Forward–backward quasi-Newton methods for nonsmooth optimization problems

The forward–backward splitting method (FBS) for minimizing a nonsmooth composite function can be interpreted as a (variable-metric) gradient method over a continuously differentiable function which we call forward–backward envelope (FBE). This allows to extend algorithms for smooth unconstrained opt...

Full description

Saved in:
Bibliographic Details
Published inComputational optimization and applications Vol. 67; no. 3; pp. 443 - 487
Main Authors Stella, Lorenzo, Themelis, Andreas, Patrinos, Panagiotis
Format Journal Article
LanguageEnglish
Published New York Springer US 01.07.2017
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0926-6003
1573-2894
DOI10.1007/s10589-017-9912-y

Cover

Loading…
Abstract The forward–backward splitting method (FBS) for minimizing a nonsmooth composite function can be interpreted as a (variable-metric) gradient method over a continuously differentiable function which we call forward–backward envelope (FBE). This allows to extend algorithms for smooth unconstrained optimization and apply them to nonsmooth (possibly constrained) problems. Since the FBE can be computed by simply evaluating forward–backward steps, the resulting methods rely on a similar black-box oracle as FBS. We propose an algorithmic scheme that enjoys the same global convergence properties of FBS when the problem is convex, or when the objective function possesses the Kurdyka–Łojasiewicz property at its critical points. Moreover, when using quasi-Newton directions the proposed method achieves superlinear convergence provided that usual second-order sufficiency conditions on the FBE hold at the limit point of the generated sequence. Such conditions translate into milder requirements on the original function involving generalized second-order differentiability. We show that BFGS fits our framework and that the limited-memory variant L-BFGS is well suited for large-scale problems, greatly outperforming FBS or its accelerated version in practice, as well as ADMM and other problem-specific solvers. The analysis of superlinear convergence is based on an extension of the Dennis and Moré theorem for the proposed algorithmic scheme.
AbstractList The forward–backward splitting method (FBS) for minimizing a nonsmooth composite function can be interpreted as a (variable-metric) gradient method over a continuously differentiable function which we call forward–backward envelope (FBE). This allows to extend algorithms for smooth unconstrained optimization and apply them to nonsmooth (possibly constrained) problems. Since the FBE can be computed by simply evaluating forward–backward steps, the resulting methods rely on a similar black-box oracle as FBS. We propose an algorithmic scheme that enjoys the same global convergence properties of FBS when the problem is convex, or when the objective function possesses the Kurdyka–Łojasiewicz property at its critical points. Moreover, when using quasi-Newton directions the proposed method achieves superlinear convergence provided that usual second-order sufficiency conditions on the FBE hold at the limit point of the generated sequence. Such conditions translate into milder requirements on the original function involving generalized second-order differentiability. We show that BFGS fits our framework and that the limited-memory variant L-BFGS is well suited for large-scale problems, greatly outperforming FBS or its accelerated version in practice, as well as ADMM and other problem-specific solvers. The analysis of superlinear convergence is based on an extension of the Dennis and Moré theorem for the proposed algorithmic scheme.
The forward-backward splitting method (FBS) for minimizing a nonsmooth composite function can be interpreted as a (variable-metric) gradient method over a continuously differentiable function which we call forward-backward envelope (FBE). This allows to extend algorithms for smooth unconstrained optimization and apply them to nonsmooth (possibly constrained) problems. Since the FBE can be computed by simply evaluating forward-backward steps, the resulting methods rely on a similar black-box oracle as FBS. We propose an algorithmic scheme that enjoys the same global convergence properties of FBS when the problem is convex, or when the objective function possesses the Kurdyka-ojasiewicz property at its critical points. Moreover, when using quasi-Newton directions the proposed method achieves superlinear convergence provided that usual second-order sufficiency conditions on the FBE hold at the limit point of the generated sequence. Such conditions translate into milder requirements on the original function involving generalized second-order differentiability. We show that BFGS fits our framework and that the limited-memory variant L-BFGS is well suited for large-scale problems, greatly outperforming FBS or its accelerated version in practice, as well as ADMM and other problem-specific solvers. The analysis of superlinear convergence is based on an extension of the Dennis and Moré theorem for the proposed algorithmic scheme.
Author Patrinos, Panagiotis
Themelis, Andreas
Stella, Lorenzo
Author_xml – sequence: 1
  givenname: Lorenzo
  orcidid: 0000-0002-8304-7327
  surname: Stella
  fullname: Stella, Lorenzo
  email: lorenzo.stella@imtlucca.it
  organization: Department of Electrical Engineering (ESAT-STADIUS), KU Leuven, IMT School for Advanced Studies Lucca
– sequence: 2
  givenname: Andreas
  orcidid: 0000-0002-6044-0169
  surname: Themelis
  fullname: Themelis, Andreas
  organization: Department of Electrical Engineering (ESAT-STADIUS), KU Leuven, IMT School for Advanced Studies Lucca
– sequence: 3
  givenname: Panagiotis
  orcidid: 0000-0003-4824-7697
  surname: Patrinos
  fullname: Patrinos, Panagiotis
  organization: Department of Electrical Engineering (ESAT-STADIUS), KU Leuven
BookMark eNp9kD1OAzEQRi0UJJLAAehWojaMf9ZelygigIiggdpydr1kQ3ad2I6iUHEHbshJcAgFQoJqpvjefKM3QL3OdRahUwLnBEBeBAJ5oTAQiZUiFG8PUJ_kkmFaKN5DfVBUYAHAjtAghDkAKMloH92Nnd8YX328vU9N-bJbs9XahAbf2010XdbaOHNVyGrns9QZWufiLHPL2LTNq4lNiiy9my5sG47RYW0WwZ58zyF6Gl89jm7w5OH6dnQ5wSUXKmIlBS2hkqpUgiuSE84AakUtY8AKbozMuZgWltS5YpBXzBSC5qziZWG5JRUborP93VS8WtsQ9dytfZcqNVFABIfUk1Jynyq9C8HbWpdN_Ho4etMsNAG9M6f35nQyp3fm9DaR5Be59E1r_PZfhu6ZkLLds_U_fvoT-gQ6joQU
CitedBy_id crossref_primary_10_1137_18M1181249
crossref_primary_10_1002_oca_3054
crossref_primary_10_1007_s10957_024_02378_6
crossref_primary_10_1109_TSP_2020_3048229
crossref_primary_10_1287_moor_2021_1138
crossref_primary_10_1016_j_ifacol_2020_12_1254
crossref_primary_10_1007_s10957_018_1328_z
crossref_primary_10_1007_s10589_020_00243_6
crossref_primary_10_1007_s10589_025_00658_z
crossref_primary_10_1007_s10107_021_01629_y
crossref_primary_10_1109_TASLP_2017_2730284
crossref_primary_10_1088_1361_6560_ab2017
crossref_primary_10_1016_j_amc_2023_128377
crossref_primary_10_1109_TAC_2018_2872203
crossref_primary_10_1109_LCSYS_2023_3286331
crossref_primary_10_1137_17M1125157
crossref_primary_10_1137_19M1264783
crossref_primary_10_1109_TNNLS_2021_3051650
crossref_primary_10_1007_s40305_021_00352_x
crossref_primary_10_1007_s10107_022_01916_2
crossref_primary_10_1007_s10589_022_00441_4
crossref_primary_10_1007_s10915_023_02231_4
crossref_primary_10_1007_s10915_024_02712_0
crossref_primary_10_1038_s41598_024_71088_w
crossref_primary_10_1007_s11590_024_02118_9
crossref_primary_10_1109_TAC_2021_3115449
crossref_primary_10_1137_17M1156678
crossref_primary_10_1137_22M1520025
crossref_primary_10_1137_24M1646662
crossref_primary_10_3390_math11112431
crossref_primary_10_1007_s11590_020_01544_9
crossref_primary_10_1007_s10928_017_9547_8
crossref_primary_10_1007_s10589_022_00366_y
crossref_primary_10_1007_s10589_022_00369_9
crossref_primary_10_1137_16M1080240
crossref_primary_10_1007_s10589_024_00556_w
crossref_primary_10_1007_s10208_021_09528_6
crossref_primary_10_1007_s11222_023_10254_y
crossref_primary_10_1080_10556788_2024_2322700
crossref_primary_10_1007_s11075_021_01228_0
crossref_primary_10_1109_TAC_2019_2906393
crossref_primary_10_1137_22M1482822
crossref_primary_10_1007_s43069_024_00307_x
crossref_primary_10_1109_TASLP_2023_3240650
crossref_primary_10_1007_s10589_024_00560_0
crossref_primary_10_1137_23M157185X
crossref_primary_10_1007_s10915_023_02446_5
crossref_primary_10_1007_s10107_024_02110_2
crossref_primary_10_1007_s10589_022_00357_z
crossref_primary_10_1137_18M1167152
crossref_primary_10_1016_j_automatica_2020_109311
crossref_primary_10_1109_TAC_2019_2948268
crossref_primary_10_1007_s10957_023_02319_9
crossref_primary_10_1007_s10589_021_00264_9
crossref_primary_10_1007_s10589_017_9900_2
crossref_primary_10_1007_s10107_023_01980_2
crossref_primary_10_1007_s10957_018_1272_y
crossref_primary_10_1137_18M1163993
crossref_primary_10_1137_17M114741X
crossref_primary_10_1007_s10898_024_01460_7
crossref_primary_10_1007_s10957_019_01477_z
crossref_primary_10_1007_s10957_021_01957_1
crossref_primary_10_1017_S096249291600009X
Cites_doi 10.1007/BF01580895
10.1137/050626090
10.1007/BF01589116
10.1007/s10107-013-0701-9
10.1515/9781400833344
10.1137/1019005
10.1007/s10208-009-9045-5
10.1090/S0025-5718-1974-0343581-1
10.24033/bsmf.1625
10.1007/PL00011373
10.1007/978-1-4419-9467-7
10.1090/S0025-5718-1980-0572855-7
10.1137/S1052623494279316
10.1137/0314056
10.1287/moor.1100.0449
10.1007/s10107-003-0421-7
10.1007/s10107-012-0522-2
10.1137/090747695
10.1137/0726042
10.5802/aif.1384
10.1017/CBO9781139020411
10.1137/S1052623497318992
10.1137/080716542
10.1007/BF01585696
10.1137/S1052623401383455
10.1137/S1052623499354242
10.5802/aif.1638
10.1007/s10107-011-0484-9
10.1137/S1052623494278839
10.1287/moor.14.3.462
10.1023/A:1022660704427
10.1016/j.automatica.2011.05.024
10.1137/0716071
10.1137/130942954
10.1137/S1052623496303329
10.1007/s10898-006-9038-8
10.1007/s13675-015-0045-8
10.1090/S0002-9947-1988-0936806-9
10.1137/S003614459631241X
10.1007/s10107-007-0133-5
10.1137/S1052623494267127
10.1137/050644641
10.1007/s101070050059
10.1007/s10107-012-0629-5
10.1287/moor.15.2.311
10.1109/TSP.2009.2016892
10.1007/s10107-016-0997-3
10.1590/S0101-82052007000100006
10.3934/jimo.2005.1.171
10.1007/s10589-017-9900-2
10.1137/1.9781611971200
10.1142/9789812812827_0018
10.1007/978-1-4614-7621-4_27
10.1007/978-1-4419-9569-8_10
10.1109/CDC.2013.6760233
ContentType Journal Article
Copyright Springer Science+Business Media New York 2017
Computational Optimization and Applications is a copyright of Springer, 2017.
Copyright_xml – notice: Springer Science+Business Media New York 2017
– notice: Computational Optimization and Applications is a copyright of Springer, 2017.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
88I
8AL
8AO
8FD
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L6V
L7M
L~C
L~D
M0C
M0N
M2P
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1007/s10589-017-9912-y
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global (OCUL)
Computing Database
Science Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business (OCUL)
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList
ProQuest Business Collection (Alumni Edition)
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Statistics
Mathematics
EISSN 1573-2894
EndPage 487
ExternalDocumentID 10_1007_s10589_017_9912_y
GrantInformation_xml – fundername: KU Leuven
  grantid: BOF/STG-15-043
  funderid: http://dx.doi.org/10.13039/501100004040
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29F
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
7WY
88I
8AO
8FE
8FG
8FL
8FW
8TC
8UJ
8VB
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHQJS
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EBU
EDO
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GROUPED_ABI_INFORM_RESEARCH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K1G
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAK
LLZTM
M0C
M0N
M2P
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9R
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
QWB
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZD
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7X
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8U
Z8W
Z92
ZL0
ZMTXR
ZWQNP
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SC
7XB
8AL
8FD
8FK
ABRTQ
JQ2
L.-
L7M
L~C
L~D
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c469t-9762c0d79c96491514300f92e330384aa7546b8e1f59305d3a86253d4c8e4e1d3
IEDL.DBID U2A
ISSN 0926-6003
IngestDate Sat Aug 16 05:42:35 EDT 2025
Thu Apr 24 23:11:24 EDT 2025
Tue Jul 01 00:44:25 EDT 2025
Fri Feb 21 02:30:35 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Nonsmooth optimization
Quasi-Newton
Line-search methods
Kurdyka–Łojasiewicz
Forward–backward splitting
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c469t-9762c0d79c96491514300f92e330384aa7546b8e1f59305d3a86253d4c8e4e1d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6044-0169
0000-0002-8304-7327
0000-0003-4824-7697
OpenAccessLink http://hdl.handle.net/2324/4399990
PQID 1901640469
PQPubID 30811
PageCount 45
ParticipantIDs proquest_journals_1901640469
crossref_citationtrail_10_1007_s10589_017_9912_y
crossref_primary_10_1007_s10589_017_9912_y
springer_journals_10_1007_s10589_017_9912_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-07-01
PublicationDateYYYYMMDD 2017-07-01
PublicationDate_xml – month: 07
  year: 2017
  text: 2017-07-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationSubtitle An International Journal
PublicationTitle Computational optimization and applications
PublicationTitleAbbrev Comput Optim Appl
PublicationYear 2017
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Fukushima, Qi (CR43) 1996; 6
Dai, Yuan (CR61) 1999; 10
Byrd, Nocedal (CR70) 1989; 26
Kurdyka (CR6) 1998; 48
Ochs, Chen, Brox, Pock (CR11) 2014; 7
Nesterov (CR15) 2013; 140
Attouch, Bolte (CR8) 2009; 116
CR34
Toh, Yun (CR65) 2010; 6
Li, Peng (CR23) 2007; 37
Nocedal, Wright (CR50) 2006
Dennis, Moré (CR26) 1974; 28
Sagara, Fukushima (CR48) 2005; 1
Bertsekas (CR35) 1999
Bolte, Daniilidis, Lewis (CR52) 2007; 17
Wen, Yin, Goldfarb, Zhang (CR63) 2010; 32
Scheinberg, Tang (CR18) 2016; 160
Lemaréchal, Sagastizábal (CR36) 1997; 7
Chen, Fukushima (CR46) 1999; 85
CR4
CR3
Moreau (CR1) 1965; 93
Wright, Nowak, Figueiredo (CR62) 2009; 57
Patrinos, Sopasakis, Sarimveis (CR24) 2011; 47
Dai (CR27) 2002; 13
Bauschke, Combettes (CR32) 2011
Hiriart-Urruty, Lemaréchal (CR59) 1996
Rockafellar (CR38) 1988; 307
Candès, Recht (CR64) 2009; 9
Nesterov (CR12) 1983; 269
CR41
CR40
Rockafellar, Wets (CR31) 2011
Facchinei, Pang (CR22) 2003
Attouch, Bolte, Svaiter (CR7) 2013; 137
Liu, Nocedal (CR55) 1989; 45
CR19
Fletcher (CR60) 1987
CR17
Dennis, Moré (CR53) 1977; 19
CR16
Rockafellar (CR42) 1976; 14
CR13
Dai (CR30) 2013; 138
Bernstein (CR37) 2009
Lions, Mercier (CR2) 1979; 16
CR54
CR51
Li, Fukushima (CR58) 2001; 11
Bolte, Sabach, Teboulle (CR10) 2014; 146
Beck, Teboulle (CR14) 2009; 2
Squire, Trapp (CR49) 1998; 40
Attouch, Bolte, Redont, Soubeyran (CR9) 2010; 35
Mascarenhas (CR28) 2004; 99
Nocedal (CR57) 1980; 35
Mascarenhas (CR29) 2007; 26
Mifflin, Sun, Qi (CR45) 1998; 8
Poliquin, Rockafellar (CR68) 1996; 6
Rockafellar (CR39) 1989; 14
Boţ, Csetnek, László (CR66) 2016; 4
Łojasiewicz (CR5) 1993; 43
CR25
Burke, Qian (CR47) 2000; 88
Yamashita, Taji, Fukushima (CR21) 1997; 92
Combettes, Wajs (CR33) 2005; 4
Horn, Johnson (CR69) 2012
Bonnans, Gilbert, Lemaréchal, Sagastizábal (CR44) 1995; 68
Ip, Kyparisis (CR56) 1992; 56
Fukushima (CR20) 1992; 53
Pang (CR67) 1990; 15
RA Horn (9912_CR69) 2012
K Kurdyka (9912_CR6) 1998; 48
F Facchinei (9912_CR22) 2003
9912_CR19
K Scheinberg (9912_CR18) 2016; 160
JE Dennis (9912_CR53) 1977; 19
X Chen (9912_CR46) 1999; 85
R Fletcher (9912_CR60) 1987
9912_CR17
9912_CR16
D Bertsekas (9912_CR35) 1999
9912_CR54
9912_CR13
W Li (9912_CR23) 2007; 37
9912_CR51
K-C Toh (9912_CR65) 2010; 6
YH Dai (9912_CR30) 2013; 138
JF Bonnans (9912_CR44) 1995; 68
J Nocedal (9912_CR50) 2006
RI Boţ (9912_CR66) 2016; 4
N Sagara (9912_CR48) 2005; 1
J Nocedal (9912_CR57) 1980; 35
J Bolte (9912_CR10) 2014; 146
C-M Ip (9912_CR56) 1992; 56
P Patrinos (9912_CR24) 2011; 47
JE Dennis (9912_CR26) 1974; 28
SJ Wright (9912_CR62) 2009; 57
DC Liu (9912_CR55) 1989; 45
PL Combettes (9912_CR33) 2005; 4
9912_CR25
W Squire (9912_CR49) 1998; 40
RH Byrd (9912_CR70) 1989; 26
D-H Li (9912_CR58) 2001; 11
P Ochs (9912_CR11) 2014; 7
M Fukushima (9912_CR20) 1992; 53
HH Bauschke (9912_CR32) 2011
DS Bernstein (9912_CR37) 2009
RT Rockafellar (9912_CR42) 1976; 14
R Poliquin (9912_CR68) 1996; 6
WF Mascarenhas (9912_CR28) 2004; 99
EJ Candès (9912_CR64) 2009; 9
N Yamashita (9912_CR21) 1997; 92
R Mifflin (9912_CR45) 1998; 8
H Attouch (9912_CR7) 2013; 137
H Attouch (9912_CR8) 2009; 116
9912_CR34
Y-H Dai (9912_CR61) 1999; 10
9912_CR3
9912_CR4
S Łojasiewicz (9912_CR5) 1993; 43
J-J Moreau (9912_CR1) 1965; 93
A Beck (9912_CR14) 2009; 2
RT Rockafellar (9912_CR38) 1988; 307
Z Wen (9912_CR63) 2010; 32
JV Burke (9912_CR47) 2000; 88
P-L Lions (9912_CR2) 1979; 16
Y Nesterov (9912_CR15) 2013; 140
H Attouch (9912_CR9) 2010; 35
WF Mascarenhas (9912_CR29) 2007; 26
J Bolte (9912_CR52) 2007; 17
J-S Pang (9912_CR67) 1990; 15
C Lemaréchal (9912_CR36) 1997; 7
RT Rockafellar (9912_CR31) 2011
R Rockafellar (9912_CR39) 1989; 14
9912_CR40
9912_CR41
J-B Hiriart-Urruty (9912_CR59) 1996
Y Nesterov (9912_CR12) 1983; 269
Y-H Dai (9912_CR27) 2002; 13
M Fukushima (9912_CR43) 1996; 6
References_xml – volume: 56
  start-page: 71
  issue: 1–3
  year: 1992
  end-page: 89
  ident: CR56
  article-title: Local convergence of quasi-Newton methods for B-differentiable equations
  publication-title: Math. Program.
  doi: 10.1007/BF01580895
– volume: 4
  start-page: 1168
  issue: 4
  year: 2005
  end-page: 1200
  ident: CR33
  article-title: Signal recovery by proximal forward–backward splitting
  publication-title: Multiscale Model. Simul.
  doi: 10.1137/050626090
– year: 2006
  ident: CR50
  publication-title: Numerical Optimization
– volume: 45
  start-page: 503
  issue: 1
  year: 1989
  end-page: 528
  ident: CR55
  article-title: On the limited memory BFGS method for large scale optimization
  publication-title: Math. Program.
  doi: 10.1007/BF01589116
– ident: CR4
– volume: 146
  start-page: 459
  issue: 1
  year: 2014
  end-page: 494
  ident: CR10
  article-title: Proximal alternating linearized minimization for nonconvex and nonsmooth problems
  publication-title: Math. Program.
  doi: 10.1007/s10107-013-0701-9
– ident: CR16
– ident: CR51
– year: 2009
  ident: CR37
  publication-title: Matrix Mathematics: Theory, Facts, and Formulas with Application to Linear Systems Theory
  doi: 10.1515/9781400833344
– volume: 19
  start-page: 46
  issue: 1
  year: 1977
  end-page: 89
  ident: CR53
  article-title: Quasi-Newton methods, motivation and theory
  publication-title: SIAM Rev.
  doi: 10.1137/1019005
– volume: 9
  start-page: 717
  issue: 6
  year: 2009
  end-page: 772
  ident: CR64
  article-title: Exact matrix completion via convex optimization
  publication-title: Found. Comput. Math.
  doi: 10.1007/s10208-009-9045-5
– volume: 68
  start-page: 15
  issue: 1
  year: 1995
  end-page: 47
  ident: CR44
  article-title: A family of variable metric proximal methods
  publication-title: Math. Program.
– volume: 28
  start-page: 549
  issue: 126
  year: 1974
  end-page: 560
  ident: CR26
  article-title: A characterization of superlinear convergence and its application to quasi-Newton methods
  publication-title: Math. Comput.
  doi: 10.1090/S0025-5718-1974-0343581-1
– volume: 93
  start-page: 273
  year: 1965
  end-page: 299
  ident: CR1
  article-title: Proximité et dualité dans un espace Hilbertien
  publication-title: Bulletin de la Société mathématique de France
  doi: 10.24033/bsmf.1625
– volume: 88
  start-page: 157
  issue: 1
  year: 2000
  end-page: 181
  ident: CR47
  article-title: On the superlinear convergence of the variable metric proximal point algorithm using Broyden and BFGS matrix secant updating
  publication-title: Math. Program.
  doi: 10.1007/PL00011373
– ident: CR54
– year: 2011
  ident: CR32
  publication-title: Convex Analysis and Monotone Operator Theory in Hilbert Spaces
  doi: 10.1007/978-1-4419-9467-7
– volume: 35
  start-page: 773
  issue: 151
  year: 1980
  end-page: 782
  ident: CR57
  article-title: Updating quasi-Newton matrices with limited storage
  publication-title: Math. Comput.
  doi: 10.1090/S0025-5718-1980-0572855-7
– volume: 6
  start-page: 1121
  issue: 4
  year: 1996
  end-page: 1137
  ident: CR68
  article-title: Generalized Hessian properties of regularized nonsmooth functions
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623494279316
– volume: 14
  start-page: 877
  issue: 5
  year: 1976
  end-page: 898
  ident: CR42
  article-title: Monotone operators and the proximal point algorithm
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/0314056
– ident: CR25
– volume: 6
  start-page: 615
  issue: 3
  year: 2010
  end-page: 640
  ident: CR65
  article-title: An accelerated proximal gradient algorithm for nuclear norm regularized linear least squares problems
  publication-title: Pac. J. Optim.
– volume: 35
  start-page: 438
  issue: 2
  year: 2010
  end-page: 457
  ident: CR9
  article-title: Proximal alternating minimization and projection methods for nonconvex problems: an approach based on the Kurdyka–Łojasiewicz inequality
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.1100.0449
– volume: 99
  start-page: 49
  issue: 1
  year: 2004
  end-page: 61
  ident: CR28
  article-title: The BFGS method with exact line searches fails for non-convex objective functions
  publication-title: Math. Program.
  doi: 10.1007/s10107-003-0421-7
– volume: 138
  start-page: 501
  year: 2013
  end-page: 530
  ident: CR30
  article-title: A perfect example for the BFGS method
  publication-title: Math. Program.
  doi: 10.1007/s10107-012-0522-2
– ident: CR19
– volume: 32
  start-page: 1832
  issue: 4
  year: 2010
  end-page: 1857
  ident: CR63
  article-title: A fast algorithm for sparse reconstruction based on shrinkage, subspace optimization, and continuation
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/090747695
– volume: 269
  start-page: 543
  issue: 3
  year: 1983
  end-page: 547
  ident: CR12
  article-title: A method for solving the convex programming problem with convergence rate
  publication-title: Doklady Akademii Nauk SSSR
– year: 1996
  ident: CR59
  publication-title: Convex Analysis and Minimization Algorithms I: Fundamentals
– volume: 26
  start-page: 727
  issue: 3
  year: 1989
  end-page: 739
  ident: CR70
  article-title: A tool for the analysis of quasi-Newton methods with application to unconstrained minimization
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/0726042
– volume: 43
  start-page: 1575
  issue: 5
  year: 1993
  end-page: 1595
  ident: CR5
  article-title: Sur la géométrie semi- et sous-analytique
  publication-title: Annales de l’institut Fourier
  doi: 10.5802/aif.1384
– year: 2012
  ident: CR69
  publication-title: Matrix Analysis
  doi: 10.1017/CBO9781139020411
– volume: 10
  start-page: 177
  issue: 1
  year: 1999
  end-page: 182
  ident: CR61
  article-title: A nonlinear conjugate gradient method with a strong global convergence property
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623497318992
– volume: 2
  start-page: 183
  issue: 1
  year: 2009
  end-page: 202
  ident: CR14
  article-title: A fast iterative shrinkage-thresholding algorithm for linear inverse problems
  publication-title: SIAM J. Imaging Sci.
  doi: 10.1137/080716542
– year: 2003
  ident: CR22
  publication-title: Finite-Dimensional Variational Inequalities and Complementarity Problems
– volume: 53
  start-page: 99
  issue: 1
  year: 1992
  end-page: 110
  ident: CR20
  article-title: Equivalent differentiable optimization problems and descent methods for asymmetric variational inequality problems
  publication-title: Math. Program.
  doi: 10.1007/BF01585696
– volume: 13
  start-page: 693
  issue: 3
  year: 2002
  end-page: 701
  ident: CR27
  article-title: Convergence properties of the BFGS algorithm
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623401383455
– volume: 11
  start-page: 1054
  issue: 4
  year: 2001
  end-page: 1064
  ident: CR58
  article-title: On the global convergence of the BFGS method for nonconvex unconstrained optimization problems
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623499354242
– volume: 48
  start-page: 769
  issue: 3
  year: 1998
  end-page: 783
  ident: CR6
  article-title: On gradients of functions definable in o-minimal structures
  publication-title: Annales de l’institut Fourier
  doi: 10.5802/aif.1638
– year: 1999
  ident: CR35
  publication-title: Nonlinear Programming
– volume: 137
  start-page: 91
  issue: 1–2
  year: 2013
  end-page: 129
  ident: CR7
  article-title: Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward-backward splitting, and regularized Gauss–Seidel methods
  publication-title: Math. Program.
  doi: 10.1007/s10107-011-0484-9
– volume: 6
  start-page: 1106
  issue: 4
  year: 1996
  end-page: 1120
  ident: CR43
  article-title: A globally and superlinearly convergent algorithm for nonsmooth convex minimization
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623494278839
– year: 2011
  ident: CR31
  publication-title: Variational Analysis
– volume: 14
  start-page: 462
  issue: 3
  year: 1989
  end-page: 484
  ident: CR39
  article-title: Second-order optimality conditions in nonlinear programming obtained by way of epi-derivatives
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.14.3.462
– volume: 92
  start-page: 439
  issue: 3
  year: 1997
  end-page: 456
  ident: CR21
  article-title: Unconstrained optimization reformulations of variational inequality problems
  publication-title: J. Optim. Theory Appl.
  doi: 10.1023/A:1022660704427
– volume: 47
  start-page: 2016
  year: 2011
  end-page: 2022
  ident: CR24
  article-title: A global piecewise smooth Newton method for fast large-scale model predictive control
  publication-title: Automatica
  doi: 10.1016/j.automatica.2011.05.024
– volume: 16
  start-page: 964
  issue: 6
  year: 1979
  end-page: 979
  ident: CR2
  article-title: Splitting algorithms for the sum of two nonlinear operators
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/0716071
– year: 1987
  ident: CR60
  publication-title: Practical Methods of Optimization
– volume: 7
  start-page: 1388
  issue: 2
  year: 2014
  end-page: 1419
  ident: CR11
  article-title: iPiano: inertial proximal algorithm for nonconvex optimization
  publication-title: SIAM J. Imaging Sci.
  doi: 10.1137/130942954
– volume: 8
  start-page: 583
  issue: 2
  year: 1998
  end-page: 603
  ident: CR45
  article-title: Quasi-Newton bundle-type methods for nondifferentiable convex optimization
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623496303329
– volume: 37
  start-page: 85
  year: 2007
  end-page: 94
  ident: CR23
  article-title: Exact penalty functions for constrained minimization problems via regularized gap function for variational inequalities
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-006-9038-8
– volume: 4
  start-page: 3
  issue: 1
  year: 2016
  end-page: 25
  ident: CR66
  article-title: An inertial forward-backward algorithm for the minimization of the sum of two nonconvex functions
  publication-title: EURO J. Comput. Optim.
  doi: 10.1007/s13675-015-0045-8
– volume: 307
  start-page: 75
  year: 1988
  end-page: 108
  ident: CR38
  article-title: First- and second-order epi-differentiability in nonlinear programming
  publication-title: Trans. Am. Math. Soc.
  doi: 10.1090/S0002-9947-1988-0936806-9
– volume: 40
  start-page: 110
  issue: 1
  year: 1998
  end-page: 112
  ident: CR49
  article-title: Using complex variables to estimate derivatives of real functions
  publication-title: SIAM Rev.
  doi: 10.1137/S003614459631241X
– volume: 116
  start-page: 5
  issue: 1
  year: 2009
  end-page: 16
  ident: CR8
  article-title: On the convergence of the proximal algorithm for nonsmooth functions involving analytic features
  publication-title: Math. Program.
  doi: 10.1007/s10107-007-0133-5
– volume: 7
  start-page: 367
  issue: 2
  year: 1997
  end-page: 385
  ident: CR36
  article-title: Practical aspects of the Moreau–Yosida regularization: theoretical preliminaries
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623494267127
– ident: CR40
– volume: 17
  start-page: 1205
  issue: 4
  year: 2007
  end-page: 1223
  ident: CR52
  article-title: The Łojasiewicz inequality for nonsmooth subanalytic functions with applications to subgradient dynamical systems
  publication-title: SIAM J. Optim.
  doi: 10.1137/050644641
– volume: 85
  start-page: 313
  issue: 2
  year: 1999
  end-page: 334
  ident: CR46
  article-title: Proximal quasi-Newton methods for nondifferentiable convex optimization
  publication-title: Math. Program.
  doi: 10.1007/s101070050059
– volume: 140
  start-page: 125
  issue: 1
  year: 2013
  end-page: 161
  ident: CR15
  article-title: Gradient methods for minimizing composite functions
  publication-title: Math. Program.
  doi: 10.1007/s10107-012-0629-5
– ident: CR3
– volume: 15
  start-page: 311
  issue: 2
  year: 1990
  end-page: 341
  ident: CR67
  article-title: Newton’s method for B-differentiable equations
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.15.2.311
– ident: CR17
– ident: CR13
– volume: 57
  start-page: 2479
  issue: 7
  year: 2009
  end-page: 2493
  ident: CR62
  article-title: Sparse reconstruction by separable approximation
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2009.2016892
– volume: 160
  start-page: 495
  issue: 1
  year: 2016
  end-page: 529
  ident: CR18
  article-title: Practical inexact proximal quasi-Newton method with global complexity analysis
  publication-title: Math. Program.
  doi: 10.1007/s10107-016-0997-3
– ident: CR34
– volume: 26
  start-page: 129
  year: 2007
  end-page: 169
  ident: CR29
  article-title: On the divergence of line search methods
  publication-title: Comput. Appl. Math.
  doi: 10.1590/S0101-82052007000100006
– volume: 1
  start-page: 171
  issue: 2
  year: 2005
  end-page: 180
  ident: CR48
  article-title: A trust region method for nonsmooth convex optimization
  publication-title: J. Ind. Manage. Optim.
  doi: 10.3934/jimo.2005.1.171
– ident: CR41
– volume: 14
  start-page: 462
  issue: 3
  year: 1989
  ident: 9912_CR39
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.14.3.462
– volume: 92
  start-page: 439
  issue: 3
  year: 1997
  ident: 9912_CR21
  publication-title: J. Optim. Theory Appl.
  doi: 10.1023/A:1022660704427
– volume: 37
  start-page: 85
  year: 2007
  ident: 9912_CR23
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-006-9038-8
– volume: 7
  start-page: 367
  issue: 2
  year: 1997
  ident: 9912_CR36
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623494267127
– volume: 269
  start-page: 543
  issue: 3
  year: 1983
  ident: 9912_CR12
  publication-title: Doklady Akademii Nauk SSSR
– volume: 53
  start-page: 99
  issue: 1
  year: 1992
  ident: 9912_CR20
  publication-title: Math. Program.
  doi: 10.1007/BF01585696
– volume: 6
  start-page: 615
  issue: 3
  year: 2010
  ident: 9912_CR65
  publication-title: Pac. J. Optim.
– volume: 11
  start-page: 1054
  issue: 4
  year: 2001
  ident: 9912_CR58
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623499354242
– volume: 2
  start-page: 183
  issue: 1
  year: 2009
  ident: 9912_CR14
  publication-title: SIAM J. Imaging Sci.
  doi: 10.1137/080716542
– ident: 9912_CR25
  doi: 10.1007/s10589-017-9900-2
– volume: 1
  start-page: 171
  issue: 2
  year: 2005
  ident: 9912_CR48
  publication-title: J. Ind. Manage. Optim.
  doi: 10.3934/jimo.2005.1.171
– volume: 160
  start-page: 495
  issue: 1
  year: 2016
  ident: 9912_CR18
  publication-title: Math. Program.
  doi: 10.1007/s10107-016-0997-3
– volume: 116
  start-page: 5
  issue: 1
  year: 2009
  ident: 9912_CR8
  publication-title: Math. Program.
  doi: 10.1007/s10107-007-0133-5
– volume: 13
  start-page: 693
  issue: 3
  year: 2002
  ident: 9912_CR27
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623401383455
– volume-title: Numerical Optimization
  year: 2006
  ident: 9912_CR50
– volume-title: Nonlinear Programming
  year: 1999
  ident: 9912_CR35
– volume: 14
  start-page: 877
  issue: 5
  year: 1976
  ident: 9912_CR42
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/0314056
– ident: 9912_CR4
– volume: 4
  start-page: 3
  issue: 1
  year: 2016
  ident: 9912_CR66
  publication-title: EURO J. Comput. Optim.
  doi: 10.1007/s13675-015-0045-8
– volume: 85
  start-page: 313
  issue: 2
  year: 1999
  ident: 9912_CR46
  publication-title: Math. Program.
  doi: 10.1007/s101070050059
– volume: 48
  start-page: 769
  issue: 3
  year: 1998
  ident: 9912_CR6
  publication-title: Annales de l’institut Fourier
  doi: 10.5802/aif.1638
– volume: 40
  start-page: 110
  issue: 1
  year: 1998
  ident: 9912_CR49
  publication-title: SIAM Rev.
  doi: 10.1137/S003614459631241X
– volume: 35
  start-page: 773
  issue: 151
  year: 1980
  ident: 9912_CR57
  publication-title: Math. Comput.
  doi: 10.1090/S0025-5718-1980-0572855-7
– ident: 9912_CR34
  doi: 10.1137/1.9781611971200
– volume: 137
  start-page: 91
  issue: 1–2
  year: 2013
  ident: 9912_CR7
  publication-title: Math. Program.
  doi: 10.1007/s10107-011-0484-9
– volume: 56
  start-page: 71
  issue: 1–3
  year: 1992
  ident: 9912_CR56
  publication-title: Math. Program.
  doi: 10.1007/BF01580895
– volume: 26
  start-page: 727
  issue: 3
  year: 1989
  ident: 9912_CR70
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/0726042
– volume-title: Matrix Analysis
  year: 2012
  ident: 9912_CR69
  doi: 10.1017/CBO9781139020411
– volume: 138
  start-page: 501
  year: 2013
  ident: 9912_CR30
  publication-title: Math. Program.
  doi: 10.1007/s10107-012-0522-2
– volume: 19
  start-page: 46
  issue: 1
  year: 1977
  ident: 9912_CR53
  publication-title: SIAM Rev.
  doi: 10.1137/1019005
– volume: 307
  start-page: 75
  year: 1988
  ident: 9912_CR38
  publication-title: Trans. Am. Math. Soc.
  doi: 10.1090/S0002-9947-1988-0936806-9
– ident: 9912_CR54
– volume: 45
  start-page: 503
  issue: 1
  year: 1989
  ident: 9912_CR55
  publication-title: Math. Program.
– volume: 146
  start-page: 459
  issue: 1
  year: 2014
  ident: 9912_CR10
  publication-title: Math. Program.
  doi: 10.1007/s10107-013-0701-9
– volume: 47
  start-page: 2016
  year: 2011
  ident: 9912_CR24
  publication-title: Automatica
  doi: 10.1016/j.automatica.2011.05.024
– volume: 68
  start-page: 15
  issue: 1
  year: 1995
  ident: 9912_CR44
  publication-title: Math. Program.
– ident: 9912_CR41
  doi: 10.1142/9789812812827_0018
– volume: 9
  start-page: 717
  issue: 6
  year: 2009
  ident: 9912_CR64
  publication-title: Found. Comput. Math.
  doi: 10.1007/s10208-009-9045-5
– volume: 35
  start-page: 438
  issue: 2
  year: 2010
  ident: 9912_CR9
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.1100.0449
– ident: 9912_CR16
– volume: 43
  start-page: 1575
  issue: 5
  year: 1993
  ident: 9912_CR5
  publication-title: Annales de l’institut Fourier
  doi: 10.5802/aif.1384
– volume: 6
  start-page: 1121
  issue: 4
  year: 1996
  ident: 9912_CR68
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623494279316
– volume: 88
  start-page: 157
  issue: 1
  year: 2000
  ident: 9912_CR47
  publication-title: Math. Program.
  doi: 10.1007/PL00011373
– volume: 10
  start-page: 177
  issue: 1
  year: 1999
  ident: 9912_CR61
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623497318992
– volume-title: Variational Analysis
  year: 2011
  ident: 9912_CR31
– volume: 93
  start-page: 273
  year: 1965
  ident: 9912_CR1
  publication-title: Bulletin de la Société mathématique de France
  doi: 10.24033/bsmf.1625
– volume: 16
  start-page: 964
  issue: 6
  year: 1979
  ident: 9912_CR2
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/0716071
– volume-title: Practical Methods of Optimization
  year: 1987
  ident: 9912_CR60
– volume: 32
  start-page: 1832
  issue: 4
  year: 2010
  ident: 9912_CR63
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/090747695
– ident: 9912_CR51
  doi: 10.1007/978-1-4614-7621-4_27
– volume: 4
  start-page: 1168
  issue: 4
  year: 2005
  ident: 9912_CR33
  publication-title: Multiscale Model. Simul.
  doi: 10.1137/050626090
– volume: 57
  start-page: 2479
  issue: 7
  year: 2009
  ident: 9912_CR62
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2009.2016892
– volume: 6
  start-page: 1106
  issue: 4
  year: 1996
  ident: 9912_CR43
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623494278839
– volume: 17
  start-page: 1205
  issue: 4
  year: 2007
  ident: 9912_CR52
  publication-title: SIAM J. Optim.
  doi: 10.1137/050644641
– volume-title: Finite-Dimensional Variational Inequalities and Complementarity Problems
  year: 2003
  ident: 9912_CR22
– volume: 28
  start-page: 549
  issue: 126
  year: 1974
  ident: 9912_CR26
  publication-title: Math. Comput.
  doi: 10.1090/S0025-5718-1974-0343581-1
– ident: 9912_CR3
  doi: 10.1007/978-1-4419-9569-8_10
– volume: 99
  start-page: 49
  issue: 1
  year: 2004
  ident: 9912_CR28
  publication-title: Math. Program.
  doi: 10.1007/s10107-003-0421-7
– volume: 15
  start-page: 311
  issue: 2
  year: 1990
  ident: 9912_CR67
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.15.2.311
– ident: 9912_CR40
– volume-title: Matrix Mathematics: Theory, Facts, and Formulas with Application to Linear Systems Theory
  year: 2009
  ident: 9912_CR37
  doi: 10.1515/9781400833344
– ident: 9912_CR13
– volume: 140
  start-page: 125
  issue: 1
  year: 2013
  ident: 9912_CR15
  publication-title: Math. Program.
  doi: 10.1007/s10107-012-0629-5
– volume: 26
  start-page: 129
  year: 2007
  ident: 9912_CR29
  publication-title: Comput. Appl. Math.
  doi: 10.1590/S0101-82052007000100006
– ident: 9912_CR17
– volume-title: Convex Analysis and Monotone Operator Theory in Hilbert Spaces
  year: 2011
  ident: 9912_CR32
  doi: 10.1007/978-1-4419-9467-7
– ident: 9912_CR19
  doi: 10.1109/CDC.2013.6760233
– volume: 7
  start-page: 1388
  issue: 2
  year: 2014
  ident: 9912_CR11
  publication-title: SIAM J. Imaging Sci.
  doi: 10.1137/130942954
– volume: 8
  start-page: 583
  issue: 2
  year: 1998
  ident: 9912_CR45
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623496303329
– volume-title: Convex Analysis and Minimization Algorithms I: Fundamentals
  year: 1996
  ident: 9912_CR59
SSID ssj0009732
Score 2.5335484
Snippet The forward–backward splitting method (FBS) for minimizing a nonsmooth composite function can be interpreted as a (variable-metric) gradient method over a...
The forward-backward splitting method (FBS) for minimizing a nonsmooth composite function can be interpreted as a (variable-metric) gradient method over a...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 443
SubjectTerms Algorithms
Composite functions
Convergence
Convex and Discrete Geometry
Management Science
Mathematics
Mathematics and Statistics
Newton methods
Nonlinear programming
Operations Research
Operations Research/Decision Theory
Optimization
Optimization algorithms
Solvers
Statistics
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwELagLDAgnqJQkAcmkIUT23lMCCFCQYKJSt0ix3EkJCBt0w7999wlDilIdIvk2Inu7Lvv7PN9hFyqICog_LcMfG_ApIClGOXCsMIGwucmM2GGF5xfXoPhSD6P1dhtuFUurbK1ibWhzkuDe-Q36LgCidHc7WTKkDUKT1cdhcYm2fLA0-AMj5LHruhuWBOUcfwNcOyiPdVsrs4pTBYCGw0IyWfL336pA5t_zkdrt5PskV2HF-ldo-B9smG_DsjOShXBQ_KUlLM69zXDvTh4oNOFrt4Z2C8AdrThiK4ooFMKsX71WYJyaAmm4tPdwaSOVaY6IqPk4e1-yBxDAjMgiDkDLOEbnoexiQMZewh-OC9i3wrwTJHUOlQyyCLrFSqGhZ0LDQGMErk0kZXWy8Ux6cGX7QmhygqtIHjRntVScU9Lz2joCLq0Ibe6T3grn9S48uHIYvGRdoWPUaQpiDRFkabLPrn66TJpamese3nQCj11y6hKO6X3yXWriJXm_wY7XT_YGdn2UfN11u2A9OazhT0HbDHPLuoJ9A0VnMoY
  priority: 102
  providerName: ProQuest
Title Forward–backward quasi-Newton methods for nonsmooth optimization problems
URI https://link.springer.com/article/10.1007/s10589-017-9912-y
https://www.proquest.com/docview/1901640469
Volume 67
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5se6kH0apYrSUHT0pgk93N41ilaVFaRCzUU9hsNiBYq0176M3_4D_0lzibR1tFBU9JyD5gZnfmm915AJxxx0vQ_Fcm6l7HZBS3ohdTaSbKoTaRkXQjHeA8GDr9Ebse83ERx52W3u7llWQmqTeC3bh270GpipjGNpcVqHE03fWyHtmddaZdN6tKRvTcqM1peZX50xBfldEaYX67FM10TbALOwVINDo5V_dgSz03YHsjdSB-DVb5VtMG1DVmzFMu78NNMJ1pX9iPt_dIn87hq_G6EOmjiRINoZ6RV41ODcSrBlr_6WSK7DKmKDwmRVSmUdSZSQ9gFHTvr_pmUTPBlGjozk1EF7YksetL32G-peEQIYlvK4q6ymNCuJw5kaeshPu41WMq0KThNGbSU0xZMT2EKs6sjsDgigqO5oywlGCcWIJZUmBH5K5yiRJNICXxQlkkFNd1LZ7CdSpkTe8Q6R1qeofLJpyvurzk2TT-atwqORIWGysNNX5xmDbqm3BRcmnj92-DHf-r9QnUbb1KMrfcFlTns4U6RfAxj9pQ8YJeG2qd3sNNF5-X3eHtXTtbgp9xNNX5
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED5BGYAB8RSFAh5gAVkksZ3HgBACSkuBqZW6BcdxJSTa0qYV6p_iN3LOgxYkunWLlNhRLp_vvrPvAXAqXL-D7r-maHtdyhkuRT9mina0yxxLRcqLTILz84tba_HHtmgvwVeRC2PCKgudmCrquK_MHvmlMVwuN97c9ceAmq5R5nS1aKGRwaKhJ5_osiVX9Tv8v2eOU71v3tZo3lWAKhw8omh_HWXFXqAClwe2IQyW1QkcjZ4987mUnuBu5Gu7IwJcDDGTSPoFi7nyNdd2zHDeZVjhjAUmhNCvPkyL_HppQzTLfDYSCVacomapesIEJ6FNQEbm0MlvOzglt3_OY1MzV92EjZyfkpsMUFuwpHvbsD5TtXAH6tX-MI21jczeH16QwVgmbxT1JRJJkvWkTgiyYdJDTHf7CAbSR9XUzXM-Sd7FJtmF1kJktwclfLPeByI0kwKdJWlryYVlS24riQMRO9qztCyDVcgnVHm5ctM14z2cFlo2Ig1RpKERaTgpw_nPkI-sVse8hyuF0MN82SbhFGRluCh-xMzt_yY7mD_ZCazWms9P4VP9pXEIa45BQRrxW4HSaDjWR8hrRtFxCiYCr4tG7zeBFARZ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8QwEB58gOhBfOL6zEEvSjBtkj4OIqLWXV94UPBW0zQFQd1Hd5H9a_46J324Kuhtb4U2U5h8ycwkM_MB7EovyDD8NxRtr0cFx6UYpFzTzHjcZTrRfmILnG9uveaDuHyUjxPwUdfC2LTKek8sNuq0re0Z-aE1XJ6w0dxhVqVF3J1Fx50utQxS9qa1ptMoIXJlhu8YvuVHrTOc6z3Xjc7vT5u0YhigGgX1KdpiV7PUD3XoidCxzgNjWegajPJ5IJTypfCSwDiZDHFhpFxhACB5KnRghHFSjnInYdrnAbPsCUF0MWr46xfkaMyqAJ0KXt-olmV70iYqoX1A78ylw582ceTo_rqbLUxetADzla9KTkpwLcKEeVuCuW8dDJehFbV7Rd5tYs8B8YF0Byp_prh3olNJSn7qnKBnTN4Q369tBAZp4zb1WtV_korRJl-Bh7HobhWm8M9mDYg0XEkMnJRjlJDMUcLRCgcijozPjGoAq_UT66p1uWXQeIlHTZetSmNUaWxVGg8bsP81pFP27fjv481a6XG1hPN4BLgGHNQT8e31X8LW_xe2AzOI2_i6dXu1AbOuBUGR_LsJU_3ewGyhi9NPtgssEXgaN3g_AZjSCIY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Forward%E2%80%93backward+quasi-Newton+methods+for+nonsmooth+optimization+problems&rft.jtitle=Computational+optimization+and+applications&rft.au=Stella%2C+Lorenzo&rft.au=Themelis%2C+Andreas&rft.au=Patrinos%2C+Panagiotis&rft.date=2017-07-01&rft.issn=0926-6003&rft.eissn=1573-2894&rft.volume=67&rft.issue=3&rft.spage=443&rft.epage=487&rft_id=info:doi/10.1007%2Fs10589-017-9912-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10589_017_9912_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-6003&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-6003&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-6003&client=summon