PublicationDateYYYYMMDD | 2019-07-07 |
PublicationDate_xml | – month: 7 year: 2019 text: 20190707 day: 7 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2019 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Bishop (ref_38) 2001; 8 ref_36 Newcombe (ref_15) 2011; 11 ref_34 ref_10 ref_31 Rublee (ref_45) 2011; 11 ref_30 Tomatis (ref_9) 2003; 44 Montiel (ref_35) 2015; 31 ref_19 ref_17 ref_39 ref_16 Hussein (ref_42) 2018; 2018 ref_37 Beeson (ref_12) 2010; 29 Sattler (ref_20) 2016; 39 Yassin (ref_18) 2016; 19 Siegwart (ref_7) 2003; 42 Latombe (ref_29) 2002; 21 Jaillet (ref_32) 2010; 26 Zhang (ref_14) 2014; 2 ref_25 Kostavelis (ref_11) 2013; 61 ref_24 ref_46 ref_23 ref_22 ref_44 Montemerlo (ref_13) 2008; 25 ref_21 ref_43 ref_41 ref_1 ref_2 ref_28 Wang (ref_3) 2018; 3 ref_27 ref_26 ref_8 Derpanis (ref_40) 2010; 4 Devaurs (ref_33) 2016; 13 ref_5 ref_4 ref_6 |
References_xml | – volume: 31 start-page: 1147 year: 2015 ident: ref_35 article-title: ORB-SLAM: A versatile and accurate monocular SLAM system publication-title: IEEE Trans. Robot. doi: 10.1109/TRO.2015.2463671 – ident: ref_30 – volume: 4 start-page: 2 year: 2010 ident: ref_40 article-title: Overview of the RANSAC Algorithm publication-title: Image Rochester NY – volume: 44 start-page: 3 year: 2003 ident: ref_9 article-title: Hybrid simultaneous localization and map building: A natural integration of topological and metric publication-title: Robot. Auton. Syst. doi: 10.1016/S0921-8890(03)00006-X – ident: ref_17 doi: 10.1109/HUMANOIDS.2012.6651595 – ident: ref_26 doi: 10.1109/CVPR.2013.377 – volume: 8 start-page: 41 year: 2001 ident: ref_38 article-title: An introduction to the Kalman filter publication-title: Proc SIGGRAPH Course – ident: ref_41 doi: 10.1109/IROS.2017.8206611 – volume: 19 start-page: 1327 year: 2016 ident: ref_18 article-title: Recent advances in indoor localization: A survey on theoretical approaches and applications publication-title: IEEE Commun. Surv. Tutor. doi: 10.1109/COMST.2016.2632427 – volume: 11 start-page: 2 year: 2011 ident: ref_45 article-title: ORB: An efficient alternative to SIFT or SURF publication-title: ICCV Citeseer – ident: ref_22 doi: 10.1109/ICRA.2016.7487679 – ident: ref_5 doi: 10.3390/s19122759 – ident: ref_16 – volume: 25 start-page: 569 year: 2008 ident: ref_13 article-title: Junior: The Stanford entry in the urban challenge publication-title: J. Field Robot. doi: 10.1002/rob.20258 – volume: 21 start-page: 5 year: 2002 ident: ref_29 article-title: On delaying collision checking in PRM planning: Application to multi-robot coordination publication-title: Int. J. Robot. Res. doi: 10.1177/027836402320556458 – ident: ref_27 doi: 10.1109/ROBIO.2016.7866392 – ident: ref_1 – ident: ref_4 doi: 10.1109/ICInfA.2015.7279555 – volume: 39 start-page: 1744 year: 2016 ident: ref_20 article-title: Efficient & Effective Prioritized Matching for Large-Scale Image-Based Localization publication-title: PAMI doi: 10.1109/TPAMI.2016.2611662 – ident: ref_19 doi: 10.1109/ISMAR.2007.4538852 – volume: 3 start-page: 3081 year: 2018 ident: ref_3 article-title: Efficient Object Search With Belief Road Map Using Mobile Robot publication-title: IEEE Robot. Autom. Lett. doi: 10.1109/LRA.2018.2849610 – ident: ref_24 doi: 10.1109/CVPR.2015.7299069 – ident: ref_37 doi: 10.1109/IROS.2012.6385773 – ident: ref_39 doi: 10.1109/SCOPES.2016.7955636 – volume: 13 start-page: 415 year: 2016 ident: ref_33 article-title: Optimal path planning in complex cost spaces with sampling-based algorithms publication-title: IEEE Trans. Autom. Sci. Eng. doi: 10.1109/TASE.2015.2487881 – volume: 2 start-page: 9 year: 2014 ident: ref_14 article-title: LOAM: Lidar Odometry and Mapping in Real-time publication-title: RSS – ident: ref_8 – ident: ref_25 – ident: ref_36 doi: 10.1109/ICCV.2011.6126517 – ident: ref_2 doi: 10.1109/ICRA.2012.6225029 – ident: ref_23 doi: 10.1109/CVPR.2014.146 – ident: ref_21 doi: 10.1109/ICCV.2015.336 – ident: ref_28 doi: 10.1017/S0263574719000195 – volume: 42 start-page: 203 year: 2003 ident: ref_7 article-title: Robox at Expo. 02: A large-scale installation of personal robots publication-title: RAS – volume: 11 start-page: 127 year: 2011 ident: ref_15 article-title: KinectFusion: Real-time dense surface mapping and tracking publication-title: ISMAR – volume: 61 start-page: 1460 year: 2013 ident: ref_11 article-title: Learning spatially semantic representations for cognitive robot navigation publication-title: Robot. Auton. Syst. doi: 10.1016/j.robot.2013.07.008 – ident: ref_46 doi: 10.5244/C.30.59 – ident: ref_10 doi: 10.1109/TASE.2019.2894748 – volume: 26 start-page: 635 year: 2010 ident: ref_32 article-title: Sampling-based path planning on configuration-space costmaps publication-title: IEEE Trans. Robot. doi: 10.1109/TRO.2010.2049527 – ident: ref_6 doi: 10.21236/ADA352295 – ident: ref_43 – volume: 29 start-page: 428 year: 2010 ident: ref_12 article-title: Factoring the mapping problem: Mobile robot map-building in the hybrid spatial semantic hierarchy publication-title: Int. J. Robot. Res. doi: 10.1177/0278364909100586 – ident: ref_34 doi: 10.1109/RCAR.2016.7784090 – volume: 2018 start-page: 6392697 year: 2018 ident: ref_42 article-title: Global and local path planning study in a ROS-based research platform for autonomous vehicles publication-title: J. Adv. Transp. – ident: ref_44 doi: 10.1109/3DV.2016.41 – ident: ref_31 doi: 10.1109/IROS.2014.6942976 |
SSID | ssj0023338 |
Score | 2.3839033 |
Snippet | Complex environments pose great challenges for autonomous mobile robot navigation. In this study, we address the problem of autonomous navigation in 3D... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 2993 |
SubjectTerms | Cameras Embedded systems image-based localization International conferences Kalman filters Lasers Literature reviews Localization path planning and navigation Planning regression forest Robots Sensors Simulation Software traversable map |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS-RAEC7Ekx6W9bUbX7TiYS_Bnk6n0zmqjKigB90Bb6GfrLB0ZCbj77c6yYQZEbx4CSRdh05VKvV9dPXXAGdUW4XAw6asVD7lxpWpZHhRrvQ8Lwz1XbfFg7iZ8Lvn_HnpqK_YE9bJA3eOOzdMx0ZFIRjHYm-YVJxqKj31WmXCtvvIseYtyFRPtTJkXp2OUIak_nyGrCTDH2-2Un1akf7PkOXHBsmlinP9E370UJFcdFPcgjUXtmFzSUBwB8ZPyjuigiWPtZ7PGnJfa0zzeFc35EG9tQIadSAvgUxCFGsit8HW9ZSMlza47cLkevz36ibtD0ZIDbLZJi1VJDbScYsZRa00CLtGBqkagg_JtNFS5MZlyo6cxnJfGE09whyeKUadw5Tbg_VQB_cbiHFWlLrQJTOCC-6ksl4pYbXlOfVeJfBn4bDK9Krh8fCK_xWyh-jbavBtAqeD6WsnlfGZ0WX0-mAQ1a3bBxjzqo959VXMEzhcxKzqU25WIZcaFYjXWJ7AyTCMyRJXQFRw9RxtkA4jAEaSmcCvLsTDTLJYqQWXCRQrwV-Z6upIePnXCnILgbBT0P3veLcD2EBMVrYdwcUhrDfTuTtC3NPo4_YTfwc0HQLk priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT9wwEB0VeoFDBRRoWqhMxYFLhDfxOs4JAdrlQ4JDYSVukT9bpMqmu9n-_o6TbLqLUC-REvtgzXg879mTZ4BjqoxE4GHSrJQuZdqWqcjwIW3p2LDQ1LXVFvf8esJun4ZP3YbbrCurXKyJzUJtgo575KcIlQdIuXH6nb38TuOtUfF0tbtCYw3eDzDTxJIuMb7qCVeO_KtVE8qR2p_OkJvkuPzmKzmokep_C1--LpNcyjvjLfjQAUZy3np4G95ZvwObSzKCH2H0IJ0l0hvyPaj5rCZ3QWGwx7dQk3v5p5HRCJ48ezLxUbKJ3HgTwpSMln5z24XJePR4eZ121yOkGjltnZYy0hthmcG4okZoBF8DjYQNIYjIlFaCD7XNpRlYhUm_0Io6BDsslxm1FgNvD9Z98PYTEG0NL1WhykxzxpkV0jgpuVGGDalzMoGThcEq3WmHxyssflXIIaJtq962CXzru760ghlvdbqIVu87RI3r5kOY_qi6kKl0pqLtOc8YwjydCcmoosJRp2TOTZHAwcJnVRd4s-rfNEngqG_GkInnINLbMMc-SIoRBiPVTGC_dXE_kjzma85EAsWK81eGutrin382stycI_jk9PP_h_UFNhBzlU3Fb3EA6_V0bg8R19TqazN5_wJBvfl5 priority: 102 providerName: ProQuest |
Title | Safe and Robust Mobile Robot Navigation in Uneven Indoor Environments |
URI | https://www.ncbi.nlm.nih.gov/pubmed/31284648 https://www.proquest.com/docview/2301761225 https://www.proquest.com/docview/2254507289 https://pubmed.ncbi.nlm.nih.gov/PMC6651460 https://doaj.org/article/c2bedce6624545c28a40b08f0fba36d7 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bi9QwFD7sBWR9EO9bXYcoPvhSzaRt0j4siyszrsIOsjowbyVXd2FJdaYj-u896Y0ZmSdfAm1OoZyTk3xfk34H4DVVRiLwMDErpItTbYs4Z9hIW7g0E5q69rTFjF_M08-LbLEHfY3NzoGrndQu1JOaL2_f_v755wwT_jQwTqTs71bIORKcVpN9OMQFSYRCBpfpsJnAEqRhrajQtvkR3EnC9MxD8Z-NVakR79-FOP89OLmxEk3vw70OQpL3bcwfwJ71D-HuhrDgI5h8lc4S6Q25qtR6VZPLSmH6h6uqJjP5qxHWqDy58WTug4gT-eRNVS3JZOPHt8cwn06-fbiIu4IJsUaWW8eFDIQnt6nBTKMm1wjHxhopHIKSnCmtcp5pm0gztgphgNCKOoQ_aSIZtRZT8Qkc-MrbYyDaGl4ooQqmOTrI5tI4KblRJs2oczKCN73DSt2piYeiFrclsorg5nJwcwSvBtMfrYTGLqPz4PXBIKheNzeq5feyS6JSMxV8zzlLEfhplsuUKpo76pRMuBERnPQxK_uRVCLHGgvEcSyL4OXQjUkUdkakt9UabZAmIzBG8hnB0zbEw5v0QyQCsRX8rVfd7vE3141QN-cIRzl99t9PPocjBGhFczxYnMBBvVzbFwiCajWCfbEQ2ObTjyM4PJ_MvlyNmg8Ko2bw_wWMKwzC |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiDeBAgaBxCWq1_E6yQEhHrvs0nYP0JV6S_2klSqn7GZB_Cl-I-O82EUVt14iJR5F1ng8833JeAbgJVVGIvAwMculi7m2eZwxvEibOz5MNXVNtsVMTOb889HwaAt-d2dhQlpl5xNrR21KHb6R7yJUHiDlRvN7e_49Dl2jwt_VroVGYxZ79tdPpGzLN9OPuL6vGBuPDj9M4rarQKyRClZxLgMryCw3aI7UZBoxy0Ajz8HInTGlVSaG2ibSDKzCWJlqRR1iBJ5IRq1Fe8X3XoGrPMFIHk6mjz_1BC9BvtdUL8JBurtELpSgu082Yl7dGuAiPPtvWuZanBvfgpstQCXvGou6DVvW34Eba2UL78Loq3SWSG_Il1KtlhU5KBU6l3BXVmQmf9RlO0pPTj2Z-1Aiiky9KcsFGa0dq7sH80tR3H3Y9qW3D4Foa0SuUpUzLbjgNpPGSSmMMnxInZMRvO4UVui2VnlomXFWIGcJui163Ubwohc9bwp0XCT0Pmi9Fwg1tesH5eJb0W7RQjMVdC8E4wgrNcskp4pmjjolE2HSCHa6NSvajb4s_pplBM_7Ydyi4b-L9LZcoQyScITdSG0jeNAscT-TJOADwbMI0o3F35jq5og_PanLgAuBYFfQR_-f1jO4Njk82C_2p7O9x3Ad8V5eZxunO7BdLVb2CWKqSj2tDZnA8WXvnD-UijT6 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVEJwQLwxFFgQSFysbOzN2j4gRGmihkJUFSL15u6TVqp2S-KA-Gv8OmZtxySo4taLJXtX1mp2Ht_nHc8AvKJSCwQeOk4KYWOmTBHnCV6EKSwbZoraJttiyvdn7OPx8HgLfq_-hQlplSufWDtq7VX4Rt5HqDxAyo3q17dtWsTh3vjdxfc4dJAKJ62rdhqNihyYXz-Rvi3eTvZwr18nyXj09cN-3HYYiBXSwiouRGAIuWEaVZPqXCF-GSjkPBjF80QqmfOhMqnQAyMxbmZKUot4gaUiocag7uJ7r8F2FlhRD7Z3R9PDo47upcj-mlpGaVrQ_gKZUYrOP92IgHWjgMvQ7b9JmmtRb3wbbrVwlbxv9OsObBl3F26uFTG8B6MvwhoinCZHXi4XFfnsJbqacOcrMhU_6iIe3pEzR2YuFIwiE6e9n5PR2k9292F2JaJ7AD3nnXkERBnNC5nJIlGccWZyoa0QXEvNhtRaEcGblcBK1VYuDw00zktkMEG2ZSfbCF52Uy-ach2XTdoNUu8mhArb9QM__1a2BluqRAbZc54wBJkqyQWjkuaWWilSrrMIdlZ7VrZmvyj_KmkEL7phNNhwCiOc8Uucg5QcQTgS3QgeNlvcrSQNaIGzPIJsY_M3lro54s5O66LgnCP05fTx_5f1HK6j1ZSfJtODJ3ADwV9Rpx5nO9Cr5kvzFAFWJZ-1mkzg5KqN5w8BezqM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Safe+and+Robust+Mobile+Robot+Navigation+in+Uneven+Indoor+Environments&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Wang%2C+Chaoqun&rft.au=Wang%2C+Jiankun&rft.au=Li%2C+Chenming&rft.au=Ho%2C+Danny&rft.date=2019-07-07&rft.pub=MDPI&rft.eissn=1424-8220&rft.volume=19&rft.issue=13&rft_id=info:doi/10.3390%2Fs19132993&rft_id=info%3Apmid%2F31284648&rft.externalDocID=PMC6651460 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |