Three-Stage Cascade Information Attenuation for Opinion Dynamics in Social Networks

In social network analysis, entropy quantifies the uncertainty or diversity of opinions, reflecting the complexity of opinion dynamics. To enhance the understanding of how opinions evolve, this study introduces a novel approach to modeling opinion dynamics in social networks by incorporating three-s...

Full description

Saved in:
Bibliographic Details
Published inEntropy (Basel, Switzerland) Vol. 26; no. 10; p. 851
Main Authors Wang, Haomin, Li, Youyuan, Chen, Jia
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 08.10.2024
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In social network analysis, entropy quantifies the uncertainty or diversity of opinions, reflecting the complexity of opinion dynamics. To enhance the understanding of how opinions evolve, this study introduces a novel approach to modeling opinion dynamics in social networks by incorporating three-stage cascade information attenuation. Traditional models have often neglected the influence of second- and third-order neighbors and the attenuation of information as it propagates through a network. To correct this oversight, we redefine the interaction weights between individuals, taking into account the distance of opining, bounded confidence, and information attenuation. We propose two models of opinion dynamics using a three-stage cascade mechanism for information transmission, designed for environments with either a single or two subgroups of opinion leaders. These models capture the shifts in opinion distribution and entropy as information propagates and attenuates through the network. Through simulation experiments, we examine the ingredients influencing opinion dynamics. The results demonstrate that an increased presence of opinion leaders, coupled with a higher level of trust from their followers, significantly amplifies their influence. Furthermore, comparative experiments highlight the advantages of our proposed models, including rapid convergence, effective leadership influence, and robustness across different network structures.
AbstractList In social network analysis, entropy quantifies the uncertainty or diversity of opinions, reflecting the complexity of opinion dynamics. To enhance the understanding of how opinions evolve, this study introduces a novel approach to modeling opinion dynamics in social networks by incorporating three-stage cascade information attenuation. Traditional models have often neglected the influence of second- and third-order neighbors and the attenuation of information as it propagates through a network. To correct this oversight, we redefine the interaction weights between individuals, taking into account the distance of opining, bounded confidence, and information attenuation. We propose two models of opinion dynamics using a three-stage cascade mechanism for information transmission, designed for environments with either a single or two subgroups of opinion leaders. These models capture the shifts in opinion distribution and entropy as information propagates and attenuates through the network. Through simulation experiments, we examine the ingredients influencing opinion dynamics. The results demonstrate that an increased presence of opinion leaders, coupled with a higher level of trust from their followers, significantly amplifies their influence. Furthermore, comparative experiments highlight the advantages of our proposed models, including rapid convergence, effective leadership influence, and robustness across different network structures.In social network analysis, entropy quantifies the uncertainty or diversity of opinions, reflecting the complexity of opinion dynamics. To enhance the understanding of how opinions evolve, this study introduces a novel approach to modeling opinion dynamics in social networks by incorporating three-stage cascade information attenuation. Traditional models have often neglected the influence of second- and third-order neighbors and the attenuation of information as it propagates through a network. To correct this oversight, we redefine the interaction weights between individuals, taking into account the distance of opining, bounded confidence, and information attenuation. We propose two models of opinion dynamics using a three-stage cascade mechanism for information transmission, designed for environments with either a single or two subgroups of opinion leaders. These models capture the shifts in opinion distribution and entropy as information propagates and attenuates through the network. Through simulation experiments, we examine the ingredients influencing opinion dynamics. The results demonstrate that an increased presence of opinion leaders, coupled with a higher level of trust from their followers, significantly amplifies their influence. Furthermore, comparative experiments highlight the advantages of our proposed models, including rapid convergence, effective leadership influence, and robustness across different network structures.
In social network analysis, entropy quantifies the uncertainty or diversity of opinions, reflecting the complexity of opinion dynamics. To enhance the understanding of how opinions evolve, this study introduces a novel approach to modeling opinion dynamics in social networks by incorporating three-stage cascade information attenuation. Traditional models have often neglected the influence of second- and third-order neighbors and the attenuation of information as it propagates through a network. To correct this oversight, we redefine the interaction weights between individuals, taking into account the distance of opining, bounded confidence, and information attenuation. We propose two models of opinion dynamics using a three-stage cascade mechanism for information transmission, designed for environments with either a single or two subgroups of opinion leaders. These models capture the shifts in opinion distribution and entropy as information propagates and attenuates through the network. Through simulation experiments, we examine the ingredients influencing opinion dynamics. The results demonstrate that an increased presence of opinion leaders, coupled with a higher level of trust from their followers, significantly amplifies their influence. Furthermore, comparative experiments highlight the advantages of our proposed models, including rapid convergence, effective leadership influence, and robustness across different network structures.
Audience Academic
Author Li, Youyuan
Chen, Jia
Wang, Haomin
AuthorAffiliation 3 School of Business Administration, Faculty of Business Administration, Southwestern University of Finance and Economics, Chengdu 610074, China; liyouyuan@swufe.edu.cn
2 Sichuan University Humanities and Social Sciences Key Research Base—Energy Environment Carbon Neutrality Innovation Research Center, Chengdu 610059, China
1 School of Management Science and Engineering, Southwestern University of Finance and Economics, Chengdu 610074, China; wanghm@swufe.edu.cn
AuthorAffiliation_xml – name: 1 School of Management Science and Engineering, Southwestern University of Finance and Economics, Chengdu 610074, China; wanghm@swufe.edu.cn
– name: 2 Sichuan University Humanities and Social Sciences Key Research Base—Energy Environment Carbon Neutrality Innovation Research Center, Chengdu 610059, China
– name: 3 School of Business Administration, Faculty of Business Administration, Southwestern University of Finance and Economics, Chengdu 610074, China; liyouyuan@swufe.edu.cn
Author_xml – sequence: 1
  givenname: Haomin
  orcidid: 0000-0001-6541-9062
  surname: Wang
  fullname: Wang, Haomin
– sequence: 2
  givenname: Youyuan
  surname: Li
  fullname: Li, Youyuan
– sequence: 3
  givenname: Jia
  surname: Chen
  fullname: Chen, Jia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39451928$$D View this record in MEDLINE/PubMed
BookMark eNpdkstu1DAUhiNURC-w4AVQJDawSPEtjr1Co-E2UkUXU9bWGedk6iGxBzsB9e3xNGXUsvKvcz7_9rmcFyc-eCyK15Rccq7JB2SSEqJq-qw4o0TrSnBCTh7p0-I8pR0hjDMqXxSnXIuaaqbOivXNbUSs1iNssVxCstBiufJdiAOMLvhyMY7op1nnaHm9d_6gP915GJxNpfPlOlgHffkdxz8h_kwvi-cd9AlfPZwXxY8vn2-W36qr66-r5eKqskLqsdJEbGq6AWnR2s4S2mjLeMNl21mmFBNMk9ryRlrVICNaUoGaAghsWc4CvyhWs28bYGf20Q0Q70wAZ-4DIW4NxNHZHg1SiVIqaEByoRBUa23L6k5y1Si-wez1cfbaT5sBW4t-jNA_MX2a8e7WbMNvQ2lNmprw7PDuwSGGXxOm0QwuWex78BimZDhlpNaKSprRt_-huzBFn3t1T0mRi2WZupypLeQKXJ5JftjCYUK58XkDOpfjC0UFV1qoOl9487iG4-f_TTsD72fAxpBSxO6IUGIOm2SOm8T_AquxuKE
Cites_doi 10.1088/1742-5468/2007/08/P08029
10.1103/RevModPhys.74.47
10.1016/j.ejor.2021.04.051
10.1109/TCYB.2020.3043635
10.1016/j.ins.2019.03.044
10.1016/j.ejor.2018.11.075
10.3390/e26020099
10.1103/PhysRevLett.91.028701
10.1103/PhysRevLett.94.178701
10.1111/j.1540-5885.2011.00791.x
10.1016/j.ins.2017.10.031
10.1002/cplx.20295
10.1016/j.ins.2017.02.052
10.1016/j.ins.2019.02.028
10.1177/2056305116665858
10.1103/PhysRevE.71.036101
10.1007/s11424-018-7136-6
10.1016/j.ins.2018.11.037
10.1145/2556195.2559896
10.1007/s00500-016-2068-3
10.1080/0022250X.1990.9990069
10.1016/j.physa.2020.124869
10.1016/j.engappai.2021.104192
10.1137/11082751X
10.1016/j.ejor.2019.07.028
10.1137/130913250
10.1016/j.neucom.2021.12.105
10.1007/s00500-017-2652-1
10.1016/j.ins.2020.01.052
10.3390/e25121614
10.1016/j.physa.2009.12.028
10.1016/j.heliyon.2023.e14844
10.3390/e25060929
10.1016/j.inffus.2021.06.004
10.1177/0092070396242004
10.18564/jasss.3448
10.1108/EUM0000000004893
10.1007/s10614-020-10049-7
10.1016/j.physa.2008.01.120
10.1016/j.inffus.2017.11.009
10.1038/nature03236
10.1016/j.eswa.2018.07.069
10.1142/S0219525900000078
10.1016/j.cor.2015.07.022
10.1177/002224379603300208
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2024 by the authors. 2024
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2024 by the authors. 2024
DBID AAYXX
CITATION
NPM
7TB
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
HCIFZ
KR7
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
5PM
DOA
DOI 10.3390/e26100851
DatabaseName CrossRef
PubMed
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
SciTech Premium Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Civil Engineering Abstracts
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed


CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 1099-4300
ExternalDocumentID oai_doaj_org_article_e16e668a7a6348ea8dccd25f638783be
PMC11507503
A814389485
39451928
10_3390_e26100851
Genre Journal Article
GeographicLocations Iran
GeographicLocations_xml – name: Iran
GrantInformation_xml – fundername: National Social Science Foundation of China
  grantid: 22BGL236
– fundername: Natural Science Foundation of Sichuan Province of China
  grantid: 2023NSFSC1025
GroupedDBID 29G
2WC
5GY
5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ACIWK
ACUHS
ADBBV
AEGXH
AENEX
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
CS3
DU5
E3Z
ESX
F5P
GROUPED_DOAJ
GX1
HCIFZ
HH5
IAO
ITC
J9A
KQ8
L6V
M7S
MODMG
M~E
OK1
OVT
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
RNS
RPM
TR2
TUS
XSB
~8M
NPM
PQGLB
7TB
8FD
ABUWG
AZQEC
DWQXO
FR3
KR7
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c469t-904b51ba6ceccfc0179c23736dfc288242905c376c87e209614e91aa4ed2824a3
IEDL.DBID DOA
ISSN 1099-4300
IngestDate Wed Aug 27 01:30:44 EDT 2025
Thu Aug 21 18:43:44 EDT 2025
Fri Jul 11 05:54:38 EDT 2025
Fri Jul 25 11:46:30 EDT 2025
Tue Jul 01 05:40:24 EDT 2025
Mon Jul 21 06:05:38 EDT 2025
Tue Jul 01 01:58:33 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords opinion dynamics
bounded confidence
information attenuation
three-stage cascade
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c469t-904b51ba6ceccfc0179c23736dfc288242905c376c87e209614e91aa4ed2824a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6541-9062
OpenAccessLink https://doaj.org/article/e16e668a7a6348ea8dccd25f638783be
PMID 39451928
PQID 3120640962
PQPubID 2032401
ParticipantIDs doaj_primary_oai_doaj_org_article_e16e668a7a6348ea8dccd25f638783be
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11507503
proquest_miscellaneous_3120598161
proquest_journals_3120640962
gale_infotracacademiconefile_A814389485
pubmed_primary_39451928
crossref_primary_10_3390_e26100851
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20241008
PublicationDateYYYYMMDD 2024-10-08
PublicationDate_xml – month: 10
  year: 2024
  text: 20241008
  day: 8
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Entropy (Basel, Switzerland)
PublicationTitleAlternate Entropy (Basel)
PublicationYear 2024
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Jia (ref_26) 2015; 57
Yildiz (ref_29) 2013; 1
Albert (ref_50) 2002; 74
Chandrashekaran (ref_3) 1996; 33
ref_13
Qin (ref_37) 2017; 21
Winter (ref_40) 2016; 2
Hu (ref_47) 2018; 22
Zhan (ref_11) 2021; 52
ref_19
Mobilia (ref_27) 2003; 91
ref_25
Urena (ref_2) 2019; 478
Jager (ref_44) 2011; 28
Couzin (ref_46) 2005; 433
Kang (ref_39) 2023; 9
Hegselmann (ref_18) 2002; 5
Bamakan (ref_7) 2019; 115
Lorenz (ref_20) 2010; 15
Pan (ref_43) 2022; 477
Glass (ref_35) 2020; 58
Ding (ref_31) 2019; 486
Lima (ref_49) 2008; 387
Deffuant (ref_17) 2000; 3
Turnbull (ref_41) 1980; 14
Jiang (ref_21) 2020; 50
Si (ref_34) 2018; 29
Mandel (ref_1) 2020; 280
Dong (ref_23) 2019; 490
ref_38
Zhao (ref_8) 2018; 426
Baumann (ref_30) 2020; 557
Cao (ref_16) 2018; 31
Dong (ref_9) 2018; 43
Sood (ref_12) 2005; 94
Liu (ref_5) 2019; 275
Chen (ref_14) 2005; 71
ref_45
Gargiulo (ref_48) 2017; 20
Li (ref_36) 2021; 100
Mirtabatabaei (ref_22) 2012; 50
Zhao (ref_32) 2016; 74
Chen (ref_33) 2021; 76
Cheng (ref_4) 2022; 297
Friedkin (ref_15) 1990; 15
Dong (ref_24) 2017; 397
Mobilia (ref_28) 2007; 2007
Ding (ref_10) 2010; 389
Zhou (ref_6) 2020; 519
Flynn (ref_42) 1996; 24
References_xml – volume: 2007
  start-page: P08029
  year: 2007
  ident: ref_28
  article-title: On the role of zealotry in the voter model
  publication-title: J. Stat. Mech. Theory Exp.
  doi: 10.1088/1742-5468/2007/08/P08029
– volume: 74
  start-page: 47
  year: 2002
  ident: ref_50
  article-title: Statistical mechanics of complex networks
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.74.47
– volume: 297
  start-page: 221
  year: 2022
  ident: ref_4
  article-title: Maximum satisfaction consensus with budget constraints considering individual tolerance and compromise limit behaviors
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2021.04.051
– volume: 52
  start-page: 7017
  year: 2021
  ident: ref_11
  article-title: Bounded Confidence Evolution of Opinions and Actions in Social Networks
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2020.3043635
– volume: 490
  start-page: 227
  year: 2019
  ident: ref_23
  article-title: A hybrid group decision making framework for achieving agreed solutions based on stable opinions
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2019.03.044
– volume: 275
  start-page: 737
  year: 2019
  ident: ref_5
  article-title: Large-scale group decision making model based on social network analysis: Trust relationship-based conflict detection and elimination
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2018.11.075
– ident: ref_19
  doi: 10.3390/e26020099
– volume: 91
  start-page: 028701
  year: 2003
  ident: ref_27
  article-title: Does a single zealot affect an infinite group of voters?
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.91.028701
– volume: 94
  start-page: 178701
  year: 2005
  ident: ref_12
  article-title: Voter model on heterogeneous graphs
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.94.178701
– volume: 28
  start-page: 187
  year: 2011
  ident: ref_44
  article-title: Opinion leaders’ role in innovation diffusion: A simulation study
  publication-title: J. Prod. Innov. Manag.
  doi: 10.1111/j.1540-5885.2011.00791.x
– volume: 426
  start-page: 131
  year: 2018
  ident: ref_8
  article-title: Understanding influence power of opinion leaders in e-commerce networks: An opinion dynamics theory perspective
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2017.10.031
– volume: 15
  start-page: 43
  year: 2010
  ident: ref_20
  article-title: Heterogeneous bounds of confidence: Meet, discuss and find consensus!
  publication-title: Complexity
  doi: 10.1002/cplx.20295
– ident: ref_13
– volume: 397
  start-page: 187
  year: 2017
  ident: ref_24
  article-title: Managing consensus based on leadership in opinion dynamics
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2017.02.052
– volume: 486
  start-page: 62
  year: 2019
  ident: ref_31
  article-title: Consensus reaching in social network DeGroot Model: The roles of the Self-confidence and node degree
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2019.02.028
– volume: 2
  start-page: 2056305116665858
  year: 2016
  ident: ref_40
  article-title: Examining characteristics of opinion leaders in social media: A motivational approach
  publication-title: Soc. Media + Soc.
  doi: 10.1177/2056305116665858
– volume: 71
  start-page: 036101
  year: 2005
  ident: ref_14
  article-title: Majority rule dynamics in finite dimensions
  publication-title: Phys. Rev. E—Stat. Nonlinear Soft Matter Phys.
  doi: 10.1103/PhysRevE.71.036101
– volume: 31
  start-page: 1498
  year: 2018
  ident: ref_16
  article-title: Rebels lead to the doctrine of the mean: A heterogeneous degroot model
  publication-title: J. Syst. Sci. Complex.
  doi: 10.1007/s11424-018-7136-6
– volume: 478
  start-page: 461
  year: 2019
  ident: ref_2
  article-title: A review on trust propagation and opinion dynamics in social networks and group decision making frameworks
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2018.11.037
– ident: ref_45
  doi: 10.1145/2556195.2559896
– volume: 21
  start-page: 827
  year: 2017
  ident: ref_37
  article-title: Efficient influence maximization under TSCM: A suitable diffusion model in online social networks
  publication-title: Soft Comput.
  doi: 10.1007/s00500-016-2068-3
– volume: 15
  start-page: 193
  year: 1990
  ident: ref_15
  article-title: Social influence and opinions
  publication-title: J. Math. Sociol.
  doi: 10.1080/0022250X.1990.9990069
– volume: 557
  start-page: 124869
  year: 2020
  ident: ref_30
  article-title: A Laplacian approach to stubborn agents and their role in opinion formation on influence networks
  publication-title: Phys. A Stat. Mech. Its Appl.
  doi: 10.1016/j.physa.2020.124869
– volume: 100
  start-page: 104192
  year: 2021
  ident: ref_36
  article-title: HK–SEIR model of public opinion evolution based on communication factors
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2021.104192
– volume: 50
  start-page: 2763
  year: 2012
  ident: ref_22
  article-title: Opinion dynamics in heterogeneous networks: Convergence conjectures and theorems
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/11082751X
– volume: 280
  start-page: 597
  year: 2020
  ident: ref_1
  article-title: Dynamic competition over social networks
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2019.07.028
– volume: 57
  start-page: 367
  year: 2015
  ident: ref_26
  article-title: Opinion dynamics and the evolution of social power in influence networks
  publication-title: SIAM Rev.
  doi: 10.1137/130913250
– volume: 1
  start-page: 19
  year: 2013
  ident: ref_29
  article-title: Binary opinion dynamics with stubborn agents
  publication-title: ACM Trans. Econ. Comput. (TEAC)
– volume: 477
  start-page: 104
  year: 2022
  ident: ref_43
  article-title: Peer selection in opinion dynamics on signed social networks with stubborn individuals
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.12.105
– volume: 29
  start-page: 220
  year: 2018
  ident: ref_34
  article-title: Bounded confidence opinion dynamics in virtual networks and real networks
  publication-title: J. Comput.
– volume: 22
  start-page: 4661
  year: 2018
  ident: ref_47
  article-title: Qualitative modeling of catastrophe in group opinion
  publication-title: Soft Comput.
  doi: 10.1007/s00500-017-2652-1
– volume: 519
  start-page: 363
  year: 2020
  ident: ref_6
  article-title: A two-step communication opinion dynamics model with self-persistence and influence index for social networks based on the degroot model
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2020.01.052
– ident: ref_25
  doi: 10.3390/e25121614
– volume: 389
  start-page: 1745
  year: 2010
  ident: ref_10
  article-title: An evolutionary game theory model of binary opinion formation
  publication-title: Phys. A Stat. Mech. Its Appl.
  doi: 10.1016/j.physa.2009.12.028
– volume: 9
  start-page: e14844
  year: 2023
  ident: ref_39
  article-title: Detection of opinion leaders: Static vs. dynamic evaluation in online learning communities
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2023.e14844
– ident: ref_38
  doi: 10.3390/e25060929
– volume: 76
  start-page: 227
  year: 2021
  ident: ref_33
  article-title: Influence identification of opinion leaders in social networks: An agent-based simulation on competing advertisements
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2021.06.004
– volume: 24
  start-page: 137
  year: 1996
  ident: ref_42
  article-title: Opinion leaders and opinion seekers: Two new measurement scales
  publication-title: J. Acad. Mark. Sci.
  doi: 10.1177/0092070396242004
– volume: 20
  start-page: 8
  year: 2017
  ident: ref_48
  article-title: The role of homophily in the emergence of opinion controversies
  publication-title: J. Artif. Soc. Soc. Simul.
  doi: 10.18564/jasss.3448
– volume: 14
  start-page: 3
  year: 1980
  ident: ref_41
  article-title: Diffusion of innovation and opinion leadership
  publication-title: Eur. J. Mark.
  doi: 10.1108/EUM0000000004893
– volume: 50
  start-page: 3828
  year: 2020
  ident: ref_21
  article-title: Predicting the Evolution of Hot Topics: A Solution Based on the Online Opinion Dynamics Model in Social Network
  publication-title: IEEE Trans. Syst. Man Cybern. Syst.
– volume: 58
  start-page: 799
  year: 2020
  ident: ref_35
  article-title: Social Influence of Competing Groups and Leaders in Opinion Dynamics
  publication-title: Comput. Econ.
  doi: 10.1007/s10614-020-10049-7
– volume: 387
  start-page: 3503
  year: 2008
  ident: ref_49
  article-title: Majority-vote on directed Erdős–Rényi random graphs
  publication-title: Phys. A Stat. Mech. Its Appl.
  doi: 10.1016/j.physa.2008.01.120
– volume: 5
  start-page: 1
  year: 2002
  ident: ref_18
  article-title: Opinion dynamics and bounded confidence models, analysis, and simulation
  publication-title: J. Artif. Soc. Soc. Simul.
– volume: 43
  start-page: 57
  year: 2018
  ident: ref_9
  article-title: A survey on the fusion process in opinion dynamics
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2017.11.009
– volume: 433
  start-page: 513
  year: 2005
  ident: ref_46
  article-title: Effective leadership and decision-making in animal groups on the move
  publication-title: Nature
  doi: 10.1038/nature03236
– volume: 115
  start-page: 200
  year: 2019
  ident: ref_7
  article-title: Opinion leader detection: A methodological review
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2018.07.069
– volume: 3
  start-page: 87
  year: 2000
  ident: ref_17
  article-title: Mixing beliefs among interacting agents
  publication-title: Adv. Complex Syst.
  doi: 10.1142/S0219525900000078
– volume: 74
  start-page: 205
  year: 2016
  ident: ref_32
  article-title: Bounded confidence opinion dynamics with opinion leaders and environmental noises
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2015.07.022
– volume: 33
  start-page: 211
  year: 1996
  ident: ref_3
  article-title: Modeling individual preference evolution and choice in a dynamic group setting
  publication-title: J. Mark. Res.
  doi: 10.1177/002224379603300208
SSID ssj0023216
Score 2.3496087
Snippet In social network analysis, entropy quantifies the uncertainty or diversity of opinions, reflecting the complexity of opinion dynamics. To enhance the...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 851
SubjectTerms Attenuation
bounded confidence
Communication
Communications networks
Dynamics
Entropy
Influence
information attenuation
Information management
Leadership
Network analysis
opinion dynamics
Social networks
Subgroups
three-stage cascade
Uncertainty analysis
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7B9sIFgcojUJCLkDhF3cSP2Ce0La2qSl0QtFJvluM47V6yS7P9_8zE3tAIiVtk--DMeF72zDcAn2WNRqMxbe5qKXNRzAkDslE52bLGm8pXgaqRL5fq_Fpc3MibdOHWp7TKnU4cFHWz9nRHfsSLkh6djCq_bn7n1DWKXldTC42nsIcqWOsZ7B2fLn_8HEMuXhYq4glxDO6PAsYLg5MxsUIDWP-_KvmRTZrmSz4yQGcv4HnyHNkisvolPAndPvy6Ql6EHF3G28BOXE_Z7iyVGBHJ2WKLTnGE82Y4yr5vVh19f4ud6Hu26lgs0WXLmBHev4Lrs9Ork_M89UnIPQa329zMRS2L2imP_Gg9yZgvecVV03okChphM5ceNYnXVSipx4sIpnBOhAYDLuH4a5h16y68BWacDIFK1ISocaKl0LnAeJu3VSVVYzL4tKOb3UQ4DIthBBHXjsTN4JgoOi4gBOthYH1_a5NA2FCooJR2lVNc6ODwZPimlC3qg0rzOmTwhfhhSc6Q6N6lcgHcJyFW2YUeGrcLLTM42LHMJgHs7d_jksHhOI2iQ-8hrgvrh7hGGo0-bwZvIofHPXNDuDulzkBPeD_5qelMt7ob4LkHH1vO-bv_7-s9PCuRzjGf8ABm2_uH8AEdnG39MZ3iP1yI-6g
  priority: 102
  providerName: ProQuest
Title Three-Stage Cascade Information Attenuation for Opinion Dynamics in Social Networks
URI https://www.ncbi.nlm.nih.gov/pubmed/39451928
https://www.proquest.com/docview/3120640962
https://www.proquest.com/docview/3120598161
https://pubmed.ncbi.nlm.nih.gov/PMC11507503
https://doaj.org/article/e16e668a7a6348ea8dccd25f638783be
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwEB1RuPRStYK2aWHloko9RWz8Ffu4fCyoEkvVgrQ3y3GcspeAusv_ZybOrjbqgQuXKIqjyJkXe-YpM28AvqsKnUZtm9xXSuWyGJMGZK1z8mV1sGUoI1UjX8_01Z38OVfzrVZflBOW5IGT4U5ioaPWxpdeC2mixyeEmqsGv5vSiCrS7os-b02meqoleKGTjpBAUn8SkSd0wcXA-3Qi_f9vxVu-aJgnueV4pu_hXR8xskma6QfYie0-_LlFDGKOoeLfyM78krLcWV9aRKZmkxUGw0nGm-FVdvO4aOn8PHWgX7JFy1JpLpulTPDlAdxNL27PrvK-P0IekNSucjuWlSoqrwPi0ARaW4GLUui6CRwjZ3Q1YxVwBwmmjJx6u8hoC-9lrJFoSS8-wm770MbPwKxXMVJpmpQVDjREmQvk2aIpS6Vrm8Hx2m7uMclgOKQPZFy3MW4Gp2TRzQ2kXN1dQDxdj6d7Cc8MfhAejtYXGj34vkwA50lKVW5iuobt0qgMDteQuX7hLZ0oOP2btJpn8G0zjEuG_oP4Nj48pXuUNRjrZvApIbyZs7Ckt8NNBmaA_eClhiPt4r6T5e5iazUWX17DDF_hLUc0UrbhIeyu_j3FIwx_VtUI3pjp5Qj2Ti9mv36Puu8ej5fz4hlDTgb0
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQwcFTKAS6IileggEEgTlETv5IcENq2LFvaLge2Um_BcZyyl-zSbIX4Kb6RmTgJjZC49RbZVjSZ98TzAHijCjQaZVaFplAqlHFEPSBLHZItK22W2MRRNfLpXM_O5Odzdb4Fv_taGEqr7HViq6jLlaV_5Hsi5nTplGn-Yf0jpKlRdLvaj9DwbHHsfv3EkK15f3SI9H3L-fTj4mAWdlMFQouh4CbMIlmouDDaIvSVJY60XCRCl5Xl6G-igo6URbmzaeI4TUSRLouNka7E8EQage-9BbelQEtOlenTT0OAJ3isffci3Iz2HEYnrUszsnntaIB_DcA1CzjOzrxm7qb34V7np7KJZ6wd2HL1A_i6QMq7EB3UC8cOTEO59awraCICs8kGXXDfPJzhKvuyXtb0fOjn3jdsWTNfEMzmPv-8eQhnN4K_R7Bdr2r3BFhmlHNUECdlgRsVBeoxRveiShKlyyyA1z3e8rVvvpFj0ELIzQfkBrBPGB0OUL_sdmF1eZF34pe7WDutU5MYLWTqDPKhLbmqUPskqShcAO-IHjlJNSLdmq44AeGk_lj5JG3HxMtUBbDbkyzvxL3J_zJnAK-GbRRUun0xtVtd-TMqS9HDDuCxp_AAs8ioyw9PA0hHtB991HinXn5vm4G3Hr2KxNP_w_US7swWpyf5ydH8-Bnc5Yhzn8m4C9ubyyv3HF2rTfGi5WcG325agP4AgdY2RQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYS4IBCv0AIGgThFm9ixkxwQ2na7aiksFbRSb6njOGUPZLfNVqh_jV_HTJyERkjceotsK3Lm4ZkvngfAW5mj0SjS0te5lH4UBlQDslA-2bLCpLGJLWUjf5mr_ZPo06k83YDfXS4MhVV2Z2JzUBdLQ__IxyLkdOmUKj4u27CIo-ns4-rCpw5SdNPatdNwInJor38hfKs_HEyR1-84n-0d7-77bYcB3yAsXPtpEOUyzLUy-CWlIek0XMRCFaXh6HviYR1Igzpokthy6o4S2TTUOrIFQpVIC3zvHdiMCRWNYHNnb370rYd7gofK1TISIg3GFrFK4-AMLGDTKOBfc3DDHg5jNW8Yv9kDuN96rWzixOwhbNjqEXw_RjmwPrqr55bt6poi7Vmb3kTsZpM1OuSulDjDUfZ1tajoeXpd6Z8LU7NFxVx6MJu7aPT6MZzcCgWfwKhaVvYZsFRLayk9LopynCgJtoeI9UUZx1IVqQdvOrplK1eKI0MIQ8TNeuJ6sEMU7RdQ9exmYHl5nrXKmNlQWaUSHWslosRqlEpTcFniWRQnIrcevCd-ZKTjSHSj21QF3CdVy8omSdM0PkqkB9sdy7JW-evsr6h68LqfRrWluxhd2eWVWyPTBP1tD546Dvd7FinV_OGJB8mA94OPGs5Uix9NafDGv5eBeP7_fb2Cu6g82eeD-eEW3ONIchfWuA2j9eWVfYF-1jp_2Qo0g7Pb1qE_DLo71w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Three-Stage+Cascade+Information+Attenuation+for+Opinion+Dynamics+in+Social+Networks&rft.jtitle=Entropy+%28Basel%2C+Switzerland%29&rft.au=Wang%2C+Haomin&rft.au=Li%2C+Youyuan&rft.au=Chen%2C+Jia&rft.date=2024-10-08&rft.pub=MDPI&rft.eissn=1099-4300&rft.volume=26&rft.issue=10&rft_id=info:doi/10.3390%2Fe26100851&rft_id=info%3Apmid%2F39451928&rft.externalDocID=PMC11507503
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1099-4300&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1099-4300&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1099-4300&client=summon