Cellulosomes: bacterial nanomachines for dismantling plant polysaccharides
Key Points Cellulosomes are self-assembled multienzyme complexes that are highly efficient at degrading lignocellulose, mainly owing to common substrate targeting and consequent enzyme proximity that, together, generate substrate channelling and synergistic action. Cellulosomes have been identified...
Saved in:
Published in | Nature reviews. Microbiology Vol. 15; no. 2; pp. 83 - 95 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.02.2017
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
ISSN | 1740-1526 1740-1534 |
DOI | 10.1038/nrmicro.2016.164 |
Cover
Abstract | Key Points
Cellulosomes are self-assembled multienzyme complexes that are highly efficient at degrading lignocellulose, mainly owing to common substrate targeting and consequent enzyme proximity that, together, generate substrate channelling and synergistic action.
Cellulosomes have been identified in several anaerobic bacteria, with each species presenting its own molecular arrangement with varying degrees of complexity.
The prevalence of cellulosomes as rare but central components in various ecosystems reflects the benefits of this enzymatic strategy.
The cohesin–dockerin interaction has been studied extensively and is one of the strongest non-covalent interactions known in nature.
The composition of cellulosomes is regulated and varied by the nature of the growth substrate (carbon source) of the parent bacterium.
The cellulosome, as one of the most efficient machineries for the degradation of plant cell walls, can potentially be used for the large-scale conversion of biomass.
Owing to the modular nature of cellulosomes, cellulosomal components have been proposed for use in additional biotechnological applications, notably, together with other affinity systems.
Cellulosomes are sophisticated multicomponent complexes that are used by bacteria to degrade cellulose from plant cell walls. In this review, Artzi, Bayer and Moraïs explore the structural and functional diversity of cellulosomes and their applications; for example, in microbial biofuel production.
Cellulosomes are multienzyme complexes that are produced by anaerobic cellulolytic bacteria for the degradation of lignocellulosic biomass. They comprise a complex of scaffoldin, which is the structural subunit, and various enzymatic subunits. The intersubunit interactions in these multienzyme complexes are mediated by cohesin and dockerin modules. Cellulosome-producing bacteria have been isolated from a large variety of environments, which reflects their prevalence and the importance of this microbial enzymatic strategy. In a given species, cellulosomes exhibit intrinsic heterogeneity, and between species there is a broad diversity in the composition and configuration of cellulosomes. With the development of modern technologies, such as genomics and proteomics, the full protein content of cellulosomes and their expression levels can now be assessed and the regulatory mechanisms identified. Owing to their highly efficient organization and hydrolytic activity, cellulosomes hold immense potential for application in the degradation of biomass and are the focus of much effort to engineer an ideal microorganism for the conversion of lignocellulose to valuable products, such as biofuels. |
---|---|
AbstractList | Cellulosomes are multienzyme complexes that are produced by anaerobic cellulolytic bacteria for the degradation of lignocellulosic biomass. They comprise a complex of scaffoldin, which is the structural subunit, and various enzymatic subunits. The intersubunit interactions in these multienzyme complexes are mediated by cohesin and dockerin modules. Cellulosome-producing bacteria have been isolated from a large variety of environments, which reflects their prevalence and the importance of this microbial enzymatic strategy. In a given species, cellulosomes exhibit intrinsic heterogeneity, and between species there is a broad diversity in the composition and configuration of cellulosomes. With the development of modern technologies, such as genomics and proteomics, the full protein content of cellulosomes and their expression levels can now be assessed and the regulatory mechanisms identified. Owing to their highly efficient organization and hydrolytic activity, cellulosomes hold immense potential for application in the degradation of biomass and are the focus of much effort to engineer an ideal microorganism for the conversion of lignocellulose to valuable products, such as biofuels. Key Points Cellulosomes are self-assembled multienzyme complexes that are highly efficient at degrading lignocellulose, mainly owing to common substrate targeting and consequent enzyme proximity that, together, generate substrate channelling and synergistic action. Cellulosomes have been identified in several anaerobic bacteria, with each species presenting its own molecular arrangement with varying degrees of complexity. The prevalence of cellulosomes as rare but central components in various ecosystems reflects the benefits of this enzymatic strategy. The cohesin–dockerin interaction has been studied extensively and is one of the strongest non-covalent interactions known in nature. The composition of cellulosomes is regulated and varied by the nature of the growth substrate (carbon source) of the parent bacterium. The cellulosome, as one of the most efficient machineries for the degradation of plant cell walls, can potentially be used for the large-scale conversion of biomass. Owing to the modular nature of cellulosomes, cellulosomal components have been proposed for use in additional biotechnological applications, notably, together with other affinity systems. Cellulosomes are sophisticated multicomponent complexes that are used by bacteria to degrade cellulose from plant cell walls. In this review, Artzi, Bayer and Moraïs explore the structural and functional diversity of cellulosomes and their applications; for example, in microbial biofuel production. Cellulosomes are multienzyme complexes that are produced by anaerobic cellulolytic bacteria for the degradation of lignocellulosic biomass. They comprise a complex of scaffoldin, which is the structural subunit, and various enzymatic subunits. The intersubunit interactions in these multienzyme complexes are mediated by cohesin and dockerin modules. Cellulosome-producing bacteria have been isolated from a large variety of environments, which reflects their prevalence and the importance of this microbial enzymatic strategy. In a given species, cellulosomes exhibit intrinsic heterogeneity, and between species there is a broad diversity in the composition and configuration of cellulosomes. With the development of modern technologies, such as genomics and proteomics, the full protein content of cellulosomes and their expression levels can now be assessed and the regulatory mechanisms identified. Owing to their highly efficient organization and hydrolytic activity, cellulosomes hold immense potential for application in the degradation of biomass and are the focus of much effort to engineer an ideal microorganism for the conversion of lignocellulose to valuable products, such as biofuels. |
Audience | Academic |
Author | Moraïs, Sarah Artzi, Lior Bayer, Edward A. |
Author_xml | – sequence: 1 givenname: Lior surname: Artzi fullname: Artzi, Lior organization: Department of Biomolecular Sciences, The Weizmann Institute of Science – sequence: 2 givenname: Edward A. surname: Bayer fullname: Bayer, Edward A. email: ed.bayer@weizmann.ac.il organization: Department of Biomolecular Sciences, The Weizmann Institute of Science – sequence: 3 givenname: Sarah surname: Moraïs fullname: Moraïs, Sarah email: sarahv@weizmann.ac.il organization: Department of Biomolecular Sciences, The Weizmann Institute of Science |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27941816$$D View this record in MEDLINE/PubMed |
BookMark | eNqNUk1v1DAUtFARbRfunFAkLlx28UucZ4dbteJTlbj0bjmOs3Xl2IudHPrveavd8lEBQj74QzNjvZm5ZGcxRcfYS-Ab4I16G_PkbU6bmgNuAMUTdgFS8DW0jTj7ca7xnF2Wcsd53bayfsbOa9kJUIAX7MvWhbCEVNLkyruqN3Z22ZtQRRPTZOytj65UY8rV4Mtk4hx83FX7QKdqn8J9MdbemuwHV56zp6MJxb047St28-H9zfbT-vrrx8_bq-u1FdjNa2WlE9ICb6XooRW9akdUQy9rNwCOynTdIAxXokfkfWdQcbpaLpRtOoRmxd4cZfc5fVtcmfXki6UpTHRpKRoUqoa3QuB_QMkbbDrycsVeP4LepSVHmuMgyKFWUONP1M4Ep30c05yNPYjqKyElku9dS6jNH1C0BkdxUYKjp_ffCK9Ony_95Aa9z34y-V4_xEQAPAIo7FKyG7X1s5l9iqTsgwauD33Qpz7oQx809YGI_BHxQfsfFDhSCkHjzuVfnPgb5ztR5sfy |
CitedBy_id | crossref_primary_10_1016_j_ijbiomac_2022_10_102 crossref_primary_10_1016_j_cbpa_2018_11_021 crossref_primary_10_1039_C9BM02052G crossref_primary_10_1186_s13068_017_0898_6 crossref_primary_10_1264_jsme2_ME22039 crossref_primary_10_3390_ma14030487 crossref_primary_10_1186_s13068_019_1386_y crossref_primary_10_1111_lam_13352 crossref_primary_10_1128_mBio_00443_20 crossref_primary_10_1038_s41467_022_33272_2 crossref_primary_10_1016_j_jbiosc_2019_05_007 crossref_primary_10_1271_kagakutoseibutsu_61_339 crossref_primary_10_1016_j_rser_2023_113887 crossref_primary_10_1007_s00253_021_11107_2 crossref_primary_10_1128_mBio_02206_21 crossref_primary_10_1007_s00253_022_12072_0 crossref_primary_10_1021_acs_est_0c07253 crossref_primary_10_1021_acs_iecr_4c03484 crossref_primary_10_3390_catal11040409 crossref_primary_10_1021_acs_jafc_1c07233 crossref_primary_10_1038_s41598_019_42206_w crossref_primary_10_3390_microorganisms10030502 crossref_primary_10_1016_j_fochx_2022_100501 crossref_primary_10_1021_acs_oprd_1c00424 crossref_primary_10_1038_s41579_018_0046_8 crossref_primary_10_1098_rsta_2019_0274 crossref_primary_10_3390_microorganisms5040074 crossref_primary_10_1021_acscatal_3c05653 crossref_primary_10_1111_febs_15155 crossref_primary_10_1016_j_engmic_2022_100038 crossref_primary_10_3390_fermentation10050229 crossref_primary_10_1007_s00253_021_11614_2 crossref_primary_10_1093_glycob_cwaa050 crossref_primary_10_1111_1751_7915_13293 crossref_primary_10_1111_febs_14858 crossref_primary_10_1021_acsapm_0c01407 crossref_primary_10_1016_j_enzmictec_2019_109445 crossref_primary_10_1111_1751_7915_14148 crossref_primary_10_1016_j_biotechadv_2024_108308 crossref_primary_10_1021_acssynbio_4c00077 crossref_primary_10_1186_s13068_022_02225_8 crossref_primary_10_1007_s00018_021_03981_w crossref_primary_10_1016_j_biortech_2017_05_135 crossref_primary_10_3389_fbioe_2023_1328141 crossref_primary_10_3389_fmicb_2024_1523074 crossref_primary_10_1038_s41396_020_00837_2 crossref_primary_10_1186_s13059_025_03486_w crossref_primary_10_7554_eLife_76523 crossref_primary_10_3390_molecules24162879 crossref_primary_10_1002_bit_27242 crossref_primary_10_1093_gigascience_giaa164 crossref_primary_10_1016_j_ijbiomac_2018_04_004 crossref_primary_10_1021_acssynbio_0c00276 crossref_primary_10_3390_ijms20204979 crossref_primary_10_1016_j_jhazmat_2025_137441 crossref_primary_10_1128_AEM_00282_18 crossref_primary_10_1186_s40168_024_02014_5 crossref_primary_10_1002_bbb_2060 crossref_primary_10_1128_aem_02471_24 crossref_primary_10_1038_s41598_021_82163_x crossref_primary_10_1016_j_ibiod_2021_105277 crossref_primary_10_1093_aesa_saaa032 crossref_primary_10_1007_s12257_024_00128_z crossref_primary_10_1002_admt_202000928 crossref_primary_10_3168_jds_2024_25713 crossref_primary_10_1111_febs_15251 crossref_primary_10_3390_fermentation10040207 crossref_primary_10_1016_j_jece_2021_105798 crossref_primary_10_1016_j_jbc_2022_101896 crossref_primary_10_1016_j_rser_2023_113275 crossref_primary_10_1016_j_rser_2022_112583 crossref_primary_10_1016_j_tifs_2024_104802 crossref_primary_10_3389_fpls_2021_710869 crossref_primary_10_1002_ange_202319832 crossref_primary_10_1007_s00253_018_9210_3 crossref_primary_10_1016_j_greenca_2024_06_001 crossref_primary_10_1007_s00253_020_10731_8 crossref_primary_10_1016_j_fshw_2022_04_002 crossref_primary_10_3389_fmicb_2024_1473396 crossref_primary_10_1016_j_bbabio_2024_149495 crossref_primary_10_3390_ani11020338 crossref_primary_10_1128_mbio_01476_22 crossref_primary_10_1093_femsle_fnae074 crossref_primary_10_1186_s13068_022_02158_2 crossref_primary_10_3390_molecules29102275 crossref_primary_10_1098_rstb_2019_0250 crossref_primary_10_1016_j_engmic_2021_100005 crossref_primary_10_1016_j_jclepro_2020_121731 crossref_primary_10_1016_j_indcrop_2024_120196 crossref_primary_10_1038_s41467_024_53784_3 crossref_primary_10_1039_C7CP07764E crossref_primary_10_1111_mmi_15144 crossref_primary_10_3390_microorganisms7090347 crossref_primary_10_1016_j_biortech_2021_125148 crossref_primary_10_1016_j_ab_2019_113411 crossref_primary_10_1007_s12104_021_10025_8 crossref_primary_10_3390_ijms20133354 crossref_primary_10_3390_app15042214 crossref_primary_10_1186_s40168_021_01147_1 crossref_primary_10_1002_biot_202100064 crossref_primary_10_1021_acssuschemeng_3c02296 crossref_primary_10_1038_s41467_020_18543_0 crossref_primary_10_1016_j_mset_2020_12_004 crossref_primary_10_1111_jam_15367 crossref_primary_10_1038_nmicrobiol_2017_26 crossref_primary_10_3390_catal13010083 crossref_primary_10_3389_fmicb_2023_1205767 crossref_primary_10_1007_s13399_023_05185_7 crossref_primary_10_3390_catal8030094 crossref_primary_10_1016_j_chemosphere_2021_131635 crossref_primary_10_1016_j_envres_2024_118974 crossref_primary_10_1111_febs_15508 crossref_primary_10_1007_s12010_018_2864_6 crossref_primary_10_1016_j_copbio_2019_08_015 crossref_primary_10_1038_s41564_020_00861_0 crossref_primary_10_1039_C8SM00809D crossref_primary_10_1007_s00253_023_12684_0 crossref_primary_10_1111_tpj_14519 crossref_primary_10_1007_s00284_019_01633_8 crossref_primary_10_3390_catal11081011 crossref_primary_10_1016_j_jhazmat_2024_134887 crossref_primary_10_1016_j_procbio_2017_12_013 crossref_primary_10_1186_s13068_019_1613_6 crossref_primary_10_1016_j_renene_2017_11_005 crossref_primary_10_12693_APhysPolA_145_S9 crossref_primary_10_1002_bbb_2407 crossref_primary_10_1016_j_str_2021_01_006 crossref_primary_10_1016_j_pbi_2017_08_010 crossref_primary_10_1007_s00253_023_12427_1 crossref_primary_10_1093_bioinformatics_btx689 crossref_primary_10_1186_s13068_017_0928_4 crossref_primary_10_1016_j_jece_2023_109870 crossref_primary_10_1038_s41396_018_0292_9 crossref_primary_10_1002_anie_202319832 crossref_primary_10_1016_j_ijhydene_2019_03_066 crossref_primary_10_1021_jacs_8b10011 crossref_primary_10_1039_C8CP00925B crossref_primary_10_1016_j_cbpa_2017_10_013 crossref_primary_10_1128_MMBR_00135_20 crossref_primary_10_1002_smll_202106425 crossref_primary_10_3389_fvets_2021_668003 crossref_primary_10_1002_pro_5193 crossref_primary_10_1016_j_cej_2021_133416 crossref_primary_10_1002_prot_26690 crossref_primary_10_1016_j_fgb_2024_103958 crossref_primary_10_3390_microorganisms8122024 crossref_primary_10_1002_cssc_201801141 crossref_primary_10_1186_s12866_019_1480_0 crossref_primary_10_1002_1873_3468_12957 crossref_primary_10_1126_science_adj9223 crossref_primary_10_1146_annurev_micro_090816_093315 crossref_primary_10_1002_bab_1804 crossref_primary_10_1128_AEM_03088_16 crossref_primary_10_1016_j_carbpol_2024_122284 crossref_primary_10_3390_fermentation9030204 crossref_primary_10_1093_femsre_fuz007 crossref_primary_10_3390_agriculture11010075 crossref_primary_10_1186_s13068_018_1238_1 crossref_primary_10_1016_j_ijbiomac_2024_139048 crossref_primary_10_1016_j_pep_2023_106323 crossref_primary_10_1128_msystems_01283_22 crossref_primary_10_1016_j_carbpol_2021_118059 crossref_primary_10_1155_2024_5573158 crossref_primary_10_1016_j_biotechadv_2019_03_013 crossref_primary_10_3390_jof7030200 crossref_primary_10_1039_C7CP04114D crossref_primary_10_1021_jacs_9b06776 crossref_primary_10_1016_j_envres_2023_115925 crossref_primary_10_1016_j_greenca_2023_07_001 crossref_primary_10_1016_j_jsb_2021_107765 crossref_primary_10_1074_jbc_RA117_000644 crossref_primary_10_3390_microorganisms11092219 crossref_primary_10_1073_pnas_2117467119 crossref_primary_10_1016_j_enzmictec_2017_05_008 crossref_primary_10_1016_j_biortech_2022_128555 crossref_primary_10_1021_acscatal_1c03465 crossref_primary_10_1016_j_cclet_2019_07_008 crossref_primary_10_1038_s41598_019_52675_8 crossref_primary_10_1002_cssc_201900351 crossref_primary_10_1016_j_soilbio_2019_01_023 crossref_primary_10_1007_s00284_023_03309_w crossref_primary_10_1016_j_jclepro_2021_130180 crossref_primary_10_1016_j_bcdf_2020_100245 crossref_primary_10_3389_fmicb_2018_03149 crossref_primary_10_3920_BM2021_0090 crossref_primary_10_1007_s10529_024_03522_y crossref_primary_10_3389_fmicb_2017_02504 crossref_primary_10_1038_nbt_4110 crossref_primary_10_3390_ijms20071602 crossref_primary_10_1186_s40168_022_01453_2 crossref_primary_10_3390_fermentation8080394 crossref_primary_10_1007_s12275_022_1531_3 crossref_primary_10_3389_fmicb_2021_741077 crossref_primary_10_3390_microorganisms8030385 crossref_primary_10_1016_j_cej_2024_151487 crossref_primary_10_1021_acs_bioconjchem_1c00327 crossref_primary_10_1021_acscatal_8b01883 crossref_primary_10_1021_acssuschemeng_8b00376 crossref_primary_10_1002_smll_202301413 crossref_primary_10_1111_1462_2920_15317 crossref_primary_10_1038_s41598_018_29245_5 crossref_primary_10_1016_j_biteb_2023_101695 crossref_primary_10_1038_s41586_024_08553_z crossref_primary_10_1038_s41522_022_00309_9 crossref_primary_10_3389_fmicb_2021_695517 crossref_primary_10_1186_s13068_023_02260_z crossref_primary_10_1111_1751_7915_13580 crossref_primary_10_1016_j_copbio_2022_102840 crossref_primary_10_3390_microorganisms11061514 crossref_primary_10_1111_1751_7915_13584 crossref_primary_10_1007_s00253_018_8778_y crossref_primary_10_1186_s13068_020_01709_9 crossref_primary_10_1016_j_biortech_2022_128339 crossref_primary_10_1111_1758_2229_12785 crossref_primary_10_1016_j_biotechadv_2020_107627 crossref_primary_10_1016_j_cogsc_2021_100584 crossref_primary_10_1016_j_biombioe_2020_105673 crossref_primary_10_1016_j_biortech_2022_126706 crossref_primary_10_1074_jbc_RA120_013040 crossref_primary_10_1074_jbc_RA119_008455 crossref_primary_10_1016_j_greenca_2024_01_003 crossref_primary_10_1016_j_jaci_2018_06_017 crossref_primary_10_1016_j_biortech_2021_124909 crossref_primary_10_1007_s12010_018_2786_3 crossref_primary_10_1128_AEM_00199_20 crossref_primary_10_1128_mBio_00012_18 crossref_primary_10_1042_EBC20220167 crossref_primary_10_1021_acscatal_2c02377 crossref_primary_10_1016_j_enzmictec_2020_109517 crossref_primary_10_1126_sciadv_abd7182 crossref_primary_10_1186_s13068_019_1447_2 crossref_primary_10_1021_acs_estlett_5c00190 crossref_primary_10_32604_jrm_2021_014374 crossref_primary_10_1016_j_scitotenv_2022_156890 crossref_primary_10_1007_s00203_018_1606_z crossref_primary_10_1007_s00253_017_8467_2 crossref_primary_10_1038_s41564_017_0047_9 crossref_primary_10_1038_s41396_018_0332_5 crossref_primary_10_3390_microorganisms11071732 crossref_primary_10_1093_jambio_lxac002 crossref_primary_10_1007_s00253_023_12581_6 crossref_primary_10_1021_acs_accounts_9b00165 crossref_primary_10_1038_s41598_018_25171_8 crossref_primary_10_1093_molbev_msab020 crossref_primary_10_1126_sciadv_adg4846 crossref_primary_10_1016_j_ijbiomac_2024_131988 crossref_primary_10_3390_app11115150 crossref_primary_10_1002_cbic_201900061 crossref_primary_10_1016_j_rser_2024_114913 crossref_primary_10_1128_JB_00481_20 crossref_primary_10_48130_animadv_0024_0002 crossref_primary_10_1002_bit_27705 crossref_primary_10_1016_j_sbi_2018_03_012 crossref_primary_10_1016_j_ymben_2017_09_008 crossref_primary_10_2139_ssrn_4117183 crossref_primary_10_1186_s13068_019_1353_7 crossref_primary_10_3389_fmicb_2022_1002532 crossref_primary_10_1007_s11274_017_2308_4 crossref_primary_10_3389_fmicb_2023_1112247 crossref_primary_10_1007_s00253_018_9508_1 crossref_primary_10_1021_acs_jpcb_3c05697 crossref_primary_10_1071_AN22363 crossref_primary_10_3389_fmicb_2023_1179206 crossref_primary_10_2174_0929867324666170912095755 crossref_primary_10_1371_journal_pone_0192618 crossref_primary_10_3389_fmicb_2018_00215 crossref_primary_10_1038_s41467_020_18063_x crossref_primary_10_1128_mBio_01155_20 crossref_primary_10_1186_s13068_017_1009_4 crossref_primary_10_1007_s10295_019_02222_1 crossref_primary_10_1016_j_biotechadv_2020_107535 crossref_primary_10_1016_j_jtice_2023_105276 crossref_primary_10_1016_j_tibtech_2020_02_007 crossref_primary_10_1021_acscentsci_0c00050 crossref_primary_10_1002_bbb_1832 crossref_primary_10_3389_fmicb_2023_1282851 crossref_primary_10_1055_s_0044_1800966 crossref_primary_10_3389_fenrg_2021_680313 crossref_primary_10_1002_jctb_5825 crossref_primary_10_1038_s41467_019_10068_5 crossref_primary_10_3390_molecules26051389 crossref_primary_10_3390_microorganisms11010162 crossref_primary_10_1111_1758_2229_12980 crossref_primary_10_3923_ajb_2017_36_43 crossref_primary_10_1039_D1EE02540F crossref_primary_10_3390_biom13091407 crossref_primary_10_1002_prot_25753 crossref_primary_10_1016_j_enzmictec_2020_109546 crossref_primary_10_1021_jacsau_4c00388 crossref_primary_10_3389_fmicb_2019_01646 crossref_primary_10_1016_j_biotechadv_2020_107546 crossref_primary_10_1016_j_biotechadv_2025_108523 crossref_primary_10_1007_s00792_024_01341_7 crossref_primary_10_1016_j_scitotenv_2023_167757 crossref_primary_10_1128_mBio_00832_21 crossref_primary_10_1002_pro_4937 crossref_primary_10_1016_j_cub_2022_05_049 crossref_primary_10_1080_19490976_2022_2031694 crossref_primary_10_1186_s13068_019_1522_8 crossref_primary_10_1038_s41929_019_0321_8 |
Cites_doi | 10.1126/science.1227491 10.1186/1471-2180-11-134 10.1128/JB.00097-08 10.1111/j.1365-2958.2006.05182.x 10.1073/pnas.0813093106 10.1039/c2cy00371f 10.1016/j.enzmictec.2010.12.014 10.1111/j.1365-2958.1993.tb01576.x 10.1128/JB.00973-06 10.1007/s00253-011-3108-7 10.1111/j.1574-6968.1992.tb05563.x 10.1128/JB.185.10.3042-3048.2003 10.1128/AEM.00873-15 10.1111/j.1742-4658.2009.07025.x 10.1126/sciadv.1501254 10.1073/pnas.1608012113 10.1371/journal.pone.0012476 10.1128/JB.181.6.1801-1810.1999 10.1016/j.copbio.2009.05.004 10.1128/JB.156.2.818-827.1983 10.1016/j.femsre.2004.11.003 10.1016/S0014-5793(99)01634-8 10.1128/mBio.00508-12 10.1128/AEM.01241-09 10.1128/JB.156.2.828-836.1983 10.1007/s00253-015-7071-6 10.1186/s13068-014-0135-5 10.1111/febs.12497 10.1186/1754-6834-5-51 10.1128/JB.185.20.6067-6075.2003 10.4014/jmb.1402.02034 10.1016/j.copbio.2007.04.004 10.1371/journal.pone.0053779 10.1038/455481a 10.1073/pnas.1012175107 10.1128/JB.186.4.968-977.2004 10.1007/s00253-006-0689-7 10.7717/peerj.636 10.1186/1754-6834-7-112 10.1002/(SICI)1097-0290(19991005)65:1<17::AID-BIT3>3.0.CO;2-Y 10.1073/pnas.1936124100 10.1371/journal.pone.0065333 10.1016/0008-6215(92)85079-F 10.1016/j.sbi.2016.08.002 10.1186/s13068-016-0526-x 10.1186/1754-6834-7-80 10.1016/0167-7799(94)90039-6 10.1016/j.jbiotec.2009.06.019 10.1016/j.jbiotec.2010.04.012 10.1007/s00253-016-7594-5 10.1128/jb.167.3.828-836.1986 10.1002/(SICI)1097-0134(199712)29:4<517::AID-PROT11>3.0.CO;2-P 10.1038/nrmicro925 10.4155/bfs.09.25 10.1080/21655979.2015.1060379 10.1186/s13568-014-0089-9 10.1128/JB.185.17.5109-5116.2003 10.1111/1574-6976.12044 10.1002/adma.201503948 10.1371/journal.pone.0127326 10.1074/jbc.M414449200 10.1074/jbc.M006948200 10.1128/AEM.49.3.656-659.1985 10.1039/c3cc42614a 10.1016/j.jmb.2010.10.013 10.1074/jbc.M503168200 10.1073/pnas.89.8.3483 10.1371/journal.pone.0146316 10.1186/s13068-015-0301-4 10.1073/pnas.1202747109 10.1128/jb.176.1.70-76.1994 10.1016/j.tibtech.2013.06.006 10.1128/jb.177.9.2451-2459.1995 10.4155/bfs.11.126 10.1371/journal.pone.0099221 10.1111/j.1574-6968.2010.01997.x 10.1039/c3ee00019b 10.1146/annurev.micro.57.030502.091022 10.1038/ncomms7900 10.1038/nature06269 10.1002/pmic.200700486 10.1186/1471-2164-13-210 10.1126/science.1200387 10.1016/S0734-9750(02)00006-X 10.1016/j.jprot.2015.04.026 10.1371/journal.pone.0042116 10.1021/sb300068g 10.1016/j.imlet.2005.10.022 10.1128/mBio.01058-15 10.1016/j.jsb.2014.09.006 10.1111/j.1574-6976.1994.tb00033.x 10.1186/s13068-014-0136-4 10.1128/mBio.00083-16 10.1016/j.biortech.2014.01.140 10.1093/nar/gkt1178 10.1186/s13068-016-0577-z 10.1128/JB.186.9.2576-2585.2004 10.4056/sigs.2535732 10.1073/pnas.1404148111 10.1186/1754-6834-6-182 10.1186/1754-6834-6-179 10.1038/ncomms6635 10.1089/ind.2005.1.198 10.1186/s13068-016-0554-6 10.1111/1462-2920.13561 10.1128/AEM.61.5.1980-1986.1995 10.1016/j.ymben.2015.09.002 10.1111/1462-2920.13047 10.1111/1462-2920.13152 10.1111/1462-2920.12920 10.1186/1754-6834-7-100 10.1074/jbc.M113.466672 10.1128/jb.175.7.1891-1899.1993 10.1002/pmic.200900311 10.1128/JB.185.15.4548-4557.2003 10.1016/j.sbi.2013.09.002 10.1186/s13068-016-0474-5 10.1128/AEM.02599-10 10.1186/1754-6834-6-73 10.1128/AEM.02070-14 10.1128/mBio.00411-15 10.1126/science.1080029 10.1371/journal.pone.0056138 10.1385/ABAB:101:1:41 10.1074/jbc.M113.545046 10.1073/pnas.1102444108 10.1074/jbc.M112.343897 10.1128/JB.187.22.7569-7578.2005 10.1073/pnas.1211929109 10.1186/2191-0855-2-37 10.1186/1754-6834-7-24 10.1073/pnas.0803154105 10.1016/j.copbio.2009.05.008 10.1371/journal.pone.0005271 10.1039/C4AN00856A 10.1128/AEM.01306-07 10.1111/j.1574-6968.2008.01420.x 10.1128/jb.184.4.884-888.2002 10.1021/sb4000993 10.1002/jmr.1029 10.1038/ismej.2012.4 10.1073/pnas.0507109103 10.1073/pnas.0806191105 10.1021/pr400788e 10.1074/jbc.M112.408757 10.1074/jbc.M207672200 10.1111/j.1574-6941.2010.00941.x 10.1111/j.1574-6968.2010.02146.x 10.1002/bit.23050 10.1128/jb.173.13.4155-4162.1991 10.1186/s13068-015-0204-4 10.1016/j.procbio.2012.01.009 10.1021/acs.nanolett.5b02727 10.1128/JB.181.21.6720-6729.1999 10.1016/j.gpb.2015.07.002 10.1111/1462-2920.12868 10.1016/j.ymben.2015.07.001 10.3390/s90705351 |
ContentType | Journal Article |
Copyright | Springer Nature Limited 2016 COPYRIGHT 2017 Nature Publishing Group Copyright Nature Publishing Group Feb 2017 |
Copyright_xml | – notice: Springer Nature Limited 2016 – notice: COPYRIGHT 2017 Nature Publishing Group – notice: Copyright Nature Publishing Group Feb 2017 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7RV 7U9 7X7 7XB 88A 88E 88I 8AO 8C1 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI BKSAR C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB0 LK8 M0S M1P M2P M7N M7P NAPCQ P64 PCBAR PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U RC3 7X8 7QO |
DOI | 10.1038/nrmicro.2016.164 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Nursing & Allied Health Database Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Engineering Research Database ProQuest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Science Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database Proquest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Genetics Abstracts MEDLINE - Academic Biotechnology Research Abstracts |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student ProQuest Central Essentials SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts ProQuest Public Health ProQuest Central Basic ProQuest Science Journals ProQuest Nursing & Allied Health Source ProQuest SciTech Collection ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic Biotechnology Research Abstracts |
DatabaseTitleList | ProQuest Central Student MEDLINE - Academic MEDLINE Engineering Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1740-1534 |
EndPage | 95 |
ExternalDocumentID | 4305143921 A477615395 27941816 10_1038_nrmicro_2016_164 |
Genre | Journal Article Review |
GroupedDBID | --- .55 0R~ 123 29M 36B 39C 3V. 4.4 53G 70F 7RV 7X7 88A 88E 88I 8AO 8C1 8CJ 8FE 8FH 8FI 8FJ 8R4 8R5 AAEEF AARCD AAWYQ AAYZH AAZLF ABAWZ ABDBF ABJNI ABLJU ABUWG ACGFO ACGFS ACMJI ACPRK ACUHS ADBBV ADFRT AENEX AEUYN AFBBN AFKRA AFRAH AFSHS AGAYW AGHTU AHBCP AHMBA AHOSX AHSBF AIBTJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH ARMCB ASPBG AVWKF AXYYD AZFZN AZQEC BBNVY BENPR BHPHI BKEYQ BKKNO BKSAR BPHCQ BVXVI CCPQU CS3 D1J DB5 DU5 DWQXO EAD EAP EAS EBS EE. EJD EMB EMK EMOBN ESX EX3 EXGXG F5P FEDTE FQGFK FSGXE FYUFA GNUQQ HCIFZ HMCUK HVGLF HZ~ IAO IH2 IHR INH INR ITC LGEZI LK8 LOTEE M0L M1P M2P M7P MM. N9A NADUK NAPCQ NNMJJ NXXTH O9- ODYON P2P PCBAR PQQKQ PROAC PSQYO Q2X QF4 QM4 QN7 QO4 RNR RNT RNTTT SHXYY SIXXV SNYQT SOJ SV3 TAOOD TBHMF TDRGL TSG TUS UKHRP WOW X7M AAYXX ABFSG ACMFV AFANA ALPWD ATHPR CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NFIDA NPM AEIIB PMFND 7QL 7U9 7XB 8FD 8FK C1K FR3 H94 K9. M7N P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U RC3 7X8 PUEGO 7QO |
ID | FETCH-LOGICAL-c469t-8c7e47c10574b154b85f68db72ed16f8a99d4a084b660b9a6804a0c048c39613 |
IEDL.DBID | 7X7 |
ISSN | 1740-1526 |
IngestDate | Fri Sep 05 14:15:14 EDT 2025 Fri Sep 05 12:04:00 EDT 2025 Fri Jul 25 08:52:08 EDT 2025 Tue Jun 17 21:28:39 EDT 2025 Tue Jun 10 20:51:52 EDT 2025 Thu Apr 03 07:07:14 EDT 2025 Tue Jul 01 01:50:15 EDT 2025 Thu Apr 24 23:08:08 EDT 2025 Fri Feb 21 02:37:40 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c469t-8c7e47c10574b154b85f68db72ed16f8a99d4a084b660b9a6804a0c048c39613 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-3 content type line 23 ObjectType-Review-1 |
PMID | 27941816 |
PQID | 1860128126 |
PQPubID | 27584 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_1868305446 proquest_miscellaneous_1852663910 proquest_journals_1860128126 gale_infotracmisc_A477615395 gale_infotracacademiconefile_A477615395 pubmed_primary_27941816 crossref_citationtrail_10_1038_nrmicro_2016_164 crossref_primary_10_1038_nrmicro_2016_164 springer_journals_10_1038_nrmicro_2016_164 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-02-01 |
PublicationDateYYYYMMDD | 2017-02-01 |
PublicationDate_xml | – month: 02 year: 2017 text: 2017-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature reviews. Microbiology |
PublicationTitleAbbrev | Nat Rev Microbiol |
PublicationTitleAlternate | Nat Rev Microbiol |
PublicationYear | 2017 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | CarvalhoALCellulosome assembly revealed by the crystal structure of the cohesin–dockerin complexProc. Natl Acad. Sci. USA200310013809138141:CAS:528:DC%2BD3sXpsFGis7w%3D10.1073/pnas.193612410014623971 BayerEAMoragELamedRThe cellulosome — a treasure-trove for biotechnologyTrends Biotechnol.1994123793861:CAS:528:DyaK2cXmt1yrsbw%3D10.1016/0167-7799(94)90039-67765191 PagèsSSequence analysis of scaffolding protein CipC and ORFXp, a new cohesin-containing protein in Clostridium cellulolyticum: comparison of various cohesin domains and subcellular localization of ORFXpJ. Bacteriol.1999181180118101007407293578 PohlschröderMLeschineSBCanale-ParolaEMulticomplex cellulase–xylanase system of Clostridium papyrosolvens C7J. Bacteriol.1994176707610.1128/jb.176.1.70-76.19948282713205015 DykstraABDevelopment of a multipoint quantitation method to simultaneously measure enzymatic and structural components of the Clostridium thermocellum cellulosome protein complexJ. Proteome Res.2014136927011:CAS:528:DC%2BC3sXhvVCisL3F10.1021/pr400788e24274857 DesvauxMClostridium cellulolyticum: model organism of mesophilic cellulolytic clostridiaFEMS Microbiol. Rev.2005297417641:CAS:528:DC%2BD2MXos1WktLw%3D10.1016/j.femsre.2004.11.00316102601 WilchekMBayerEALivnahOEssentials of biorecognition: the (strept)avidin-biotin system as a model for protein–protein and protein–ligand interactionImmunol. Lett.200610327321:CAS:528:DC%2BD28XhtV2ktLw%3D10.1016/j.imlet.2005.10.02216325268 WilsonCMGlobal transcriptome analysis of Clostridium thermocellum ATCC 27405 during growth on dilute acid pretreated Populus and switchgrassBiotechnol. Biofuels2013617910.1186/1754-6834-6-1791:CAS:528:DC%2BC2cXovF2kt7k%3D242955623880215 RincónMTScaC, an adaptor protein carrying a novel cohesin that expands the dockerin-binding repertoire of the Ruminococcus flavefaciens 17 cellulosomeJ. Bacteriol.20041862576258510.1128/JB.186.9.2576-2585.20041:CAS:528:DC%2BD2cXjsFKrtrg%3D15090497387807 XuQDramatic performance of Clostridium thermocellum explained by its wide range of cellulase modalitiesSci. Adv.20162e150125410.1126/sciadv.15012541:CAS:528:DC%2BC2sXlvVWrs70%3D269897794788478 HussackGMultivalent anchoring and oriented display of single-domain antibodies on celluloseSensors (Basel).20099535153671:CAS:528:DC%2BD1MXosVKmsL8%3D10.3390/s90705351223467023274147 StahlSWSingle-molecule dissection of the high-affinity cohesin–dockerin complexProc. Natl Acad. Sci. USA201210920431204361:CAS:528:DC%2BC3sXnvVSltA%3D%3D10.1073/pnas.121192910923188794 HyeonJEProduction of functional agarolytic nano-complex for the synergistic hydrolysis of marine biomass and its potential application in carbohydrate-binding module-utilizing one-step purificationProcess Biochem.2012478778811:CAS:528:DC%2BC38Xis1Olu70%3D10.1016/j.procbio.2012.01.009 KimD-MA nanocluster design for the construction of artificial cellulosomesCatal. Sci. Technol.201224991:CAS:528:DC%2BC38XjsFCrtLk%3D10.1039/c2cy00371f GunnooMNanoscale engineering of designer cellulosomesAdv. Mater.201628561956471:CAS:528:DC%2BC28Xlt1WmsQ%3D%3D10.1002/adma.20150394826748482 SakkaKAnalysis of cohesin–dockerin interactions using mutant dockerin proteinsFEMS Microbiol. Lett.201131475801:CAS:528:DC%2BC3cXhs1aitL3O10.1111/j.1574-6968.2010.02146.x21054503 GilmoreSPHenskeJKO'MalleyMDriving biomass breakdown through engineered cellulosomesBioengineered201562042081:CAS:528:DC%2BC28XhslKru7s%3D10.1080/21655979.2015.1060379260681804601266 MoraïsSEnzymatic profiling of cellulosomal enzymes from the human gut bacterium, Ruminococcus champanellensis, reveals a fine-tuned system for cohesin–dockerin recognitionEnviron. Microbiol.20161854255610.1111/1462-2920.130471:CAS:528:DC%2BC28XjtlGrtr4%3D26347002 SmithSPBayerEAInsights into cellulosome assembly and dynamics: from dissection to reconstruction of the supramolecular enzyme complexCurr. Opin. Struct. Biol.2013236866941:CAS:528:DC%2BC3sXhsFeltbzK10.1016/j.sbi.2013.09.00224080387 XuQArchitecture of the Bacteroides cellulosolvens cellulosome: description of a cell surface-anchoring scaffoldin and a family 48 cellulaseJ. Bacteriol.20041869689771:CAS:528:DC%2BD2cXhsVWjtrg%3D10.1128/JB.186.4.968-977.200414761991344227 XuJA genomic view of the human–Bacteroides thetaiotaomicron symbiosisScience2003299207420761:CAS:528:DC%2BD3sXitlCisL0%3D10.1126/science.108002912663928 GarveyMKloseHFischerRLambertzCCommandeurUCellulases for biomass degradation: comparing recombinant cellulase expression platformsTrends Biotechnol.2013315815931:CAS:528:DC%2BC3sXht1ShsbjF10.1016/j.tibtech.2013.06.00623910542 CurrieMAScaffoldin conformation and dynamics revealed by a ternary complex from the Clostridium thermocellumJ. Biol. Chem.201228726953269611:CAS:528:DC%2BC38XhtFaqtrzI10.1074/jbc.M112.343897227077183411031 KosugiAMurashimaKTamaruYDoiRHCell-surface-anchoring role of N-terminal surface layer homology domains of Clostridium cellulovorans EngEJ. Bacteriol.20021848848881:CAS:528:DC%2BD38XhtVejtbg%3D10.1128/jb.184.4.884-888.200211807046134812 Salama-AlberOAtypical cohesin–dockerin complex responsible for cell surface attachment of cellulosomal components: binding fidelity, promiscuity, and structural buttressesJ. Biol. Chem.201328816827168381:CAS:528:DC%2BC3sXptVCrsLs%3D10.1074/jbc.M113.466672235806483675615 SchoelerCMapping mechanical force propagation through biomolecular complexesNano Lett.201515737073761:CAS:528:DC%2BC2MXhtlSmtrvO10.1021/acs.nanolett.5b02727262595444721519 BrownSDMutant alcohol dehydrogenase leads to improved ethanol tolerance in Clostridium thermocellumProc. Natl Acad. Sci. USA201110813752137571:CAS:528:DC%2BC3MXhtV2ms7bJ10.1073/pnas.110244410821825121 SchoelerCUltrastable cellulosome–adhesion complex tightens under loadNat. Commun.2014556351:CAS:528:DC%2BC2MXjvFahsLc%3D10.1038/ncomms6635254823954266597 MoraïsSEnhanced cellulose degradation by nano-complexed enzymes: synergism between a scaffold-linked exoglucanase and a free endoglucanaseJ. Biotechnol.201014720521110.1016/j.jbiotec.2010.04.0121:CAS:528:DC%2BC3cXntVemu7Y%3D20438772 DingS-YHow does plant cell wall nanoscale architecture correlate with enzymatic digestibility?Science2012338105510601:CAS:528:DC%2BC38Xhs12itrjK10.1126/science.122749123180856 DavidiLToward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosomeProc. Natl Acad. Sci. USA201611310854108591:CAS:528:DC%2BC28XhsV2kurrL10.1073/pnas.160801211327621442 WeiHNatural paradigms of plant cell wall degradationCurr. Opin. Biotechnol.2009203303381:CAS:528:DC%2BD1MXosVajtrw%3D10.1016/j.copbio.2009.05.00819523812 LinPPConsolidated bioprocessing of cellulose to isobutanol using Clostridium thermocellumMetab. Eng.20153144521:CAS:528:DC%2BC2MXhtF2ks7nE10.1016/j.ymben.2015.07.00126170002 PooleDMIdentification of the cellulose binding domain of the cellulosome subunit S1 from Clostridium thermocellumFEMS Microbiol. Lett.1992991811861:CAS:528:DyaK3sXlsF2huw%3D%3D10.1111/j.1574-6968.1992.tb05563.x SternJMoraïsSLamedRBayerEAAdaptor scaffoldins: an original strategy for extended designer cellulosomes, inspired from naturemBio20167e00083-1610.1128/mBio.00083-16270487964959524 JeonSDYuKOKimSWHanSOA celluloytic complex from Clostridium cellulovorans consisting of mannanase B and endoglucanase E has synergistic effects on galactomannan degradationAppl. Microbiol. Biotechnol.2011905655721:CAS:528:DC%2BC3MXjsFGhsLw%3D10.1007/s00253-011-3108-721311881 ThomasLJosephAGottumukkalaLDXylanase and cellulase systems of Clostridium sp.: an insight on molecular approaches for strain improvementBioresour. Technol.20141583433501:CAS:528:DC%2BC2cXjtVGqtbg%3D10.1016/j.biortech.2014.01.14024581864 BayerEAShohamYLamedRThe Prokaryotes. Prokaryotic Physiology and Biochemistry2013215265 AndersonTDAssembly of minicellulosomes on the surface of Bacillus subtilisAppl. Environ. Microbiol.201177484948581:CAS:528:DC%2BC3MXhtVWlsbrJ10.1128/AEM.02599-10216227973147385 XuQLuoYDingSHimmelMEMultifunctional enzyme systems for plant cell wall degradationCompr. Biotechnol.201131525 HessMMetagenomic discovery of biomass-degrading genes and genomes from cow rumenScience20113314634671:CAS:528:DC%2BC3MXpsF2mtA%3D%3D10.1126/science.120038721273488 MichelGRuminococcal cellulosomes: molecular Lego to deconstruct microcrystalline cellulose in human gutEnviron. Microbiol.2015173113311510.1111/1462-2920.1292026219082 DingSYBayerEASteinerDShohamYLamedRA novel cellulosomal scaffoldin from Acetivibrio cellulolyticus that contains a family 9 glycosyl hydrolaseJ. Bacteriol.1999181672067291:CAS:528:DyaK1MXntFeqtL8%3D1054217494137 HambergYElaborate cellulosome architecture of Acetivibrio cellulolyticus revealed by selective screening of cohesin–dockerin interactionsPeerJ20142e63610.7717/peerj.636253747804217186 BhatKWoodTMThe cellulase of the anaerobic bacterium Clostridium thermocellum: isolation, dissociation, and reassociation of the cellulosomeCarbohydr. Res.19922272933001:CAS:528:DyaK38Xlt1Kqtbo%3D10.1016/0008-6215(92)85079-F DoiRHKosugiACellulosomes: plant-cell-wall-degrading enzyme complexesNat. Rev. Microbiol.200425415511:CAS:528:DC%2BD2cXkvVSru7Y%3D10.1038/nrmicro92515197390 HammelMStructural basis of cellulosome efficiency explored by small angle X-ray scatteringJ. Biol. Chem.200528038562385681:CAS:528:DC%2BD2MXht1SktLrE10.1074/jbc.M50316820016157599 DrorTWRoliderABayerEALamedRShohamYRegulation of expression of scaffoldin-related genes in Clostridium thermocellumJ. Bacteriol.2003185510951161:CAS:528:DC%2BD3sXmvVers7Y%3D10.1128/JB.185.17.5109-5116.200312923083181014 GaoSYouCRenneckarSBaoJZhangY-HPNew insights into enzymatic hydrolysis of heterogeneous cellulose by using carbohydrate-binding module 3 containing GFP and carbohydrate-binding module 17 containing CFPBiotechnol. Biofuels201472410.1186/1754-6834-7-241:CAS:528:DC%2BC2MXjsVejurY%3D245525543943381 ZverlovVVKluppMKraussJSchwarzWHMutations in the scaffoldin gene, cipA, of Clostridium thermocellum with impaired cellulosome formation and cellulose hydrolysis: insertions of a new transposable element, IS14 K Esaka (BFnrmicro2016164_CR148) 2015; 5 S Pagès (BFnrmicro2016164_CR23) 1999; 181 X Ze (BFnrmicro2016164_CR26) 2015; 6 EA Bayer (BFnrmicro2016164_CR11) 1994; 12 B Raman (BFnrmicro2016164_CR81) 2009; 4 Y Nataf (BFnrmicro2016164_CR86) 2010; 107 S Gao (BFnrmicro2016164_CR136) 2014; 7 JJ Adams (BFnrmicro2016164_CR69) 2006; 103 J Stern (BFnrmicro2016164_CR92) 2016; 7 M Levy-Assaraf (BFnrmicro2016164_CR57) 2013; 8 SO Han (BFnrmicro2016164_CR79) 2003; 185 EA Bayer (BFnrmicro2016164_CR6) 1983; 156 Y Vazana (BFnrmicro2016164_CR160) 2013; 6 I Cann (BFnrmicro2016164_CR20) 2016; 18 C Xu (BFnrmicro2016164_CR88) 2013; 6 C Blanchette (BFnrmicro2016164_CR95) 2012; 7 S Moraïs (BFnrmicro2016164_CR114) 2016; 9 C Lambertz (BFnrmicro2016164_CR123) 2014; 7 J Ravachol (BFnrmicro2016164_CR54) 2015; 8 R Haimovitz (BFnrmicro2016164_CR37) 2008; 8 MT Rincón (BFnrmicro2016164_CR44) 2004; 186 H Wei (BFnrmicro2016164_CR2) 2009; 20 PJ Simpson (BFnrmicro2016164_CR77) 2000; 275 Q Xu (BFnrmicro2016164_CR15) 2003; 185 J Ou (BFnrmicro2016164_CR100) 2014; 24 SP Gilmore (BFnrmicro2016164_CR29) 2015; 6 SP Smith (BFnrmicro2016164_CR68) 2013; 23 J Xu (BFnrmicro2016164_CR87) 2003; 299 C You (BFnrmicro2016164_CR109) 2014; 3 EA Bayer (BFnrmicro2016164_CR4) 2004; 58 SY Ding (BFnrmicro2016164_CR30) 1999; 181 J Caspi (BFnrmicro2016164_CR162) 2009; 75 M Hammel (BFnrmicro2016164_CR78) 2005; 280 EA Bayer (BFnrmicro2016164_CR138) 2009 E Morag (BFnrmicro2016164_CR75) 1995; 61 S Kang (BFnrmicro2016164_CR56) 2006; 60 A Kosugi (BFnrmicro2016164_CR41) 2002; 184 R Du (BFnrmicro2016164_CR119) 2011; 2 O Salama-Alber (BFnrmicro2016164_CR70) 2013; 288 LH Fan (BFnrmicro2016164_CR105) 2016; 9 MA Nash (BFnrmicro2016164_CR73) 2016; 40 A Peer (BFnrmicro2016164_CR36) 2009; 291 H Kahel-Raifer (BFnrmicro2016164_CR85) 2010; 308 D-M Kim (BFnrmicro2016164_CR96) 2012; 2 G Michel (BFnrmicro2016164_CR21) 2015; 17 G Hussack (BFnrmicro2016164_CR134) 2009; 9 A Bhalla (BFnrmicro2016164_CR111) 2013; 158 MT Rincon (BFnrmicro2016164_CR17) 2010; 5 T Fujino (BFnrmicro2016164_CR32) 1993; 175 JJ Adams (BFnrmicro2016164_CR38) 2008; 105 S Jindou (BFnrmicro2016164_CR45) 2006; 188 KK Podkaminer (BFnrmicro2016164_CR122) 2011; 108 Y Mori (BFnrmicro2016164_CR128) 1992; 56 MT Rincon (BFnrmicro2016164_CR42) 2005; 187 X Ze (BFnrmicro2016164_CR27) 2012; 6 VV Zverlov (BFnrmicro2016164_CR39) 2008; 190 B Raman (BFnrmicro2016164_CR153) 2011; 11 AL Carvalho (BFnrmicro2016164_CR67) 2003; 100 L Artzi (BFnrmicro2016164_CR58) 2016; 9 Q Xu (BFnrmicro2016164_CR13) 2016; 2 Y Arfi (BFnrmicro2016164_CR90) 2014; 111 S Moraïs (BFnrmicro2016164_CR93) 2010; 147 UT Gerngross (BFnrmicro2016164_CR31) 1993; 8 L Artzi (BFnrmicro2016164_CR46) 2015; 6 AP Galanopoulou (BFnrmicro2016164_CR113) 2016; 100 R Lamed (BFnrmicro2016164_CR5) 1983; 156 C Xu (BFnrmicro2016164_CR89) 2015; 6 R Biswas (BFnrmicro2016164_CR98) 2015; 8 DM Poole (BFnrmicro2016164_CR76) 1992; 99 EA Bayer (BFnrmicro2016164_CR107) 2007; 18 C Chen (BFnrmicro2016164_CR72) 2014; 188 T Xu (BFnrmicro2016164_CR125) 2015; 81 I Fendri (BFnrmicro2016164_CR152) 2009; 276 A-L Molinier (BFnrmicro2016164_CR161) 2011; 405 BFnrmicro2016164_CR34 I Muñoz-Gutiérrez (BFnrmicro2016164_CR84) 2015; 11 S Mitsuzawa (BFnrmicro2016164_CR94) 2009; 143 TD Anderson (BFnrmicro2016164_CR99) 2011; 77 C Schoeler (BFnrmicro2016164_CR65) 2015; 15 K Sakka (BFnrmicro2016164_CR129) 2011; 314 K Gourlay (BFnrmicro2016164_CR135) 2012; 5 CM Wilson (BFnrmicro2016164_CR154) 2013; 6 ME Himmel (BFnrmicro2016164_CR7) 2010; 1 Q Xu (BFnrmicro2016164_CR52) 2011; 3 Q Xu (BFnrmicro2016164_CR66) 2004; 186 P Béguin (BFnrmicro2016164_CR51) 1994; 13 Y Liang (BFnrmicro2016164_CR104) 2014; 80 S Moraïs (BFnrmicro2016164_CR157) 2012; 3 JA Izquierdo (BFnrmicro2016164_CR121) 2014; 7 RI Munir (BFnrmicro2016164_CR151) 2015; 125 Y Mori (BFnrmicro2016164_CR97) 2013; 49 J-C Blouzard (BFnrmicro2016164_CR149) 2010; 10 M Vodovnik (BFnrmicro2016164_CR150) 2013; 8 Y Ben David (BFnrmicro2016164_CR19) 2015; 17 M Morrison (BFnrmicro2016164_CR144) 2009; 20 M Wilchek (BFnrmicro2016164_CR126) 2006; 103 A Demishtein (BFnrmicro2016164_CR130) 2010; 23 JA Izquierdo (BFnrmicro2016164_CR33) 2012; 6 C Chen (BFnrmicro2016164_CR59) 2016; 100 EA Bayer (BFnrmicro2016164_CR1) 2013 AB Dykstra (BFnrmicro2016164_CR82) 2014; 13 SE Blumer-Schuette (BFnrmicro2016164_CR110) 2014; 38 G Gefen (BFnrmicro2016164_CR50) 2012; 109 J Ravachol (BFnrmicro2016164_CR55) 2014; 289 RH Doi (BFnrmicro2016164_CR8) 2004; 2 S Moraïs (BFnrmicro2016164_CR22) 2016; 18 SD Jeon (BFnrmicro2016164_CR158) 2011; 90 C Schoeler (BFnrmicro2016164_CR64) 2014; 5 TW Dror (BFnrmicro2016164_CR80) 2003; 185 L Artzi (BFnrmicro2016164_CR16) 2014; 7 T Eriksson (BFnrmicro2016164_CR49) 2002; 101 W Hong (BFnrmicro2016164_CR124) 2014; 7 P Hugenholtz (BFnrmicro2016164_CR140) 2008; 455 HP Fierobe (BFnrmicro2016164_CR156) 2005; 280 M Garvey (BFnrmicro2016164_CR102) 2013; 31 K Bhat (BFnrmicro2016164_CR63) 1992; 227 S-Y Ding (BFnrmicro2016164_CR137) 2005; 1 B Papanek (BFnrmicro2016164_CR118) 2015; 32 SW Stahl (BFnrmicro2016164_CR60) 2012; 109 B Dassa (BFnrmicro2016164_CR28) 2014; 9 EA Bayer (BFnrmicro2016164_CR35) 1999; 463 J Wiegel (BFnrmicro2016164_CR120) 1985; 49 I Levy (BFnrmicro2016164_CR131) 2002; 20 EA Bayer (BFnrmicro2016164_CR47) 1986; 167 L Davidi (BFnrmicro2016164_CR91) 2016; 113 TI Williams (BFnrmicro2016164_CR116) 2007; 74 Y Hamberg (BFnrmicro2016164_CR12) 2014; 2 M Hess (BFnrmicro2016164_CR143) 2011; 331 M Gunnoo (BFnrmicro2016164_CR61) 2016; 28 Y Xia (BFnrmicro2016164_CR145) 2013; 8 MG Resch (BFnrmicro2016164_CR10) 2013; 6 M Desvaux (BFnrmicro2016164_CR40) 2005; 29 C You (BFnrmicro2016164_CR108) 2013; 2 H-P Fierobe (BFnrmicro2016164_CR159) 2002; 277 TW Dror (BFnrmicro2016164_CR83) 2003; 185 P Albersheim (BFnrmicro2016164_CR3) 2011 M Pohlschröder (BFnrmicro2016164_CR25) 1994; 176 MA Currie (BFnrmicro2016164_CR74) 2012; 287 BJ Willson (BFnrmicro2016164_CR103) 2016; 9 JE Hyeon (BFnrmicro2016164_CR106) 2011; 48 H Morisaka (BFnrmicro2016164_CR147) 2012; 2 M Lemaire (BFnrmicro2016164_CR43) 1995; 177 E Morag (BFnrmicro2016164_CR53) 1991; 173 JE Hyeon (BFnrmicro2016164_CR133) 2012; 47 F Warnecke (BFnrmicro2016164_CR141) 2007; 450 V Lombard (BFnrmicro2016164_CR48) 2014; 42 MA Currie (BFnrmicro2016164_CR139) 2013; 288 O Shoseyov (BFnrmicro2016164_CR24) 1992; 89 A Valbuena (BFnrmicro2016164_CR62) 2009; 106 SD Brown (BFnrmicro2016164_CR115) 2011; 108 C Chassard (BFnrmicro2016164_CR18) 2010; 74 PP Lin (BFnrmicro2016164_CR117) 2015; 31 J Stern (BFnrmicro2016164_CR164) 2015; 10 MF Simões (BFnrmicro2016164_CR146) 2015; 13 R Borne (BFnrmicro2016164_CR155) 2013; 280 JM Brulc (BFnrmicro2016164_CR142) 2009; 106 S-Y Ding (BFnrmicro2016164_CR9) 2012; 338 F Mingardon (BFnrmicro2016164_CR163) 2007; 73 B Dassa (BFnrmicro2016164_CR14) 2012; 13 L Thomas (BFnrmicro2016164_CR112) 2014; 158 S Moraïs (BFnrmicro2016164_CR101) 2014; 7 E Shpigel (BFnrmicro2016164_CR132) 1999; 5 JE Hyeon (BFnrmicro2016164_CR127) 2014; 139 S Pagès (BFnrmicro2016164_CR71) 1997; 29 |
References_xml | – reference: CaspiJEffect of linker length and dockerin position on conversion of a Thermobifida fusca endoglucanase to the cellulosomal modeAppl. Environ. Microbiol.200975733573421:CAS:528:DC%2BC3cXis1ynsA%3D%3D10.1128/AEM.01241-09198201542786427 – reference: WarneckeFMetagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termiteNature20074505605651:CAS:528:DC%2BD2sXhtlCrtb3J10.1038/nature0626918033299 – reference: LemaireMOhayonHGounonPFujinoTBéguinPOlpB, a new outer layer protein of Clostridium thermocellum, and binding of its S-layer-like domains to components of the cell envelopeJ. Bacteriol.1995177245124591:CAS:528:DyaK2MXlsVGltb0%3D10.1128/jb.177.9.2451-2459.19957730277176904 – reference: WilchekMBayerEALivnahOEssentials of biorecognition: the (strept)avidin-biotin system as a model for protein–protein and protein–ligand interactionImmunol. Lett.200610327321:CAS:528:DC%2BD28XhtV2ktLw%3D10.1016/j.imlet.2005.10.02216325268 – reference: MoraïsSEnhancement of cellulosome-mediated deconstruction of cellulose by improving enzyme thermostabilityBiotechnol. Biofuels.2016916410.1186/s13068-016-0577-z1:CAS:528:DC%2BC2sXhvVGksL7L274936864973527 – reference: WilliamsTICombsJCLynnBCStrobelHJProteomic profile changes in membranes of ethanol-tolerant Clostridium thermocellumAppl. Microbiol. Biotechnol.2007744224321:CAS:528:DC%2BD2sXht1yhuro%3D10.1007/s00253-006-0689-717124583 – reference: DingSYBayerEASteinerDShohamYLamedRA novel cellulosomal scaffoldin from Acetivibrio cellulolyticus that contains a family 9 glycosyl hydrolaseJ. Bacteriol.1999181672067291:CAS:528:DyaK1MXntFeqtL8%3D1054217494137 – reference: GunnooMNanoscale engineering of designer cellulosomesAdv. Mater.201628561956471:CAS:528:DC%2BC28Xlt1WmsQ%3D%3D10.1002/adma.20150394826748482 – reference: DykstraABDevelopment of a multipoint quantitation method to simultaneously measure enzymatic and structural components of the Clostridium thermocellum cellulosome protein complexJ. Proteome Res.2014136927011:CAS:528:DC%2BC3sXhvVCisL3F10.1021/pr400788e24274857 – reference: SmithSPBayerEAInsights into cellulosome assembly and dynamics: from dissection to reconstruction of the supramolecular enzyme complexCurr. Opin. Struct. Biol.2013236866941:CAS:528:DC%2BC3sXhsFeltbzK10.1016/j.sbi.2013.09.00224080387 – reference: FanLHBiotechnology for biofuels engineering yeast with bifunctional minicellulosome and cellodextrin pathway for co-utilization of cellulose-mixed sugarsBiotechnol. Biofuels2016913710.1186/s13068-016-0554-61:CAS:528:DC%2BC2sXhvVGksLfL273824144932713 – reference: NashMASmithSPFontesCBayerEASingle versus dual-binding conformations in cellulosomal cohesin–dockerin complexesCurr. Opin. Struct. Biol.20164089961:CAS:528:DC%2BC28XhtleisrvK10.1016/j.sbi.2016.08.00227579515 – reference: JindouSConservation and divergence in cellulosome architecture between two strains of Ruminococcus flavefaciensJ. Bacteriol.2006188797179761:CAS:528:DC%2BD28Xht1ahsb3N10.1128/JB.00973-06169979631636321 – reference: ArtziLMoragEBarakYLamedRBayerEAClostridium clariflavum: key cellulosome players are revealed by proteomic analysismBio20156e00411-1510.1128/mBio.00411-151:CAS:528:DC%2BC2MXhvVymsL7E259916834442141 – reference: SchoelerCUltrastable cellulosome–adhesion complex tightens under loadNat. Commun.2014556351:CAS:528:DC%2BC2MXjvFahsLc%3D10.1038/ncomms6635254823954266597 – reference: BlanchetteCLacayoCIFischerNOHwangMThelenMPEnhanced cellulose degradation using cellulase–nanosphere complexesPLoS ONE20127e421161:CAS:528:DC%2BC38XhtFKhtrbF10.1371/journal.pone.0042116228702873411664 – reference: DrorTWRoliderABayerEALamedRShohamYRegulation of expression of scaffoldin-related genes in Clostridium thermocellumJ. Bacteriol.2003185510951161:CAS:528:DC%2BD3sXmvVers7Y%3D10.1128/JB.185.17.5109-5116.200312923083181014 – reference: FujinoTBéguinPAubertJPOrganization of a Clostridium thermocellum gene cluster encoding the cellulosomal scaffolding protein CipA and a protein possibly involved in attachment of the cellulosome to the cell surfaceJ. Bacteriol.1993175189118991:CAS:528:DyaK3sXks1Cnurk%3D10.1128/jb.175.7.1891-1899.19938458832204254 – reference: LinPPConsolidated bioprocessing of cellulose to isobutanol using Clostridium thermocellumMetab. Eng.20153144521:CAS:528:DC%2BC2MXhtF2ks7nE10.1016/j.ymben.2015.07.00126170002 – reference: EsakaKAburayaSMorisakaHKurodaKUedaMExoproteome analysis of Clostridium cellulovorans in natural soft-biomass degradationAMB Express20155210.1186/s13568-014-0089-91:CAS:528:DC%2BC2MXhvFGlurs%3D256423994305082 – reference: YouCZhangY-HPAnnexation of a high-activity enzyme in a synthetic three-enzyme complex greatly decreases the degree of substrate channelingACS Synth. Biol.201433803861:CAS:528:DC%2BC3sXhvVGnt7fN10.1021/sb400099324283966 – reference: Levy-AssarafMCrystal structure of an uncommon cellulosome-related protein module from Ruminococcus flavefaciens that resembles papain-like cysteine peptidasesPLoS ONE20138e561381:CAS:528:DC%2BC3sXjtl2qtb0%3D10.1371/journal.pone.0056138234575133573020 – reference: LiangYSiTAngELZhaoHEngineered pentafunctional minicellulosome for simultaneous saccharification and ethanol fermentation in Saccharomyces cerevisiaeAppl. Environ. Microbiol.2014806677668410.1128/AEM.02070-141:CAS:528:DC%2BC2cXhslCns7nE251495224249053 – reference: ReschMGFungal cellulases and complexed cellulosomal enzymes exhibit synergistic mechanisms in cellulose deconstructionEnergy Environ. Sci.20136185818671:CAS:528:DC%2BC3sXnvFyrsbk%3D10.1039/c3ee00019b – reference: Blumer-SchuetteSEThermophilic lignocellulose deconstructionFEMS Microbiol. Rev.2014383934481:CAS:528:DC%2BC2cXnt1altb4%3D10.1111/1574-6976.1204424118059 – reference: DoiRHKosugiACellulosomes: plant-cell-wall-degrading enzyme complexesNat. Rev. Microbiol.200425415511:CAS:528:DC%2BD2cXkvVSru7Y%3D10.1038/nrmicro92515197390 – reference: RinconMTAbundance and diversity of dockerin-containing proteins in the fiber-degrading rumen bacterium, Ruminococcus flavefaciens FD-1PLoS ONE20105e1247610.1371/journal.pone.00124761:CAS:528:DC%2BC3cXhtFSqs73N208145772930009 – reference: VodovnikMExpression of cellulosome components and type IV pili within the extracellular proteome of Ruminococcus flavefaciens 007PLoS ONE20138e653331:CAS:528:DC%2BC3sXpvFWntrg%3D10.1371/journal.pone.0065333237502533672088 – reference: MoraïsSDeconstruction of lignocellulose into soluble sugars by native and designer cellulosomesmBio20123e00508-1210.1128/mBio.00508-121:CAS:528:DC%2BC3sXpsFCiuw%3D%3D232327183520109 – reference: PooleDMIdentification of the cellulose binding domain of the cellulosome subunit S1 from Clostridium thermocellumFEMS Microbiol. Lett.1992991811861:CAS:528:DyaK3sXlsF2huw%3D%3D10.1111/j.1574-6968.1992.tb05563.x – reference: RavacholJBorneRTardifCde PhilipPFierobeH-PCharacterization of all family-9 glycoside hydrolases synthesized by the cellulosome-producing bacterium Clostridium cellulolyticumJ. Biol. Chem.2014289733573481:CAS:528:DC%2BC2cXktlWmsro%3D10.1074/jbc.M113.545046244513793953250 – reference: HongWThe contribution of cellulosomal scaffoldins to cellulose hydrolysis by Clostridium thermocellum analyzed by using thermotargetronsBiotechnol. Biofuels201478010.1186/1754-6834-7-80249551124045903 – reference: KosugiAMurashimaKTamaruYDoiRHCell-surface-anchoring role of N-terminal surface layer homology domains of Clostridium cellulovorans EngEJ. Bacteriol.20021848848881:CAS:528:DC%2BD38XhtVejtbg%3D10.1128/jb.184.4.884-888.200211807046134812 – reference: DassaBGenome-wide analysis of Acetivibrio cellulolyticus provides a blueprint of an elaborate cellulosome systemBMC Genomics2012132101:CAS:528:DC%2BC38XhslamurnE10.1186/1471-2164-13-210226468013413522 – reference: PagèsSSequence analysis of scaffolding protein CipC and ORFXp, a new cohesin-containing protein in Clostridium cellulolyticum: comparison of various cohesin domains and subcellular localization of ORFXpJ. Bacteriol.1999181180118101007407293578 – reference: GilmoreSPHenskeJKO'MalleyMDriving biomass breakdown through engineered cellulosomesBioengineered201562042081:CAS:528:DC%2BC28XhslKru7s%3D10.1080/21655979.2015.1060379260681804601266 – reference: WiegelJMothershedCPPulsJDifferences in xylan degradation by various noncellulolytic thermophilic anaerobes and Clostridium thermocellumAppl. Environ. Microbiol.1985496566591:CAS:528:DyaL2MXhtlCqt74%3D16346758373565 – reference: BayerEAMoragELamedRThe cellulosome — a treasure-trove for biotechnologyTrends Biotechnol.1994123793861:CAS:528:DyaK2cXmt1yrsbw%3D10.1016/0167-7799(94)90039-67765191 – reference: FierobeH-PDegradation of cellulose substrates by cellulosome chimeras: substrate targeting versus proximity of enzyme componentsJ. Biol. Chem.200227749621496301:CAS:528:DC%2BD38XpsFaksbY%3D10.1074/jbc.M20767220012397074 – reference: BayerEAKenigRLamedRAdherence of Clostridium thermocellum to celluloseJ. Bacteriol.19831568188271:CAS:528:DyaL3sXmtV2ksbs%3D6630152217900 – reference: ChenCIntegration of bacterial expansin-like proteins into cellulosome promotes the cellulose degradationAppl. Microbiol. Biotechnol.2016100220322121:CAS:528:DC%2BC2MXhslKgtrzN10.1007/s00253-015-7071-626521249 – reference: SimõesMFSoil and rhizosphere associated fungi in gray mangroves (Avicennia marina) from the red sea — a metagenomic approachGenomics Proteomics Bioinformatics20151331032010.1016/j.gpb.2015.07.002265498424678792 – reference: BhatKWoodTMThe cellulase of the anaerobic bacterium Clostridium thermocellum: isolation, dissociation, and reassociation of the cellulosomeCarbohydr. Res.19922272933001:CAS:528:DyaK38Xlt1Kqtbo%3D10.1016/0008-6215(92)85079-F – reference: XuCStructure and regulation of the cellulose degradome in Clostridium cellulolyticumBiotechnol. Biofuels20136731:CAS:528:DC%2BC3sXptFyiurY%3D10.1186/1754-6834-6-73236570553656788 – reference: MitsuzawaSThe rosettazyme: a synthetic cellulosomeJ. Biotechnol.20091431391441:CAS:528:DC%2BD1MXhtVSitrfM10.1016/j.jbiotec.2009.06.01919559062 – reference: RamanBImpact of pretreated switchgrass and biomass carbohydrates on Clostridium thermocellum ATCC 27405 cellulosome composition: a quantitative proteomic analysisPLoS ONE20094e527110.1371/journal.pone.00052711:CAS:528:DC%2BD1MXltlGhtbo%3D193844222668762 – reference: NatafYClostridium thermocellum cellulosomal genes are regulated by extracytoplasmic polysaccharides via alternative sigma factorsProc. Natl Acad. Sci. USA201010718646186511:CAS:528:DC%2BC3cXhtl2mu7vN10.1073/pnas.101217510720937888 – reference: MorrisonMPopePBDenmanSEMcSweeneyCSPlant biomass degradation by gut microbiomes: more of the same or something new?Curr. Opin. Biotechnol.2009203583631:CAS:528:DC%2BD1MXosVajtrs%3D10.1016/j.copbio.2009.05.00419515552 – reference: PeerASmithSPBayerEALamedRBorovokINoncellulosomal cohesin- and dockerin-like modules in the three domains of lifeFEMS Microbiol. Lett.20092911161:CAS:528:DC%2BD1MXhslejtbw%3D10.1111/j.1574-6968.2008.01420.x19025568 – reference: WilsonCMGlobal transcriptome analysis of Clostridium thermocellum ATCC 27405 during growth on dilute acid pretreated Populus and switchgrassBiotechnol. Biofuels2013617910.1186/1754-6834-6-1791:CAS:528:DC%2BC2cXovF2kt7k%3D242955623880215 – reference: HammelMStructural basis of cellulosome efficiency explored by small angle X-ray scatteringJ. Biol. Chem.200528038562385681:CAS:528:DC%2BD2MXht1SktLrE10.1074/jbc.M50316820016157599 – reference: FierobeHPAction of designer cellulosomes on homogeneous versus complex substrates: controlled incorporation of three distinct enzymes into a defined trifunctional scaffoldinJ. Biol. Chem.200528016325163341:CAS:528:DC%2BD2MXjtleiur0%3D10.1074/jbc.M41444920015705576 – reference: RinconMTUnconventional mode of attachment of the Ruminococcus flavefaciens cellulosome to the cell surfaceJ. Bacteriol.2005187756975781:CAS:528:DC%2BD2MXht1WnurnL10.1128/JB.187.22.7569-7578.2005162672811280307 – reference: GerngrossUTRomaniecMPMKobayashiTHuskissonNSDemainALSequencing of a Clostridium thermocellum gene (cipA) encoding the cellulosomal SL-protein reveals an unusual degree of internal homologyMol. Microbiol.199383253341:CAS:528:DyaK3sXkvVyjt7g%3D10.1111/j.1365-2958.1993.tb01576.x8316083 – reference: PagèsSSpecies-specificity of the cohesin–dockerin interaction between Clostridium thermocellum and Clostridium cellulolyticum: prediction of specificity determinants of the dockerin domainProteins19972951752710.1002/(SICI)1097-0134(199712)29:4<517::AID-PROT11>3.0.CO;2-P9408948 – reference: MolinierA-LSynergy, structure and conformational flexibility of hybrid cellulosomes displaying various inter-cohesins linkersJ. Mol. Biol.20114051431571:CAS:528:DC%2BC3cXhsF2itrvM10.1016/j.jmb.2010.10.01320970432 – reference: MingardonFChantalATardifCBayerEAFierobeH-PExploration of new geometries in cellulosome-like chimerasAppl. Environ. Microbiol.200773713871491:CAS:528:DC%2BD1cXnsFOqug%3D%3D10.1128/AEM.01306-07179058852168198 – reference: DrorTWRegulation of the cellulosomal celS (Cel48A) gene of Clostridium thermocellum is growth-rate dependentJ. Bacteriol.2003185304230481:CAS:528:DC%2BD3sXjs1ejsrw%3D10.1128/JB.185.10.3042-3048.200312730163154088 – reference: LamedRSetterEBayerEACharacterization of a cellulose-binding, cellulase-containing complex in Clostridium thermocellumJ. Bacteriol.19831568288361:CAS:528:DyaL2cXjt1Cm6195146217901 – reference: MichelGRuminococcal cellulosomes: molecular Lego to deconstruct microcrystalline cellulose in human gutEnviron. Microbiol.2015173113311510.1111/1462-2920.1292026219082 – reference: PodkaminerKKShaoXHogsettDALyndLREnzyme inactivation by ethanol and development of a kinetic model for thermophilic simultaneous saccharification and fermentation at 50 °C with Thermoanaerobacterium saccharolyticum ALK2Biotechnol. Bioeng.2011108126812781:CAS:528:DC%2BC3MXksFeksbo%3D10.1002/bit.2305021192004 – reference: Muñoz-GutiérrezIDecoding biomass-sensing regulons of Clostridium thermocellum alternative sigma-I factors in a heterologous Bacillus subtilis host systemPLoS ONE201511e014631610.1371/journal.pone.0146316 – reference: LevyIShoseyovOCellulose-binding domains: biotechnological applicationsBiotechnol. Adv.2002201912131:CAS:528:DC%2BD38XosFKltr8%3D10.1016/S0734-9750(02)00006-X14550028 – reference: BiswasRZhengTOlsonDGLyndLRGussAMElimination of hydrogenase active site assembly blocks H2 production and increases ethanol yield in Clostridium thermocellumBiotechnol. Biofuels201582010.1186/s13068-015-0204-41:CAS:528:DC%2BC2MXlt1Kis7c%3D257631014355364 – reference: DuRLiSZhangXFanCWangLUsing a microorganism consortium for consolidated bioprocessing cellulosic ethanol productionBiofuels201125695751:CAS:528:DC%2BC3MXhtFCisr3P10.4155/bfs.11.126 – reference: HyeonJEJeonWJWhangSYHanSOProduction of minicellulosomes for the enhanced hydrolysis of cellulosic substrates by recombinant Corynebacterium glutamicumEnzyme Microb. Technol.2011483713771:CAS:528:DC%2BC3MXjvFegs70%3D10.1016/j.enzmictec.2010.12.01422112952 – reference: ShoseyovOTakagiMGoldsteinMADoiRHPrimary sequence analysis of Clostridium cellulovorans cellulose binding protein AProc. Natl Acad. Sci. USA199289348334871:CAS:528:DyaK3sXitVOrsrs%3D10.1073/pnas.89.8.34831565642 – reference: XuJA genomic view of the human–Bacteroides thetaiotaomicron symbiosisScience2003299207420761:CAS:528:DC%2BD3sXitlCisL0%3D10.1126/science.108002912663928 – reference: AndersonTDAssembly of minicellulosomes on the surface of Bacillus subtilisAppl. Environ. Microbiol.201177484948581:CAS:528:DC%2BC3MXhtVWlsbrJ10.1128/AEM.02599-10216227973147385 – reference: HugenholtzPTysonGWMicrobiology: metagenomicsNature20084554814831:CAS:528:DC%2BD1cXhtFKhtLnL10.1038/455481a18818648 – reference: PapanekBBiswasRRydzakTGussAMElimination of metabolic pathways to all traditional fermentation products increases ethanol yields in Clostridium thermocellumMetab. Eng.20153249541:CAS:528:DC%2BC2MXhsFWls7vJ10.1016/j.ymben.2015.09.00226369438 – reference: MorisakaHProfile of native cellulosomal proteins of Clostridium cellulovorans adapted to various carbon sourcesAMB Express201223710.1186/2191-0855-2-371:CAS:528:DC%2BC3sXhtlyitbvF228399663444338 – reference: RavacholJCombining free and aggregated cellulolytic systems in the cellulosome-producing bacterium Ruminiclostridium cellulolyticumBiotechnol. Biofuels2015811410.1186/s13068-015-0301-41:CAS:528:DC%2BC28XhtVaqsbzK262697134533799 – reference: BayerEALamedRHimmelMEThe potential of cellulases and cellulosomes for cellulosic waste managementCurr. Opin. Biotechnol.2007182372451:CAS:528:DC%2BD2sXmtlagsbk%3D10.1016/j.copbio.2007.04.00417462879 – reference: GourlayKArantesVSaddlerJNUse of substructure-specific carbohydrate binding modules to track changes in cellulose accessibility and surface morphology during the amorphogenesis step of enzymatic hydrolysisBiotechnol. Biofuels20125511:CAS:528:DC%2BC38Xhtlyqtb3M10.1186/1754-6834-5-51228282703432595 – reference: DemishteinAKarpolABarakYLamedRBayerEACharacterization of a dockerin-based affinity tag: application for purification of a broad variety of target proteinsJ. Mol. Recognit.2010235255351:CAS:528:DC%2BC3cXhtlGkur3F10.1002/jmr.102921038354 – reference: XuTEfficient genome editing in Clostridium cellulolyticum via CRISPR–Cas9 nickaseAppl. Environ. Microbiol.201581442344311:CAS:528:DC%2BC2MXhtVGhsbnO10.1128/AEM.00873-15259114834475897 – reference: BlouzardJ-CModulation of cellulosome composition in Clostridium cellulolyticum: adaptation to the polysaccharide environment revealed by proteomic and carbohydrate-active enzyme analysesProteomics2010105415541:CAS:528:DC%2BC3cXhvFGhsLo%3D10.1002/pmic.20090031120013800 – reference: VazanaYA synthetic biology approach for evaluating the functional contribution of designer cellulosome components to deconstruction of cellulosic substratesBiotechnol. Biofuels2013618210.1186/1754-6834-6-1821:CAS:528:DC%2BC2cXovF2ksbw%3D243413313878649 – reference: BayerEABelaichJ-PShohamYLamedRThe cellulosomes: multienzyme machines for degradation of plant cell wall polysaccharidesAnnu. Rev. Microbiol.2004585215541:CAS:528:DC%2BD2cXhtVejsr3M10.1146/annurev.micro.57.030502.09102215487947 – reference: LambertzCChallenges and advances in the heterologous expression of cellulolytic enzymes: a reviewBiotechnol. Biofuels2014711510.1186/s13068-014-0135-51:CAS:528:DC%2BC2MXhtVyntrs%3D – reference: HambergYElaborate cellulosome architecture of Acetivibrio cellulolyticus revealed by selective screening of cohesin–dockerin interactionsPeerJ20142e63610.7717/peerj.636253747804217186 – reference: ArtziLCellulosomics of the cellulolytic thermophile Clostridium clariflavumBiotechnol. Biofuels2014710010.1186/1754-6834-7-1001:CAS:528:DC%2BC2cXhs1OmtLfO264131544582956 – reference: BrownSDMutant alcohol dehydrogenase leads to improved ethanol tolerance in Clostridium thermocellumProc. Natl Acad. Sci. USA201110813752137571:CAS:528:DC%2BC3MXhtV2ms7bJ10.1073/pnas.110244410821825121 – reference: KimD-MA nanocluster design for the construction of artificial cellulosomesCatal. Sci. Technol.201224991:CAS:528:DC%2BC38XjsFCrtLk%3D10.1039/c2cy00371f – reference: MoraïsSEnzymatic profiling of cellulosomal enzymes from the human gut bacterium, Ruminococcus champanellensis, reveals a fine-tuned system for cohesin–dockerin recognitionEnviron. Microbiol.20161854255610.1111/1462-2920.130471:CAS:528:DC%2BC28XjtlGrtr4%3D26347002 – reference: ThomasLJosephAGottumukkalaLDXylanase and cellulase systems of Clostridium sp.: an insight on molecular approaches for strain improvementBioresour. Technol.20141583433501:CAS:528:DC%2BC2cXjtVGqtbg%3D10.1016/j.biortech.2014.01.14024581864 – reference: WeiHNatural paradigms of plant cell wall degradationCurr. Opin. Biotechnol.2009203303381:CAS:528:DC%2BD1MXosVajtrw%3D10.1016/j.copbio.2009.05.00819523812 – reference: Salama-AlberOAtypical cohesin–dockerin complex responsible for cell surface attachment of cellulosomal components: binding fidelity, promiscuity, and structural buttressesJ. Biol. Chem.201328816827168381:CAS:528:DC%2BC3sXptVCrsLs%3D10.1074/jbc.M113.466672235806483675615 – reference: BayerEABiotechnology of Lignocellulose Degradation and Biomass Utilization2009183205 – reference: JeonSDYuKOKimSWHanSOA celluloytic complex from Clostridium cellulovorans consisting of mannanase B and endoglucanase E has synergistic effects on galactomannan degradationAppl. Microbiol. Biotechnol.2011905655721:CAS:528:DC%2BC3MXjsFGhsLw%3D10.1007/s00253-011-3108-721311881 – reference: XuQThe cellulosome system of Acetivibrio cellulolyticus includes a novel type of adaptor protein and a cell surface anchoring proteinJ. Bacteriol.2003185454845571:CAS:528:DC%2BD3sXlvVCiu74%3D10.1128/JB.185.15.4548-4557.200312867464165778 – reference: Bensoussan, L. et al. Broad phylogeny and functionality of cellulosomal components in the bovine rumen microbiome. Environ. Microbiol.http://dx.doi.org/10.1111/1462-2920.13561 (2016). This study details the ultra-deep sequencing of the fibre-adherent rumen microbiome, which reveals that the cellulosomal machinery is conserved and widely used.Dockerin-containing proteins are not restricted to fibre degradation per se and mediate other catabolic processes as well as microbial interactions. – reference: HessMMetagenomic discovery of biomass-degrading genes and genomes from cow rumenScience20113314634671:CAS:528:DC%2BC3MXpsF2mtA%3D%3D10.1126/science.120038721273488 – reference: DassaBRumen cellulosomics: divergent fiber-degrading strategies revealed by comparative genome-wide analysis of six ruminococcal strainsPLoS ONE20149e9922110.1371/journal.pone.00992211:CAS:528:DC%2BC2cXhs1emu7%2FK249926794081043 – reference: GalanopoulouAPInsights into the functionality and stability of designer cellulosomes at elevated temperaturesAppl. Microbiol. Biotechnol.2016100873187431:CAS:528:DC%2BC28XosVShtrc%3D10.1007/s00253-016-7594-527207145 – reference: HussackGMultivalent anchoring and oriented display of single-domain antibodies on celluloseSensors (Basel).20099535153671:CAS:528:DC%2BD1MXosVKmsL8%3D10.3390/s90705351223467023274147 – reference: GarveyMKloseHFischerRLambertzCCommandeurUCellulases for biomass degradation: comparing recombinant cellulase expression platformsTrends Biotechnol.2013315815931:CAS:528:DC%2BC3sXht1ShsbjF10.1016/j.tibtech.2013.06.00623910542 – reference: CannIBernardiRCMackieRICellulose degradation in the human gut: Ruminococcus champanellensis expands the cellulosome paradigmEnviron. Microbiol.20161830731010.1111/1462-2920.1315226781441 – reference: RincónMTScaC, an adaptor protein carrying a novel cohesin that expands the dockerin-binding repertoire of the Ruminococcus flavefaciens 17 cellulosomeJ. Bacteriol.20041862576258510.1128/JB.186.9.2576-2585.20041:CAS:528:DC%2BD2cXjsFKrtrg%3D15090497387807 – reference: OuJCaoYIncorporation of Nasutitermes takasagoensis endoglucanase into cell surface-displayed minicellulosomes in Pichia pastoris X33J. Microbiol. Biotechnol.201424117811881:CAS:528:DC%2BC2cXhvFyjs77O10.4014/jmb.1402.0203424851815 – reference: IzquierdoJAPattathilSGusevaAHahnMGLyndLRComparative analysis of the ability of Clostridium clariflavum strains and Clostridium thermocellum to utilize hemicellulose and unpretreated plant materialBiotechnol. Biofuels2014713610.1186/s13068-014-0136-41:CAS:528:DC%2BC2MXit1Oks7w%3D254261634243297 – reference: ValbuenaAOn the remarkable mechanostability of scaffoldins and the mechanical clamp motifProc. Natl Acad. Sci. USA200910613791137961:CAS:528:DC%2BD1MXhtFWksLvP10.1073/pnas.081309310619666489 – reference: CurrieMAScaffoldin conformation and dynamics revealed by a ternary complex from the Clostridium thermocellumJ. Biol. Chem.201228726953269611:CAS:528:DC%2BC38XhtFaqtrzI10.1074/jbc.M112.343897227077183411031 – reference: SchoelerCMapping mechanical force propagation through biomolecular complexesNano Lett.201515737073761:CAS:528:DC%2BC2MXhtlSmtrvO10.1021/acs.nanolett.5b02727262595444721519 – reference: Ben DavidYRuminococcal cellulosome systems from rumen to humanEnviron. Microbiol.201517340734261:CAS:528:DC%2BC2MXhsV2jsr3M10.1111/1462-2920.1286825845888 – reference: KangSBarakYLamedRBayerEAMorrisonMThe functional repertoire of prokaryote cellulosomes includes the serpin superfamily of serine proteinase inhibitorsMol. Microbiol.200660134413541:CAS:528:DC%2BD28Xms1Cnu70%3D10.1111/j.1365-2958.2006.05182.x16796673 – reference: RamanBMcKeownCKRodriguezMBrownSDMielenzJRTranscriptomic analysis of Clostridium thermocellum ATCC 27405 cellulose fermentationBMC Microbiol.2011111341:CAS:528:DC%2BC3MXotVWjtrk%3D10.1186/1471-2180-11-134216722253130646 – reference: ChassardCDelmasERobertCBernalier-DonadilleAThe cellulose-degrading microbial community of the human gut varies according to the presence or absence of methanogensFEMS Microbiol. Ecol.2010742052131:CAS:528:DC%2BC3cXht1CmtrnF10.1111/j.1574-6941.2010.00941.x20662929 – reference: ChenCRevisiting the NMR solution structure of the Cel48S type-I dockerin module from Clostridium thermocellum reveals a cohesin-primed conformationJ. Struct. Biol.20141881881931:CAS:528:DC%2BC2cXhs1KltL%2FE10.1016/j.jsb.2014.09.00625270376 – reference: HyeonJEProduction of functional agarolytic nano-complex for the synergistic hydrolysis of marine biomass and its potential application in carbohydrate-binding module-utilizing one-step purificationProcess Biochem.2012478778811:CAS:528:DC%2BC38Xis1Olu70%3D10.1016/j.procbio.2012.01.009 – reference: SakkaKAnalysis of cohesin–dockerin interactions using mutant dockerin proteinsFEMS Microbiol. Lett.201131475801:CAS:528:DC%2BC3cXhs1aitL3O10.1111/j.1574-6968.2010.02146.x21054503 – reference: PohlschröderMLeschineSBCanale-ParolaEMulticomplex cellulase–xylanase system of Clostridium papyrosolvens C7J. Bacteriol.1994176707610.1128/jb.176.1.70-76.19948282713205015 – reference: GaoSYouCRenneckarSBaoJZhangY-HPNew insights into enzymatic hydrolysis of heterogeneous cellulose by using carbohydrate-binding module 3 containing GFP and carbohydrate-binding module 17 containing CFPBiotechnol. Biofuels201472410.1186/1754-6834-7-241:CAS:528:DC%2BC2MXjsVejurY%3D245525543943381 – reference: BéguinPAubertJ-PBeguinPThe biological degradation of celluloseFEMS Microbiol. Rev.199413255810.1111/j.1574-6976.1994.tb00033.x8117466 – reference: MoragEExpression, purification and characterization of the cellulose-binding domain of the scaffoldin subunit from the cellulosome of Clostridium thermocellumAppl. Environ. Microbiol.199561198019861:CAS:528:DyaK2MXlsFyktbk%3D7646033167460 – reference: ZverlovVVKluppMKraussJSchwarzWHMutations in the scaffoldin gene, cipA, of Clostridium thermocellum with impaired cellulosome formation and cellulose hydrolysis: insertions of a new transposable element, IS1447, and implications for cellulase synergism on crystalline celluloseJ. Bacteriol.2008190432143271:CAS:528:DC%2BD1cXnt1equ70%3D10.1128/JB.00097-08184080272446765 – reference: BrulcJMGene-centric metagenomics of the fiber-adherent bovine rumen microbiome reveals forage specific glycoside hydrolasesProc. Natl Acad. Sci. USA2009106194819531:CAS:528:DC%2BD1MXitVKitro%3D10.1073/pnas.080619110519181843 – reference: AdamsJJGreggKBayerEABorastonABSmithSPStructural basis of Clostridium perfringens toxin complex formationProc. Natl Acad. Sci. USA200810512194121991:CAS:528:DC%2BD1cXhtVOhtr3P10.1073/pnas.080315410518716000 – reference: SimpsonPJXieHBolamDNGilbertHJWilliamsonMPThe structural basis for the ligand specificity of family 2 carbohydrate-binding modulesJ. Biol. Chem.200027541137411421:CAS:528:DC%2BD3MXjsVGqtg%3D%3D10.1074/jbc.M00694820010973978 – reference: GefenGAnbarMMoragELamedRBayerEAEnhanced cellulose degradation by targeted integration of a cohesin-fused β-glucosidase into the Clostridium thermocellum cellulosomeProc. Natl Acad. Sci. USA201210910298103031:CAS:528:DC%2BC38XhtFWgt73E10.1073/pnas.120274710922689961 – reference: ArfiYShamshoumMRogachevIPelegYBayerEAIntegration of bacterial lytic polysaccharide monooxygenases into designer cellulosomes promotes enhanced cellulose degradationProc. Natl Acad. Sci. USA2014111910991141:CAS:528:DC%2BC2cXpsVamur8%3D10.1073/pnas.140414811124927597 – reference: BhallaAImproved lignocellulose conversion to biofuels with thermophilic bacteria and thermostable enzymesBioresour. Technol.2013158581593 – reference: HyeonJEKangDHHanSOSignal amplification by a self-assembled biosensor system designed on the principle of dockerin–cohesin interactions in a cellulosome complexAnalyst2014139479047931:CAS:528:DC%2BC2cXht1SlurfO10.1039/C4AN00856A25093214 – reference: YouCZhangYHPSelf-assembly of synthetic metabolons through synthetic protein scaffolds: one-step purification, co-immobilization, and substrate channelingACS Synth. Biol.201321021101:CAS:528:DC%2BC38Xht1Kms7bJ10.1021/sb300068g23656373 – reference: CarvalhoALCellulosome assembly revealed by the crystal structure of the cohesin–dockerin complexProc. Natl Acad. Sci. USA200310013809138141:CAS:528:DC%2BD3sXpsFGis7w%3D10.1073/pnas.193612410014623971 – reference: BorneRBayerEAPagèsSPerretSFierobeH-PUnraveling enzyme discrimination during cellulosome assembly independent of cohesin–dockerin affinityFEBS J.2013280576457791:CAS:528:DC%2BC3sXhs1KrsLbN10.1111/febs.1249724033928 – reference: LombardVRamuluHGDrulaECoutinhoPMHenrissatBThe carbohydrate-active enzymes database (CAZy) in 2013Nucleic Acids Res.20144249049510.1093/nar/gkt11781:CAS:528:DC%2BC2cXoslWn – reference: IzquierdoJAComplete genome sequence of Clostridium clariflavum DSM 19732Stand. Genomic Sci.201261041151:CAS:528:DC%2BC38Xmtlyrsrg%3D10.4056/sigs.2535732226756033368404 – reference: DesvauxMClostridium cellulolyticum: model organism of mesophilic cellulolytic clostridiaFEMS Microbiol. Rev.2005297417641:CAS:528:DC%2BD2MXos1WktLw%3D10.1016/j.femsre.2004.11.00316102601 – reference: ArtziLMoragEShamshoumMBayerEACellulosomal expansin: functionality and incorporation into the complexBiotechnol. Biofuels201696110.1186/s13068-016-0474-51:CAS:528:DC%2BC2sXisFWgt7s%3D269737154788839 – reference: HimmelMEMicrobial enzyme systems for biomass conversion: emerging paradigmsBiofuels201013233411:CAS:528:DC%2BC3cXksVOitb0%3D10.4155/bfs.09.25 – reference: HaimovitzRCohesin–dockerin microarray: diverse specificities between two complementary families of interacting protein modulesProteomics200889689791:CAS:528:DC%2BD1cXktVeksro%3D10.1002/pmic.20070048618219699 – reference: BayerEALamedRUltrastructure of the cell surface cellulosome of Clostridium thermocellum and its interaction with celluloseJ. Bacteriol.19861678288361:CAS:528:DyaL28XlsV2lsLo%3D10.1128/jb.167.3.828-836.19863745121215948 – reference: StahlSWSingle-molecule dissection of the high-affinity cohesin–dockerin complexProc. Natl Acad. Sci. USA201210920431204361:CAS:528:DC%2BC3sXnvVSltA%3D%3D10.1073/pnas.121192910923188794 – reference: DingS-YHow does plant cell wall nanoscale architecture correlate with enzymatic digestibility?Science2012338105510601:CAS:528:DC%2BC38Xhs12itrjK10.1126/science.122749123180856 – reference: XuQLuoYDingSHimmelMEMultifunctional enzyme systems for plant cell wall degradationCompr. Biotechnol.201131525 – reference: MoriYAligning an endoglucanase Cel5A from Thermobifida fusca on a DNA scaffold: potent design of an artificial cellulosomeChem. Commun. (Camb.).201349697169731:CAS:528:DC%2BC3sXhtVOjsL7J10.1039/c3cc42614a23764949 – reference: ErikssonTKarlssonJTjerneldFA model explaining declining rate in hydrolysis of lignocellulose substrates with cellobiohydrolase I (Cel7A) and endoglucanase I (Cel7B) of Trichoderma reeseiAppl. Biochem. Biotechnol.200210141601:CAS:528:DC%2BD38XjsVKnurg%3D10.1385/ABAB:101:1:4112008866 – reference: HanSOYukawaHInuiMDoiRHRegulation of expression of cellulosomal cellulase and hemicellulase genes in Clostridium cellulovoransJ. Bacteriol.2003185606760751:CAS:528:DC%2BD3sXotFOiu7s%3D10.1128/JB.185.20.6067-6075.200314526018225016 – reference: MoriYPurification and characterization of an endoglucanase from the cellulosome (multicomponent cellulase complex) of Clostridium thermocellumBiosci. Biotechnol. Biochem.19925611991203 – reference: ZeXDuncanSHLouisPFlintHJRuminococcus bromii is a keystone species for the degradation of resistant starch in the human colonISME J.20126153515431:CAS:528:DC%2BC38XhtVOjtL3L10.1038/ismej.2012.4223433083400402 – reference: ShpigelEImmobilization of recombinant heparinase I fused to cellulose-binding domainBiotechnol. Bioeng.19995172310.1002/(SICI)1097-0290(19991005)65:1<17::AID-BIT3>3.0.CO;2-Y – reference: ZeXUnique organization of extracellular amylases into amylosomes in the resistant starch-utilizing human colonic Firmicutes bacterium Ruminococcus bromiimBio20156e01058-1510.1128/mBio.01058-151:CAS:528:DC%2BC28XitVGlsbjO264198774611034 – reference: XuCCellulosome stoichiometry in Clostridium cellulolyticum is regulated by selective RNA processing and stabilizationNat. Commun.20156690010.1038/ncomms79001:CAS:528:DC%2BC2MXotlGltrY%3D259082254423207 – reference: SternJSignificance of relative position of cellulases in designer cellulosomes for optimized cellulolysisPLoS ONE201510e012732610.1371/journal.pone.01273261:CAS:528:DC%2BC2MXhvVeitL3P260242274449128 – reference: WillsonBJBiotechnology for biofuels production of a functional cell wall-anchored minicellulosome by recombinant clostridium acetobutylicum ATCC 824Biotechnol. Biofuels2016910910.1186/s13068-016-0526-x1:CAS:528:DC%2BC2sXnsFGmsLw%3D272226644877998 – reference: BayerEAShohamYLamedRThe Prokaryotes. Prokaryotic Physiology and Biochemistry2013215265 – reference: Kahel-RaiferHThe unique set of putative membrane-associated anti-σ factors in Clostridium thermocellum suggests a novel extracellular carbohydrate-sensing mechanism involved in gene regulationFEMS Microbiol. Lett.201030884931:CAS:528:DC%2BC3cXotFGqtrY%3D10.1111/j.1574-6968.2010.01997.x20487018 – reference: FendriIThe cellulosomes from Clostridium cellulolyticum: identification of new components and synergies between complexesFEBS J.2009276307630861:CAS:528:DC%2BD1MXmslaqsrw%3D10.1111/j.1742-4658.2009.07025.x19490109 – reference: MoraïsSEnhanced cellulose degradation by nano-complexed enzymes: synergism between a scaffold-linked exoglucanase and a free endoglucanaseJ. Biotechnol.201014720521110.1016/j.jbiotec.2010.04.0121:CAS:528:DC%2BC3cXntVemu7Y%3D20438772 – reference: AlbersheimPDarvillARobertsKSederoffRStaehelinAPlant Cell Walls: From Chemistry to Biology2011 – reference: SternJMoraïsSLamedRBayerEAAdaptor scaffoldins: an original strategy for extended designer cellulosomes, inspired from naturemBio20167e00083-1610.1128/mBio.00083-16270487964959524 – reference: MoraïsSShterzerNLamedRBayerEAMizrahiIA combined cell-consortium approach for lignocellulose degradation by specialized Lactobacillus plantarum cellsBiotechnol. Biofuels2014711210.1186/1754-6834-7-1121:CAS:528:DC%2BC2MXisV2ns74%3D257889774364503 – reference: CurrieMASmall angle X-ray scattering analysis of Clostridium thermocellum cellulosome N-terminal complexes reveals a highly dynamic structureJ. Biol. Chem.2013288797879851:CAS:528:DC%2BC3sXktVKnt7c%3D10.1074/jbc.M112.408757233414543597834 – reference: MoragEHalevyIBayerEALamedRIsolation and properties of a major cellobiohydrolase from the cellulosome of Clostridium thermocellumJ. Bacteriol.1991173415541621:CAS:528:DyaK3MXmtVWks7k%3D10.1128/jb.173.13.4155-4162.19912061292208065 – reference: XuQArchitecture of the Bacteroides cellulosolvens cellulosome: description of a cell surface-anchoring scaffoldin and a family 48 cellulaseJ. Bacteriol.20041869689771:CAS:528:DC%2BD2cXhsVWjtrg%3D10.1128/JB.186.4.968-977.200414761991344227 – reference: DavidiLToward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosomeProc. Natl Acad. Sci. USA201611310854108591:CAS:528:DC%2BC28XhsV2kurrL10.1073/pnas.160801211327621442 – reference: MunirRIQuantitative proteomic analysis of the cellulolytic system of Clostridium termitidis CT1112 reveals distinct protein expression profiles upon growth on α-cellulose and cellobioseJ. Proteomics201512541531:CAS:528:DC%2BC2MXotlGnurk%3D10.1016/j.jprot.2015.04.02625957533 – reference: XuQDramatic performance of Clostridium thermocellum explained by its wide range of cellulase modalitiesSci. Adv.20162e150125410.1126/sciadv.15012541:CAS:528:DC%2BC2sXlvVWrs70%3D269897794788478 – reference: AdamsJJPalGJiaZSmithSPMechanism of bacterial cell-surface attachment revealed by the structure of cellulosomal type II cohesin–dockerin complexProc. Natl Acad. Sci. USA20061033053101:CAS:528:DC%2BD28XpsVSntw%3D%3D10.1073/pnas.050710910316384918 – reference: DingS-YOrdered arrays of quantum dots using cellulosomal proteinsIndust. Biotechnol.200511982061:CAS:528:DC%2BD28XhtVyis77P10.1089/ind.2005.1.198 – reference: BayerEACoutinhoPMHenrissatBCellulosome-like sequences in Archaeoglobus fulgidus: an enigmatic vestige of cohesin and dockerin domainsFEBS Lett.19994632772801:CAS:528:DyaK1MXnvFemtrg%3D10.1016/S0014-5793(99)01634-810606737 – reference: XiaYJuFFangHHPZhangTMining of novel thermo-stable cellulolytic genes from a thermophilic cellulose-degrading consortium by metagenomicsPLoS ONE20138e537791:CAS:528:DC%2BC3sXhsVGmur0%3D10.1371/journal.pone.0053779233419993544849 – volume: 338 start-page: 1055 year: 2012 ident: BFnrmicro2016164_CR9 publication-title: Science doi: 10.1126/science.1227491 – volume: 11 start-page: 134 year: 2011 ident: BFnrmicro2016164_CR153 publication-title: BMC Microbiol. doi: 10.1186/1471-2180-11-134 – volume: 190 start-page: 4321 year: 2008 ident: BFnrmicro2016164_CR39 publication-title: J. Bacteriol. doi: 10.1128/JB.00097-08 – volume: 60 start-page: 1344 year: 2006 ident: BFnrmicro2016164_CR56 publication-title: Mol. Microbiol. doi: 10.1111/j.1365-2958.2006.05182.x – volume: 106 start-page: 13791 year: 2009 ident: BFnrmicro2016164_CR62 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0813093106 – volume: 2 start-page: 499 year: 2012 ident: BFnrmicro2016164_CR96 publication-title: Catal. Sci. Technol. doi: 10.1039/c2cy00371f – volume: 48 start-page: 371 year: 2011 ident: BFnrmicro2016164_CR106 publication-title: Enzyme Microb. Technol. doi: 10.1016/j.enzmictec.2010.12.014 – volume: 8 start-page: 325 year: 1993 ident: BFnrmicro2016164_CR31 publication-title: Mol. Microbiol. doi: 10.1111/j.1365-2958.1993.tb01576.x – volume: 188 start-page: 7971 year: 2006 ident: BFnrmicro2016164_CR45 publication-title: J. Bacteriol. doi: 10.1128/JB.00973-06 – volume: 90 start-page: 565 year: 2011 ident: BFnrmicro2016164_CR158 publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-011-3108-7 – volume: 99 start-page: 181 year: 1992 ident: BFnrmicro2016164_CR76 publication-title: FEMS Microbiol. Lett. doi: 10.1111/j.1574-6968.1992.tb05563.x – volume: 185 start-page: 3042 year: 2003 ident: BFnrmicro2016164_CR83 publication-title: J. Bacteriol. doi: 10.1128/JB.185.10.3042-3048.2003 – volume: 81 start-page: 4423 year: 2015 ident: BFnrmicro2016164_CR125 publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.00873-15 – volume: 56 start-page: 1199 year: 1992 ident: BFnrmicro2016164_CR128 publication-title: Biosci. Biotechnol. Biochem. – volume: 276 start-page: 3076 year: 2009 ident: BFnrmicro2016164_CR152 publication-title: FEBS J. doi: 10.1111/j.1742-4658.2009.07025.x – volume: 2 start-page: e1501254 year: 2016 ident: BFnrmicro2016164_CR13 publication-title: Sci. Adv. doi: 10.1126/sciadv.1501254 – volume: 113 start-page: 10854 year: 2016 ident: BFnrmicro2016164_CR91 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1608012113 – volume: 5 start-page: e12476 year: 2010 ident: BFnrmicro2016164_CR17 publication-title: PLoS ONE doi: 10.1371/journal.pone.0012476 – volume: 181 start-page: 1801 year: 1999 ident: BFnrmicro2016164_CR23 publication-title: J. Bacteriol. doi: 10.1128/JB.181.6.1801-1810.1999 – volume: 20 start-page: 358 year: 2009 ident: BFnrmicro2016164_CR144 publication-title: Curr. Opin. Biotechnol. doi: 10.1016/j.copbio.2009.05.004 – volume: 156 start-page: 818 year: 1983 ident: BFnrmicro2016164_CR6 publication-title: J. Bacteriol. doi: 10.1128/JB.156.2.818-827.1983 – volume: 29 start-page: 741 year: 2005 ident: BFnrmicro2016164_CR40 publication-title: FEMS Microbiol. Rev. doi: 10.1016/j.femsre.2004.11.003 – start-page: 183 volume-title: Biotechnology of Lignocellulose Degradation and Biomass Utilization year: 2009 ident: BFnrmicro2016164_CR138 – volume: 463 start-page: 277 year: 1999 ident: BFnrmicro2016164_CR35 publication-title: FEBS Lett. doi: 10.1016/S0014-5793(99)01634-8 – volume: 3 start-page: e00508-12 year: 2012 ident: BFnrmicro2016164_CR157 publication-title: mBio doi: 10.1128/mBio.00508-12 – volume: 75 start-page: 7335 year: 2009 ident: BFnrmicro2016164_CR162 publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.01241-09 – volume: 156 start-page: 828 year: 1983 ident: BFnrmicro2016164_CR5 publication-title: J. Bacteriol. doi: 10.1128/JB.156.2.828-836.1983 – volume: 100 start-page: 2203 year: 2016 ident: BFnrmicro2016164_CR59 publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-015-7071-6 – volume: 7 start-page: 1 year: 2014 ident: BFnrmicro2016164_CR123 publication-title: Biotechnol. Biofuels doi: 10.1186/s13068-014-0135-5 – volume: 280 start-page: 5764 year: 2013 ident: BFnrmicro2016164_CR155 publication-title: FEBS J. doi: 10.1111/febs.12497 – volume: 5 start-page: 51 year: 2012 ident: BFnrmicro2016164_CR135 publication-title: Biotechnol. Biofuels doi: 10.1186/1754-6834-5-51 – volume: 185 start-page: 6067 year: 2003 ident: BFnrmicro2016164_CR79 publication-title: J. Bacteriol. doi: 10.1128/JB.185.20.6067-6075.2003 – volume: 24 start-page: 1178 year: 2014 ident: BFnrmicro2016164_CR100 publication-title: J. Microbiol. Biotechnol. doi: 10.4014/jmb.1402.02034 – volume: 18 start-page: 237 year: 2007 ident: BFnrmicro2016164_CR107 publication-title: Curr. Opin. Biotechnol. doi: 10.1016/j.copbio.2007.04.004 – volume: 8 start-page: e53779 year: 2013 ident: BFnrmicro2016164_CR145 publication-title: PLoS ONE doi: 10.1371/journal.pone.0053779 – volume: 455 start-page: 481 year: 2008 ident: BFnrmicro2016164_CR140 publication-title: Nature doi: 10.1038/455481a – volume: 107 start-page: 18646 year: 2010 ident: BFnrmicro2016164_CR86 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1012175107 – volume: 186 start-page: 968 year: 2004 ident: BFnrmicro2016164_CR66 publication-title: J. Bacteriol. doi: 10.1128/JB.186.4.968-977.2004 – volume: 74 start-page: 422 year: 2007 ident: BFnrmicro2016164_CR116 publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-006-0689-7 – volume: 2 start-page: e636 year: 2014 ident: BFnrmicro2016164_CR12 publication-title: PeerJ doi: 10.7717/peerj.636 – volume: 7 start-page: 112 year: 2014 ident: BFnrmicro2016164_CR101 publication-title: Biotechnol. Biofuels doi: 10.1186/1754-6834-7-112 – volume: 5 start-page: 17 year: 1999 ident: BFnrmicro2016164_CR132 publication-title: Biotechnol. Bioeng. doi: 10.1002/(SICI)1097-0290(19991005)65:1<17::AID-BIT3>3.0.CO;2-Y – volume: 100 start-page: 13809 year: 2003 ident: BFnrmicro2016164_CR67 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1936124100 – volume: 8 start-page: e65333 year: 2013 ident: BFnrmicro2016164_CR150 publication-title: PLoS ONE doi: 10.1371/journal.pone.0065333 – volume: 227 start-page: 293 year: 1992 ident: BFnrmicro2016164_CR63 publication-title: Carbohydr. Res. doi: 10.1016/0008-6215(92)85079-F – volume: 40 start-page: 89 year: 2016 ident: BFnrmicro2016164_CR73 publication-title: Curr. Opin. Struct. Biol. doi: 10.1016/j.sbi.2016.08.002 – volume: 9 start-page: 109 year: 2016 ident: BFnrmicro2016164_CR103 publication-title: Biotechnol. Biofuels doi: 10.1186/s13068-016-0526-x – volume: 7 start-page: 80 year: 2014 ident: BFnrmicro2016164_CR124 publication-title: Biotechnol. Biofuels doi: 10.1186/1754-6834-7-80 – volume: 12 start-page: 379 year: 1994 ident: BFnrmicro2016164_CR11 publication-title: Trends Biotechnol. doi: 10.1016/0167-7799(94)90039-6 – volume: 143 start-page: 139 year: 2009 ident: BFnrmicro2016164_CR94 publication-title: J. Biotechnol. doi: 10.1016/j.jbiotec.2009.06.019 – volume: 147 start-page: 205 year: 2010 ident: BFnrmicro2016164_CR93 publication-title: J. Biotechnol. doi: 10.1016/j.jbiotec.2010.04.012 – volume: 100 start-page: 8731 year: 2016 ident: BFnrmicro2016164_CR113 publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-016-7594-5 – volume: 167 start-page: 828 year: 1986 ident: BFnrmicro2016164_CR47 publication-title: J. Bacteriol. doi: 10.1128/jb.167.3.828-836.1986 – volume: 29 start-page: 517 year: 1997 ident: BFnrmicro2016164_CR71 publication-title: Proteins doi: 10.1002/(SICI)1097-0134(199712)29:4<517::AID-PROT11>3.0.CO;2-P – volume: 2 start-page: 541 year: 2004 ident: BFnrmicro2016164_CR8 publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro925 – volume: 1 start-page: 323 year: 2010 ident: BFnrmicro2016164_CR7 publication-title: Biofuels doi: 10.4155/bfs.09.25 – volume: 6 start-page: 204 year: 2015 ident: BFnrmicro2016164_CR29 publication-title: Bioengineered doi: 10.1080/21655979.2015.1060379 – volume: 5 start-page: 2 year: 2015 ident: BFnrmicro2016164_CR148 publication-title: AMB Express doi: 10.1186/s13568-014-0089-9 – volume: 185 start-page: 5109 year: 2003 ident: BFnrmicro2016164_CR80 publication-title: J. Bacteriol. doi: 10.1128/JB.185.17.5109-5116.2003 – volume: 38 start-page: 393 year: 2014 ident: BFnrmicro2016164_CR110 publication-title: FEMS Microbiol. Rev. doi: 10.1111/1574-6976.12044 – volume: 28 start-page: 5619 year: 2016 ident: BFnrmicro2016164_CR61 publication-title: Adv. Mater. doi: 10.1002/adma.201503948 – volume: 10 start-page: e0127326 year: 2015 ident: BFnrmicro2016164_CR164 publication-title: PLoS ONE doi: 10.1371/journal.pone.0127326 – volume: 280 start-page: 16325 year: 2005 ident: BFnrmicro2016164_CR156 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M414449200 – volume: 275 start-page: 41137 year: 2000 ident: BFnrmicro2016164_CR77 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M006948200 – volume: 49 start-page: 656 year: 1985 ident: BFnrmicro2016164_CR120 publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.49.3.656-659.1985 – volume: 49 start-page: 6971 year: 2013 ident: BFnrmicro2016164_CR97 publication-title: Chem. Commun. (Camb.). doi: 10.1039/c3cc42614a – volume: 405 start-page: 143 year: 2011 ident: BFnrmicro2016164_CR161 publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2010.10.013 – volume: 280 start-page: 38562 year: 2005 ident: BFnrmicro2016164_CR78 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M503168200 – volume: 89 start-page: 3483 year: 1992 ident: BFnrmicro2016164_CR24 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.89.8.3483 – volume: 11 start-page: e0146316 year: 2015 ident: BFnrmicro2016164_CR84 publication-title: PLoS ONE doi: 10.1371/journal.pone.0146316 – volume: 8 start-page: 114 year: 2015 ident: BFnrmicro2016164_CR54 publication-title: Biotechnol. Biofuels doi: 10.1186/s13068-015-0301-4 – volume: 109 start-page: 10298 year: 2012 ident: BFnrmicro2016164_CR50 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1202747109 – volume: 176 start-page: 70 year: 1994 ident: BFnrmicro2016164_CR25 publication-title: J. Bacteriol. doi: 10.1128/jb.176.1.70-76.1994 – volume: 31 start-page: 581 year: 2013 ident: BFnrmicro2016164_CR102 publication-title: Trends Biotechnol. doi: 10.1016/j.tibtech.2013.06.006 – volume: 177 start-page: 2451 year: 1995 ident: BFnrmicro2016164_CR43 publication-title: J. Bacteriol. doi: 10.1128/jb.177.9.2451-2459.1995 – volume: 2 start-page: 569 year: 2011 ident: BFnrmicro2016164_CR119 publication-title: Biofuels doi: 10.4155/bfs.11.126 – volume: 9 start-page: e99221 year: 2014 ident: BFnrmicro2016164_CR28 publication-title: PLoS ONE doi: 10.1371/journal.pone.0099221 – volume: 308 start-page: 84 year: 2010 ident: BFnrmicro2016164_CR85 publication-title: FEMS Microbiol. Lett. doi: 10.1111/j.1574-6968.2010.01997.x – volume: 6 start-page: 1858 year: 2013 ident: BFnrmicro2016164_CR10 publication-title: Energy Environ. Sci. doi: 10.1039/c3ee00019b – volume: 58 start-page: 521 year: 2004 ident: BFnrmicro2016164_CR4 publication-title: Annu. Rev. Microbiol. doi: 10.1146/annurev.micro.57.030502.091022 – volume: 6 start-page: 6900 year: 2015 ident: BFnrmicro2016164_CR89 publication-title: Nat. Commun. doi: 10.1038/ncomms7900 – volume: 450 start-page: 560 year: 2007 ident: BFnrmicro2016164_CR141 publication-title: Nature doi: 10.1038/nature06269 – volume: 8 start-page: 968 year: 2008 ident: BFnrmicro2016164_CR37 publication-title: Proteomics doi: 10.1002/pmic.200700486 – volume: 13 start-page: 210 year: 2012 ident: BFnrmicro2016164_CR14 publication-title: BMC Genomics doi: 10.1186/1471-2164-13-210 – volume: 331 start-page: 463 year: 2011 ident: BFnrmicro2016164_CR143 publication-title: Science doi: 10.1126/science.1200387 – volume: 20 start-page: 191 year: 2002 ident: BFnrmicro2016164_CR131 publication-title: Biotechnol. Adv. doi: 10.1016/S0734-9750(02)00006-X – volume: 125 start-page: 41 year: 2015 ident: BFnrmicro2016164_CR151 publication-title: J. Proteomics doi: 10.1016/j.jprot.2015.04.026 – volume: 7 start-page: e42116 year: 2012 ident: BFnrmicro2016164_CR95 publication-title: PLoS ONE doi: 10.1371/journal.pone.0042116 – volume: 2 start-page: 102 year: 2013 ident: BFnrmicro2016164_CR108 publication-title: ACS Synth. Biol. doi: 10.1021/sb300068g – volume: 103 start-page: 27 year: 2006 ident: BFnrmicro2016164_CR126 publication-title: Immunol. Lett. doi: 10.1016/j.imlet.2005.10.022 – volume: 6 start-page: e01058-15 year: 2015 ident: BFnrmicro2016164_CR26 publication-title: mBio doi: 10.1128/mBio.01058-15 – volume: 188 start-page: 188 year: 2014 ident: BFnrmicro2016164_CR72 publication-title: J. Struct. Biol. doi: 10.1016/j.jsb.2014.09.006 – volume: 13 start-page: 25 year: 1994 ident: BFnrmicro2016164_CR51 publication-title: FEMS Microbiol. Rev. doi: 10.1111/j.1574-6976.1994.tb00033.x – volume: 7 start-page: 136 year: 2014 ident: BFnrmicro2016164_CR121 publication-title: Biotechnol. Biofuels doi: 10.1186/s13068-014-0136-4 – volume: 7 start-page: e00083-16 year: 2016 ident: BFnrmicro2016164_CR92 publication-title: mBio doi: 10.1128/mBio.00083-16 – volume: 158 start-page: 343 year: 2014 ident: BFnrmicro2016164_CR112 publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2014.01.140 – volume: 42 start-page: 490 year: 2014 ident: BFnrmicro2016164_CR48 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkt1178 – volume: 9 start-page: 164 year: 2016 ident: BFnrmicro2016164_CR114 publication-title: Biotechnol. Biofuels. doi: 10.1186/s13068-016-0577-z – start-page: 215 volume-title: The Prokaryotes. Prokaryotic Physiology and Biochemistry year: 2013 ident: BFnrmicro2016164_CR1 – volume: 186 start-page: 2576 year: 2004 ident: BFnrmicro2016164_CR44 publication-title: J. Bacteriol. doi: 10.1128/JB.186.9.2576-2585.2004 – volume: 6 start-page: 104 year: 2012 ident: BFnrmicro2016164_CR33 publication-title: Stand. Genomic Sci. doi: 10.4056/sigs.2535732 – volume: 111 start-page: 9109 year: 2014 ident: BFnrmicro2016164_CR90 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1404148111 – volume: 6 start-page: 182 year: 2013 ident: BFnrmicro2016164_CR160 publication-title: Biotechnol. Biofuels doi: 10.1186/1754-6834-6-182 – volume: 6 start-page: 179 year: 2013 ident: BFnrmicro2016164_CR154 publication-title: Biotechnol. Biofuels doi: 10.1186/1754-6834-6-179 – volume: 5 start-page: 5635 year: 2014 ident: BFnrmicro2016164_CR64 publication-title: Nat. Commun. doi: 10.1038/ncomms6635 – volume: 1 start-page: 198 year: 2005 ident: BFnrmicro2016164_CR137 publication-title: Indust. Biotechnol. doi: 10.1089/ind.2005.1.198 – volume: 9 start-page: 137 year: 2016 ident: BFnrmicro2016164_CR105 publication-title: Biotechnol. Biofuels doi: 10.1186/s13068-016-0554-6 – ident: BFnrmicro2016164_CR34 doi: 10.1111/1462-2920.13561 – volume: 61 start-page: 1980 year: 1995 ident: BFnrmicro2016164_CR75 publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.61.5.1980-1986.1995 – volume: 32 start-page: 49 year: 2015 ident: BFnrmicro2016164_CR118 publication-title: Metab. Eng. doi: 10.1016/j.ymben.2015.09.002 – volume: 18 start-page: 542 year: 2016 ident: BFnrmicro2016164_CR22 publication-title: Environ. Microbiol. doi: 10.1111/1462-2920.13047 – volume: 18 start-page: 307 year: 2016 ident: BFnrmicro2016164_CR20 publication-title: Environ. Microbiol. doi: 10.1111/1462-2920.13152 – volume: 17 start-page: 3113 year: 2015 ident: BFnrmicro2016164_CR21 publication-title: Environ. Microbiol. doi: 10.1111/1462-2920.12920 – volume: 7 start-page: 100 year: 2014 ident: BFnrmicro2016164_CR16 publication-title: Biotechnol. Biofuels doi: 10.1186/1754-6834-7-100 – volume: 3 start-page: 15 year: 2011 ident: BFnrmicro2016164_CR52 publication-title: Compr. Biotechnol. – volume: 288 start-page: 16827 year: 2013 ident: BFnrmicro2016164_CR70 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M113.466672 – volume: 175 start-page: 1891 year: 1993 ident: BFnrmicro2016164_CR32 publication-title: J. Bacteriol. doi: 10.1128/jb.175.7.1891-1899.1993 – volume: 10 start-page: 541 year: 2010 ident: BFnrmicro2016164_CR149 publication-title: Proteomics doi: 10.1002/pmic.200900311 – volume: 185 start-page: 4548 year: 2003 ident: BFnrmicro2016164_CR15 publication-title: J. Bacteriol. doi: 10.1128/JB.185.15.4548-4557.2003 – volume: 23 start-page: 686 year: 2013 ident: BFnrmicro2016164_CR68 publication-title: Curr. Opin. Struct. Biol. doi: 10.1016/j.sbi.2013.09.002 – volume: 9 start-page: 61 year: 2016 ident: BFnrmicro2016164_CR58 publication-title: Biotechnol. Biofuels doi: 10.1186/s13068-016-0474-5 – volume: 77 start-page: 4849 year: 2011 ident: BFnrmicro2016164_CR99 publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.02599-10 – volume: 6 start-page: 73 year: 2013 ident: BFnrmicro2016164_CR88 publication-title: Biotechnol. Biofuels doi: 10.1186/1754-6834-6-73 – volume: 80 start-page: 6677 year: 2014 ident: BFnrmicro2016164_CR104 publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.02070-14 – volume: 6 start-page: e00411-15 year: 2015 ident: BFnrmicro2016164_CR46 publication-title: mBio doi: 10.1128/mBio.00411-15 – volume: 299 start-page: 2074 year: 2003 ident: BFnrmicro2016164_CR87 publication-title: Science doi: 10.1126/science.1080029 – volume-title: Plant Cell Walls: From Chemistry to Biology year: 2011 ident: BFnrmicro2016164_CR3 – volume: 8 start-page: e56138 year: 2013 ident: BFnrmicro2016164_CR57 publication-title: PLoS ONE doi: 10.1371/journal.pone.0056138 – volume: 101 start-page: 41 year: 2002 ident: BFnrmicro2016164_CR49 publication-title: Appl. Biochem. Biotechnol. doi: 10.1385/ABAB:101:1:41 – volume: 289 start-page: 7335 year: 2014 ident: BFnrmicro2016164_CR55 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M113.545046 – volume: 108 start-page: 13752 year: 2011 ident: BFnrmicro2016164_CR115 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1102444108 – volume: 287 start-page: 26953 year: 2012 ident: BFnrmicro2016164_CR74 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M112.343897 – volume: 187 start-page: 7569 year: 2005 ident: BFnrmicro2016164_CR42 publication-title: J. Bacteriol. doi: 10.1128/JB.187.22.7569-7578.2005 – volume: 109 start-page: 20431 year: 2012 ident: BFnrmicro2016164_CR60 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1211929109 – volume: 2 start-page: 37 year: 2012 ident: BFnrmicro2016164_CR147 publication-title: AMB Express doi: 10.1186/2191-0855-2-37 – volume: 7 start-page: 24 year: 2014 ident: BFnrmicro2016164_CR136 publication-title: Biotechnol. Biofuels doi: 10.1186/1754-6834-7-24 – volume: 105 start-page: 12194 year: 2008 ident: BFnrmicro2016164_CR38 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0803154105 – volume: 20 start-page: 330 year: 2009 ident: BFnrmicro2016164_CR2 publication-title: Curr. Opin. Biotechnol. doi: 10.1016/j.copbio.2009.05.008 – volume: 158 start-page: 581 year: 2013 ident: BFnrmicro2016164_CR111 publication-title: Bioresour. Technol. – volume: 4 start-page: e5271 year: 2009 ident: BFnrmicro2016164_CR81 publication-title: PLoS ONE doi: 10.1371/journal.pone.0005271 – volume: 139 start-page: 4790 year: 2014 ident: BFnrmicro2016164_CR127 publication-title: Analyst doi: 10.1039/C4AN00856A – volume: 73 start-page: 7138 year: 2007 ident: BFnrmicro2016164_CR163 publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.01306-07 – volume: 291 start-page: 1 year: 2009 ident: BFnrmicro2016164_CR36 publication-title: FEMS Microbiol. Lett. doi: 10.1111/j.1574-6968.2008.01420.x – volume: 184 start-page: 884 year: 2002 ident: BFnrmicro2016164_CR41 publication-title: J. Bacteriol. doi: 10.1128/jb.184.4.884-888.2002 – volume: 3 start-page: 380 year: 2014 ident: BFnrmicro2016164_CR109 publication-title: ACS Synth. Biol. doi: 10.1021/sb4000993 – volume: 23 start-page: 525 year: 2010 ident: BFnrmicro2016164_CR130 publication-title: J. Mol. Recognit. doi: 10.1002/jmr.1029 – volume: 6 start-page: 1535 year: 2012 ident: BFnrmicro2016164_CR27 publication-title: ISME J. doi: 10.1038/ismej.2012.4 – volume: 103 start-page: 305 year: 2006 ident: BFnrmicro2016164_CR69 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0507109103 – volume: 106 start-page: 1948 year: 2009 ident: BFnrmicro2016164_CR142 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0806191105 – volume: 13 start-page: 692 year: 2014 ident: BFnrmicro2016164_CR82 publication-title: J. Proteome Res. doi: 10.1021/pr400788e – volume: 288 start-page: 7978 year: 2013 ident: BFnrmicro2016164_CR139 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M112.408757 – volume: 277 start-page: 49621 year: 2002 ident: BFnrmicro2016164_CR159 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M207672200 – volume: 74 start-page: 205 year: 2010 ident: BFnrmicro2016164_CR18 publication-title: FEMS Microbiol. Ecol. doi: 10.1111/j.1574-6941.2010.00941.x – volume: 314 start-page: 75 year: 2011 ident: BFnrmicro2016164_CR129 publication-title: FEMS Microbiol. Lett. doi: 10.1111/j.1574-6968.2010.02146.x – volume: 108 start-page: 1268 year: 2011 ident: BFnrmicro2016164_CR122 publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.23050 – volume: 173 start-page: 4155 year: 1991 ident: BFnrmicro2016164_CR53 publication-title: J. Bacteriol. doi: 10.1128/jb.173.13.4155-4162.1991 – volume: 8 start-page: 20 year: 2015 ident: BFnrmicro2016164_CR98 publication-title: Biotechnol. Biofuels doi: 10.1186/s13068-015-0204-4 – volume: 47 start-page: 877 year: 2012 ident: BFnrmicro2016164_CR133 publication-title: Process Biochem. doi: 10.1016/j.procbio.2012.01.009 – volume: 15 start-page: 7370 year: 2015 ident: BFnrmicro2016164_CR65 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b02727 – volume: 181 start-page: 6720 year: 1999 ident: BFnrmicro2016164_CR30 publication-title: J. Bacteriol. doi: 10.1128/JB.181.21.6720-6729.1999 – volume: 13 start-page: 310 year: 2015 ident: BFnrmicro2016164_CR146 publication-title: Genomics Proteomics Bioinformatics doi: 10.1016/j.gpb.2015.07.002 – volume: 17 start-page: 3407 year: 2015 ident: BFnrmicro2016164_CR19 publication-title: Environ. Microbiol. doi: 10.1111/1462-2920.12868 – volume: 31 start-page: 44 year: 2015 ident: BFnrmicro2016164_CR117 publication-title: Metab. Eng. doi: 10.1016/j.ymben.2015.07.001 – volume: 9 start-page: 5351 year: 2009 ident: BFnrmicro2016164_CR134 publication-title: Sensors (Basel). doi: 10.3390/s90705351 |
SSID | ssj0025572 |
Score | 2.643218 |
SecondaryResourceType | review_article |
Snippet | Key Points
Cellulosomes are self-assembled multienzyme complexes that are highly efficient at degrading lignocellulose, mainly owing to common substrate... Cellulosomes are multienzyme complexes that are produced by anaerobic cellulolytic bacteria for the degradation of lignocellulosic biomass. They comprise a... |
SourceID | proquest gale pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 83 |
SubjectTerms | 631/326/252/318 631/326/2522 631/326/41/1969 631/326/41/2173 631/326/41/2536 631/326/41/2537 Bacteria Biofuels Botanical research Cell Cycle Proteins - metabolism Cell Wall - metabolism Cellulose Cellulosomes - enzymology Cellulosomes - metabolism Cellulosomes - ultrastructure Chromosomal Proteins, Non-Histone - metabolism Clostridium thermocellum - metabolism Cohesins Enzymes Gene expression Genetic research Heterogeneity Infectious Diseases Life Sciences Lignin Lignin - metabolism Medical Microbiology Microbiology Microorganisms Observations Parasitology Plant Cells - metabolism Plant genetics Plant proteins Plants - metabolism Plants - microbiology Properties review-article Saccharides Sludge Virology |
Title | Cellulosomes: bacterial nanomachines for dismantling plant polysaccharides |
URI | https://link.springer.com/article/10.1038/nrmicro.2016.164 https://www.ncbi.nlm.nih.gov/pubmed/27941816 https://www.proquest.com/docview/1860128126 https://www.proquest.com/docview/1852663910 https://www.proquest.com/docview/1868305446 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9wwDBdby2AvY99N15UMBmOD7PLh2M5eRne0lMLKGB3cW_DXQSGX3Jq7h_73kxzn2ivsXkKC5eDIsvxTJEsAH1XuaG7naJYULGGmEknluEmsKZSTTujckaH485Kf_2EXs3IWfrj1Iaxy1IleUdvO0D_ySSa59_rk_Pvyb0JVo8i7GkpoPIZ9n7oM5VnM7gyusvTFmxB0pwnuU6ObMi3kpEU2oqaj2C7-NeNsa1t6qJzv7U4P3KV-Fzp7Ds8CfIxPhvl-AY9c-xKeDAUlb1_BxdQ1zZpqEyxc_y3WQypm7NCqtlv4uEnXx4hTY3vdL5CpdBg9XjZ4Fy-75rZXho5hXVvXv4ars9Or6XkSqiUkBk3cVSKNcEwYqtvLNAIjLcs5l1aL3NmMz6WqKstUKpnmPNWV4jLFR4Mr2BQVztQb2Gu71h1AnFltjWQyt4oxgQSVKp2VWSk5S3XBIpiMvKpNyCROBS2a2nu0C1kH7tbE3Rq5G8HnTY_lkEVjB-0nYn9NCwzfalQ4J4Bjo1RV9QkTglBqVUZwtEWJC8NsN48TWIeF2dd3YhTBh00z9aRgs9Z1a6JBWUHklqW7aLhEVYnGdARvB-HYfFmOOg6BE7Z8GaXl3gD-89mHu0f7Dp7mBCh8vPgR7K1u1u49wqGVPvYyj1c5zY5h_8fp5a_f_wD5jQnw |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1ri9NAcDh7iPdFfFs9NYIiCrF5bDYbQeQ87-i9ikiF-7bsq3CQJj3TIv1R_kdn8qjXA_vtviXsbNidmZ1HZmYH4I2KHNF2gm5JzHxmstTPHDe-NbFywqU6cuQono348Cc7Pk_Ot-BPVwtDaZWdTKwFtS0N_SMfhILXUZ-If5ld-tQ1iqKrXQuNhi1O3PI3umzV56NvSN-3UXR4MN4f-m1XAd-gKzj3hUkdSw31t2UaDQgtkgkXVqeRsyGfCJVllqlAMM15oDPFRYCvBjndxBnuCD97C7YZFbT2YPvrwej7j5WHlyR1tyi08gMfFWMXFw1iMSiQbihaKZmMfww5W9OD17XBFXV4LT5bq73De3C3tVe9vYbB7sOWKx7A7aaD5fIhHO-7PF9QM4Spqz55urn7GScUqiindaKmqzw0jD17UU2RilT97s1yfPJmZb6slKG6rwvrqkcwvglEPoZeURbuKXih1dYIJiKrGEsRIFOJsyJMBGeBjlkfBh2upGmvLqcOGrmsQ-ixkC12JWFXInb78H41Y9Zc27EB9h2hX9KJxq8a1RYm4Nrobiy5x9KUzOIs6cPuGiSeRLM-3BFQtpKgkv_4tg-vV8M0k7LbClcuCAZ5BU3FMNgEwwXKZvTe-_CkYY7VziIUqmip4ciHjluuLOA_2362ebWv4M5wfHYqT49GJ89hJyJrpk5W34Xe_NfCvUBbbK5ftifAA3nDZ-4vwyJD2A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1ra9RAcKgVxS_i22jVCIooxMtjs7sRRErr0YcWP1S4b8u-Dgp3ybW5Q-6n-e-cyePaK3jf-i1hZ8PuvCczuwPwTqeeaDvGsCRjEbOFiArPbeRspr30wqSeAsWfJ_zgNzsa5aMt-NufhaGyyl4nNoraVZb-kQ8SyZusT8oH464s4tf-8NvsPKIOUpRp7dtptCxy7Jd_MHyrvx7uI63fp-nw--neQdR1GIgshoXzSFrhmbDU65YZdCaMzMdcOiNS7xI-lrooHNOxZIbz2BSayxhfLXK9zQrcHX72FtwWGTpVKEpidBnr5XnTNwr9_ThCE9lnSONMDkqkICpZKivjnxPO1izidbtwxTBey9Q2BnD4AO53nmu427LaQ9jy5SO40_ayXD6Goz0_mSyoLcLU119C094CjRNKXVbTpmTT1yG6yKE7q6dITzoHH84m-BTOqsmy1pZOgJ05Xz-B05tA41PYLqvSP4cwccZZyWTqNGMCAQqdeyeTXHIWm4wFMOhxpWx3iTn10pioJpmeSdVhVxF2FWI3gI-rGbP2Ao8NsB8I_YpkG79qdXdEAddGt2SpXSYEOchFHsDOGiTKpF0f7gmoOp1Qq0sODuDtaphmUp1b6asFwSCvoNOYxJtguEQtjXF8AM9a5ljtLEX1ij4bjnzqueXKAv6z7RebV_sG7qKkqR-HJ8cv4V5Kbk1Ttb4D2_OLhX-FTtncvG7YPwR1w-L2D0LaRp8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cellulosomes%3A+bacterial+nanomachines+for+dismantling+plant+polysaccharides&rft.jtitle=Nature+reviews.+Microbiology&rft.au=Artzi%2C+Lior&rft.au=Bayer%2C+Edward+A.&rft.au=Mora%C3%AFs%2C+Sarah&rft.date=2017-02-01&rft.issn=1740-1526&rft.eissn=1740-1534&rft.volume=15&rft.issue=2&rft.spage=83&rft.epage=95&rft_id=info:doi/10.1038%2Fnrmicro.2016.164&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_nrmicro_2016_164 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1740-1526&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1740-1526&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1740-1526&client=summon |