Motion Smoothness Analysis of the Gait Cycle, Segmented by Stride and Associated with the Inertial Sensors’ Locations
Portable monitoring devices based on Inertial Measurement Units (IMUs) have the potential to serve as quantitative assessments of human movement. This article proposes a new method to identify the optimal placements of the IMUs and quantify the smoothness of the gait. First, it identifies gait event...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 25; no. 2; p. 368 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
01.01.2025
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Portable monitoring devices based on Inertial Measurement Units (IMUs) have the potential to serve as quantitative assessments of human movement. This article proposes a new method to identify the optimal placements of the IMUs and quantify the smoothness of the gait. First, it identifies gait events: foot-strike (FS) and foot-off (FO). Second, it segments the signals of linear acceleration and angular velocities obtained from the IMUs at four locations into steps and strides. Finally, it applies three smoothness metrics (SPARC, PM, and LDLJ) to determine the most reliable metric and the best location for the sensor, using data from 20 healthy subjects who walked an average of 25 steps on a flat surface for this study (117 measurements were processed). All events were identified with less than a 2% difference from those obtained with the photogrammetry system. The smoothness metric with the least variance in all measurements was SPARC. For the smoothness metrics with the least variance, we found significant differences between applying the metrics with the complete signal (C) and the signal segmented by strides (S). This method is practical, time-effective, and low-cost in terms of computation. Furthermore, it is shown that analyzing gait signals segmented by strides provides more information about gait progression. |
---|---|
AbstractList | Portable monitoring devices based on Inertial Measurement Units (IMUs) have the potential to serve as quantitative assessments of human movement. This article proposes a new method to identify the optimal placements of the IMUs and quantify the smoothness of the gait. First, it identifies gait events: foot-strike (FS) and foot-off (FO). Second, it segments the signals of linear acceleration and angular velocities obtained from the IMUs at four locations into steps and strides. Finally, it applies three smoothness metrics (SPARC, PM, and LDLJ) to determine the most reliable metric and the best location for the sensor, using data from 20 healthy subjects who walked an average of 25 steps on a flat surface for this study (117 measurements were processed). All events were identified with less than a 2% difference from those obtained with the photogrammetry system. The smoothness metric with the least variance in all measurements was SPARC. For the smoothness metrics with the least variance, we found significant differences between applying the metrics with the complete signal (C) and the signal segmented by strides (S). This method is practical, time-effective, and low-cost in terms of computation. Furthermore, it is shown that analyzing gait signals segmented by strides provides more information about gait progression. Portable monitoring devices based on Inertial Measurement Units (IMUs) have the potential to serve as quantitative assessments of human movement. This article proposes a new method to identify the optimal placements of the IMUs and quantify the smoothness of the gait. First, it identifies gait events: foot-strike (FS) and foot-off (FO). Second, it segments the signals of linear acceleration and angular velocities obtained from the IMUs at four locations into steps and strides. Finally, it applies three smoothness metrics (SPARC, PM, and LDLJ) to determine the most reliable metric and the best location for the sensor, using data from 20 healthy subjects who walked an average of 25 steps on a flat surface for this study (117 measurements were processed). All events were identified with less than a 2% difference from those obtained with the photogrammetry system. The smoothness metric with the least variance in all measurements was SPARC. For the smoothness metrics with the least variance, we found significant differences between applying the metrics with the complete signal (C) and the signal segmented by strides (S). This method is practical, time-effective, and low-cost in terms of computation. Furthermore, it is shown that analyzing gait signals segmented by strides provides more information about gait progression.Portable monitoring devices based on Inertial Measurement Units (IMUs) have the potential to serve as quantitative assessments of human movement. This article proposes a new method to identify the optimal placements of the IMUs and quantify the smoothness of the gait. First, it identifies gait events: foot-strike (FS) and foot-off (FO). Second, it segments the signals of linear acceleration and angular velocities obtained from the IMUs at four locations into steps and strides. Finally, it applies three smoothness metrics (SPARC, PM, and LDLJ) to determine the most reliable metric and the best location for the sensor, using data from 20 healthy subjects who walked an average of 25 steps on a flat surface for this study (117 measurements were processed). All events were identified with less than a 2% difference from those obtained with the photogrammetry system. The smoothness metric with the least variance in all measurements was SPARC. For the smoothness metrics with the least variance, we found significant differences between applying the metrics with the complete signal (C) and the signal segmented by strides (S). This method is practical, time-effective, and low-cost in terms of computation. Furthermore, it is shown that analyzing gait signals segmented by strides provides more information about gait progression. |
Audience | Academic |
Author | Sánchez-Fernández, Luis Pastor Quiñones-Urióstegui, Ivett Anaya-Campos, Leonardo Eliu |
AuthorAffiliation | 2 Centro de Investigación en Computación, Instituto Politécnico Nacional, Mexico City 07738, Mexico 1 Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City 14389, Mexico; lanaya2021@cic.ipn.mx (L.E.A.-C.); iquinones@inr.gob.mx (I.Q.-U.) |
AuthorAffiliation_xml | – name: 1 Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City 14389, Mexico; lanaya2021@cic.ipn.mx (L.E.A.-C.); iquinones@inr.gob.mx (I.Q.-U.) – name: 2 Centro de Investigación en Computación, Instituto Politécnico Nacional, Mexico City 07738, Mexico |
Author_xml | – sequence: 1 givenname: Leonardo Eliu orcidid: 0000-0002-3254-4243 surname: Anaya-Campos fullname: Anaya-Campos, Leonardo Eliu – sequence: 2 givenname: Luis Pastor orcidid: 0000-0002-5901-4349 surname: Sánchez-Fernández fullname: Sánchez-Fernández, Luis Pastor – sequence: 3 givenname: Ivett surname: Quiñones-Urióstegui fullname: Quiñones-Urióstegui, Ivett |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39860738$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkstuUzEQho9QEb3AghdAltiARIpvOcdeoSiCEimIRWBtjW-Jq3PsYp9QZcdr8Ho8CU5TohZ5YWvmm38unvPmJKbomuYlwZeMSfy-0CmmmLXiSXNGOOUTQSk-efA-bc5LucaYMsbEs-aUSdHijomz5vZLGkOKaDWkNG6iKwXNIvS7EgpKHo0bh64gjGi-M717h1ZuPbg4Oov0Dq3GHKxDEC2alZJMgL3jNoybu7hFdHkM0NegWFIuf379RstkYJ-vPG-eeuiLe3F_XzTfP338Nv88WX69Wsxny4nhrRwnkggsCNGaCQ8YDDauBdtJjzHXFLisVmklxVIIop2TnOkOQAN0nQfv2EWzOOjaBNfqJocB8k4lCOrOkPJaQa2yNqeIxQxTbqnnmlsvNaHYCNwKNiUdxrpqfTho3Wz14Kypg8jQPxJ97Ilho9bppyKka4XE06rw5l4hpx9bV0Y1hGJc30N0aVsUI1Mp6kfSPfr6P_Q6bXP9mgPVEtlxUqnLA7WG2kGIPtXEph7rhmDqlvhQ7TPBaDutE-I14NXDHo7F_9uICrw9ACanUrLzR4Rgtd82ddw29hdOW8cK |
Cites_doi | 10.1016/j.jbiomech.2011.12.020 10.1016/j.gaitpost.2014.03.002 10.3109/17518423.2013.776124 10.1186/s12984-015-0090-9 10.1098/rsbl.2010.0175 10.3390/s18113811 10.1016/j.gaitpost.2022.09.034 10.1186/s12877-023-03890-6 10.3390/s21123989 10.1186/s12984-016-0136-7 10.1016/j.gaitpost.2015.06.008 10.1186/s12984-021-00883-7 10.3390/ijerph192013440 10.1016/j.autcon.2019.04.016 10.1109/ICORR.2017.8009459 10.1093/gerona/glq170 10.1016/j.gaitpost.2018.05.025 10.1038/s41598-022-09149-1 10.1016/j.gaitpost.2011.03.020 10.1016/j.eswa.2021.115653 10.1016/B978-072160361-2.50035-1 10.1186/1743-0003-11-152 10.1109/MeMeA52024.2021.9478602 10.3389/fbioe.2020.558771 10.1109/TBME.2018.2813999 10.1186/s12984-018-0398-3 10.1186/1743-0003-11-128 10.1016/j.gaitpost.2019.04.023 10.1016/j.jbiomech.2016.10.013 10.1109/EMBC.2014.6944087 10.1016/j.gaitpost.2016.08.012 10.1016/j.gaitpost.2015.05.020 10.1109/TBME.2011.2179545 10.1109/TBME.2019.2955423 10.3390/s20123577 10.1016/j.gaitpost.2017.03.004 10.1109/JBHI.2015.2419317 10.1186/s12984-019-0579-8 10.1007/978-3-319-77700-9_2 10.1109/TSP.2015.2512562 10.1016/j.medengphy.2020.06.001 10.1186/s12984-016-0211-0 10.1016/j.gaitpost.2007.10.010 10.1109/CCE56709.2022.9975956 10.3200/35-09-004-RC 10.1371/journal.pone.0250100 10.1016/j.gaitpost.2018.08.025 10.2522/ptj.20070107 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2025 by the authors. 2025 |
Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2025 by the authors. 2025 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/s25020368 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central ProQuest One ProQuest Central Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database CrossRef MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_1d03024d2f4b4df9b120c8068351700b PMC11768905 A832658814 39860738 10_3390_s25020368 |
Genre | Journal Article |
GeographicLocations | Mexico |
GeographicLocations_xml | – name: Mexico |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M CGR CUY CVF ECM EIF NPM PMFND 3V. 7XB 8FK AZQEC DWQXO K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c469t-9180811bb38fa0ac0ce6ad79f004b2a49fa09d9209881bee943b7aabaa77fafe3 |
IEDL.DBID | M48 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:25:50 EDT 2025 Thu Aug 21 18:40:36 EDT 2025 Thu Jul 10 22:55:28 EDT 2025 Sat Aug 23 14:55:50 EDT 2025 Tue Jun 10 20:59:52 EDT 2025 Tue May 06 01:31:52 EDT 2025 Tue Jul 01 02:10:09 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | smoothness analysis rehabilitation human walking gait cycle inertial sensors’ locations motor task |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c469t-9180811bb38fa0ac0ce6ad79f004b2a49fa09d9209881bee943b7aabaa77fafe3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-5901-4349 0000-0002-3254-4243 |
OpenAccessLink | https://doaj.org/article/1d03024d2f4b4df9b120c8068351700b |
PMID | 39860738 |
PQID | 3159619741 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_1d03024d2f4b4df9b120c8068351700b pubmedcentral_primary_oai_pubmedcentral_nih_gov_11768905 proquest_miscellaneous_3159803625 proquest_journals_3159619741 gale_infotracacademiconefile_A832658814 pubmed_primary_39860738 crossref_primary_10_3390_s25020368 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-01-01 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2025 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | ref_50 Rezzoug (ref_14) 2015; 42 Hogan (ref_52) 2010; 41 Faisal (ref_16) 2020; 15 ref_58 ref_13 Handsaker (ref_44) 2016; 49 Sosnoff (ref_54) 2011; 34 ref_56 ref_55 ref_10 Bastas (ref_37) 2018; 64 ref_51 ref_19 Engdahl (ref_31) 2019; 71 ref_18 ref_17 ref_15 Daley (ref_11) 2010; 6 Balasubramanian (ref_20) 2012; 59 ref_24 ref_23 ref_21 Bisi (ref_39) 2018; 66 ref_29 Moreira (ref_35) 2018; 747 Qin (ref_45) 2016; 64 ref_26 Ciol (ref_59) 2009; 89 Saeys (ref_53) 2017; 54 Ghersi (ref_46) 2020; 82 Trojaniello (ref_38) 2015; 42 Ledoux (ref_1) 2018; 65 ref_36 ref_34 ref_30 Storm (ref_7) 2016; 50 Godfrey (ref_2) 2016; 20 Prateek (ref_57) 2020; 67 Sawa (ref_12) 2014; 40 Sandlund (ref_28) 2011; 17 Duarte (ref_22) 2010; 26 Montemurro (ref_32) 2022; 97 ref_47 Bergamini (ref_8) 2012; 45 (ref_25) 2017; 38 Zhang (ref_33) 2019; 104 ref_43 ref_42 ref_41 ref_40 ref_3 ref_49 ref_48 ref_9 (ref_27) 2014; 6 ref_4 Kavanagh (ref_5) 2008; 28 ref_6 |
References_xml | – volume: 45 start-page: 1123 year: 2012 ident: ref_8 article-title: Estimation of Temporal Parameters during Sprint Running Using a Trunk-Mounted Inertial Measurement Unit publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2011.12.020 – volume: 40 start-page: 123 year: 2014 ident: ref_12 article-title: The Association between Fear of Falling and Gait Variability in Both Leg and Trunk Movements publication-title: Gait Posture doi: 10.1016/j.gaitpost.2014.03.002 – volume: 17 start-page: 318 year: 2011 ident: ref_28 article-title: Low-Cost Motion Interactive Video Games in Home Training for Children with Cerebral Palsy: A Kinematic Evaluation publication-title: Dev. Neurorehabilit. doi: 10.3109/17518423.2013.776124 – ident: ref_9 – ident: ref_17 doi: 10.1186/s12984-015-0090-9 – volume: 6 start-page: 418 year: 2010 ident: ref_11 article-title: Two Explanations for the Compliant Running Paradox: Reduced Work of Bouncing Viscera and Increased Stability in Uneven Terrain publication-title: Biol. Lett. doi: 10.1098/rsbl.2010.0175 – ident: ref_56 doi: 10.3390/s18113811 – volume: 97 start-page: 17 year: 2022 ident: ref_32 article-title: Gait Smoothness Using Wearable Sensors in Patients with Neurological Disorders: A Comparison of Different Metrics publication-title: Gait Posture doi: 10.1016/j.gaitpost.2022.09.034 – ident: ref_58 doi: 10.1186/s12877-023-03890-6 – ident: ref_34 doi: 10.3390/s21123989 – ident: ref_10 doi: 10.1186/s12984-016-0136-7 – volume: 42 start-page: 310 year: 2015 ident: ref_38 article-title: Comparative Assessment of Different Methods for the Estimation of Gait Temporal Parameters Using a Single Inertial Sensor: Application to Elderly, Post-Stroke, Parkinson’s Disease and Huntington’s Disease Subjects publication-title: Gait Posture doi: 10.1016/j.gaitpost.2015.06.008 – ident: ref_47 doi: 10.1186/s12984-021-00883-7 – ident: ref_23 doi: 10.3390/ijerph192013440 – volume: 104 start-page: 120 year: 2019 ident: ref_33 article-title: Jerk as an Indicator of Physical Exertion and Fatigue publication-title: Autom. Constr. doi: 10.1016/j.autcon.2019.04.016 – ident: ref_30 doi: 10.1109/ICORR.2017.8009459 – ident: ref_51 doi: 10.1093/gerona/glq170 – ident: ref_4 – volume: 6 start-page: S88 year: 2014 ident: ref_27 article-title: Comparison of 4 Different Smoothness Metrics for the Quantitative Assessment of Movement’s Quality in the Upper Limb of Subjects with Cerebral Palsy publication-title: PM&R – ident: ref_48 – ident: ref_41 – volume: 64 start-page: 30 year: 2018 ident: ref_37 article-title: IMU-Based Gait Analysis in Lower Limb Prosthesis Users: Comparison of Step Demarcation Algorithms publication-title: Gait Posture doi: 10.1016/j.gaitpost.2018.05.025 – ident: ref_21 doi: 10.1038/s41598-022-09149-1 – volume: 34 start-page: 145 year: 2011 ident: ref_54 article-title: Quantifying Gait Impairment in Multiple Sclerosis Using GAITRite Technology publication-title: Gait Posture doi: 10.1016/j.gaitpost.2011.03.020 – ident: ref_6 doi: 10.1016/j.eswa.2021.115653 – ident: ref_43 doi: 10.1016/B978-072160361-2.50035-1 – ident: ref_55 doi: 10.1186/1743-0003-11-152 – volume: 26 start-page: 317 year: 2010 ident: ref_22 article-title: Early Detection of Non-Ambulatory Survivors Six Months after Stroke publication-title: NeuroRehabilitation – ident: ref_29 doi: 10.1109/MeMeA52024.2021.9478602 – ident: ref_49 doi: 10.3389/fbioe.2020.558771 – volume: 65 start-page: 2704 year: 2018 ident: ref_1 article-title: Inertial Sensing for Gait Event Detection and Transfemoral Prosthesis Control Strategy publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2018.2813999 – ident: ref_18 doi: 10.1186/s12984-018-0398-3 – ident: ref_13 doi: 10.1186/1743-0003-11-128 – volume: 71 start-page: 253 year: 2019 ident: ref_31 article-title: Reliability of Upper Limb Movement Quality Metrics During Everyday Tasks publication-title: Gait Posture doi: 10.1016/j.gaitpost.2019.04.023 – volume: 49 start-page: 4128 year: 2016 ident: ref_44 article-title: A Kinematic Algorithm to Identify Gait Events during Running at Different Speeds and with Different Foot-strike Types publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2016.10.013 – ident: ref_3 – ident: ref_26 doi: 10.1109/EMBC.2014.6944087 – volume: 50 start-page: 42 year: 2016 ident: ref_7 article-title: Gait Event Detection in Laboratory and Real Life Settings: Accuracy of Ankle and Waist Sensor Based Methods publication-title: Gait Posture doi: 10.1016/j.gaitpost.2016.08.012 – volume: 42 start-page: 409 year: 2015 ident: ref_14 article-title: Analysis of Several Methods and Inertial Sensors Locations to Assess Gait Parameters in Able-Bodied Subjects publication-title: Gait Posture doi: 10.1016/j.gaitpost.2015.05.020 – volume: 59 start-page: 2126 year: 2012 ident: ref_20 article-title: A Robust and Sensitive Metric for Quantifying Movement Smoothness publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2011.2179545 – ident: ref_40 – volume: 67 start-page: 2132 year: 2020 ident: ref_57 article-title: Gait Cycle Validation and Segmentation Using Inertial Sensors publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2019.2955423 – ident: ref_19 doi: 10.3390/s20123577 – volume: 54 start-page: 133 year: 2017 ident: ref_53 article-title: Trunk Biomechanics during Hemiplegic Gait after Stroke: A Systematic Review publication-title: Gait Posture doi: 10.1016/j.gaitpost.2017.03.004 – volume: 20 start-page: 838 year: 2016 ident: ref_2 article-title: Validation of an Accelerometer to Quantify a Comprehensive Battery of Gait Characteristics in Healthy Older Adults and Parkinson’s Disease: Toward Clinical and at Home Use publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2015.2419317 – ident: ref_36 doi: 10.1186/s12984-019-0579-8 – volume: 747 start-page: 9 year: 2018 ident: ref_35 article-title: Real-Time Tool for Human Gait Detection from Lower Trunk Acceleration publication-title: Adv. Intell. Syst. Comput. doi: 10.1007/978-3-319-77700-9_2 – volume: 64 start-page: 3106 year: 2016 ident: ref_45 article-title: Wideband Spectrum Sensing on Real-Time Signals at Sub-Nyquist Sampling Rates in Single and Cooperative Multiple Nodes publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2015.2512562 – volume: 82 start-page: 70 year: 2020 ident: ref_46 article-title: Gait-Cycle Segmentation Method Based on Lower-Trunk Acceleration Signals and Dynamic Time Warping publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2020.06.001 – ident: ref_50 doi: 10.1186/s12984-016-0211-0 – volume: 38 start-page: 343 year: 2017 ident: ref_25 article-title: Segmentación Automática Del Movimiento En La Valoración Funcional Del Miembro Superior En Niños Con Parálisis Cerebral publication-title: Rev. Mex. Ing. Biomed. – volume: 28 start-page: 1 year: 2008 ident: ref_5 article-title: Accelerometry: A Technique for Quantifying Movement Patterns during Walking publication-title: Gait Posture doi: 10.1016/j.gaitpost.2007.10.010 – ident: ref_15 – ident: ref_42 doi: 10.1109/CCE56709.2022.9975956 – volume: 41 start-page: 529 year: 2010 ident: ref_52 article-title: Sensitivity of Smoothness Measures to Movement Duration, Amplitude, and Arrests publication-title: J. Mot. Behav. doi: 10.3200/35-09-004-RC – ident: ref_24 doi: 10.1371/journal.pone.0250100 – volume: 15 start-page: 826 year: 2020 ident: ref_16 article-title: A Review of Accelerometer Sensor and Gyroscope Sensor in IMU Sensors on Motion Capture publication-title: J. Eng. Appl. Sci. – volume: 66 start-page: 76 year: 2018 ident: ref_39 article-title: Analysis of the Performance of 17 Algorithms from a Systematic Review: Influence of Sensor Position, Analysed Variable and Computational Approach in Gait Timing Estimation from IMU Measurements publication-title: Gait Posture doi: 10.1016/j.gaitpost.2018.08.025 – volume: 89 start-page: 324 year: 2009 ident: ref_59 article-title: Falls in the Medicare Population: Incidence, Associated Factors, and Impact on Health Care publication-title: Phys. Ther. doi: 10.2522/ptj.20070107 |
SSID | ssj0023338 |
Score | 2.4428177 |
Snippet | Portable monitoring devices based on Inertial Measurement Units (IMUs) have the potential to serve as quantitative assessments of human movement. This article... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | 368 |
SubjectTerms | Acceleration Accelerometry Adult Algorithms Analysis Biomechanical Phenomena Biomechanics Female Foot - physiology Fourier transforms Gait Gait - physiology Gait Analysis - methods gait cycle human walking Humans inertial sensors’ locations Kinematics Male Motion Motion capture motor task Multiple sclerosis Photogrammetry rehabilitation Sensors Signal Processing, Computer-Assisted smoothness analysis Velocity Walking - physiology Young Adult |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV27jtQwFLXQVlAg3gQWZBASDdEmsePY5bJiWRDQDCttZ9mxDVOQoJms0Hb8Br_Hl3DsJKOJKGho4zyc-zzXcc4l5IV0Vagqx_NKKJnz1sLnhFJ52RQmCNdw69MG2U_i7Jy_v6gv9lp9xT1hIz3wKLij0sEMK45bcstdULasilYWAsghUsvZGH2R8-Ziaiq1GCqvkUeIoag_2iLRxy9ucpF9Ekn_36F4Lxct90nuJZ7TW-TmhBjp8TjT2-Sa7-6QG3s8gnfJj4-pFw9dfesh-Bi86Ew2QvtAgfHoW7Me6MkV7vCKrvyXRMXpqL2iq2Gzdp6aztFZVRiIy7Ppundd3HiN569Q7_ab7e-fv-iHflrnu0fOT998PjnLp44KeYsyeEBki402SmuZDKYwbdF6YVyjAlzFVoYrHFVOQaAScNZ7xZltjLHGNE0wwbP75KDrO_-QUOAYb2pXM69q7tpaWtnwUIq2MCxYITLyfJa0_j4SZ2gUHFEdeqeOjLyOOtidELmu0wFYgJ4sQP_LAjLyMmpQR4-Emloz_ViAeUZuK32MoAWcJUuekcNZyXpy1a1mAHSoIoGsMvJsNwwni19OTOf7y_EcGXN9nZEHo03s5syUFIiTeBe5sJbFSy1HuvXXRORdlij2VFE_-h9ieEyuV7E3cVoeOiQHw-bSPwFgGuzT5Bt_AMEIFNw priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagXOCAyjttQQYhcSFqHo5jn1CpKAUBl6XS3iw_2z2QlN1UVW_9G_17_BJmnGS7ERJX20mczHs8-YaQt8IVoSgcSwsuRcqsAZnjUqZ5nenAXc2MjwWyP_jxCfs6r-ZDwm01lFWOOjEqatdazJHvl2B3wdkHA_jh_HeKXaPwdHVooXGX3EPoMizpque3AVcJ8VePJlRCaL-_AnOP525iYoMiVP-_CnnDIk2rJTfMz9E2eTj4jfSgJ_Qjcsc3j8mDDTTBJ-Tye-zIQ2e_Wvj8qMLoCDlC20DB06Of9aKjh1dwh_d05k8jIKej5orOuuXCeaobR0eCwQQmaeN1Xxosv4bnzyDqbZerP9c39Fs7ZPuekpOjTz8Pj9Ohr0JqIRjuQL9hu43cmFIEnWmbWc-1q2UAgTGFZhJGpZNFJgU4td5LVppaa6N1XQcdfPmMbDVt418QCt6M15WrSi8r5mwljKhZyLnNdBkM5wl5M35pdd7DZygIO5Acak2OhHxEGqwXIOJ1HGiXp2oQIJU7UEcFA9ZihrkgTV5kVmQcPEiEGDQJeYcUVCiXQCarh98LYJ-IcKUOQHWBtyVylpC9kchqENiVumWvhLxeT4Oo4fmJbnx70a8RaPGrhDzveWK951IKDtoS3kVMuGXyUtOZZnEW4bzzHEI-mVU7_9_XLrlfYO_hmP7ZI1vd8sK_BIeoM68i1_8FZCMNpQ priority: 102 providerName: ProQuest |
Title | Motion Smoothness Analysis of the Gait Cycle, Segmented by Stride and Associated with the Inertial Sensors’ Locations |
URI | https://www.ncbi.nlm.nih.gov/pubmed/39860738 https://www.proquest.com/docview/3159619741 https://www.proquest.com/docview/3159803625 https://pubmed.ncbi.nlm.nih.gov/PMC11768905 https://doaj.org/article/1d03024d2f4b4df9b120c8068351700b |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LbtQwFL3qYwMLxLspZWQQEhsCieMk9gKhtuq0IFohhpFmF9mxU0aCpGRSwez4DX6PL-HaeWgiWLDJIs7Dzn2dazvnAjzjmhaUaubTRHCf5QptLhHCD9NAFolOmTJug-xFcjZn7xbxYgv6GpvdB1z9M7Wz9aTm9ZeXP76t36DBv7YZJ6bsr1YYxu16Gt-GXQxIqbXPczYsJtAocgWt7T9dPsbDoCUYGt86CkuOvf9vH70RpMYbKDci0vQ23OqgJDlsZX8Htkx5F25uEAzeg-_nrkgPmX2tUCLWq5GehYRUBUHwR07lsiHHa3zCCzIzl46jUxO1JrOmXmpDZKlJL0NssPO27r63pd2Rje-fYSJc1avfP3-R91U3AXgf5tOTT8dnfldqwc8xP27Q5dkKHKFSES9kIPMgN4nUqSjQhhSVTOBZoQUNBEeca4xgkUqlVFKmaSELEz2AnbIqzR4QBDhGxjqOjIiZzmOueMqKMMkDGRUqSTx42n_p7Kpl1MgwE7HiyAZxeHBkZTBcYEmw3Ymqvsw6m8pCjR6KMtQ2ppguhAppkPMgQVBpWQeVB8-tBDOrPCimXHZ_HGA_LelVdojeDAEYD5kHB72Qs14FswiRHqaXCLk8eDI0o_XZJRVZmuq6vYZbEBB78LDViaHPkeAJOlAcCx9py2hQ45Zy-dkxfIchZoEiiPf_ewSP4Aa1lYnd5NAB7DT1tXmMcKlRE9hOFyke-fR0ArtHJxcfPk7c1MPEmckfjbEZVQ |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtQwFL0qZQEsEG8CBQwCsSGq4ziOvUCoFMoMnXYzrTS71I6dMguSMpOqmh2_wU_wUXwJ13lMZ4TErlvbSZzc17m2cy7Aa2lZwZjlIRNKhjw3aHNCqTBKqS6ETblxzQHZQzE45l8nyWQDfvf_wvhjlb1PbBy1rXK_Rr4dY9xFsI8B8MPZj9BXjfK7q30JjVYt9t3iAlO2-fvhJ5TvG8b2Ph_tDsKuqkCYYypYo3X7YhORMbEsNNU5zZ3QNlUFqothmitsVVYxqiRCOucUj02qtdE6TQtduBjvew2uY-Cl3qLSyWWCF2O-17IXxbGi23OEF36fT67FvKY0wL8BYCUCrp_OXAl3e3fgdodTyU6rWHdhw5X34NYKe-F9uDhoKgCR8fcKxe1dJukpTkhVEESW5Iue1mR3gXd4R8butCEAtcQsyLieTa0jurSkVxDs8IvCzXXD0h_3xuePMcuuZvM_P3-RUdWtLj6A4yv54g9hs6xK9xgIoienE5vETiXc5ok0MuVFJHKq48IIEcCr_ktnZy1dR4ZpjhdHthRHAB-9DJYDPMN201DNTrPOYLPIovtjHFWZG24LZSJGc0kFIlZPaWgCeOslmHk_gGLKdfc7A87TM2plO-gqEd3JiAew1Qs56xzEPLtU5wBeLrvRtP1-jS5ddd6OkR5hJAE8anViOedYSYHeGd9FrmnL2kut95TTbw19eBRhiqlo8uT_83oBNwZHB6NsNDzcfwo3ma973Cw9bcFmPTt3zxCM1eZ5YwEETq7a5P4CklFMGg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtQwFL0qRUKwQLwJFDAIxIZoEttJ7AVCpWXo0FIhDZVml9qxXWZBUmZSVbPjN_gVPocv4TqP6YyQ2HUb5-Hkvs61b84FeCkMdZQaHtJUipAXGm0ulTKMs0i51GRc26ZA9jDdO-KfJslkA373_8L4ssreJzaO2lSFXyMfMIy7CPYxAA5cVxbxZXf47vRH6DtI-Z3Wvp1GqyL7dnGO6dv87WgXZf2K0uGHrzt7YddhICwwLazR0n3jiVhrJpyKVBEVNlUmkw5VR1PFJR6VRtJICoR31krOdKaUVirLnHKW4X2vwNWMJbG3sWxykewxzP1aJiPGZDSYI9Twe35iLf41bQL-DQYr0XC9UnMl9A1vwc0Os5LtVsluw4Yt78CNFSbDu3D-uekGRMbfKxS9d5-kpzshlSOIMslHNa3JzgLv8IaM7UlDBmqIXpBxPZsaS1RpSK8sOOAXiJvrRqUv_cbnjzHjrmbzPz9_kYOqW2m8B0eX8sXvw2ZZlfYhEERSViUmYVYm3BSJ0CLjLk6LSDGn0zSAF_2Xzk9b6o4cUx4vjnwpjgDeexksT_Bs282BanaSd8abxwZdIeWo1lxz46SOaVSIKEX06ukNdQCvvQRz7xNQTIXqfm3AeXp2rXwb3SYiPRHzALZ6Ieeds5jnF6odwPPlMJq537tRpa3O2nOERxtJAA9anVjOmUmRoqfGdxFr2rL2Uusj5fRbQyUex5huyih59P95PYNraGz5wehw_zFcp74FcrMKtQWb9ezMPkFcVuunjQEQOL5si_sLtsVQUA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Motion+Smoothness+Analysis+of+the+Gait+Cycle%2C+Segmented+by+Stride+and+Associated+with+the+Inertial+Sensors%E2%80%99+Locations&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Anaya-Campos%2C+Leonardo+Eliu&rft.au=S%C3%A1nchez-Fern%C3%A1ndez%2C+Luis+Pastor&rft.au=Qui%C3%B1ones-Uri%C3%B3stegui%2C+Ivett&rft.date=2025-01-01&rft.pub=MDPI+AG&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=25&rft.issue=2&rft_id=info:doi/10.3390%2Fs25020368&rft.externalDocID=A832658814 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |