The nucleoprotein of influenza A virus inhibits the innate immune response by inducing mitophagy

Mitophagy is a form of autophagy that plays a key role in maintaining the homeostasis of functional mitochondria in the cell. Viruses have evolved various strategies to manipulate mitophagy to escape host immune responses and promote virus replication. In this study, the nucleoprotein (NP) of H1N1 v...

Full description

Saved in:
Bibliographic Details
Published inAutophagy Vol. 19; no. 7; pp. 1916 - 1933
Main Authors Zhang, Bo, Xu, Shuai, Liu, Minxuan, Wei, Yanli, Wang, Qian, Shen, Wentao, Lei, Cao-Qi, Zhu, Qiyun
Format Journal Article
LanguageEnglish
Published United States Taylor & Francis 03.07.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Mitophagy is a form of autophagy that plays a key role in maintaining the homeostasis of functional mitochondria in the cell. Viruses have evolved various strategies to manipulate mitophagy to escape host immune responses and promote virus replication. In this study, the nucleoprotein (NP) of H1N1 virus (PR8 strain) was identified as a regulator of mitophagy. We revealed that NP-mediated mitophagy leads to the degradation of the mitochondria-anchored protein MAVS, thereby blocking MAVS-mediated antiviral signaling and promoting virus replication. The NP-mediated mitophagy is dependent on the interaction of NP with MAVS and the cargo receptor TOLLIP. Moreover, Y313 of NP is a key residue for the MAVS-NP interaction and NP-mediated mitophagy. The NP Y313F mutation significantly attenuates the virus-induced mitophagy and the virus replication in vitro and in vivo. Taken together, our findings uncover a novel mechanism by which the NP of influenza virus induces mitophagy to attenuate innate immunity. Abbreviations: ACTB: actin beta; ATG7: autophagy related 7; ATG12: autophagy related 12; CCCP: carbonyl cyanide 3-chlorophenyl hydrazone; co-IP: co-immunoprecipitation; COX4/COXIV: cytochrome c oxidase subunit 4; DAPI: 4ʹ,6-diamidino-2-phenylindole, dihydrochloride; EID 50 : 50% egg infective dose; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GFP: green fluorescent protein; HEK: human embryonic kidney; hpi: hours post-infection; IAV: influenza A virus; IFN: interferon; IP: immunoprecipitation; LAMP1: lysosomal associated membrane protein 1; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MAVS: mitochondrial antiviral signaling protein; Mdivi-1: mitochondrial division inhibitor 1; MLD 50 : 50% mouse lethal dose; MOI: multiplicity of infection; NBR1: NBR1 autophagy cargo receptor; NP: nucleoprotein; PB1: basic polymerase 1; RFP: red fluorescent protein; RIGI: RNA sensor RIG-I; RIGI-N: RIGI-CARD; SeV: Sendai virus; SQSTM1/p62: sequestosome 1; TIMM23: translocase of inner mitochondrial membrane 23; TOLLIP: toll interacting protein; TOMM20: translocase of outer mitochondrial membrane 20; TUBA: tubulin alpha; Vec: empty vector; vRNP: viral ribonucleoprotein.
AbstractList Mitophagy is a form of autophagy that plays a key role in maintaining the homeostasis of functional mitochondria in the cell. Viruses have evolved various strategies to manipulate mitophagy to escape host immune responses and promote virus replication. In this study, the nucleoprotein (NP) of H1N1 virus (PR8 strain) was identified as a regulator of mitophagy. We revealed that NP-mediated mitophagy leads to the degradation of the mitochondria-anchored protein MAVS, thereby blocking MAVS-mediated antiviral signaling and promoting virus replication. The NP-mediated mitophagy is dependent on the interaction of NP with MAVS and the cargo receptor TOLLIP. Moreover, Y313 of NP is a key residue for the MAVS-NP interaction and NP-mediated mitophagy. The NP mutation significantly attenuates the virus-induced mitophagy and the virus replication and . Taken together, our findings uncover a novel mechanism by which the NP of influenza virus induces mitophagy to attenuate innate immunity. ACTB: actin beta; ATG7: autophagy related 7; ATG12: autophagy related 12; CCCP: carbonyl cyanide 3-chlorophenyl hydrazone; co-IP: co-immunoprecipitation; COX4/COXIV: cytochrome c oxidase subunit 4; DAPI: 4',6-diamidino-2-phenylindole, dihydrochloride; EID : 50% egg infective dose; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GFP: green fluorescent protein; HEK: human embryonic kidney; hpi: hours post-infection; IAV: influenza A virus; IFN: interferon; IP: immunoprecipitation; LAMP1: lysosomal associated membrane protein 1; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MAVS: mitochondrial antiviral signaling protein; Mdivi-1: mitochondrial division inhibitor 1; MLD : 50% mouse lethal dose; MOI: multiplicity of infection; NBR1: NBR1 autophagy cargo receptor; NP: nucleoprotein; PB1: basic polymerase 1; RFP: red fluorescent protein; RIGI: RNA sensor RIG-I; RIGI-N: RIGI-CARD; SeV: Sendai virus; SQSTM1/p62: sequestosome 1; TIMM23: translocase of inner mitochondrial membrane 23; TOLLIP: toll interacting protein; TOMM20: translocase of outer mitochondrial membrane 20; TUBA: tubulin alpha; Vec: empty vector; vRNP: viral ribonucleoprotein.
Mitophagy is a form of autophagy that plays a key role in maintaining the homeostasis of functional mitochondria in the cell. Viruses have evolved various strategies to manipulate mitophagy to escape host immune responses and promote virus replication. In this study, the nucleoprotein (NP) of H1N1 virus (PR8 strain) was identified as a regulator of mitophagy. We revealed that NP-mediated mitophagy leads to the degradation of the mitochondria-anchored protein MAVS, thereby blocking MAVS-mediated antiviral signaling and promoting virus replication. The NP-mediated mitophagy is dependent on the interaction of NP with MAVS and the cargo receptor TOLLIP. Moreover, Y313 of NP is a key residue for the MAVS-NP interaction and NP-mediated mitophagy. The NP Y313F mutation significantly attenuates the virus-induced mitophagy and the virus replication in vitro and in vivo . Taken together, our findings uncover a novel mechanism by which the NP of influenza virus induces mitophagy to attenuate innate immunity. Abbreviations: ACTB: actin beta; ATG7: autophagy related 7; ATG12: autophagy related 12; CCCP: carbonyl cyanide 3-chlorophenyl hydrazone; co-IP: co-immunoprecipitation; COX4/COXIV: cytochrome c oxidase subunit 4; DAPI: 4ʹ,6-diamidino-2-phenylindole, dihydrochloride; EID 50 : 50% egg infective dose; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GFP: green fluorescent protein; HEK: human embryonic kidney; hpi: hours post-infection; IAV: influenza A virus; IFN: interferon; IP: immunoprecipitation; LAMP1: lysosomal associated membrane protein 1; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MAVS: mitochondrial antiviral signaling protein; Mdivi-1: mitochondrial division inhibitor 1; MLD 50 : 50% mouse lethal dose; MOI: multiplicity of infection; NBR1: NBR1 autophagy cargo receptor; NP: nucleoprotein; PB1: basic polymerase 1; RFP: red fluorescent protein; RIGI: RNA sensor RIG-I; RIGI-N: RIGI-CARD; SeV: Sendai virus; SQSTM1/p62: sequestosome 1; TIMM23: translocase of inner mitochondrial membrane 23; TOLLIP: toll interacting protein; TOMM20: translocase of outer mitochondrial membrane 20; TUBA: tubulin alpha; Vec: empty vector; vRNP: viral ribonucleoprotein.
Mitophagy is a form of autophagy that plays a key role in maintaining the homeostasis of functional mitochondria in the cell. Viruses have evolved various strategies to manipulate mitophagy to escape host immune responses and promote virus replication. In this study, the nucleoprotein (NP) of H1N1 virus (PR8 strain) was identified as a regulator of mitophagy. We revealed that NP-mediated mitophagy leads to the degradation of the mitochondria-anchored protein MAVS, thereby blocking MAVS-mediated antiviral signaling and promoting virus replication. The NP-mediated mitophagy is dependent on the interaction of NP with MAVS and the cargo receptor TOLLIP. Moreover, Y313 of NP is a key residue for the MAVS-NP interaction and NP-mediated mitophagy. The NPY313F mutation significantly attenuates the virus-induced mitophagy and the virus replication in vitro and in vivo. Taken together, our findings uncover a novel mechanism by which the NP of influenza virus induces mitophagy to attenuate innate immunity.Abbreviations: ACTB: actin beta; ATG7: autophagy related 7; ATG12: autophagy related 12; CCCP: carbonyl cyanide 3-chlorophenyl hydrazone; co-IP: co-immunoprecipitation; COX4/COXIV: cytochrome c oxidase subunit 4; DAPI: 4',6-diamidino-2-phenylindole, dihydrochloride; EID50: 50% egg infective dose; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GFP: green fluorescent protein; HEK: human embryonic kidney; hpi: hours post-infection; IAV: influenza A virus; IFN: interferon; IP: immunoprecipitation; LAMP1: lysosomal associated membrane protein 1; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MAVS: mitochondrial antiviral signaling protein; Mdivi-1: mitochondrial division inhibitor 1; MLD50: 50% mouse lethal dose; MOI: multiplicity of infection; NBR1: NBR1 autophagy cargo receptor; NP: nucleoprotein; PB1: basic polymerase 1; RFP: red fluorescent protein; RIGI: RNA sensor RIG-I; RIGI-N: RIGI-CARD; SeV: Sendai virus; SQSTM1/p62: sequestosome 1; TIMM23: translocase of inner mitochondrial membrane 23; TOLLIP: toll interacting protein; TOMM20: translocase of outer mitochondrial membrane 20; TUBA: tubulin alpha; Vec: empty vector; vRNP: viral ribonucleoprotein.Mitophagy is a form of autophagy that plays a key role in maintaining the homeostasis of functional mitochondria in the cell. Viruses have evolved various strategies to manipulate mitophagy to escape host immune responses and promote virus replication. In this study, the nucleoprotein (NP) of H1N1 virus (PR8 strain) was identified as a regulator of mitophagy. We revealed that NP-mediated mitophagy leads to the degradation of the mitochondria-anchored protein MAVS, thereby blocking MAVS-mediated antiviral signaling and promoting virus replication. The NP-mediated mitophagy is dependent on the interaction of NP with MAVS and the cargo receptor TOLLIP. Moreover, Y313 of NP is a key residue for the MAVS-NP interaction and NP-mediated mitophagy. The NPY313F mutation significantly attenuates the virus-induced mitophagy and the virus replication in vitro and in vivo. Taken together, our findings uncover a novel mechanism by which the NP of influenza virus induces mitophagy to attenuate innate immunity.Abbreviations: ACTB: actin beta; ATG7: autophagy related 7; ATG12: autophagy related 12; CCCP: carbonyl cyanide 3-chlorophenyl hydrazone; co-IP: co-immunoprecipitation; COX4/COXIV: cytochrome c oxidase subunit 4; DAPI: 4',6-diamidino-2-phenylindole, dihydrochloride; EID50: 50% egg infective dose; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GFP: green fluorescent protein; HEK: human embryonic kidney; hpi: hours post-infection; IAV: influenza A virus; IFN: interferon; IP: immunoprecipitation; LAMP1: lysosomal associated membrane protein 1; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MAVS: mitochondrial antiviral signaling protein; Mdivi-1: mitochondrial division inhibitor 1; MLD50: 50% mouse lethal dose; MOI: multiplicity of infection; NBR1: NBR1 autophagy cargo receptor; NP: nucleoprotein; PB1: basic polymerase 1; RFP: red fluorescent protein; RIGI: RNA sensor RIG-I; RIGI-N: RIGI-CARD; SeV: Sendai virus; SQSTM1/p62: sequestosome 1; TIMM23: translocase of inner mitochondrial membrane 23; TOLLIP: toll interacting protein; TOMM20: translocase of outer mitochondrial membrane 20; TUBA: tubulin alpha; Vec: empty vector; vRNP: viral ribonucleoprotein.
Mitophagy is a form of autophagy that plays a key role in maintaining the homeostasis of functional mitochondria in the cell. Viruses have evolved various strategies to manipulate mitophagy to escape host immune responses and promote virus replication. In this study, the nucleoprotein (NP) of H1N1 virus (PR8 strain) was identified as a regulator of mitophagy. We revealed that NP-mediated mitophagy leads to the degradation of the mitochondria-anchored protein MAVS, thereby blocking MAVS-mediated antiviral signaling and promoting virus replication. The NP-mediated mitophagy is dependent on the interaction of NP with MAVS and the cargo receptor TOLLIP. Moreover, Y313 of NP is a key residue for the MAVS-NP interaction and NP-mediated mitophagy. The NP Y313F mutation significantly attenuates the virus-induced mitophagy and the virus replication in vitro and in vivo. Taken together, our findings uncover a novel mechanism by which the NP of influenza virus induces mitophagy to attenuate innate immunity. Abbreviations: ACTB: actin beta; ATG7: autophagy related 7; ATG12: autophagy related 12; CCCP: carbonyl cyanide 3-chlorophenyl hydrazone; co-IP: co-immunoprecipitation; COX4/COXIV: cytochrome c oxidase subunit 4; DAPI: 4ʹ,6-diamidino-2-phenylindole, dihydrochloride; EID 50 : 50% egg infective dose; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GFP: green fluorescent protein; HEK: human embryonic kidney; hpi: hours post-infection; IAV: influenza A virus; IFN: interferon; IP: immunoprecipitation; LAMP1: lysosomal associated membrane protein 1; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MAVS: mitochondrial antiviral signaling protein; Mdivi-1: mitochondrial division inhibitor 1; MLD 50 : 50% mouse lethal dose; MOI: multiplicity of infection; NBR1: NBR1 autophagy cargo receptor; NP: nucleoprotein; PB1: basic polymerase 1; RFP: red fluorescent protein; RIGI: RNA sensor RIG-I; RIGI-N: RIGI-CARD; SeV: Sendai virus; SQSTM1/p62: sequestosome 1; TIMM23: translocase of inner mitochondrial membrane 23; TOLLIP: toll interacting protein; TOMM20: translocase of outer mitochondrial membrane 20; TUBA: tubulin alpha; Vec: empty vector; vRNP: viral ribonucleoprotein.
Author Shen, Wentao
Lei, Cao-Qi
Zhu, Qiyun
Wei, Yanli
Liu, Minxuan
Zhang, Bo
Xu, Shuai
Wang, Qian
Author_xml – sequence: 1
  givenname: Bo
  surname: Zhang
  fullname: Zhang, Bo
  organization: Gansu Agricultural University
– sequence: 2
  givenname: Shuai
  surname: Xu
  fullname: Xu, Shuai
  organization: Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences
– sequence: 3
  givenname: Minxuan
  surname: Liu
  fullname: Liu, Minxuan
  organization: Gansu Agricultural University
– sequence: 4
  givenname: Yanli
  surname: Wei
  fullname: Wei, Yanli
  organization: Gansu Agricultural University
– sequence: 5
  givenname: Qian
  surname: Wang
  fullname: Wang, Qian
  organization: Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences
– sequence: 6
  givenname: Wentao
  surname: Shen
  fullname: Shen, Wentao
  organization: Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences
– sequence: 7
  givenname: Cao-Qi
  surname: Lei
  fullname: Lei, Cao-Qi
  organization: Wuhan University
– sequence: 8
  givenname: Qiyun
  orcidid: 0000-0003-3748-948X
  surname: Zhu
  fullname: Zhu, Qiyun
  email: zhuqiyun@caas.cn
  organization: Gansu Agricultural University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36588386$$D View this record in MEDLINE/PubMed
BookMark eNqFUUuP0zAQttAi9gE_AZQjlxa_44gDrFa8pJW4LGfjOJPWyLGD7Swqvx5XbVfAAU4zmvkeo_ku0VmIARB6TvCaYIVfESG4krRdU0zpmpLaduoRutjPV0oycfbQ0_YcXeb8DWMmVUefoHMmhVJMyQv09W4LTVishzinWMCFJo6NC6NfIPw0zXVz79KS62TreldyUyrehWBKLdO0BGgS5DmGDE2_q5thsS5smsmVOG_NZvcUPR6Nz_DsWK_Ql_fv7m4-rm4_f_h0c327slx2ZdUJKxRWwPnQtqTtueJSjLKjGJTlnDIBhtiW4ZZgDgMbRTcQOUhBrcFE9ewKvTnozks_wWAhlGS8npObTNrpaJz-cxPcVm_ivSaYKlYNqsLLo0KK3xfIRU8uW_DeBIhL1rSVmNQLBK7QF7-bPbic_loBrw8Am2LOCUZtXTHFxb2389VU71PUpxT1PkV9TLGyxV_sk8H_eG8PvJpfTJP5EZMfdDE7H9OYTLAua_ZviV_gG7R5
CitedBy_id crossref_primary_10_1128_mbio_02677_24
crossref_primary_10_3390_pathogens13121139
crossref_primary_10_3389_fcimb_2024_1460604
crossref_primary_10_3389_fpubh_2024_1464435
crossref_primary_10_1002_advs_202404365
crossref_primary_10_3390_v16050702
crossref_primary_10_1016_j_psj_2024_104601
crossref_primary_10_1080_15548627_2023_2293442
crossref_primary_10_3390_cells14060418
crossref_primary_10_1038_s41586_023_06261_8
crossref_primary_10_1186_s12943_024_01934_y
crossref_primary_10_1073_pnas_2411554122
crossref_primary_10_1016_j_vetmic_2023_109891
crossref_primary_10_36233_10_36233_0507_4088_213
crossref_primary_10_3390_ijms25179206
crossref_primary_10_3390_v16071161
crossref_primary_10_1186_s12964_024_01983_2
crossref_primary_10_3390_ijms25094677
crossref_primary_10_31857_S2686738924030071
crossref_primary_10_1016_j_vetmic_2024_109986
crossref_primary_10_1371_journal_ppat_1012670
crossref_primary_10_1016_j_phymed_2024_156231
crossref_primary_10_3390_ijms25094616
crossref_primary_10_1128_jvi_00814_24
crossref_primary_10_1016_j_psj_2024_103652
crossref_primary_10_3390_v16010155
crossref_primary_10_3389_fmicb_2024_1394510
crossref_primary_10_1016_j_pharmthera_2024_108729
crossref_primary_10_1016_j_psj_2024_104639
crossref_primary_10_3390_biomedicines12112530
crossref_primary_10_1134_S1607672924700789
crossref_primary_10_1016_j_jare_2024_08_003
crossref_primary_10_1016_j_mcpro_2024_100737
crossref_primary_10_1016_j_ijbiomac_2025_140631
crossref_primary_10_1128_mbio_02097_24
crossref_primary_10_1016_j_virusres_2024_199387
crossref_primary_10_1038_s41420_024_01844_4
crossref_primary_10_1371_journal_ppat_1011958
Cites_doi 10.1038/ncomms15534
10.1080/21505594.2021.2014680
10.1371/journal.ppat.1009340
10.1016/j.chom.2017.03.004
10.1093/nar/gkab203
10.1080/15548627.2019.1580089
10.3389/fimmu.2017.00511
10.1093/nar/gkf436
10.1093/oxfordjournals.aje.a118408
10.3389/fmicb.2020.581867
10.4161/auto.7.3.14487
10.1038/cddis.2015.360
10.1128/JVI.00978-07
10.1165/rcmb.2020-0470TR
10.1038/nrmicro3367
10.1016/j.cell.2005.08.012
10.1016/j.cell.2014.05.048
10.1371/journal.ppat.1009300
10.1128/JVI.00149-18
10.4161/auto.5209
10.1038/35014038
10.1146/annurev-cellbio-092910-154005
10.1038/nature05379
10.1038/ncomms5713
10.1016/j.molcel.2005.08.014
10.1080/15548627.2020.1725375
10.15252/embj.2019102539
10.1080/15548627.2019.1603547
10.1128/JVI.01984-18
10.1016/j.chom.2010.05.009
10.1007/s00109-020-01999-4
10.1038/ni.2563
10.1038/s41423-021-00807-4
10.1128/JVI.02406-14
10.1371/journal.ppat.1003279
10.3390/v13091845
10.1128/JVI.03851-13
10.1016/j.celrep.2018.05.015
10.1038/nprot.2017.060
10.1371/journal.ppat.1003971
10.1080/15548627.2018.1466014
10.1038/s41590-019-0324-2
10.1128/JVI.01640-20
10.4049/jimmunol.1502317
ContentType Journal Article
Copyright 2023 Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences 2023
2023 Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences 2023 Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences
Copyright_xml – notice: 2023 Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences 2023
– notice: 2023 Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences 2023 Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1080/15548627.2022.2162798
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate B. ZHANG ET AL
EISSN 1554-8635
EndPage 1933
ExternalDocumentID PMC10283423
36588386
10_1080_15548627_2022_2162798
2162798
Genre Research Article
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
0BK
0R~
23N
30N
4.4
53G
5GY
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGFS
ACTIO
ADBBV
ADCVX
ADGTB
AEISY
AENEX
AEYOC
AGDLA
AHDZW
AIJEM
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AOIJS
AQRUH
AVBZW
AWYRJ
BAWUL
BLEHA
CCCUG
DGEBU
DIK
DKSSO
E3Z
EBS
EMOBN
F5P
GTTXZ
H13
HYE
IPNFZ
KYCEM
LJTGL
M4Z
O9-
OK1
P2P
RIG
RNANH
ROSJB
RPM
RTWRZ
SNACF
TBQAZ
TDBHL
TEI
TFL
TFT
TFW
TQWBC
TR2
TTHFI
TUROJ
ZGOLN
AAGDL
AAHIA
AAYXX
ADHGD
ADYSH
AFRVT
AIYEW
AMPGV
CITATION
AAGME
ABFMO
ACDHJ
ACZPZ
ADOPC
AURDB
BFWEY
C1A
CGR
CUY
CVF
CWRZV
ECM
EIF
EJD
NPM
PCLFJ
TASJS
7X8
5PM
ID FETCH-LOGICAL-c469t-95c5808e44d7717b48465f6920e8c44235ea1c7307104ed3f59d16d652ca018b3
ISSN 1554-8627
1554-8635
IngestDate Thu Aug 21 18:36:50 EDT 2025
Thu Jul 10 19:18:58 EDT 2025
Mon Jul 21 05:37:51 EDT 2025
Tue Jul 01 02:49:04 EDT 2025
Thu Apr 24 22:59:33 EDT 2025
Wed Dec 25 09:04:10 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords nucleoprotein
MAVS
mitophagy
Influenza A virus
TOLLIP
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c469t-95c5808e44d7717b48465f6920e8c44235ea1c7307104ed3f59d16d652ca018b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These two authors contributed to this work equally.
ORCID 0000-0003-3748-948X
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/10283423
PMID 36588386
PQID 2760173050
PQPubID 23479
PageCount 18
ParticipantIDs proquest_miscellaneous_2760173050
pubmed_primary_36588386
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10283423
crossref_citationtrail_10_1080_15548627_2022_2162798
informaworld_taylorfrancis_310_1080_15548627_2022_2162798
crossref_primary_10_1080_15548627_2022_2162798
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-07-03
PublicationDateYYYYMMDD 2023-07-03
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-07-03
  day: 03
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Autophagy
PublicationTitleAlternate Autophagy
PublicationYear 2023
Publisher Taylor & Francis
Publisher_xml – name: Taylor & Francis
References cit0011
cit0033
cit0012
cit0034
cit0031
cit0010
cit0032
cit0030
cit0019
cit0017
cit0039
cit0018
cit0015
cit0037
cit0016
cit0038
cit0013
cit0035
cit0014
cit0036
cit0022
cit0044
cit0001
cit0023
cit0045
cit0020
cit0042
cit0021
cit0043
cit0040
cit0041
Gong Y (cit0003) 2021; 31
cit0008
cit0009
cit0006
cit0028
cit0007
cit0029
cit0004
cit0026
cit0005
cit0027
cit0002
cit0024
cit0025
References_xml – ident: cit0038
  doi: 10.1038/ncomms15534
– ident: cit0011
  doi: 10.1080/21505594.2021.2014680
– ident: cit0043
  doi: 10.1371/journal.ppat.1009340
– volume: 31
  start-page: 1
  year: 2021
  ident: cit0003
  publication-title: Autophagy
– ident: cit0005
  doi: 10.1016/j.chom.2017.03.004
– ident: cit0013
  doi: 10.1093/nar/gkab203
– ident: cit0028
  doi: 10.1080/15548627.2019.1580089
– ident: cit0017
  doi: 10.3389/fimmu.2017.00511
– ident: cit0045
  doi: 10.1093/nar/gkf436
– ident: cit0040
  doi: 10.1093/oxfordjournals.aje.a118408
– ident: cit0036
  doi: 10.3389/fmicb.2020.581867
– ident: cit0002
  doi: 10.4161/auto.7.3.14487
– ident: cit0035
  doi: 10.1038/cddis.2015.360
– ident: cit0044
  doi: 10.1128/JVI.00978-07
– ident: cit0015
  doi: 10.1165/rcmb.2020-0470TR
– ident: cit0009
  doi: 10.1038/nrmicro3367
– ident: cit0023
  doi: 10.1016/j.cell.2005.08.012
– ident: cit0018
  doi: 10.1016/j.cell.2014.05.048
– ident: cit0024
  doi: 10.1371/journal.ppat.1009300
– ident: cit0039
  doi: 10.1128/JVI.00149-18
– ident: cit0042
  doi: 10.4161/auto.5209
– ident: cit0016
  doi: 10.1038/35014038
– ident: cit0025
  doi: 10.1146/annurev-cellbio-092910-154005
– ident: cit0012
  doi: 10.1038/nature05379
– ident: cit0033
  doi: 10.1038/ncomms5713
– ident: cit0027
  doi: 10.1016/j.molcel.2005.08.014
– ident: cit0007
  doi: 10.1080/15548627.2020.1725375
– ident: cit0019
  doi: 10.15252/embj.2019102539
– ident: cit0001
  doi: 10.1080/15548627.2019.1603547
– ident: cit0014
  doi: 10.1128/JVI.01984-18
– ident: cit0008
  doi: 10.1016/j.chom.2010.05.009
– ident: cit0034
  doi: 10.1007/s00109-020-01999-4
– ident: cit0020
  doi: 10.1038/ni.2563
– ident: cit0004
  doi: 10.1038/s41423-021-00807-4
– ident: cit0030
  doi: 10.1128/JVI.02406-14
– ident: cit0037
  doi: 10.1371/journal.ppat.1003279
– ident: cit0032
  doi: 10.3390/v13091845
– ident: cit0006
  doi: 10.1128/JVI.03851-13
– ident: cit0022
  doi: 10.1016/j.celrep.2018.05.015
– ident: cit0021
  doi: 10.1038/nprot.2017.060
– ident: cit0010
  doi: 10.1371/journal.ppat.1003971
– ident: cit0031
  doi: 10.1080/15548627.2018.1466014
– ident: cit0026
  doi: 10.1038/s41590-019-0324-2
– ident: cit0029
  doi: 10.1128/JVI.01640-20
– ident: cit0041
  doi: 10.4049/jimmunol.1502317
SSID ssj0036892
Score 2.5904443
Snippet Mitophagy is a form of autophagy that plays a key role in maintaining the homeostasis of functional mitochondria in the cell. Viruses have evolved various...
SourceID pubmedcentral
proquest
pubmed
crossref
informaworld
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1916
SubjectTerms Animals
Antiviral Agents - pharmacology
Autophagy
Humans
Immunity, Innate
Influenza A virus
Influenza A Virus, H1N1 Subtype
MAVS
Mice
mitophagy
Mitophagy - genetics
nucleoprotein
Nucleoproteins - pharmacology
Research Paper
TOLLIP
Title The nucleoprotein of influenza A virus inhibits the innate immune response by inducing mitophagy
URI https://www.tandfonline.com/doi/abs/10.1080/15548627.2022.2162798
https://www.ncbi.nlm.nih.gov/pubmed/36588386
https://www.proquest.com/docview/2760173050
https://pubmed.ncbi.nlm.nih.gov/PMC10283423
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagCNQL4lmWl4zEDWVx4sc6xwWBKiR6asVyCrHjsJFab1U2Vdtfz9iOs0m1qMAlipy1s_L3ZTwzHs8g9JYRalJVkYRoDgaKKPNESVMnUlTEiKoWsnZ-yK8HYv-IfVnwxabckT9dslZTfbX1XMn_oAptgKs7JfsPyPaDQgPcA75wBYTh-tcYW5eQeOXTLTQ2JIDwZUeuSvjmz5uz1gVcLRvlNgicktlYC-rlu8adC3ElU3yIrHFaKFjnrXaeg5PGZRsof452fOftsHHoav6wik2L1jtTl23Z9IE-TRui8-1FuyHiN-ODCL6X9rgZ-h0y6mNUgywynazkDDAN2UZ6YZoPSDMbSEawC8VWkR1iHN1gYFzNwGLPsmmWwm2oTj2A8fTE40hBaZL0egLtsCR3j26jOxmYDU7uUXIQV2YqZJ7FU1ySvN_6zl10L44yUlVGiWy3mSPXo2oHasrhA3S_sy_wPJDlIbpl7CN0N1QcvXyMfgBl8IgyeFXjnjJ4jj1lcKQMBsrgQBkcKIMjZbC6xJEyuKfME3T0-dPhx_2kK7KRaCbydZJzzSWRhrFqBqa9YqCQ8lrkGTFSM1C2uSlTDesAqKLMVLTmeZWKSvBMlySVij5FO3ZlzTOEFReyTEmZSaGZVnUuhaE1NZzNSMUqNUEszmehuwz0rhDKcZF2iWojIoVDpOgQmaBp3-00pGC5qUM-BKtYe99XHQrVFPSGvm8isgUIWrd7Vlqzan8VmYseg3ngZIL2AtL934mMmSA54kD_A5fEffzENkufzN0r-DDNz_846Au0u_n-XqKd9VlrXoEmvFavPb1_Axw9rm4
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VIgSX8iwsTyPBMYsTP9Y5cKiAakvbPbVSb2n8olEhi3aTou3P4q_whxjnsepWoB5QD9w26zia2DOeb5zxNwBvOGUu1pZG1AgMUGSeRlo5HylpqZPWS-XDPuT-RI4P-ecjcbQGP_uzMCGtMsTQviWKaNbqYNxhM7pPiXsXfCAi8RGGd0kyTGL8maousXLXLX5g2DZ_v_MR5_htkmx_OvgwjrrKApHBcLCKUmGEospxbkcYz2iOXlh4mSbUKcMRYQiXxwaVH_0vd5Z5kdpYWikSk9NYaYbPvQE3RSpHwbYYnfSrP5OqKcQcRIyCjP2pob-JveIPV9hS_4R5L6duXvCF23fhVz-KbQrM6bCu9NCcXyKY_L-G-R5sdNCcbLW2dB_WXPkAbrXFOhcP4RgtipSB_nnakFsUJZl6UrRFXs5zskXOilk9x39OCl1Uc4LQGi9KBPOkCKdwHJm1CcmO6AW22NogbiDfisDtkH9ZPILDa3m9TVgvp6V7AkQLqfKY5omShhvtUyUd88wJPqKWWz0A3mtJZjry9lBD5GsWdxyv_WRlYbKybrIGMFx2-96yl1zVIb2oglnVbBv5tsZLxq7o-7rX1wzXqPDhKS_dtJ5nSUi8wnEQdACPW_1disMQAium5ADUimYvbwj856stZXHS8KA32BiH-ek_CP0Kbo8P9veyvZ3J7jO4g02sScZmz2G9mtXuBULOSr9sbJzA8XVr-28FaX8Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VIhAX3o-lPIwExyxO_Fjn0ENFWbUUVhyo1Fsav9qokK12E9D2X_FX-EWM81h1K1APqAduSRxHE3vs-SaZ-QbgNafMxdrSiBqBDorM00gr5yMlLXXSeql8-A75aSJ39vmHA3GwBj_7XJgQVhl8aN8SRTR7dVjcp9b3EXFvgwlEID5C7y5JhkmMh6nq4ir33OIHem3zzd1tnOI3STJ-_-XdTtQVFogMeoNVlAojFFWOcztCd0ZzNMLCyzShThmOAEO4PDao-2h-ubPMi9TG0kqRmJzGSjN87jW4LkNiZ8gaoZN-82dSNXWYg4hRkLFPGvqb2CvmcIUs9U-Q92Lk5jlTOL4Dv_pBbCNgToZ1pYfm7AK_5H81ynfhdgfMyVa7ku7Bmivvw422VOfiARzieiJlIH-eNtQWRUmmnhRtiZeznGyR78WsnuOV40IX1ZwgsMaTEqE8KUIOjiOzNhzZEb3AFlsbRA3kWxGYHfKjxUPYv5LXewTr5bR0T4BoIVUe0zxR0nCjfaqkY545wUfUcqsHwHslyUxH3R4qiHzN4o7htZ-sLExW1k3WAIbLbqctd8llHdLzGphVzUcj31Z4ydglfV_16prhDhV-O-Wlm9bzLAlhVzgOgg7gcau-S3EYAmDFlByAWlHs5Q2B_Xy1pSyOGxb0BhnjMD_9B6Ffws3P2-Ps4-5kbwNuYQtrIrHZM1ivZrV7jniz0i-aFU7g8KqV_Teusn20
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+nucleoprotein+of+influenza+A+virus+inhibits+the+innate+immune+response+by+inducing+mitophagy&rft.jtitle=Autophagy&rft.au=Zhang%2C+Bo&rft.au=Xu%2C+Shuai&rft.au=Liu%2C+Minxuan&rft.au=Wei%2C+Yanli&rft.date=2023-07-03&rft.eissn=1554-8635&rft.volume=19&rft.issue=7&rft.spage=1916&rft_id=info:doi/10.1080%2F15548627.2022.2162798&rft_id=info%3Apmid%2F36588386&rft.externalDocID=36588386
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1554-8627&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1554-8627&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1554-8627&client=summon