The nucleoprotein of influenza A virus inhibits the innate immune response by inducing mitophagy
Mitophagy is a form of autophagy that plays a key role in maintaining the homeostasis of functional mitochondria in the cell. Viruses have evolved various strategies to manipulate mitophagy to escape host immune responses and promote virus replication. In this study, the nucleoprotein (NP) of H1N1 v...
Saved in:
Published in | Autophagy Vol. 19; no. 7; pp. 1916 - 1933 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Taylor & Francis
03.07.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Mitophagy is a form of autophagy that plays a key role in maintaining the homeostasis of functional mitochondria in the cell. Viruses have evolved various strategies to manipulate mitophagy to escape host immune responses and promote virus replication. In this study, the nucleoprotein (NP) of H1N1 virus (PR8 strain) was identified as a regulator of mitophagy. We revealed that NP-mediated mitophagy leads to the degradation of the mitochondria-anchored protein MAVS, thereby blocking MAVS-mediated antiviral signaling and promoting virus replication. The NP-mediated mitophagy is dependent on the interaction of NP with MAVS and the cargo receptor TOLLIP. Moreover, Y313 of NP is a key residue for the MAVS-NP interaction and NP-mediated mitophagy. The NP
Y313F
mutation significantly attenuates the virus-induced mitophagy and the virus replication in vitro and in vivo. Taken together, our findings uncover a novel mechanism by which the NP of influenza virus induces mitophagy to attenuate innate immunity.
Abbreviations: ACTB: actin beta; ATG7: autophagy related 7; ATG12: autophagy related 12; CCCP: carbonyl cyanide 3-chlorophenyl hydrazone; co-IP: co-immunoprecipitation; COX4/COXIV: cytochrome c oxidase subunit 4; DAPI: 4ʹ,6-diamidino-2-phenylindole, dihydrochloride; EID
50
: 50% egg infective dose; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GFP: green fluorescent protein; HEK: human embryonic kidney; hpi: hours post-infection; IAV: influenza A virus; IFN: interferon; IP: immunoprecipitation; LAMP1: lysosomal associated membrane protein 1; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MAVS: mitochondrial antiviral signaling protein; Mdivi-1: mitochondrial division inhibitor 1; MLD
50
: 50% mouse lethal dose; MOI: multiplicity of infection; NBR1: NBR1 autophagy cargo receptor; NP: nucleoprotein; PB1: basic polymerase 1; RFP: red fluorescent protein; RIGI: RNA sensor RIG-I; RIGI-N: RIGI-CARD; SeV: Sendai virus; SQSTM1/p62: sequestosome 1; TIMM23: translocase of inner mitochondrial membrane 23; TOLLIP: toll interacting protein; TOMM20: translocase of outer mitochondrial membrane 20; TUBA: tubulin alpha; Vec: empty vector; vRNP: viral ribonucleoprotein. |
---|---|
AbstractList | Mitophagy is a form of autophagy that plays a key role in maintaining the homeostasis of functional mitochondria in the cell. Viruses have evolved various strategies to manipulate mitophagy to escape host immune responses and promote virus replication. In this study, the nucleoprotein (NP) of H1N1 virus (PR8 strain) was identified as a regulator of mitophagy. We revealed that NP-mediated mitophagy leads to the degradation of the mitochondria-anchored protein MAVS, thereby blocking MAVS-mediated antiviral signaling and promoting virus replication. The NP-mediated mitophagy is dependent on the interaction of NP with MAVS and the cargo receptor TOLLIP. Moreover, Y313 of NP is a key residue for the MAVS-NP interaction and NP-mediated mitophagy. The NP
mutation significantly attenuates the virus-induced mitophagy and the virus replication
and
. Taken together, our findings uncover a novel mechanism by which the NP of influenza virus induces mitophagy to attenuate innate immunity.
ACTB: actin beta; ATG7: autophagy related 7; ATG12: autophagy related 12; CCCP: carbonyl cyanide 3-chlorophenyl hydrazone; co-IP: co-immunoprecipitation; COX4/COXIV: cytochrome c oxidase subunit 4; DAPI: 4',6-diamidino-2-phenylindole, dihydrochloride; EID
: 50% egg infective dose; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GFP: green fluorescent protein; HEK: human embryonic kidney; hpi: hours post-infection; IAV: influenza A virus; IFN: interferon; IP: immunoprecipitation; LAMP1: lysosomal associated membrane protein 1; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MAVS: mitochondrial antiviral signaling protein; Mdivi-1: mitochondrial division inhibitor 1; MLD
: 50% mouse lethal dose; MOI: multiplicity of infection; NBR1: NBR1 autophagy cargo receptor; NP: nucleoprotein; PB1: basic polymerase 1; RFP: red fluorescent protein; RIGI: RNA sensor RIG-I; RIGI-N: RIGI-CARD; SeV: Sendai virus; SQSTM1/p62: sequestosome 1; TIMM23: translocase of inner mitochondrial membrane 23; TOLLIP: toll interacting protein; TOMM20: translocase of outer mitochondrial membrane 20; TUBA: tubulin alpha; Vec: empty vector; vRNP: viral ribonucleoprotein. Mitophagy is a form of autophagy that plays a key role in maintaining the homeostasis of functional mitochondria in the cell. Viruses have evolved various strategies to manipulate mitophagy to escape host immune responses and promote virus replication. In this study, the nucleoprotein (NP) of H1N1 virus (PR8 strain) was identified as a regulator of mitophagy. We revealed that NP-mediated mitophagy leads to the degradation of the mitochondria-anchored protein MAVS, thereby blocking MAVS-mediated antiviral signaling and promoting virus replication. The NP-mediated mitophagy is dependent on the interaction of NP with MAVS and the cargo receptor TOLLIP. Moreover, Y313 of NP is a key residue for the MAVS-NP interaction and NP-mediated mitophagy. The NP Y313F mutation significantly attenuates the virus-induced mitophagy and the virus replication in vitro and in vivo . Taken together, our findings uncover a novel mechanism by which the NP of influenza virus induces mitophagy to attenuate innate immunity. Abbreviations: ACTB: actin beta; ATG7: autophagy related 7; ATG12: autophagy related 12; CCCP: carbonyl cyanide 3-chlorophenyl hydrazone; co-IP: co-immunoprecipitation; COX4/COXIV: cytochrome c oxidase subunit 4; DAPI: 4ʹ,6-diamidino-2-phenylindole, dihydrochloride; EID 50 : 50% egg infective dose; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GFP: green fluorescent protein; HEK: human embryonic kidney; hpi: hours post-infection; IAV: influenza A virus; IFN: interferon; IP: immunoprecipitation; LAMP1: lysosomal associated membrane protein 1; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MAVS: mitochondrial antiviral signaling protein; Mdivi-1: mitochondrial division inhibitor 1; MLD 50 : 50% mouse lethal dose; MOI: multiplicity of infection; NBR1: NBR1 autophagy cargo receptor; NP: nucleoprotein; PB1: basic polymerase 1; RFP: red fluorescent protein; RIGI: RNA sensor RIG-I; RIGI-N: RIGI-CARD; SeV: Sendai virus; SQSTM1/p62: sequestosome 1; TIMM23: translocase of inner mitochondrial membrane 23; TOLLIP: toll interacting protein; TOMM20: translocase of outer mitochondrial membrane 20; TUBA: tubulin alpha; Vec: empty vector; vRNP: viral ribonucleoprotein. Mitophagy is a form of autophagy that plays a key role in maintaining the homeostasis of functional mitochondria in the cell. Viruses have evolved various strategies to manipulate mitophagy to escape host immune responses and promote virus replication. In this study, the nucleoprotein (NP) of H1N1 virus (PR8 strain) was identified as a regulator of mitophagy. We revealed that NP-mediated mitophagy leads to the degradation of the mitochondria-anchored protein MAVS, thereby blocking MAVS-mediated antiviral signaling and promoting virus replication. The NP-mediated mitophagy is dependent on the interaction of NP with MAVS and the cargo receptor TOLLIP. Moreover, Y313 of NP is a key residue for the MAVS-NP interaction and NP-mediated mitophagy. The NPY313F mutation significantly attenuates the virus-induced mitophagy and the virus replication in vitro and in vivo. Taken together, our findings uncover a novel mechanism by which the NP of influenza virus induces mitophagy to attenuate innate immunity.Abbreviations: ACTB: actin beta; ATG7: autophagy related 7; ATG12: autophagy related 12; CCCP: carbonyl cyanide 3-chlorophenyl hydrazone; co-IP: co-immunoprecipitation; COX4/COXIV: cytochrome c oxidase subunit 4; DAPI: 4',6-diamidino-2-phenylindole, dihydrochloride; EID50: 50% egg infective dose; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GFP: green fluorescent protein; HEK: human embryonic kidney; hpi: hours post-infection; IAV: influenza A virus; IFN: interferon; IP: immunoprecipitation; LAMP1: lysosomal associated membrane protein 1; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MAVS: mitochondrial antiviral signaling protein; Mdivi-1: mitochondrial division inhibitor 1; MLD50: 50% mouse lethal dose; MOI: multiplicity of infection; NBR1: NBR1 autophagy cargo receptor; NP: nucleoprotein; PB1: basic polymerase 1; RFP: red fluorescent protein; RIGI: RNA sensor RIG-I; RIGI-N: RIGI-CARD; SeV: Sendai virus; SQSTM1/p62: sequestosome 1; TIMM23: translocase of inner mitochondrial membrane 23; TOLLIP: toll interacting protein; TOMM20: translocase of outer mitochondrial membrane 20; TUBA: tubulin alpha; Vec: empty vector; vRNP: viral ribonucleoprotein.Mitophagy is a form of autophagy that plays a key role in maintaining the homeostasis of functional mitochondria in the cell. Viruses have evolved various strategies to manipulate mitophagy to escape host immune responses and promote virus replication. In this study, the nucleoprotein (NP) of H1N1 virus (PR8 strain) was identified as a regulator of mitophagy. We revealed that NP-mediated mitophagy leads to the degradation of the mitochondria-anchored protein MAVS, thereby blocking MAVS-mediated antiviral signaling and promoting virus replication. The NP-mediated mitophagy is dependent on the interaction of NP with MAVS and the cargo receptor TOLLIP. Moreover, Y313 of NP is a key residue for the MAVS-NP interaction and NP-mediated mitophagy. The NPY313F mutation significantly attenuates the virus-induced mitophagy and the virus replication in vitro and in vivo. Taken together, our findings uncover a novel mechanism by which the NP of influenza virus induces mitophagy to attenuate innate immunity.Abbreviations: ACTB: actin beta; ATG7: autophagy related 7; ATG12: autophagy related 12; CCCP: carbonyl cyanide 3-chlorophenyl hydrazone; co-IP: co-immunoprecipitation; COX4/COXIV: cytochrome c oxidase subunit 4; DAPI: 4',6-diamidino-2-phenylindole, dihydrochloride; EID50: 50% egg infective dose; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GFP: green fluorescent protein; HEK: human embryonic kidney; hpi: hours post-infection; IAV: influenza A virus; IFN: interferon; IP: immunoprecipitation; LAMP1: lysosomal associated membrane protein 1; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MAVS: mitochondrial antiviral signaling protein; Mdivi-1: mitochondrial division inhibitor 1; MLD50: 50% mouse lethal dose; MOI: multiplicity of infection; NBR1: NBR1 autophagy cargo receptor; NP: nucleoprotein; PB1: basic polymerase 1; RFP: red fluorescent protein; RIGI: RNA sensor RIG-I; RIGI-N: RIGI-CARD; SeV: Sendai virus; SQSTM1/p62: sequestosome 1; TIMM23: translocase of inner mitochondrial membrane 23; TOLLIP: toll interacting protein; TOMM20: translocase of outer mitochondrial membrane 20; TUBA: tubulin alpha; Vec: empty vector; vRNP: viral ribonucleoprotein. Mitophagy is a form of autophagy that plays a key role in maintaining the homeostasis of functional mitochondria in the cell. Viruses have evolved various strategies to manipulate mitophagy to escape host immune responses and promote virus replication. In this study, the nucleoprotein (NP) of H1N1 virus (PR8 strain) was identified as a regulator of mitophagy. We revealed that NP-mediated mitophagy leads to the degradation of the mitochondria-anchored protein MAVS, thereby blocking MAVS-mediated antiviral signaling and promoting virus replication. The NP-mediated mitophagy is dependent on the interaction of NP with MAVS and the cargo receptor TOLLIP. Moreover, Y313 of NP is a key residue for the MAVS-NP interaction and NP-mediated mitophagy. The NP Y313F mutation significantly attenuates the virus-induced mitophagy and the virus replication in vitro and in vivo. Taken together, our findings uncover a novel mechanism by which the NP of influenza virus induces mitophagy to attenuate innate immunity. Abbreviations: ACTB: actin beta; ATG7: autophagy related 7; ATG12: autophagy related 12; CCCP: carbonyl cyanide 3-chlorophenyl hydrazone; co-IP: co-immunoprecipitation; COX4/COXIV: cytochrome c oxidase subunit 4; DAPI: 4ʹ,6-diamidino-2-phenylindole, dihydrochloride; EID 50 : 50% egg infective dose; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GFP: green fluorescent protein; HEK: human embryonic kidney; hpi: hours post-infection; IAV: influenza A virus; IFN: interferon; IP: immunoprecipitation; LAMP1: lysosomal associated membrane protein 1; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MAVS: mitochondrial antiviral signaling protein; Mdivi-1: mitochondrial division inhibitor 1; MLD 50 : 50% mouse lethal dose; MOI: multiplicity of infection; NBR1: NBR1 autophagy cargo receptor; NP: nucleoprotein; PB1: basic polymerase 1; RFP: red fluorescent protein; RIGI: RNA sensor RIG-I; RIGI-N: RIGI-CARD; SeV: Sendai virus; SQSTM1/p62: sequestosome 1; TIMM23: translocase of inner mitochondrial membrane 23; TOLLIP: toll interacting protein; TOMM20: translocase of outer mitochondrial membrane 20; TUBA: tubulin alpha; Vec: empty vector; vRNP: viral ribonucleoprotein. |
Author | Shen, Wentao Lei, Cao-Qi Zhu, Qiyun Wei, Yanli Liu, Minxuan Zhang, Bo Xu, Shuai Wang, Qian |
Author_xml | – sequence: 1 givenname: Bo surname: Zhang fullname: Zhang, Bo organization: Gansu Agricultural University – sequence: 2 givenname: Shuai surname: Xu fullname: Xu, Shuai organization: Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences – sequence: 3 givenname: Minxuan surname: Liu fullname: Liu, Minxuan organization: Gansu Agricultural University – sequence: 4 givenname: Yanli surname: Wei fullname: Wei, Yanli organization: Gansu Agricultural University – sequence: 5 givenname: Qian surname: Wang fullname: Wang, Qian organization: Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences – sequence: 6 givenname: Wentao surname: Shen fullname: Shen, Wentao organization: Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences – sequence: 7 givenname: Cao-Qi surname: Lei fullname: Lei, Cao-Qi organization: Wuhan University – sequence: 8 givenname: Qiyun orcidid: 0000-0003-3748-948X surname: Zhu fullname: Zhu, Qiyun email: zhuqiyun@caas.cn organization: Gansu Agricultural University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36588386$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUUuP0zAQttAi9gE_AZQjlxa_44gDrFa8pJW4LGfjOJPWyLGD7Swqvx5XbVfAAU4zmvkeo_ku0VmIARB6TvCaYIVfESG4krRdU0zpmpLaduoRutjPV0oycfbQ0_YcXeb8DWMmVUefoHMmhVJMyQv09W4LTVishzinWMCFJo6NC6NfIPw0zXVz79KS62TreldyUyrehWBKLdO0BGgS5DmGDE2_q5thsS5smsmVOG_NZvcUPR6Nz_DsWK_Ql_fv7m4-rm4_f_h0c327slx2ZdUJKxRWwPnQtqTtueJSjLKjGJTlnDIBhtiW4ZZgDgMbRTcQOUhBrcFE9ewKvTnozks_wWAhlGS8npObTNrpaJz-cxPcVm_ivSaYKlYNqsLLo0KK3xfIRU8uW_DeBIhL1rSVmNQLBK7QF7-bPbic_loBrw8Am2LOCUZtXTHFxb2389VU71PUpxT1PkV9TLGyxV_sk8H_eG8PvJpfTJP5EZMfdDE7H9OYTLAua_ZviV_gG7R5 |
CitedBy_id | crossref_primary_10_1128_mbio_02677_24 crossref_primary_10_3390_pathogens13121139 crossref_primary_10_3389_fcimb_2024_1460604 crossref_primary_10_3389_fpubh_2024_1464435 crossref_primary_10_1002_advs_202404365 crossref_primary_10_3390_v16050702 crossref_primary_10_1016_j_psj_2024_104601 crossref_primary_10_1080_15548627_2023_2293442 crossref_primary_10_3390_cells14060418 crossref_primary_10_1038_s41586_023_06261_8 crossref_primary_10_1186_s12943_024_01934_y crossref_primary_10_1073_pnas_2411554122 crossref_primary_10_1016_j_vetmic_2023_109891 crossref_primary_10_36233_10_36233_0507_4088_213 crossref_primary_10_3390_ijms25179206 crossref_primary_10_3390_v16071161 crossref_primary_10_1186_s12964_024_01983_2 crossref_primary_10_3390_ijms25094677 crossref_primary_10_31857_S2686738924030071 crossref_primary_10_1016_j_vetmic_2024_109986 crossref_primary_10_1371_journal_ppat_1012670 crossref_primary_10_1016_j_phymed_2024_156231 crossref_primary_10_3390_ijms25094616 crossref_primary_10_1128_jvi_00814_24 crossref_primary_10_1016_j_psj_2024_103652 crossref_primary_10_3390_v16010155 crossref_primary_10_3389_fmicb_2024_1394510 crossref_primary_10_1016_j_pharmthera_2024_108729 crossref_primary_10_1016_j_psj_2024_104639 crossref_primary_10_3390_biomedicines12112530 crossref_primary_10_1134_S1607672924700789 crossref_primary_10_1016_j_jare_2024_08_003 crossref_primary_10_1016_j_mcpro_2024_100737 crossref_primary_10_1016_j_ijbiomac_2025_140631 crossref_primary_10_1128_mbio_02097_24 crossref_primary_10_1016_j_virusres_2024_199387 crossref_primary_10_1038_s41420_024_01844_4 crossref_primary_10_1371_journal_ppat_1011958 |
Cites_doi | 10.1038/ncomms15534 10.1080/21505594.2021.2014680 10.1371/journal.ppat.1009340 10.1016/j.chom.2017.03.004 10.1093/nar/gkab203 10.1080/15548627.2019.1580089 10.3389/fimmu.2017.00511 10.1093/nar/gkf436 10.1093/oxfordjournals.aje.a118408 10.3389/fmicb.2020.581867 10.4161/auto.7.3.14487 10.1038/cddis.2015.360 10.1128/JVI.00978-07 10.1165/rcmb.2020-0470TR 10.1038/nrmicro3367 10.1016/j.cell.2005.08.012 10.1016/j.cell.2014.05.048 10.1371/journal.ppat.1009300 10.1128/JVI.00149-18 10.4161/auto.5209 10.1038/35014038 10.1146/annurev-cellbio-092910-154005 10.1038/nature05379 10.1038/ncomms5713 10.1016/j.molcel.2005.08.014 10.1080/15548627.2020.1725375 10.15252/embj.2019102539 10.1080/15548627.2019.1603547 10.1128/JVI.01984-18 10.1016/j.chom.2010.05.009 10.1007/s00109-020-01999-4 10.1038/ni.2563 10.1038/s41423-021-00807-4 10.1128/JVI.02406-14 10.1371/journal.ppat.1003279 10.3390/v13091845 10.1128/JVI.03851-13 10.1016/j.celrep.2018.05.015 10.1038/nprot.2017.060 10.1371/journal.ppat.1003971 10.1080/15548627.2018.1466014 10.1038/s41590-019-0324-2 10.1128/JVI.01640-20 10.4049/jimmunol.1502317 |
ContentType | Journal Article |
Copyright | 2023 Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences 2023 2023 Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences 2023 Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences |
Copyright_xml | – notice: 2023 Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences 2023 – notice: 2023 Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences 2023 Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1080/15548627.2022.2162798 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | B. ZHANG ET AL |
EISSN | 1554-8635 |
EndPage | 1933 |
ExternalDocumentID | PMC10283423 36588386 10_1080_15548627_2022_2162798 2162798 |
Genre | Research Article Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- 0BK 0R~ 23N 30N 4.4 53G 5GY AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGFS ACTIO ADBBV ADCVX ADGTB AEISY AENEX AEYOC AGDLA AHDZW AIJEM AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AOIJS AQRUH AVBZW AWYRJ BAWUL BLEHA CCCUG DGEBU DIK DKSSO E3Z EBS EMOBN F5P GTTXZ H13 HYE IPNFZ KYCEM LJTGL M4Z O9- OK1 P2P RIG RNANH ROSJB RPM RTWRZ SNACF TBQAZ TDBHL TEI TFL TFT TFW TQWBC TR2 TTHFI TUROJ ZGOLN AAGDL AAHIA AAYXX ADHGD ADYSH AFRVT AIYEW AMPGV CITATION AAGME ABFMO ACDHJ ACZPZ ADOPC AURDB BFWEY C1A CGR CUY CVF CWRZV ECM EIF EJD NPM PCLFJ TASJS 7X8 5PM |
ID | FETCH-LOGICAL-c469t-95c5808e44d7717b48465f6920e8c44235ea1c7307104ed3f59d16d652ca018b3 |
ISSN | 1554-8627 1554-8635 |
IngestDate | Thu Aug 21 18:36:50 EDT 2025 Thu Jul 10 19:18:58 EDT 2025 Mon Jul 21 05:37:51 EDT 2025 Tue Jul 01 02:49:04 EDT 2025 Thu Apr 24 22:59:33 EDT 2025 Wed Dec 25 09:04:10 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | nucleoprotein MAVS mitophagy Influenza A virus TOLLIP |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c469t-95c5808e44d7717b48465f6920e8c44235ea1c7307104ed3f59d16d652ca018b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These two authors contributed to this work equally. |
ORCID | 0000-0003-3748-948X |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/10283423 |
PMID | 36588386 |
PQID | 2760173050 |
PQPubID | 23479 |
PageCount | 18 |
ParticipantIDs | proquest_miscellaneous_2760173050 pubmed_primary_36588386 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10283423 crossref_citationtrail_10_1080_15548627_2022_2162798 informaworld_taylorfrancis_310_1080_15548627_2022_2162798 crossref_primary_10_1080_15548627_2022_2162798 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-07-03 |
PublicationDateYYYYMMDD | 2023-07-03 |
PublicationDate_xml | – month: 07 year: 2023 text: 2023-07-03 day: 03 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Autophagy |
PublicationTitleAlternate | Autophagy |
PublicationYear | 2023 |
Publisher | Taylor & Francis |
Publisher_xml | – name: Taylor & Francis |
References | cit0011 cit0033 cit0012 cit0034 cit0031 cit0010 cit0032 cit0030 cit0019 cit0017 cit0039 cit0018 cit0015 cit0037 cit0016 cit0038 cit0013 cit0035 cit0014 cit0036 cit0022 cit0044 cit0001 cit0023 cit0045 cit0020 cit0042 cit0021 cit0043 cit0040 cit0041 Gong Y (cit0003) 2021; 31 cit0008 cit0009 cit0006 cit0028 cit0007 cit0029 cit0004 cit0026 cit0005 cit0027 cit0002 cit0024 cit0025 |
References_xml | – ident: cit0038 doi: 10.1038/ncomms15534 – ident: cit0011 doi: 10.1080/21505594.2021.2014680 – ident: cit0043 doi: 10.1371/journal.ppat.1009340 – volume: 31 start-page: 1 year: 2021 ident: cit0003 publication-title: Autophagy – ident: cit0005 doi: 10.1016/j.chom.2017.03.004 – ident: cit0013 doi: 10.1093/nar/gkab203 – ident: cit0028 doi: 10.1080/15548627.2019.1580089 – ident: cit0017 doi: 10.3389/fimmu.2017.00511 – ident: cit0045 doi: 10.1093/nar/gkf436 – ident: cit0040 doi: 10.1093/oxfordjournals.aje.a118408 – ident: cit0036 doi: 10.3389/fmicb.2020.581867 – ident: cit0002 doi: 10.4161/auto.7.3.14487 – ident: cit0035 doi: 10.1038/cddis.2015.360 – ident: cit0044 doi: 10.1128/JVI.00978-07 – ident: cit0015 doi: 10.1165/rcmb.2020-0470TR – ident: cit0009 doi: 10.1038/nrmicro3367 – ident: cit0023 doi: 10.1016/j.cell.2005.08.012 – ident: cit0018 doi: 10.1016/j.cell.2014.05.048 – ident: cit0024 doi: 10.1371/journal.ppat.1009300 – ident: cit0039 doi: 10.1128/JVI.00149-18 – ident: cit0042 doi: 10.4161/auto.5209 – ident: cit0016 doi: 10.1038/35014038 – ident: cit0025 doi: 10.1146/annurev-cellbio-092910-154005 – ident: cit0012 doi: 10.1038/nature05379 – ident: cit0033 doi: 10.1038/ncomms5713 – ident: cit0027 doi: 10.1016/j.molcel.2005.08.014 – ident: cit0007 doi: 10.1080/15548627.2020.1725375 – ident: cit0019 doi: 10.15252/embj.2019102539 – ident: cit0001 doi: 10.1080/15548627.2019.1603547 – ident: cit0014 doi: 10.1128/JVI.01984-18 – ident: cit0008 doi: 10.1016/j.chom.2010.05.009 – ident: cit0034 doi: 10.1007/s00109-020-01999-4 – ident: cit0020 doi: 10.1038/ni.2563 – ident: cit0004 doi: 10.1038/s41423-021-00807-4 – ident: cit0030 doi: 10.1128/JVI.02406-14 – ident: cit0037 doi: 10.1371/journal.ppat.1003279 – ident: cit0032 doi: 10.3390/v13091845 – ident: cit0006 doi: 10.1128/JVI.03851-13 – ident: cit0022 doi: 10.1016/j.celrep.2018.05.015 – ident: cit0021 doi: 10.1038/nprot.2017.060 – ident: cit0010 doi: 10.1371/journal.ppat.1003971 – ident: cit0031 doi: 10.1080/15548627.2018.1466014 – ident: cit0026 doi: 10.1038/s41590-019-0324-2 – ident: cit0029 doi: 10.1128/JVI.01640-20 – ident: cit0041 doi: 10.4049/jimmunol.1502317 |
SSID | ssj0036892 |
Score | 2.5904443 |
Snippet | Mitophagy is a form of autophagy that plays a key role in maintaining the homeostasis of functional mitochondria in the cell. Viruses have evolved various... |
SourceID | pubmedcentral proquest pubmed crossref informaworld |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1916 |
SubjectTerms | Animals Antiviral Agents - pharmacology Autophagy Humans Immunity, Innate Influenza A virus Influenza A Virus, H1N1 Subtype MAVS Mice mitophagy Mitophagy - genetics nucleoprotein Nucleoproteins - pharmacology Research Paper TOLLIP |
Title | The nucleoprotein of influenza A virus inhibits the innate immune response by inducing mitophagy |
URI | https://www.tandfonline.com/doi/abs/10.1080/15548627.2022.2162798 https://www.ncbi.nlm.nih.gov/pubmed/36588386 https://www.proquest.com/docview/2760173050 https://pubmed.ncbi.nlm.nih.gov/PMC10283423 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagCNQL4lmWl4zEDWVx4sc6xwWBKiR6asVyCrHjsJFab1U2Vdtfz9iOs0m1qMAlipy1s_L3ZTwzHs8g9JYRalJVkYRoDgaKKPNESVMnUlTEiKoWsnZ-yK8HYv-IfVnwxabckT9dslZTfbX1XMn_oAptgKs7JfsPyPaDQgPcA75wBYTh-tcYW5eQeOXTLTQ2JIDwZUeuSvjmz5uz1gVcLRvlNgicktlYC-rlu8adC3ElU3yIrHFaKFjnrXaeg5PGZRsof452fOftsHHoav6wik2L1jtTl23Z9IE-TRui8-1FuyHiN-ODCL6X9rgZ-h0y6mNUgywynazkDDAN2UZ6YZoPSDMbSEawC8VWkR1iHN1gYFzNwGLPsmmWwm2oTj2A8fTE40hBaZL0egLtsCR3j26jOxmYDU7uUXIQV2YqZJ7FU1ySvN_6zl10L44yUlVGiWy3mSPXo2oHasrhA3S_sy_wPJDlIbpl7CN0N1QcvXyMfgBl8IgyeFXjnjJ4jj1lcKQMBsrgQBkcKIMjZbC6xJEyuKfME3T0-dPhx_2kK7KRaCbydZJzzSWRhrFqBqa9YqCQ8lrkGTFSM1C2uSlTDesAqKLMVLTmeZWKSvBMlySVij5FO3ZlzTOEFReyTEmZSaGZVnUuhaE1NZzNSMUqNUEszmehuwz0rhDKcZF2iWojIoVDpOgQmaBp3-00pGC5qUM-BKtYe99XHQrVFPSGvm8isgUIWrd7Vlqzan8VmYseg3ngZIL2AtL934mMmSA54kD_A5fEffzENkufzN0r-DDNz_846Au0u_n-XqKd9VlrXoEmvFavPb1_Axw9rm4 |
linkProvider | Taylor & Francis |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VIgSX8iwsTyPBMYsTP9Y5cKiAakvbPbVSb2n8olEhi3aTou3P4q_whxjnsepWoB5QD9w26zia2DOeb5zxNwBvOGUu1pZG1AgMUGSeRlo5HylpqZPWS-XDPuT-RI4P-ecjcbQGP_uzMCGtMsTQviWKaNbqYNxhM7pPiXsXfCAi8RGGd0kyTGL8maousXLXLX5g2DZ_v_MR5_htkmx_OvgwjrrKApHBcLCKUmGEospxbkcYz2iOXlh4mSbUKcMRYQiXxwaVH_0vd5Z5kdpYWikSk9NYaYbPvQE3RSpHwbYYnfSrP5OqKcQcRIyCjP2pob-JveIPV9hS_4R5L6duXvCF23fhVz-KbQrM6bCu9NCcXyKY_L-G-R5sdNCcbLW2dB_WXPkAbrXFOhcP4RgtipSB_nnakFsUJZl6UrRFXs5zskXOilk9x39OCl1Uc4LQGi9KBPOkCKdwHJm1CcmO6AW22NogbiDfisDtkH9ZPILDa3m9TVgvp6V7AkQLqfKY5omShhvtUyUd88wJPqKWWz0A3mtJZjry9lBD5GsWdxyv_WRlYbKybrIGMFx2-96yl1zVIb2oglnVbBv5tsZLxq7o-7rX1wzXqPDhKS_dtJ5nSUi8wnEQdACPW_1disMQAium5ADUimYvbwj856stZXHS8KA32BiH-ek_CP0Kbo8P9veyvZ3J7jO4g02sScZmz2G9mtXuBULOSr9sbJzA8XVr-28FaX8Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VIhAX3o-lPIwExyxO_Fjn0ENFWbUUVhyo1Fsav9qokK12E9D2X_FX-EWM81h1K1APqAduSRxHE3vs-SaZ-QbgNafMxdrSiBqBDorM00gr5yMlLXXSeql8-A75aSJ39vmHA3GwBj_7XJgQVhl8aN8SRTR7dVjcp9b3EXFvgwlEID5C7y5JhkmMh6nq4ir33OIHem3zzd1tnOI3STJ-_-XdTtQVFogMeoNVlAojFFWOcztCd0ZzNMLCyzShThmOAEO4PDao-2h-ubPMi9TG0kqRmJzGSjN87jW4LkNiZ8gaoZN-82dSNXWYg4hRkLFPGvqb2CvmcIUs9U-Q92Lk5jlTOL4Dv_pBbCNgToZ1pYfm7AK_5H81ynfhdgfMyVa7ku7Bmivvw422VOfiARzieiJlIH-eNtQWRUmmnhRtiZeznGyR78WsnuOV40IX1ZwgsMaTEqE8KUIOjiOzNhzZEb3AFlsbRA3kWxGYHfKjxUPYv5LXewTr5bR0T4BoIVUe0zxR0nCjfaqkY545wUfUcqsHwHslyUxH3R4qiHzN4o7htZ-sLExW1k3WAIbLbqctd8llHdLzGphVzUcj31Z4ydglfV_16prhDhV-O-Wlm9bzLAlhVzgOgg7gcau-S3EYAmDFlByAWlHs5Q2B_Xy1pSyOGxb0BhnjMD_9B6Ffws3P2-Ps4-5kbwNuYQtrIrHZM1ivZrV7jniz0i-aFU7g8KqV_Teusn20 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+nucleoprotein+of+influenza+A+virus+inhibits+the+innate+immune+response+by+inducing+mitophagy&rft.jtitle=Autophagy&rft.au=Zhang%2C+Bo&rft.au=Xu%2C+Shuai&rft.au=Liu%2C+Minxuan&rft.au=Wei%2C+Yanli&rft.date=2023-07-03&rft.eissn=1554-8635&rft.volume=19&rft.issue=7&rft.spage=1916&rft_id=info:doi/10.1080%2F15548627.2022.2162798&rft_id=info%3Apmid%2F36588386&rft.externalDocID=36588386 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1554-8627&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1554-8627&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1554-8627&client=summon |