Motion Smoothness Analysis of the Gait Cycle, Segmented by Stride and Associated with the Inertial Sensors’ Locations

Portable monitoring devices based on Inertial Measurement Units (IMUs) have the potential to serve as quantitative assessments of human movement. This article proposes a new method to identify the optimal placements of the IMUs and quantify the smoothness of the gait. First, it identifies gait event...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 25; no. 2; p. 368
Main Authors Anaya-Campos, Leonardo Eliu, Sánchez-Fernández, Luis Pastor, Quiñones-Urióstegui, Ivett
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 01.01.2025
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Portable monitoring devices based on Inertial Measurement Units (IMUs) have the potential to serve as quantitative assessments of human movement. This article proposes a new method to identify the optimal placements of the IMUs and quantify the smoothness of the gait. First, it identifies gait events: foot-strike (FS) and foot-off (FO). Second, it segments the signals of linear acceleration and angular velocities obtained from the IMUs at four locations into steps and strides. Finally, it applies three smoothness metrics (SPARC, PM, and LDLJ) to determine the most reliable metric and the best location for the sensor, using data from 20 healthy subjects who walked an average of 25 steps on a flat surface for this study (117 measurements were processed). All events were identified with less than a 2% difference from those obtained with the photogrammetry system. The smoothness metric with the least variance in all measurements was SPARC. For the smoothness metrics with the least variance, we found significant differences between applying the metrics with the complete signal (C) and the signal segmented by strides (S). This method is practical, time-effective, and low-cost in terms of computation. Furthermore, it is shown that analyzing gait signals segmented by strides provides more information about gait progression.
AbstractList Portable monitoring devices based on Inertial Measurement Units (IMUs) have the potential to serve as quantitative assessments of human movement. This article proposes a new method to identify the optimal placements of the IMUs and quantify the smoothness of the gait. First, it identifies gait events: foot-strike (FS) and foot-off (FO). Second, it segments the signals of linear acceleration and angular velocities obtained from the IMUs at four locations into steps and strides. Finally, it applies three smoothness metrics (SPARC, PM, and LDLJ) to determine the most reliable metric and the best location for the sensor, using data from 20 healthy subjects who walked an average of 25 steps on a flat surface for this study (117 measurements were processed). All events were identified with less than a 2% difference from those obtained with the photogrammetry system. The smoothness metric with the least variance in all measurements was SPARC. For the smoothness metrics with the least variance, we found significant differences between applying the metrics with the complete signal (C) and the signal segmented by strides (S). This method is practical, time-effective, and low-cost in terms of computation. Furthermore, it is shown that analyzing gait signals segmented by strides provides more information about gait progression.
Portable monitoring devices based on Inertial Measurement Units (IMUs) have the potential to serve as quantitative assessments of human movement. This article proposes a new method to identify the optimal placements of the IMUs and quantify the smoothness of the gait. First, it identifies gait events: foot-strike (FS) and foot-off (FO). Second, it segments the signals of linear acceleration and angular velocities obtained from the IMUs at four locations into steps and strides. Finally, it applies three smoothness metrics (SPARC, PM, and LDLJ) to determine the most reliable metric and the best location for the sensor, using data from 20 healthy subjects who walked an average of 25 steps on a flat surface for this study (117 measurements were processed). All events were identified with less than a 2% difference from those obtained with the photogrammetry system. The smoothness metric with the least variance in all measurements was SPARC. For the smoothness metrics with the least variance, we found significant differences between applying the metrics with the complete signal (C) and the signal segmented by strides (S). This method is practical, time-effective, and low-cost in terms of computation. Furthermore, it is shown that analyzing gait signals segmented by strides provides more information about gait progression.Portable monitoring devices based on Inertial Measurement Units (IMUs) have the potential to serve as quantitative assessments of human movement. This article proposes a new method to identify the optimal placements of the IMUs and quantify the smoothness of the gait. First, it identifies gait events: foot-strike (FS) and foot-off (FO). Second, it segments the signals of linear acceleration and angular velocities obtained from the IMUs at four locations into steps and strides. Finally, it applies three smoothness metrics (SPARC, PM, and LDLJ) to determine the most reliable metric and the best location for the sensor, using data from 20 healthy subjects who walked an average of 25 steps on a flat surface for this study (117 measurements were processed). All events were identified with less than a 2% difference from those obtained with the photogrammetry system. The smoothness metric with the least variance in all measurements was SPARC. For the smoothness metrics with the least variance, we found significant differences between applying the metrics with the complete signal (C) and the signal segmented by strides (S). This method is practical, time-effective, and low-cost in terms of computation. Furthermore, it is shown that analyzing gait signals segmented by strides provides more information about gait progression.
Audience Academic
Author Sánchez-Fernández, Luis Pastor
Quiñones-Urióstegui, Ivett
Anaya-Campos, Leonardo Eliu
AuthorAffiliation 2 Centro de Investigación en Computación, Instituto Politécnico Nacional, Mexico City 07738, Mexico
1 Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City 14389, Mexico; lanaya2021@cic.ipn.mx (L.E.A.-C.); iquinones@inr.gob.mx (I.Q.-U.)
AuthorAffiliation_xml – name: 1 Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City 14389, Mexico; lanaya2021@cic.ipn.mx (L.E.A.-C.); iquinones@inr.gob.mx (I.Q.-U.)
– name: 2 Centro de Investigación en Computación, Instituto Politécnico Nacional, Mexico City 07738, Mexico
Author_xml – sequence: 1
  givenname: Leonardo Eliu
  orcidid: 0000-0002-3254-4243
  surname: Anaya-Campos
  fullname: Anaya-Campos, Leonardo Eliu
– sequence: 2
  givenname: Luis Pastor
  orcidid: 0000-0002-5901-4349
  surname: Sánchez-Fernández
  fullname: Sánchez-Fernández, Luis Pastor
– sequence: 3
  givenname: Ivett
  surname: Quiñones-Urióstegui
  fullname: Quiñones-Urióstegui, Ivett
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39860738$$D View this record in MEDLINE/PubMed
BookMark eNpdkstuUzEQho9QEb3AghdAltiARIpvOcdeoSiCEimIRWBtjW-Jq3PsYp9QZcdr8Ho8CU5TohZ5YWvmm38unvPmJKbomuYlwZeMSfy-0CmmmLXiSXNGOOUTQSk-efA-bc5LucaYMsbEs-aUSdHijomz5vZLGkOKaDWkNG6iKwXNIvS7EgpKHo0bh64gjGi-M717h1ZuPbg4Oov0Dq3GHKxDEC2alZJMgL3jNoybu7hFdHkM0NegWFIuf379RstkYJ-vPG-eeuiLe3F_XzTfP338Nv88WX69Wsxny4nhrRwnkggsCNGaCQ8YDDauBdtJjzHXFLisVmklxVIIop2TnOkOQAN0nQfv2EWzOOjaBNfqJocB8k4lCOrOkPJaQa2yNqeIxQxTbqnnmlsvNaHYCNwKNiUdxrpqfTho3Wz14Kypg8jQPxJ97Ilho9bppyKka4XE06rw5l4hpx9bV0Y1hGJc30N0aVsUI1Mp6kfSPfr6P_Q6bXP9mgPVEtlxUqnLA7WG2kGIPtXEph7rhmDqlvhQ7TPBaDutE-I14NXDHo7F_9uICrw9ACanUrLzR4Rgtd82ddw29hdOW8cK
Cites_doi 10.1016/j.jbiomech.2011.12.020
10.1016/j.gaitpost.2014.03.002
10.3109/17518423.2013.776124
10.1186/s12984-015-0090-9
10.1098/rsbl.2010.0175
10.3390/s18113811
10.1016/j.gaitpost.2022.09.034
10.1186/s12877-023-03890-6
10.3390/s21123989
10.1186/s12984-016-0136-7
10.1016/j.gaitpost.2015.06.008
10.1186/s12984-021-00883-7
10.3390/ijerph192013440
10.1016/j.autcon.2019.04.016
10.1109/ICORR.2017.8009459
10.1093/gerona/glq170
10.1016/j.gaitpost.2018.05.025
10.1038/s41598-022-09149-1
10.1016/j.gaitpost.2011.03.020
10.1016/j.eswa.2021.115653
10.1016/B978-072160361-2.50035-1
10.1186/1743-0003-11-152
10.1109/MeMeA52024.2021.9478602
10.3389/fbioe.2020.558771
10.1109/TBME.2018.2813999
10.1186/s12984-018-0398-3
10.1186/1743-0003-11-128
10.1016/j.gaitpost.2019.04.023
10.1016/j.jbiomech.2016.10.013
10.1109/EMBC.2014.6944087
10.1016/j.gaitpost.2016.08.012
10.1016/j.gaitpost.2015.05.020
10.1109/TBME.2011.2179545
10.1109/TBME.2019.2955423
10.3390/s20123577
10.1016/j.gaitpost.2017.03.004
10.1109/JBHI.2015.2419317
10.1186/s12984-019-0579-8
10.1007/978-3-319-77700-9_2
10.1109/TSP.2015.2512562
10.1016/j.medengphy.2020.06.001
10.1186/s12984-016-0211-0
10.1016/j.gaitpost.2007.10.010
10.1109/CCE56709.2022.9975956
10.3200/35-09-004-RC
10.1371/journal.pone.0250100
10.1016/j.gaitpost.2018.08.025
10.2522/ptj.20070107
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2025 by the authors. 2025
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2025 by the authors. 2025
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s25020368
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
ProQuest One
ProQuest Central
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
CrossRef
MEDLINE - Academic



MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_1d03024d2f4b4df9b120c8068351700b
PMC11768905
A832658814
39860738
10_3390_s25020368
Genre Journal Article
GeographicLocations Mexico
GeographicLocations_xml – name: Mexico
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
CGR
CUY
CVF
ECM
EIF
NPM
PMFND
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c469t-9180811bb38fa0ac0ce6ad79f004b2a49fa09d9209881bee943b7aabaa77fafe3
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 01:25:50 EDT 2025
Thu Aug 21 18:40:36 EDT 2025
Thu Jul 10 22:55:28 EDT 2025
Sat Aug 23 14:55:50 EDT 2025
Tue Jun 10 20:59:52 EDT 2025
Tue May 06 01:31:52 EDT 2025
Tue Jul 01 02:10:09 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords smoothness analysis
rehabilitation
human walking
gait cycle
inertial sensors’ locations
motor task
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c469t-9180811bb38fa0ac0ce6ad79f004b2a49fa09d9209881bee943b7aabaa77fafe3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5901-4349
0000-0002-3254-4243
OpenAccessLink https://doaj.org/article/1d03024d2f4b4df9b120c8068351700b
PMID 39860738
PQID 3159619741
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_1d03024d2f4b4df9b120c8068351700b
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11768905
proquest_miscellaneous_3159803625
proquest_journals_3159619741
gale_infotracacademiconefile_A832658814
pubmed_primary_39860738
crossref_primary_10_3390_s25020368
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2025
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References ref_50
Rezzoug (ref_14) 2015; 42
Hogan (ref_52) 2010; 41
Faisal (ref_16) 2020; 15
ref_58
ref_13
Handsaker (ref_44) 2016; 49
Sosnoff (ref_54) 2011; 34
ref_56
ref_55
ref_10
Bastas (ref_37) 2018; 64
ref_51
ref_19
Engdahl (ref_31) 2019; 71
ref_18
ref_17
ref_15
Daley (ref_11) 2010; 6
Balasubramanian (ref_20) 2012; 59
ref_24
ref_23
ref_21
Bisi (ref_39) 2018; 66
ref_29
Moreira (ref_35) 2018; 747
Qin (ref_45) 2016; 64
ref_26
Ciol (ref_59) 2009; 89
Saeys (ref_53) 2017; 54
Ghersi (ref_46) 2020; 82
Trojaniello (ref_38) 2015; 42
Ledoux (ref_1) 2018; 65
ref_36
ref_34
ref_30
Storm (ref_7) 2016; 50
Godfrey (ref_2) 2016; 20
Prateek (ref_57) 2020; 67
Sawa (ref_12) 2014; 40
Sandlund (ref_28) 2011; 17
Duarte (ref_22) 2010; 26
Montemurro (ref_32) 2022; 97
ref_47
Bergamini (ref_8) 2012; 45
(ref_25) 2017; 38
Zhang (ref_33) 2019; 104
ref_43
ref_42
ref_41
ref_40
ref_3
ref_49
ref_48
ref_9
(ref_27) 2014; 6
ref_4
Kavanagh (ref_5) 2008; 28
ref_6
References_xml – volume: 45
  start-page: 1123
  year: 2012
  ident: ref_8
  article-title: Estimation of Temporal Parameters during Sprint Running Using a Trunk-Mounted Inertial Measurement Unit
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2011.12.020
– volume: 40
  start-page: 123
  year: 2014
  ident: ref_12
  article-title: The Association between Fear of Falling and Gait Variability in Both Leg and Trunk Movements
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2014.03.002
– volume: 17
  start-page: 318
  year: 2011
  ident: ref_28
  article-title: Low-Cost Motion Interactive Video Games in Home Training for Children with Cerebral Palsy: A Kinematic Evaluation
  publication-title: Dev. Neurorehabilit.
  doi: 10.3109/17518423.2013.776124
– ident: ref_9
– ident: ref_17
  doi: 10.1186/s12984-015-0090-9
– volume: 6
  start-page: 418
  year: 2010
  ident: ref_11
  article-title: Two Explanations for the Compliant Running Paradox: Reduced Work of Bouncing Viscera and Increased Stability in Uneven Terrain
  publication-title: Biol. Lett.
  doi: 10.1098/rsbl.2010.0175
– ident: ref_56
  doi: 10.3390/s18113811
– volume: 97
  start-page: 17
  year: 2022
  ident: ref_32
  article-title: Gait Smoothness Using Wearable Sensors in Patients with Neurological Disorders: A Comparison of Different Metrics
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2022.09.034
– ident: ref_58
  doi: 10.1186/s12877-023-03890-6
– ident: ref_34
  doi: 10.3390/s21123989
– ident: ref_10
  doi: 10.1186/s12984-016-0136-7
– volume: 42
  start-page: 310
  year: 2015
  ident: ref_38
  article-title: Comparative Assessment of Different Methods for the Estimation of Gait Temporal Parameters Using a Single Inertial Sensor: Application to Elderly, Post-Stroke, Parkinson’s Disease and Huntington’s Disease Subjects
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2015.06.008
– ident: ref_47
  doi: 10.1186/s12984-021-00883-7
– ident: ref_23
  doi: 10.3390/ijerph192013440
– volume: 104
  start-page: 120
  year: 2019
  ident: ref_33
  article-title: Jerk as an Indicator of Physical Exertion and Fatigue
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2019.04.016
– ident: ref_30
  doi: 10.1109/ICORR.2017.8009459
– ident: ref_51
  doi: 10.1093/gerona/glq170
– ident: ref_4
– volume: 6
  start-page: S88
  year: 2014
  ident: ref_27
  article-title: Comparison of 4 Different Smoothness Metrics for the Quantitative Assessment of Movement’s Quality in the Upper Limb of Subjects with Cerebral Palsy
  publication-title: PM&R
– ident: ref_48
– ident: ref_41
– volume: 64
  start-page: 30
  year: 2018
  ident: ref_37
  article-title: IMU-Based Gait Analysis in Lower Limb Prosthesis Users: Comparison of Step Demarcation Algorithms
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2018.05.025
– ident: ref_21
  doi: 10.1038/s41598-022-09149-1
– volume: 34
  start-page: 145
  year: 2011
  ident: ref_54
  article-title: Quantifying Gait Impairment in Multiple Sclerosis Using GAITRite Technology
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2011.03.020
– ident: ref_6
  doi: 10.1016/j.eswa.2021.115653
– ident: ref_43
  doi: 10.1016/B978-072160361-2.50035-1
– ident: ref_55
  doi: 10.1186/1743-0003-11-152
– volume: 26
  start-page: 317
  year: 2010
  ident: ref_22
  article-title: Early Detection of Non-Ambulatory Survivors Six Months after Stroke
  publication-title: NeuroRehabilitation
– ident: ref_29
  doi: 10.1109/MeMeA52024.2021.9478602
– ident: ref_49
  doi: 10.3389/fbioe.2020.558771
– volume: 65
  start-page: 2704
  year: 2018
  ident: ref_1
  article-title: Inertial Sensing for Gait Event Detection and Transfemoral Prosthesis Control Strategy
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2018.2813999
– ident: ref_18
  doi: 10.1186/s12984-018-0398-3
– ident: ref_13
  doi: 10.1186/1743-0003-11-128
– volume: 71
  start-page: 253
  year: 2019
  ident: ref_31
  article-title: Reliability of Upper Limb Movement Quality Metrics During Everyday Tasks
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2019.04.023
– volume: 49
  start-page: 4128
  year: 2016
  ident: ref_44
  article-title: A Kinematic Algorithm to Identify Gait Events during Running at Different Speeds and with Different Foot-strike Types
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2016.10.013
– ident: ref_3
– ident: ref_26
  doi: 10.1109/EMBC.2014.6944087
– volume: 50
  start-page: 42
  year: 2016
  ident: ref_7
  article-title: Gait Event Detection in Laboratory and Real Life Settings: Accuracy of Ankle and Waist Sensor Based Methods
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2016.08.012
– volume: 42
  start-page: 409
  year: 2015
  ident: ref_14
  article-title: Analysis of Several Methods and Inertial Sensors Locations to Assess Gait Parameters in Able-Bodied Subjects
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2015.05.020
– volume: 59
  start-page: 2126
  year: 2012
  ident: ref_20
  article-title: A Robust and Sensitive Metric for Quantifying Movement Smoothness
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2011.2179545
– ident: ref_40
– volume: 67
  start-page: 2132
  year: 2020
  ident: ref_57
  article-title: Gait Cycle Validation and Segmentation Using Inertial Sensors
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2019.2955423
– ident: ref_19
  doi: 10.3390/s20123577
– volume: 54
  start-page: 133
  year: 2017
  ident: ref_53
  article-title: Trunk Biomechanics during Hemiplegic Gait after Stroke: A Systematic Review
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2017.03.004
– volume: 20
  start-page: 838
  year: 2016
  ident: ref_2
  article-title: Validation of an Accelerometer to Quantify a Comprehensive Battery of Gait Characteristics in Healthy Older Adults and Parkinson’s Disease: Toward Clinical and at Home Use
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2015.2419317
– ident: ref_36
  doi: 10.1186/s12984-019-0579-8
– volume: 747
  start-page: 9
  year: 2018
  ident: ref_35
  article-title: Real-Time Tool for Human Gait Detection from Lower Trunk Acceleration
  publication-title: Adv. Intell. Syst. Comput.
  doi: 10.1007/978-3-319-77700-9_2
– volume: 64
  start-page: 3106
  year: 2016
  ident: ref_45
  article-title: Wideband Spectrum Sensing on Real-Time Signals at Sub-Nyquist Sampling Rates in Single and Cooperative Multiple Nodes
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2015.2512562
– volume: 82
  start-page: 70
  year: 2020
  ident: ref_46
  article-title: Gait-Cycle Segmentation Method Based on Lower-Trunk Acceleration Signals and Dynamic Time Warping
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2020.06.001
– ident: ref_50
  doi: 10.1186/s12984-016-0211-0
– volume: 38
  start-page: 343
  year: 2017
  ident: ref_25
  article-title: Segmentación Automática Del Movimiento En La Valoración Funcional Del Miembro Superior En Niños Con Parálisis Cerebral
  publication-title: Rev. Mex. Ing. Biomed.
– volume: 28
  start-page: 1
  year: 2008
  ident: ref_5
  article-title: Accelerometry: A Technique for Quantifying Movement Patterns during Walking
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2007.10.010
– ident: ref_15
– ident: ref_42
  doi: 10.1109/CCE56709.2022.9975956
– volume: 41
  start-page: 529
  year: 2010
  ident: ref_52
  article-title: Sensitivity of Smoothness Measures to Movement Duration, Amplitude, and Arrests
  publication-title: J. Mot. Behav.
  doi: 10.3200/35-09-004-RC
– ident: ref_24
  doi: 10.1371/journal.pone.0250100
– volume: 15
  start-page: 826
  year: 2020
  ident: ref_16
  article-title: A Review of Accelerometer Sensor and Gyroscope Sensor in IMU Sensors on Motion Capture
  publication-title: J. Eng. Appl. Sci.
– volume: 66
  start-page: 76
  year: 2018
  ident: ref_39
  article-title: Analysis of the Performance of 17 Algorithms from a Systematic Review: Influence of Sensor Position, Analysed Variable and Computational Approach in Gait Timing Estimation from IMU Measurements
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2018.08.025
– volume: 89
  start-page: 324
  year: 2009
  ident: ref_59
  article-title: Falls in the Medicare Population: Incidence, Associated Factors, and Impact on Health Care
  publication-title: Phys. Ther.
  doi: 10.2522/ptj.20070107
SSID ssj0023338
Score 2.4428177
Snippet Portable monitoring devices based on Inertial Measurement Units (IMUs) have the potential to serve as quantitative assessments of human movement. This article...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 368
SubjectTerms Acceleration
Accelerometry
Adult
Algorithms
Analysis
Biomechanical Phenomena
Biomechanics
Female
Foot - physiology
Fourier transforms
Gait
Gait - physiology
Gait Analysis - methods
gait cycle
human walking
Humans
inertial sensors’ locations
Kinematics
Male
Motion
Motion capture
motor task
Multiple sclerosis
Photogrammetry
rehabilitation
Sensors
Signal Processing, Computer-Assisted
smoothness analysis
Velocity
Walking - physiology
Young Adult
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV27jtQwFLXQVlAg3gQWZBASDdEmsePY5bJiWRDQDCttZ9mxDVOQoJms0Hb8Br_Hl3DsJKOJKGho4zyc-zzXcc4l5IV0Vagqx_NKKJnz1sLnhFJ52RQmCNdw69MG2U_i7Jy_v6gv9lp9xT1hIz3wKLij0sEMK45bcstdULasilYWAsghUsvZGH2R8-Ziaiq1GCqvkUeIoag_2iLRxy9ucpF9Ekn_36F4Lxct90nuJZ7TW-TmhBjp8TjT2-Sa7-6QG3s8gnfJj4-pFw9dfesh-Bi86Ew2QvtAgfHoW7Me6MkV7vCKrvyXRMXpqL2iq2Gzdp6aztFZVRiIy7Ppundd3HiN569Q7_ab7e-fv-iHflrnu0fOT998PjnLp44KeYsyeEBki402SmuZDKYwbdF6YVyjAlzFVoYrHFVOQaAScNZ7xZltjLHGNE0wwbP75KDrO_-QUOAYb2pXM69q7tpaWtnwUIq2MCxYITLyfJa0_j4SZ2gUHFEdeqeOjLyOOtidELmu0wFYgJ4sQP_LAjLyMmpQR4-Emloz_ViAeUZuK32MoAWcJUuekcNZyXpy1a1mAHSoIoGsMvJsNwwni19OTOf7y_EcGXN9nZEHo03s5syUFIiTeBe5sJbFSy1HuvXXRORdlij2VFE_-h9ieEyuV7E3cVoeOiQHw-bSPwFgGuzT5Bt_AMEIFNw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagXOCAyjttQQYhcSFqHo5jn1CpKAUBl6XS3iw_2z2QlN1UVW_9G_17_BJmnGS7ERJX20mczHs8-YaQt8IVoSgcSwsuRcqsAZnjUqZ5nenAXc2MjwWyP_jxCfs6r-ZDwm01lFWOOjEqatdazJHvl2B3wdkHA_jh_HeKXaPwdHVooXGX3EPoMizpque3AVcJ8VePJlRCaL-_AnOP525iYoMiVP-_CnnDIk2rJTfMz9E2eTj4jfSgJ_Qjcsc3j8mDDTTBJ-Tye-zIQ2e_Wvj8qMLoCDlC20DB06Of9aKjh1dwh_d05k8jIKej5orOuuXCeaobR0eCwQQmaeN1Xxosv4bnzyDqbZerP9c39Fs7ZPuekpOjTz8Pj9Ohr0JqIRjuQL9hu43cmFIEnWmbWc-1q2UAgTGFZhJGpZNFJgU4td5LVppaa6N1XQcdfPmMbDVt418QCt6M15WrSi8r5mwljKhZyLnNdBkM5wl5M35pdd7DZygIO5Acak2OhHxEGqwXIOJ1HGiXp2oQIJU7UEcFA9ZihrkgTV5kVmQcPEiEGDQJeYcUVCiXQCarh98LYJ-IcKUOQHWBtyVylpC9kchqENiVumWvhLxeT4Oo4fmJbnx70a8RaPGrhDzveWK951IKDtoS3kVMuGXyUtOZZnEW4bzzHEI-mVU7_9_XLrlfYO_hmP7ZI1vd8sK_BIeoM68i1_8FZCMNpQ
  priority: 102
  providerName: ProQuest
Title Motion Smoothness Analysis of the Gait Cycle, Segmented by Stride and Associated with the Inertial Sensors’ Locations
URI https://www.ncbi.nlm.nih.gov/pubmed/39860738
https://www.proquest.com/docview/3159619741
https://www.proquest.com/docview/3159803625
https://pubmed.ncbi.nlm.nih.gov/PMC11768905
https://doaj.org/article/1d03024d2f4b4df9b120c8068351700b
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LbtQwFL3qYwMLxLspZWQQEhsCieMk9gKhtuq0IFohhpFmF9mxU0aCpGRSwez4DX6PL-HaeWgiWLDJIs7Dzn2dazvnAjzjmhaUaubTRHCf5QptLhHCD9NAFolOmTJug-xFcjZn7xbxYgv6GpvdB1z9M7Wz9aTm9ZeXP76t36DBv7YZJ6bsr1YYxu16Gt-GXQxIqbXPczYsJtAocgWt7T9dPsbDoCUYGt86CkuOvf9vH70RpMYbKDci0vQ23OqgJDlsZX8Htkx5F25uEAzeg-_nrkgPmX2tUCLWq5GehYRUBUHwR07lsiHHa3zCCzIzl46jUxO1JrOmXmpDZKlJL0NssPO27r63pd2Rje-fYSJc1avfP3-R91U3AXgf5tOTT8dnfldqwc8xP27Q5dkKHKFSES9kIPMgN4nUqSjQhhSVTOBZoQUNBEeca4xgkUqlVFKmaSELEz2AnbIqzR4QBDhGxjqOjIiZzmOueMqKMMkDGRUqSTx42n_p7Kpl1MgwE7HiyAZxeHBkZTBcYEmw3Ymqvsw6m8pCjR6KMtQ2ppguhAppkPMgQVBpWQeVB8-tBDOrPCimXHZ_HGA_LelVdojeDAEYD5kHB72Qs14FswiRHqaXCLk8eDI0o_XZJRVZmuq6vYZbEBB78LDViaHPkeAJOlAcCx9py2hQ45Zy-dkxfIchZoEiiPf_ewSP4Aa1lYnd5NAB7DT1tXmMcKlRE9hOFyke-fR0ArtHJxcfPk7c1MPEmckfjbEZVQ
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtQwFL0qZQEsEG8CBQwCsSGq4ziOvUCoFMoMnXYzrTS71I6dMguSMpOqmh2_wU_wUXwJ13lMZ4TErlvbSZzc17m2cy7Aa2lZwZjlIRNKhjw3aHNCqTBKqS6ETblxzQHZQzE45l8nyWQDfvf_wvhjlb1PbBy1rXK_Rr4dY9xFsI8B8MPZj9BXjfK7q30JjVYt9t3iAlO2-fvhJ5TvG8b2Ph_tDsKuqkCYYypYo3X7YhORMbEsNNU5zZ3QNlUFqothmitsVVYxqiRCOucUj02qtdE6TQtduBjvew2uY-Cl3qLSyWWCF2O-17IXxbGi23OEF36fT67FvKY0wL8BYCUCrp_OXAl3e3fgdodTyU6rWHdhw5X34NYKe-F9uDhoKgCR8fcKxe1dJukpTkhVEESW5Iue1mR3gXd4R8butCEAtcQsyLieTa0jurSkVxDs8IvCzXXD0h_3xuePMcuuZvM_P3-RUdWtLj6A4yv54g9hs6xK9xgIoienE5vETiXc5ok0MuVFJHKq48IIEcCr_ktnZy1dR4ZpjhdHthRHAB-9DJYDPMN201DNTrPOYLPIovtjHFWZG24LZSJGc0kFIlZPaWgCeOslmHk_gGLKdfc7A87TM2plO-gqEd3JiAew1Qs56xzEPLtU5wBeLrvRtP1-jS5ddd6OkR5hJAE8anViOedYSYHeGd9FrmnL2kut95TTbw19eBRhiqlo8uT_83oBNwZHB6NsNDzcfwo3ma973Cw9bcFmPTt3zxCM1eZ5YwEETq7a5P4CklFMGg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtQwFL0qRUKwQLwJFDAIxIZoEttJ7AVCpWXo0FIhDZVml9qxXWZBUmZSVbPjN_gVPocv4TqP6YyQ2HUb5-Hkvs61b84FeCkMdZQaHtJUipAXGm0ulTKMs0i51GRc26ZA9jDdO-KfJslkA373_8L4ssreJzaO2lSFXyMfMIy7CPYxAA5cVxbxZXf47vRH6DtI-Z3Wvp1GqyL7dnGO6dv87WgXZf2K0uGHrzt7YddhICwwLazR0n3jiVhrJpyKVBEVNlUmkw5VR1PFJR6VRtJICoR31krOdKaUVirLnHKW4X2vwNWMJbG3sWxykewxzP1aJiPGZDSYI9Twe35iLf41bQL-DQYr0XC9UnMl9A1vwc0Os5LtVsluw4Yt78CNFSbDu3D-uekGRMbfKxS9d5-kpzshlSOIMslHNa3JzgLv8IaM7UlDBmqIXpBxPZsaS1RpSK8sOOAXiJvrRqUv_cbnjzHjrmbzPz9_kYOqW2m8B0eX8sXvw2ZZlfYhEERSViUmYVYm3BSJ0CLjLk6LSDGn0zSAF_2Xzk9b6o4cUx4vjnwpjgDeexksT_Bs282BanaSd8abxwZdIeWo1lxz46SOaVSIKEX06ukNdQCvvQRz7xNQTIXqfm3AeXp2rXwb3SYiPRHzALZ6Ieeds5jnF6odwPPlMJq537tRpa3O2nOERxtJAA9anVjOmUmRoqfGdxFr2rL2Uusj5fRbQyUex5huyih59P95PYNraGz5wehw_zFcp74FcrMKtQWb9ezMPkFcVuunjQEQOL5si_sLtsVQUA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Motion+Smoothness+Analysis+of+the+Gait+Cycle%2C+Segmented+by+Stride+and+Associated+with+the+Inertial+Sensors%E2%80%99+Locations&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Anaya-Campos%2C+Leonardo+Eliu&rft.au=S%C3%A1nchez-Fern%C3%A1ndez%2C+Luis+Pastor&rft.au=Qui%C3%B1ones-Uri%C3%B3stegui%2C+Ivett&rft.date=2025-01-01&rft.pub=MDPI+AG&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=25&rft.issue=2&rft_id=info:doi/10.3390%2Fs25020368&rft.externalDocID=A832658814
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon