Cellulosomes: bacterial nanomachines for dismantling plant polysaccharides

Key Points Cellulosomes are self-assembled multienzyme complexes that are highly efficient at degrading lignocellulose, mainly owing to common substrate targeting and consequent enzyme proximity that, together, generate substrate channelling and synergistic action. Cellulosomes have been identified...

Full description

Saved in:
Bibliographic Details
Published inNature reviews. Microbiology Vol. 15; no. 2; pp. 83 - 95
Main Authors Artzi, Lior, Bayer, Edward A., Moraïs, Sarah
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.02.2017
Nature Publishing Group
Subjects
Online AccessGet full text
ISSN1740-1526
1740-1534
DOI10.1038/nrmicro.2016.164

Cover

Abstract Key Points Cellulosomes are self-assembled multienzyme complexes that are highly efficient at degrading lignocellulose, mainly owing to common substrate targeting and consequent enzyme proximity that, together, generate substrate channelling and synergistic action. Cellulosomes have been identified in several anaerobic bacteria, with each species presenting its own molecular arrangement with varying degrees of complexity. The prevalence of cellulosomes as rare but central components in various ecosystems reflects the benefits of this enzymatic strategy. The cohesin–dockerin interaction has been studied extensively and is one of the strongest non-covalent interactions known in nature. The composition of cellulosomes is regulated and varied by the nature of the growth substrate (carbon source) of the parent bacterium. The cellulosome, as one of the most efficient machineries for the degradation of plant cell walls, can potentially be used for the large-scale conversion of biomass. Owing to the modular nature of cellulosomes, cellulosomal components have been proposed for use in additional biotechnological applications, notably, together with other affinity systems. Cellulosomes are sophisticated multicomponent complexes that are used by bacteria to degrade cellulose from plant cell walls. In this review, Artzi, Bayer and Moraïs explore the structural and functional diversity of cellulosomes and their applications; for example, in microbial biofuel production. Cellulosomes are multienzyme complexes that are produced by anaerobic cellulolytic bacteria for the degradation of lignocellulosic biomass. They comprise a complex of scaffoldin, which is the structural subunit, and various enzymatic subunits. The intersubunit interactions in these multienzyme complexes are mediated by cohesin and dockerin modules. Cellulosome-producing bacteria have been isolated from a large variety of environments, which reflects their prevalence and the importance of this microbial enzymatic strategy. In a given species, cellulosomes exhibit intrinsic heterogeneity, and between species there is a broad diversity in the composition and configuration of cellulosomes. With the development of modern technologies, such as genomics and proteomics, the full protein content of cellulosomes and their expression levels can now be assessed and the regulatory mechanisms identified. Owing to their highly efficient organization and hydrolytic activity, cellulosomes hold immense potential for application in the degradation of biomass and are the focus of much effort to engineer an ideal microorganism for the conversion of lignocellulose to valuable products, such as biofuels.
AbstractList Cellulosomes are multienzyme complexes that are produced by anaerobic cellulolytic bacteria for the degradation of lignocellulosic biomass. They comprise a complex of scaffoldin, which is the structural subunit, and various enzymatic subunits. The intersubunit interactions in these multienzyme complexes are mediated by cohesin and dockerin modules. Cellulosome-producing bacteria have been isolated from a large variety of environments, which reflects their prevalence and the importance of this microbial enzymatic strategy. In a given species, cellulosomes exhibit intrinsic heterogeneity, and between species there is a broad diversity in the composition and configuration of cellulosomes. With the development of modern technologies, such as genomics and proteomics, the full protein content of cellulosomes and their expression levels can now be assessed and the regulatory mechanisms identified. Owing to their highly efficient organization and hydrolytic activity, cellulosomes hold immense potential for application in the degradation of biomass and are the focus of much effort to engineer an ideal microorganism for the conversion of lignocellulose to valuable products, such as biofuels.
Key Points Cellulosomes are self-assembled multienzyme complexes that are highly efficient at degrading lignocellulose, mainly owing to common substrate targeting and consequent enzyme proximity that, together, generate substrate channelling and synergistic action. Cellulosomes have been identified in several anaerobic bacteria, with each species presenting its own molecular arrangement with varying degrees of complexity. The prevalence of cellulosomes as rare but central components in various ecosystems reflects the benefits of this enzymatic strategy. The cohesin–dockerin interaction has been studied extensively and is one of the strongest non-covalent interactions known in nature. The composition of cellulosomes is regulated and varied by the nature of the growth substrate (carbon source) of the parent bacterium. The cellulosome, as one of the most efficient machineries for the degradation of plant cell walls, can potentially be used for the large-scale conversion of biomass. Owing to the modular nature of cellulosomes, cellulosomal components have been proposed for use in additional biotechnological applications, notably, together with other affinity systems. Cellulosomes are sophisticated multicomponent complexes that are used by bacteria to degrade cellulose from plant cell walls. In this review, Artzi, Bayer and Moraïs explore the structural and functional diversity of cellulosomes and their applications; for example, in microbial biofuel production. Cellulosomes are multienzyme complexes that are produced by anaerobic cellulolytic bacteria for the degradation of lignocellulosic biomass. They comprise a complex of scaffoldin, which is the structural subunit, and various enzymatic subunits. The intersubunit interactions in these multienzyme complexes are mediated by cohesin and dockerin modules. Cellulosome-producing bacteria have been isolated from a large variety of environments, which reflects their prevalence and the importance of this microbial enzymatic strategy. In a given species, cellulosomes exhibit intrinsic heterogeneity, and between species there is a broad diversity in the composition and configuration of cellulosomes. With the development of modern technologies, such as genomics and proteomics, the full protein content of cellulosomes and their expression levels can now be assessed and the regulatory mechanisms identified. Owing to their highly efficient organization and hydrolytic activity, cellulosomes hold immense potential for application in the degradation of biomass and are the focus of much effort to engineer an ideal microorganism for the conversion of lignocellulose to valuable products, such as biofuels.
Audience Academic
Author Moraïs, Sarah
Artzi, Lior
Bayer, Edward A.
Author_xml – sequence: 1
  givenname: Lior
  surname: Artzi
  fullname: Artzi, Lior
  organization: Department of Biomolecular Sciences, The Weizmann Institute of Science
– sequence: 2
  givenname: Edward A.
  surname: Bayer
  fullname: Bayer, Edward A.
  email: ed.bayer@weizmann.ac.il
  organization: Department of Biomolecular Sciences, The Weizmann Institute of Science
– sequence: 3
  givenname: Sarah
  surname: Moraïs
  fullname: Moraïs, Sarah
  email: sarahv@weizmann.ac.il
  organization: Department of Biomolecular Sciences, The Weizmann Institute of Science
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27941816$$D View this record in MEDLINE/PubMed
BookMark eNqNUk1v1DAUtFARbRfunFAkLlx28UucZ4dbteJTlbj0bjmOs3Xl2IudHPrveavd8lEBQj74QzNjvZm5ZGcxRcfYS-Ab4I16G_PkbU6bmgNuAMUTdgFS8DW0jTj7ca7xnF2Wcsd53bayfsbOa9kJUIAX7MvWhbCEVNLkyruqN3Z22ZtQRRPTZOytj65UY8rV4Mtk4hx83FX7QKdqn8J9MdbemuwHV56zp6MJxb047St28-H9zfbT-vrrx8_bq-u1FdjNa2WlE9ICb6XooRW9akdUQy9rNwCOynTdIAxXokfkfWdQcbpaLpRtOoRmxd4cZfc5fVtcmfXki6UpTHRpKRoUqoa3QuB_QMkbbDrycsVeP4LepSVHmuMgyKFWUONP1M4Ep30c05yNPYjqKyElku9dS6jNH1C0BkdxUYKjp_ffCK9Ony_95Aa9z34y-V4_xEQAPAIo7FKyG7X1s5l9iqTsgwauD33Qpz7oQx809YGI_BHxQfsfFDhSCkHjzuVfnPgb5ztR5sfy
CitedBy_id crossref_primary_10_1016_j_ijbiomac_2022_10_102
crossref_primary_10_1016_j_cbpa_2018_11_021
crossref_primary_10_1039_C9BM02052G
crossref_primary_10_1186_s13068_017_0898_6
crossref_primary_10_1264_jsme2_ME22039
crossref_primary_10_3390_ma14030487
crossref_primary_10_1186_s13068_019_1386_y
crossref_primary_10_1111_lam_13352
crossref_primary_10_1128_mBio_00443_20
crossref_primary_10_1038_s41467_022_33272_2
crossref_primary_10_1016_j_jbiosc_2019_05_007
crossref_primary_10_1271_kagakutoseibutsu_61_339
crossref_primary_10_1016_j_rser_2023_113887
crossref_primary_10_1007_s00253_021_11107_2
crossref_primary_10_1128_mBio_02206_21
crossref_primary_10_1007_s00253_022_12072_0
crossref_primary_10_1021_acs_est_0c07253
crossref_primary_10_1021_acs_iecr_4c03484
crossref_primary_10_3390_catal11040409
crossref_primary_10_1021_acs_jafc_1c07233
crossref_primary_10_1038_s41598_019_42206_w
crossref_primary_10_3390_microorganisms10030502
crossref_primary_10_1016_j_fochx_2022_100501
crossref_primary_10_1021_acs_oprd_1c00424
crossref_primary_10_1038_s41579_018_0046_8
crossref_primary_10_1098_rsta_2019_0274
crossref_primary_10_3390_microorganisms5040074
crossref_primary_10_1021_acscatal_3c05653
crossref_primary_10_1111_febs_15155
crossref_primary_10_1016_j_engmic_2022_100038
crossref_primary_10_3390_fermentation10050229
crossref_primary_10_1007_s00253_021_11614_2
crossref_primary_10_1093_glycob_cwaa050
crossref_primary_10_1111_1751_7915_13293
crossref_primary_10_1111_febs_14858
crossref_primary_10_1021_acsapm_0c01407
crossref_primary_10_1016_j_enzmictec_2019_109445
crossref_primary_10_1111_1751_7915_14148
crossref_primary_10_1016_j_biotechadv_2024_108308
crossref_primary_10_1021_acssynbio_4c00077
crossref_primary_10_1186_s13068_022_02225_8
crossref_primary_10_1007_s00018_021_03981_w
crossref_primary_10_1016_j_biortech_2017_05_135
crossref_primary_10_3389_fbioe_2023_1328141
crossref_primary_10_3389_fmicb_2024_1523074
crossref_primary_10_1038_s41396_020_00837_2
crossref_primary_10_1186_s13059_025_03486_w
crossref_primary_10_7554_eLife_76523
crossref_primary_10_3390_molecules24162879
crossref_primary_10_1002_bit_27242
crossref_primary_10_1093_gigascience_giaa164
crossref_primary_10_1016_j_ijbiomac_2018_04_004
crossref_primary_10_1021_acssynbio_0c00276
crossref_primary_10_3390_ijms20204979
crossref_primary_10_1016_j_jhazmat_2025_137441
crossref_primary_10_1128_AEM_00282_18
crossref_primary_10_1186_s40168_024_02014_5
crossref_primary_10_1002_bbb_2060
crossref_primary_10_1128_aem_02471_24
crossref_primary_10_1038_s41598_021_82163_x
crossref_primary_10_1016_j_ibiod_2021_105277
crossref_primary_10_1093_aesa_saaa032
crossref_primary_10_1007_s12257_024_00128_z
crossref_primary_10_1002_admt_202000928
crossref_primary_10_3168_jds_2024_25713
crossref_primary_10_1111_febs_15251
crossref_primary_10_3390_fermentation10040207
crossref_primary_10_1016_j_jece_2021_105798
crossref_primary_10_1016_j_jbc_2022_101896
crossref_primary_10_1016_j_rser_2023_113275
crossref_primary_10_1016_j_rser_2022_112583
crossref_primary_10_1016_j_tifs_2024_104802
crossref_primary_10_3389_fpls_2021_710869
crossref_primary_10_1002_ange_202319832
crossref_primary_10_1007_s00253_018_9210_3
crossref_primary_10_1016_j_greenca_2024_06_001
crossref_primary_10_1007_s00253_020_10731_8
crossref_primary_10_1016_j_fshw_2022_04_002
crossref_primary_10_3389_fmicb_2024_1473396
crossref_primary_10_1016_j_bbabio_2024_149495
crossref_primary_10_3390_ani11020338
crossref_primary_10_1128_mbio_01476_22
crossref_primary_10_1093_femsle_fnae074
crossref_primary_10_1186_s13068_022_02158_2
crossref_primary_10_3390_molecules29102275
crossref_primary_10_1098_rstb_2019_0250
crossref_primary_10_1016_j_engmic_2021_100005
crossref_primary_10_1016_j_jclepro_2020_121731
crossref_primary_10_1016_j_indcrop_2024_120196
crossref_primary_10_1038_s41467_024_53784_3
crossref_primary_10_1039_C7CP07764E
crossref_primary_10_1111_mmi_15144
crossref_primary_10_3390_microorganisms7090347
crossref_primary_10_1016_j_biortech_2021_125148
crossref_primary_10_1016_j_ab_2019_113411
crossref_primary_10_1007_s12104_021_10025_8
crossref_primary_10_3390_ijms20133354
crossref_primary_10_3390_app15042214
crossref_primary_10_1186_s40168_021_01147_1
crossref_primary_10_1002_biot_202100064
crossref_primary_10_1021_acssuschemeng_3c02296
crossref_primary_10_1038_s41467_020_18543_0
crossref_primary_10_1016_j_mset_2020_12_004
crossref_primary_10_1111_jam_15367
crossref_primary_10_1038_nmicrobiol_2017_26
crossref_primary_10_3390_catal13010083
crossref_primary_10_3389_fmicb_2023_1205767
crossref_primary_10_1007_s13399_023_05185_7
crossref_primary_10_3390_catal8030094
crossref_primary_10_1016_j_chemosphere_2021_131635
crossref_primary_10_1016_j_envres_2024_118974
crossref_primary_10_1111_febs_15508
crossref_primary_10_1007_s12010_018_2864_6
crossref_primary_10_1016_j_copbio_2019_08_015
crossref_primary_10_1038_s41564_020_00861_0
crossref_primary_10_1039_C8SM00809D
crossref_primary_10_1007_s00253_023_12684_0
crossref_primary_10_1111_tpj_14519
crossref_primary_10_1007_s00284_019_01633_8
crossref_primary_10_3390_catal11081011
crossref_primary_10_1016_j_jhazmat_2024_134887
crossref_primary_10_1016_j_procbio_2017_12_013
crossref_primary_10_1186_s13068_019_1613_6
crossref_primary_10_1016_j_renene_2017_11_005
crossref_primary_10_12693_APhysPolA_145_S9
crossref_primary_10_1002_bbb_2407
crossref_primary_10_1016_j_str_2021_01_006
crossref_primary_10_1016_j_pbi_2017_08_010
crossref_primary_10_1007_s00253_023_12427_1
crossref_primary_10_1093_bioinformatics_btx689
crossref_primary_10_1186_s13068_017_0928_4
crossref_primary_10_1016_j_jece_2023_109870
crossref_primary_10_1038_s41396_018_0292_9
crossref_primary_10_1002_anie_202319832
crossref_primary_10_1016_j_ijhydene_2019_03_066
crossref_primary_10_1021_jacs_8b10011
crossref_primary_10_1039_C8CP00925B
crossref_primary_10_1016_j_cbpa_2017_10_013
crossref_primary_10_1128_MMBR_00135_20
crossref_primary_10_1002_smll_202106425
crossref_primary_10_3389_fvets_2021_668003
crossref_primary_10_1002_pro_5193
crossref_primary_10_1016_j_cej_2021_133416
crossref_primary_10_1002_prot_26690
crossref_primary_10_1016_j_fgb_2024_103958
crossref_primary_10_3390_microorganisms8122024
crossref_primary_10_1002_cssc_201801141
crossref_primary_10_1186_s12866_019_1480_0
crossref_primary_10_1002_1873_3468_12957
crossref_primary_10_1126_science_adj9223
crossref_primary_10_1146_annurev_micro_090816_093315
crossref_primary_10_1002_bab_1804
crossref_primary_10_1128_AEM_03088_16
crossref_primary_10_1016_j_carbpol_2024_122284
crossref_primary_10_3390_fermentation9030204
crossref_primary_10_1093_femsre_fuz007
crossref_primary_10_3390_agriculture11010075
crossref_primary_10_1186_s13068_018_1238_1
crossref_primary_10_1016_j_ijbiomac_2024_139048
crossref_primary_10_1016_j_pep_2023_106323
crossref_primary_10_1128_msystems_01283_22
crossref_primary_10_1016_j_carbpol_2021_118059
crossref_primary_10_1155_2024_5573158
crossref_primary_10_1016_j_biotechadv_2019_03_013
crossref_primary_10_3390_jof7030200
crossref_primary_10_1039_C7CP04114D
crossref_primary_10_1021_jacs_9b06776
crossref_primary_10_1016_j_envres_2023_115925
crossref_primary_10_1016_j_greenca_2023_07_001
crossref_primary_10_1016_j_jsb_2021_107765
crossref_primary_10_1074_jbc_RA117_000644
crossref_primary_10_3390_microorganisms11092219
crossref_primary_10_1073_pnas_2117467119
crossref_primary_10_1016_j_enzmictec_2017_05_008
crossref_primary_10_1016_j_biortech_2022_128555
crossref_primary_10_1021_acscatal_1c03465
crossref_primary_10_1016_j_cclet_2019_07_008
crossref_primary_10_1038_s41598_019_52675_8
crossref_primary_10_1002_cssc_201900351
crossref_primary_10_1016_j_soilbio_2019_01_023
crossref_primary_10_1007_s00284_023_03309_w
crossref_primary_10_1016_j_jclepro_2021_130180
crossref_primary_10_1016_j_bcdf_2020_100245
crossref_primary_10_3389_fmicb_2018_03149
crossref_primary_10_3920_BM2021_0090
crossref_primary_10_1007_s10529_024_03522_y
crossref_primary_10_3389_fmicb_2017_02504
crossref_primary_10_1038_nbt_4110
crossref_primary_10_3390_ijms20071602
crossref_primary_10_1186_s40168_022_01453_2
crossref_primary_10_3390_fermentation8080394
crossref_primary_10_1007_s12275_022_1531_3
crossref_primary_10_3389_fmicb_2021_741077
crossref_primary_10_3390_microorganisms8030385
crossref_primary_10_1016_j_cej_2024_151487
crossref_primary_10_1021_acs_bioconjchem_1c00327
crossref_primary_10_1021_acscatal_8b01883
crossref_primary_10_1021_acssuschemeng_8b00376
crossref_primary_10_1002_smll_202301413
crossref_primary_10_1111_1462_2920_15317
crossref_primary_10_1038_s41598_018_29245_5
crossref_primary_10_1016_j_biteb_2023_101695
crossref_primary_10_1038_s41586_024_08553_z
crossref_primary_10_1038_s41522_022_00309_9
crossref_primary_10_3389_fmicb_2021_695517
crossref_primary_10_1186_s13068_023_02260_z
crossref_primary_10_1111_1751_7915_13580
crossref_primary_10_1016_j_copbio_2022_102840
crossref_primary_10_3390_microorganisms11061514
crossref_primary_10_1111_1751_7915_13584
crossref_primary_10_1007_s00253_018_8778_y
crossref_primary_10_1186_s13068_020_01709_9
crossref_primary_10_1016_j_biortech_2022_128339
crossref_primary_10_1111_1758_2229_12785
crossref_primary_10_1016_j_biotechadv_2020_107627
crossref_primary_10_1016_j_cogsc_2021_100584
crossref_primary_10_1016_j_biombioe_2020_105673
crossref_primary_10_1016_j_biortech_2022_126706
crossref_primary_10_1074_jbc_RA120_013040
crossref_primary_10_1074_jbc_RA119_008455
crossref_primary_10_1016_j_greenca_2024_01_003
crossref_primary_10_1016_j_jaci_2018_06_017
crossref_primary_10_1016_j_biortech_2021_124909
crossref_primary_10_1007_s12010_018_2786_3
crossref_primary_10_1128_AEM_00199_20
crossref_primary_10_1128_mBio_00012_18
crossref_primary_10_1042_EBC20220167
crossref_primary_10_1021_acscatal_2c02377
crossref_primary_10_1016_j_enzmictec_2020_109517
crossref_primary_10_1126_sciadv_abd7182
crossref_primary_10_1186_s13068_019_1447_2
crossref_primary_10_1021_acs_estlett_5c00190
crossref_primary_10_32604_jrm_2021_014374
crossref_primary_10_1016_j_scitotenv_2022_156890
crossref_primary_10_1007_s00203_018_1606_z
crossref_primary_10_1007_s00253_017_8467_2
crossref_primary_10_1038_s41564_017_0047_9
crossref_primary_10_1038_s41396_018_0332_5
crossref_primary_10_3390_microorganisms11071732
crossref_primary_10_1093_jambio_lxac002
crossref_primary_10_1007_s00253_023_12581_6
crossref_primary_10_1021_acs_accounts_9b00165
crossref_primary_10_1038_s41598_018_25171_8
crossref_primary_10_1093_molbev_msab020
crossref_primary_10_1126_sciadv_adg4846
crossref_primary_10_1016_j_ijbiomac_2024_131988
crossref_primary_10_3390_app11115150
crossref_primary_10_1002_cbic_201900061
crossref_primary_10_1016_j_rser_2024_114913
crossref_primary_10_1128_JB_00481_20
crossref_primary_10_48130_animadv_0024_0002
crossref_primary_10_1002_bit_27705
crossref_primary_10_1016_j_sbi_2018_03_012
crossref_primary_10_1016_j_ymben_2017_09_008
crossref_primary_10_2139_ssrn_4117183
crossref_primary_10_1186_s13068_019_1353_7
crossref_primary_10_3389_fmicb_2022_1002532
crossref_primary_10_1007_s11274_017_2308_4
crossref_primary_10_3389_fmicb_2023_1112247
crossref_primary_10_1007_s00253_018_9508_1
crossref_primary_10_1021_acs_jpcb_3c05697
crossref_primary_10_1071_AN22363
crossref_primary_10_3389_fmicb_2023_1179206
crossref_primary_10_2174_0929867324666170912095755
crossref_primary_10_1371_journal_pone_0192618
crossref_primary_10_3389_fmicb_2018_00215
crossref_primary_10_1038_s41467_020_18063_x
crossref_primary_10_1128_mBio_01155_20
crossref_primary_10_1186_s13068_017_1009_4
crossref_primary_10_1007_s10295_019_02222_1
crossref_primary_10_1016_j_biotechadv_2020_107535
crossref_primary_10_1016_j_jtice_2023_105276
crossref_primary_10_1016_j_tibtech_2020_02_007
crossref_primary_10_1021_acscentsci_0c00050
crossref_primary_10_1002_bbb_1832
crossref_primary_10_3389_fmicb_2023_1282851
crossref_primary_10_1055_s_0044_1800966
crossref_primary_10_3389_fenrg_2021_680313
crossref_primary_10_1002_jctb_5825
crossref_primary_10_1038_s41467_019_10068_5
crossref_primary_10_3390_molecules26051389
crossref_primary_10_3390_microorganisms11010162
crossref_primary_10_1111_1758_2229_12980
crossref_primary_10_3923_ajb_2017_36_43
crossref_primary_10_1039_D1EE02540F
crossref_primary_10_3390_biom13091407
crossref_primary_10_1002_prot_25753
crossref_primary_10_1016_j_enzmictec_2020_109546
crossref_primary_10_1021_jacsau_4c00388
crossref_primary_10_3389_fmicb_2019_01646
crossref_primary_10_1016_j_biotechadv_2020_107546
crossref_primary_10_1016_j_biotechadv_2025_108523
crossref_primary_10_1007_s00792_024_01341_7
crossref_primary_10_1016_j_scitotenv_2023_167757
crossref_primary_10_1128_mBio_00832_21
crossref_primary_10_1002_pro_4937
crossref_primary_10_1016_j_cub_2022_05_049
crossref_primary_10_1080_19490976_2022_2031694
crossref_primary_10_1186_s13068_019_1522_8
crossref_primary_10_1038_s41929_019_0321_8
Cites_doi 10.1126/science.1227491
10.1186/1471-2180-11-134
10.1128/JB.00097-08
10.1111/j.1365-2958.2006.05182.x
10.1073/pnas.0813093106
10.1039/c2cy00371f
10.1016/j.enzmictec.2010.12.014
10.1111/j.1365-2958.1993.tb01576.x
10.1128/JB.00973-06
10.1007/s00253-011-3108-7
10.1111/j.1574-6968.1992.tb05563.x
10.1128/JB.185.10.3042-3048.2003
10.1128/AEM.00873-15
10.1111/j.1742-4658.2009.07025.x
10.1126/sciadv.1501254
10.1073/pnas.1608012113
10.1371/journal.pone.0012476
10.1128/JB.181.6.1801-1810.1999
10.1016/j.copbio.2009.05.004
10.1128/JB.156.2.818-827.1983
10.1016/j.femsre.2004.11.003
10.1016/S0014-5793(99)01634-8
10.1128/mBio.00508-12
10.1128/AEM.01241-09
10.1128/JB.156.2.828-836.1983
10.1007/s00253-015-7071-6
10.1186/s13068-014-0135-5
10.1111/febs.12497
10.1186/1754-6834-5-51
10.1128/JB.185.20.6067-6075.2003
10.4014/jmb.1402.02034
10.1016/j.copbio.2007.04.004
10.1371/journal.pone.0053779
10.1038/455481a
10.1073/pnas.1012175107
10.1128/JB.186.4.968-977.2004
10.1007/s00253-006-0689-7
10.7717/peerj.636
10.1186/1754-6834-7-112
10.1002/(SICI)1097-0290(19991005)65:1<17::AID-BIT3>3.0.CO;2-Y
10.1073/pnas.1936124100
10.1371/journal.pone.0065333
10.1016/0008-6215(92)85079-F
10.1016/j.sbi.2016.08.002
10.1186/s13068-016-0526-x
10.1186/1754-6834-7-80
10.1016/0167-7799(94)90039-6
10.1016/j.jbiotec.2009.06.019
10.1016/j.jbiotec.2010.04.012
10.1007/s00253-016-7594-5
10.1128/jb.167.3.828-836.1986
10.1002/(SICI)1097-0134(199712)29:4<517::AID-PROT11>3.0.CO;2-P
10.1038/nrmicro925
10.4155/bfs.09.25
10.1080/21655979.2015.1060379
10.1186/s13568-014-0089-9
10.1128/JB.185.17.5109-5116.2003
10.1111/1574-6976.12044
10.1002/adma.201503948
10.1371/journal.pone.0127326
10.1074/jbc.M414449200
10.1074/jbc.M006948200
10.1128/AEM.49.3.656-659.1985
10.1039/c3cc42614a
10.1016/j.jmb.2010.10.013
10.1074/jbc.M503168200
10.1073/pnas.89.8.3483
10.1371/journal.pone.0146316
10.1186/s13068-015-0301-4
10.1073/pnas.1202747109
10.1128/jb.176.1.70-76.1994
10.1016/j.tibtech.2013.06.006
10.1128/jb.177.9.2451-2459.1995
10.4155/bfs.11.126
10.1371/journal.pone.0099221
10.1111/j.1574-6968.2010.01997.x
10.1039/c3ee00019b
10.1146/annurev.micro.57.030502.091022
10.1038/ncomms7900
10.1038/nature06269
10.1002/pmic.200700486
10.1186/1471-2164-13-210
10.1126/science.1200387
10.1016/S0734-9750(02)00006-X
10.1016/j.jprot.2015.04.026
10.1371/journal.pone.0042116
10.1021/sb300068g
10.1016/j.imlet.2005.10.022
10.1128/mBio.01058-15
10.1016/j.jsb.2014.09.006
10.1111/j.1574-6976.1994.tb00033.x
10.1186/s13068-014-0136-4
10.1128/mBio.00083-16
10.1016/j.biortech.2014.01.140
10.1093/nar/gkt1178
10.1186/s13068-016-0577-z
10.1128/JB.186.9.2576-2585.2004
10.4056/sigs.2535732
10.1073/pnas.1404148111
10.1186/1754-6834-6-182
10.1186/1754-6834-6-179
10.1038/ncomms6635
10.1089/ind.2005.1.198
10.1186/s13068-016-0554-6
10.1111/1462-2920.13561
10.1128/AEM.61.5.1980-1986.1995
10.1016/j.ymben.2015.09.002
10.1111/1462-2920.13047
10.1111/1462-2920.13152
10.1111/1462-2920.12920
10.1186/1754-6834-7-100
10.1074/jbc.M113.466672
10.1128/jb.175.7.1891-1899.1993
10.1002/pmic.200900311
10.1128/JB.185.15.4548-4557.2003
10.1016/j.sbi.2013.09.002
10.1186/s13068-016-0474-5
10.1128/AEM.02599-10
10.1186/1754-6834-6-73
10.1128/AEM.02070-14
10.1128/mBio.00411-15
10.1126/science.1080029
10.1371/journal.pone.0056138
10.1385/ABAB:101:1:41
10.1074/jbc.M113.545046
10.1073/pnas.1102444108
10.1074/jbc.M112.343897
10.1128/JB.187.22.7569-7578.2005
10.1073/pnas.1211929109
10.1186/2191-0855-2-37
10.1186/1754-6834-7-24
10.1073/pnas.0803154105
10.1016/j.copbio.2009.05.008
10.1371/journal.pone.0005271
10.1039/C4AN00856A
10.1128/AEM.01306-07
10.1111/j.1574-6968.2008.01420.x
10.1128/jb.184.4.884-888.2002
10.1021/sb4000993
10.1002/jmr.1029
10.1038/ismej.2012.4
10.1073/pnas.0507109103
10.1073/pnas.0806191105
10.1021/pr400788e
10.1074/jbc.M112.408757
10.1074/jbc.M207672200
10.1111/j.1574-6941.2010.00941.x
10.1111/j.1574-6968.2010.02146.x
10.1002/bit.23050
10.1128/jb.173.13.4155-4162.1991
10.1186/s13068-015-0204-4
10.1016/j.procbio.2012.01.009
10.1021/acs.nanolett.5b02727
10.1128/JB.181.21.6720-6729.1999
10.1016/j.gpb.2015.07.002
10.1111/1462-2920.12868
10.1016/j.ymben.2015.07.001
10.3390/s90705351
ContentType Journal Article
Copyright Springer Nature Limited 2016
COPYRIGHT 2017 Nature Publishing Group
Copyright Nature Publishing Group Feb 2017
Copyright_xml – notice: Springer Nature Limited 2016
– notice: COPYRIGHT 2017 Nature Publishing Group
– notice: Copyright Nature Publishing Group Feb 2017
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QL
7RV
7U9
7X7
7XB
88A
88E
88I
8AO
8C1
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
BKSAR
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB0
LK8
M0S
M1P
M2P
M7N
M7P
NAPCQ
P64
PCBAR
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
RC3
7X8
7QO
DOI 10.1038/nrmicro.2016.164
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Nursing & Allied Health Database
Virology and AIDS Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
Engineering Research Database
ProQuest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Science Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
Proquest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
Biotechnology Research Abstracts
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Central Student
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Virology and AIDS Abstracts
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
ProQuest Public Health
ProQuest Central Basic
ProQuest Science Journals
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
Biotechnology Research Abstracts
DatabaseTitleList ProQuest Central Student
MEDLINE - Academic
MEDLINE
Engineering Research Database


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1740-1534
EndPage 95
ExternalDocumentID 4305143921
A477615395
27941816
10_1038_nrmicro_2016_164
Genre Journal Article
Review
GroupedDBID ---
.55
0R~
123
29M
36B
39C
3V.
4.4
53G
70F
7RV
7X7
88A
88E
88I
8AO
8C1
8CJ
8FE
8FH
8FI
8FJ
8R4
8R5
AAEEF
AARCD
AAWYQ
AAYZH
AAZLF
ABAWZ
ABDBF
ABJNI
ABLJU
ABUWG
ACGFO
ACGFS
ACMJI
ACPRK
ACUHS
ADBBV
ADFRT
AENEX
AEUYN
AFBBN
AFKRA
AFRAH
AFSHS
AGAYW
AGHTU
AHBCP
AHMBA
AHOSX
AHSBF
AIBTJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
BBNVY
BENPR
BHPHI
BKEYQ
BKKNO
BKSAR
BPHCQ
BVXVI
CCPQU
CS3
D1J
DB5
DU5
DWQXO
EAD
EAP
EAS
EBS
EE.
EJD
EMB
EMK
EMOBN
ESX
EX3
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
HCIFZ
HMCUK
HVGLF
HZ~
IAO
IH2
IHR
INH
INR
ITC
LGEZI
LK8
LOTEE
M0L
M1P
M2P
M7P
MM.
N9A
NADUK
NAPCQ
NNMJJ
NXXTH
O9-
ODYON
P2P
PCBAR
PQQKQ
PROAC
PSQYO
Q2X
QF4
QM4
QN7
QO4
RNR
RNT
RNTTT
SHXYY
SIXXV
SNYQT
SOJ
SV3
TAOOD
TBHMF
TDRGL
TSG
TUS
UKHRP
WOW
X7M
AAYXX
ABFSG
ACMFV
AFANA
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NFIDA
NPM
AEIIB
PMFND
7QL
7U9
7XB
8FD
8FK
C1K
FR3
H94
K9.
M7N
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
RC3
7X8
PUEGO
7QO
ID FETCH-LOGICAL-c469t-8c7e47c10574b154b85f68db72ed16f8a99d4a084b660b9a6804a0c048c39613
IEDL.DBID 7X7
ISSN 1740-1526
IngestDate Fri Sep 05 14:15:14 EDT 2025
Fri Sep 05 12:04:00 EDT 2025
Fri Jul 25 08:52:08 EDT 2025
Tue Jun 17 21:28:39 EDT 2025
Tue Jun 10 20:51:52 EDT 2025
Thu Apr 03 07:07:14 EDT 2025
Tue Jul 01 01:50:15 EDT 2025
Thu Apr 24 23:08:08 EDT 2025
Fri Feb 21 02:37:40 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c469t-8c7e47c10574b154b85f68db72ed16f8a99d4a084b660b9a6804a0c048c39613
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
PMID 27941816
PQID 1860128126
PQPubID 27584
PageCount 13
ParticipantIDs proquest_miscellaneous_1868305446
proquest_miscellaneous_1852663910
proquest_journals_1860128126
gale_infotracmisc_A477615395
gale_infotracacademiconefile_A477615395
pubmed_primary_27941816
crossref_citationtrail_10_1038_nrmicro_2016_164
crossref_primary_10_1038_nrmicro_2016_164
springer_journals_10_1038_nrmicro_2016_164
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-02-01
PublicationDateYYYYMMDD 2017-02-01
PublicationDate_xml – month: 02
  year: 2017
  text: 2017-02-01
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature reviews. Microbiology
PublicationTitleAbbrev Nat Rev Microbiol
PublicationTitleAlternate Nat Rev Microbiol
PublicationYear 2017
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References CarvalhoALCellulosome assembly revealed by the crystal structure of the cohesin–dockerin complexProc. Natl Acad. Sci. USA200310013809138141:CAS:528:DC%2BD3sXpsFGis7w%3D10.1073/pnas.193612410014623971
BayerEAMoragELamedRThe cellulosome — a treasure-trove for biotechnologyTrends Biotechnol.1994123793861:CAS:528:DyaK2cXmt1yrsbw%3D10.1016/0167-7799(94)90039-67765191
PagèsSSequence analysis of scaffolding protein CipC and ORFXp, a new cohesin-containing protein in Clostridium cellulolyticum: comparison of various cohesin domains and subcellular localization of ORFXpJ. Bacteriol.1999181180118101007407293578
PohlschröderMLeschineSBCanale-ParolaEMulticomplex cellulase–xylanase system of Clostridium papyrosolvens C7J. Bacteriol.1994176707610.1128/jb.176.1.70-76.19948282713205015
DykstraABDevelopment of a multipoint quantitation method to simultaneously measure enzymatic and structural components of the Clostridium thermocellum cellulosome protein complexJ. Proteome Res.2014136927011:CAS:528:DC%2BC3sXhvVCisL3F10.1021/pr400788e24274857
DesvauxMClostridium cellulolyticum: model organism of mesophilic cellulolytic clostridiaFEMS Microbiol. Rev.2005297417641:CAS:528:DC%2BD2MXos1WktLw%3D10.1016/j.femsre.2004.11.00316102601
WilchekMBayerEALivnahOEssentials of biorecognition: the (strept)avidin-biotin system as a model for protein–protein and protein–ligand interactionImmunol. Lett.200610327321:CAS:528:DC%2BD28XhtV2ktLw%3D10.1016/j.imlet.2005.10.02216325268
WilsonCMGlobal transcriptome analysis of Clostridium thermocellum ATCC 27405 during growth on dilute acid pretreated Populus and switchgrassBiotechnol. Biofuels2013617910.1186/1754-6834-6-1791:CAS:528:DC%2BC2cXovF2kt7k%3D242955623880215
RincónMTScaC, an adaptor protein carrying a novel cohesin that expands the dockerin-binding repertoire of the Ruminococcus flavefaciens 17 cellulosomeJ. Bacteriol.20041862576258510.1128/JB.186.9.2576-2585.20041:CAS:528:DC%2BD2cXjsFKrtrg%3D15090497387807
XuQDramatic performance of Clostridium thermocellum explained by its wide range of cellulase modalitiesSci. Adv.20162e150125410.1126/sciadv.15012541:CAS:528:DC%2BC2sXlvVWrs70%3D269897794788478
HussackGMultivalent anchoring and oriented display of single-domain antibodies on celluloseSensors (Basel).20099535153671:CAS:528:DC%2BD1MXosVKmsL8%3D10.3390/s90705351223467023274147
StahlSWSingle-molecule dissection of the high-affinity cohesin–dockerin complexProc. Natl Acad. Sci. USA201210920431204361:CAS:528:DC%2BC3sXnvVSltA%3D%3D10.1073/pnas.121192910923188794
HyeonJEProduction of functional agarolytic nano-complex for the synergistic hydrolysis of marine biomass and its potential application in carbohydrate-binding module-utilizing one-step purificationProcess Biochem.2012478778811:CAS:528:DC%2BC38Xis1Olu70%3D10.1016/j.procbio.2012.01.009
KimD-MA nanocluster design for the construction of artificial cellulosomesCatal. Sci. Technol.201224991:CAS:528:DC%2BC38XjsFCrtLk%3D10.1039/c2cy00371f
GunnooMNanoscale engineering of designer cellulosomesAdv. Mater.201628561956471:CAS:528:DC%2BC28Xlt1WmsQ%3D%3D10.1002/adma.20150394826748482
SakkaKAnalysis of cohesin–dockerin interactions using mutant dockerin proteinsFEMS Microbiol. Lett.201131475801:CAS:528:DC%2BC3cXhs1aitL3O10.1111/j.1574-6968.2010.02146.x21054503
GilmoreSPHenskeJKO'MalleyMDriving biomass breakdown through engineered cellulosomesBioengineered201562042081:CAS:528:DC%2BC28XhslKru7s%3D10.1080/21655979.2015.1060379260681804601266
MoraïsSEnzymatic profiling of cellulosomal enzymes from the human gut bacterium, Ruminococcus champanellensis, reveals a fine-tuned system for cohesin–dockerin recognitionEnviron. Microbiol.20161854255610.1111/1462-2920.130471:CAS:528:DC%2BC28XjtlGrtr4%3D26347002
SmithSPBayerEAInsights into cellulosome assembly and dynamics: from dissection to reconstruction of the supramolecular enzyme complexCurr. Opin. Struct. Biol.2013236866941:CAS:528:DC%2BC3sXhsFeltbzK10.1016/j.sbi.2013.09.00224080387
XuQArchitecture of the Bacteroides cellulosolvens cellulosome: description of a cell surface-anchoring scaffoldin and a family 48 cellulaseJ. Bacteriol.20041869689771:CAS:528:DC%2BD2cXhsVWjtrg%3D10.1128/JB.186.4.968-977.200414761991344227
XuJA genomic view of the human–Bacteroides thetaiotaomicron symbiosisScience2003299207420761:CAS:528:DC%2BD3sXitlCisL0%3D10.1126/science.108002912663928
GarveyMKloseHFischerRLambertzCCommandeurUCellulases for biomass degradation: comparing recombinant cellulase expression platformsTrends Biotechnol.2013315815931:CAS:528:DC%2BC3sXht1ShsbjF10.1016/j.tibtech.2013.06.00623910542
CurrieMAScaffoldin conformation and dynamics revealed by a ternary complex from the Clostridium thermocellumJ. Biol. Chem.201228726953269611:CAS:528:DC%2BC38XhtFaqtrzI10.1074/jbc.M112.343897227077183411031
KosugiAMurashimaKTamaruYDoiRHCell-surface-anchoring role of N-terminal surface layer homology domains of Clostridium cellulovorans EngEJ. Bacteriol.20021848848881:CAS:528:DC%2BD38XhtVejtbg%3D10.1128/jb.184.4.884-888.200211807046134812
Salama-AlberOAtypical cohesin–dockerin complex responsible for cell surface attachment of cellulosomal components: binding fidelity, promiscuity, and structural buttressesJ. Biol. Chem.201328816827168381:CAS:528:DC%2BC3sXptVCrsLs%3D10.1074/jbc.M113.466672235806483675615
SchoelerCMapping mechanical force propagation through biomolecular complexesNano Lett.201515737073761:CAS:528:DC%2BC2MXhtlSmtrvO10.1021/acs.nanolett.5b02727262595444721519
BrownSDMutant alcohol dehydrogenase leads to improved ethanol tolerance in Clostridium thermocellumProc. Natl Acad. Sci. USA201110813752137571:CAS:528:DC%2BC3MXhtV2ms7bJ10.1073/pnas.110244410821825121
SchoelerCUltrastable cellulosome–adhesion complex tightens under loadNat. Commun.2014556351:CAS:528:DC%2BC2MXjvFahsLc%3D10.1038/ncomms6635254823954266597
MoraïsSEnhanced cellulose degradation by nano-complexed enzymes: synergism between a scaffold-linked exoglucanase and a free endoglucanaseJ. Biotechnol.201014720521110.1016/j.jbiotec.2010.04.0121:CAS:528:DC%2BC3cXntVemu7Y%3D20438772
DingS-YHow does plant cell wall nanoscale architecture correlate with enzymatic digestibility?Science2012338105510601:CAS:528:DC%2BC38Xhs12itrjK10.1126/science.122749123180856
DavidiLToward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosomeProc. Natl Acad. Sci. USA201611310854108591:CAS:528:DC%2BC28XhsV2kurrL10.1073/pnas.160801211327621442
WeiHNatural paradigms of plant cell wall degradationCurr. Opin. Biotechnol.2009203303381:CAS:528:DC%2BD1MXosVajtrw%3D10.1016/j.copbio.2009.05.00819523812
LinPPConsolidated bioprocessing of cellulose to isobutanol using Clostridium thermocellumMetab. Eng.20153144521:CAS:528:DC%2BC2MXhtF2ks7nE10.1016/j.ymben.2015.07.00126170002
PooleDMIdentification of the cellulose binding domain of the cellulosome subunit S1 from Clostridium thermocellumFEMS Microbiol. Lett.1992991811861:CAS:528:DyaK3sXlsF2huw%3D%3D10.1111/j.1574-6968.1992.tb05563.x
SternJMoraïsSLamedRBayerEAAdaptor scaffoldins: an original strategy for extended designer cellulosomes, inspired from naturemBio20167e00083-1610.1128/mBio.00083-16270487964959524
JeonSDYuKOKimSWHanSOA celluloytic complex from Clostridium cellulovorans consisting of mannanase B and endoglucanase E has synergistic effects on galactomannan degradationAppl. Microbiol. Biotechnol.2011905655721:CAS:528:DC%2BC3MXjsFGhsLw%3D10.1007/s00253-011-3108-721311881
ThomasLJosephAGottumukkalaLDXylanase and cellulase systems of Clostridium sp.: an insight on molecular approaches for strain improvementBioresour. Technol.20141583433501:CAS:528:DC%2BC2cXjtVGqtbg%3D10.1016/j.biortech.2014.01.14024581864
BayerEAShohamYLamedRThe Prokaryotes. Prokaryotic Physiology and Biochemistry2013215265
AndersonTDAssembly of minicellulosomes on the surface of Bacillus subtilisAppl. Environ. Microbiol.201177484948581:CAS:528:DC%2BC3MXhtVWlsbrJ10.1128/AEM.02599-10216227973147385
XuQLuoYDingSHimmelMEMultifunctional enzyme systems for plant cell wall degradationCompr. Biotechnol.201131525
HessMMetagenomic discovery of biomass-degrading genes and genomes from cow rumenScience20113314634671:CAS:528:DC%2BC3MXpsF2mtA%3D%3D10.1126/science.120038721273488
MichelGRuminococcal cellulosomes: molecular Lego to deconstruct microcrystalline cellulose in human gutEnviron. Microbiol.2015173113311510.1111/1462-2920.1292026219082
DingSYBayerEASteinerDShohamYLamedRA novel cellulosomal scaffoldin from Acetivibrio cellulolyticus that contains a family 9 glycosyl hydrolaseJ. Bacteriol.1999181672067291:CAS:528:DyaK1MXntFeqtL8%3D1054217494137
HambergYElaborate cellulosome architecture of Acetivibrio cellulolyticus revealed by selective screening of cohesin–dockerin interactionsPeerJ20142e63610.7717/peerj.636253747804217186
BhatKWoodTMThe cellulase of the anaerobic bacterium Clostridium thermocellum: isolation, dissociation, and reassociation of the cellulosomeCarbohydr. Res.19922272933001:CAS:528:DyaK38Xlt1Kqtbo%3D10.1016/0008-6215(92)85079-F
DoiRHKosugiACellulosomes: plant-cell-wall-degrading enzyme complexesNat. Rev. Microbiol.200425415511:CAS:528:DC%2BD2cXkvVSru7Y%3D10.1038/nrmicro92515197390
HammelMStructural basis of cellulosome efficiency explored by small angle X-ray scatteringJ. Biol. Chem.200528038562385681:CAS:528:DC%2BD2MXht1SktLrE10.1074/jbc.M50316820016157599
DrorTWRoliderABayerEALamedRShohamYRegulation of expression of scaffoldin-related genes in Clostridium thermocellumJ. Bacteriol.2003185510951161:CAS:528:DC%2BD3sXmvVers7Y%3D10.1128/JB.185.17.5109-5116.200312923083181014
GaoSYouCRenneckarSBaoJZhangY-HPNew insights into enzymatic hydrolysis of heterogeneous cellulose by using carbohydrate-binding module 3 containing GFP and carbohydrate-binding module 17 containing CFPBiotechnol. Biofuels201472410.1186/1754-6834-7-241:CAS:528:DC%2BC2MXjsVejurY%3D245525543943381
ZverlovVVKluppMKraussJSchwarzWHMutations in the scaffoldin gene, cipA, of Clostridium thermocellum with impaired cellulosome formation and cellulose hydrolysis: insertions of a new transposable element, IS14
K Esaka (BFnrmicro2016164_CR148) 2015; 5
S Pagès (BFnrmicro2016164_CR23) 1999; 181
X Ze (BFnrmicro2016164_CR26) 2015; 6
EA Bayer (BFnrmicro2016164_CR11) 1994; 12
B Raman (BFnrmicro2016164_CR81) 2009; 4
Y Nataf (BFnrmicro2016164_CR86) 2010; 107
S Gao (BFnrmicro2016164_CR136) 2014; 7
JJ Adams (BFnrmicro2016164_CR69) 2006; 103
J Stern (BFnrmicro2016164_CR92) 2016; 7
M Levy-Assaraf (BFnrmicro2016164_CR57) 2013; 8
SO Han (BFnrmicro2016164_CR79) 2003; 185
EA Bayer (BFnrmicro2016164_CR6) 1983; 156
Y Vazana (BFnrmicro2016164_CR160) 2013; 6
I Cann (BFnrmicro2016164_CR20) 2016; 18
C Xu (BFnrmicro2016164_CR88) 2013; 6
C Blanchette (BFnrmicro2016164_CR95) 2012; 7
S Moraïs (BFnrmicro2016164_CR114) 2016; 9
C Lambertz (BFnrmicro2016164_CR123) 2014; 7
J Ravachol (BFnrmicro2016164_CR54) 2015; 8
R Haimovitz (BFnrmicro2016164_CR37) 2008; 8
MT Rincón (BFnrmicro2016164_CR44) 2004; 186
H Wei (BFnrmicro2016164_CR2) 2009; 20
PJ Simpson (BFnrmicro2016164_CR77) 2000; 275
Q Xu (BFnrmicro2016164_CR15) 2003; 185
J Ou (BFnrmicro2016164_CR100) 2014; 24
SP Gilmore (BFnrmicro2016164_CR29) 2015; 6
SP Smith (BFnrmicro2016164_CR68) 2013; 23
J Xu (BFnrmicro2016164_CR87) 2003; 299
C You (BFnrmicro2016164_CR109) 2014; 3
EA Bayer (BFnrmicro2016164_CR4) 2004; 58
SY Ding (BFnrmicro2016164_CR30) 1999; 181
J Caspi (BFnrmicro2016164_CR162) 2009; 75
M Hammel (BFnrmicro2016164_CR78) 2005; 280
EA Bayer (BFnrmicro2016164_CR138) 2009
E Morag (BFnrmicro2016164_CR75) 1995; 61
S Kang (BFnrmicro2016164_CR56) 2006; 60
A Kosugi (BFnrmicro2016164_CR41) 2002; 184
R Du (BFnrmicro2016164_CR119) 2011; 2
O Salama-Alber (BFnrmicro2016164_CR70) 2013; 288
LH Fan (BFnrmicro2016164_CR105) 2016; 9
MA Nash (BFnrmicro2016164_CR73) 2016; 40
A Peer (BFnrmicro2016164_CR36) 2009; 291
H Kahel-Raifer (BFnrmicro2016164_CR85) 2010; 308
D-M Kim (BFnrmicro2016164_CR96) 2012; 2
G Michel (BFnrmicro2016164_CR21) 2015; 17
G Hussack (BFnrmicro2016164_CR134) 2009; 9
A Bhalla (BFnrmicro2016164_CR111) 2013; 158
MT Rincon (BFnrmicro2016164_CR17) 2010; 5
T Fujino (BFnrmicro2016164_CR32) 1993; 175
JJ Adams (BFnrmicro2016164_CR38) 2008; 105
S Jindou (BFnrmicro2016164_CR45) 2006; 188
KK Podkaminer (BFnrmicro2016164_CR122) 2011; 108
Y Mori (BFnrmicro2016164_CR128) 1992; 56
MT Rincon (BFnrmicro2016164_CR42) 2005; 187
X Ze (BFnrmicro2016164_CR27) 2012; 6
VV Zverlov (BFnrmicro2016164_CR39) 2008; 190
B Raman (BFnrmicro2016164_CR153) 2011; 11
AL Carvalho (BFnrmicro2016164_CR67) 2003; 100
L Artzi (BFnrmicro2016164_CR58) 2016; 9
Q Xu (BFnrmicro2016164_CR13) 2016; 2
Y Arfi (BFnrmicro2016164_CR90) 2014; 111
S Moraïs (BFnrmicro2016164_CR93) 2010; 147
UT Gerngross (BFnrmicro2016164_CR31) 1993; 8
L Artzi (BFnrmicro2016164_CR46) 2015; 6
AP Galanopoulou (BFnrmicro2016164_CR113) 2016; 100
R Lamed (BFnrmicro2016164_CR5) 1983; 156
C Xu (BFnrmicro2016164_CR89) 2015; 6
R Biswas (BFnrmicro2016164_CR98) 2015; 8
DM Poole (BFnrmicro2016164_CR76) 1992; 99
EA Bayer (BFnrmicro2016164_CR107) 2007; 18
C Chen (BFnrmicro2016164_CR72) 2014; 188
T Xu (BFnrmicro2016164_CR125) 2015; 81
I Fendri (BFnrmicro2016164_CR152) 2009; 276
A-L Molinier (BFnrmicro2016164_CR161) 2011; 405
BFnrmicro2016164_CR34
I Muñoz-Gutiérrez (BFnrmicro2016164_CR84) 2015; 11
S Mitsuzawa (BFnrmicro2016164_CR94) 2009; 143
TD Anderson (BFnrmicro2016164_CR99) 2011; 77
C Schoeler (BFnrmicro2016164_CR65) 2015; 15
K Sakka (BFnrmicro2016164_CR129) 2011; 314
K Gourlay (BFnrmicro2016164_CR135) 2012; 5
CM Wilson (BFnrmicro2016164_CR154) 2013; 6
ME Himmel (BFnrmicro2016164_CR7) 2010; 1
Q Xu (BFnrmicro2016164_CR52) 2011; 3
Q Xu (BFnrmicro2016164_CR66) 2004; 186
P Béguin (BFnrmicro2016164_CR51) 1994; 13
Y Liang (BFnrmicro2016164_CR104) 2014; 80
S Moraïs (BFnrmicro2016164_CR157) 2012; 3
JA Izquierdo (BFnrmicro2016164_CR121) 2014; 7
RI Munir (BFnrmicro2016164_CR151) 2015; 125
Y Mori (BFnrmicro2016164_CR97) 2013; 49
J-C Blouzard (BFnrmicro2016164_CR149) 2010; 10
M Vodovnik (BFnrmicro2016164_CR150) 2013; 8
Y Ben David (BFnrmicro2016164_CR19) 2015; 17
M Morrison (BFnrmicro2016164_CR144) 2009; 20
M Wilchek (BFnrmicro2016164_CR126) 2006; 103
A Demishtein (BFnrmicro2016164_CR130) 2010; 23
JA Izquierdo (BFnrmicro2016164_CR33) 2012; 6
C Chen (BFnrmicro2016164_CR59) 2016; 100
EA Bayer (BFnrmicro2016164_CR1) 2013
AB Dykstra (BFnrmicro2016164_CR82) 2014; 13
SE Blumer-Schuette (BFnrmicro2016164_CR110) 2014; 38
G Gefen (BFnrmicro2016164_CR50) 2012; 109
J Ravachol (BFnrmicro2016164_CR55) 2014; 289
RH Doi (BFnrmicro2016164_CR8) 2004; 2
S Moraïs (BFnrmicro2016164_CR22) 2016; 18
SD Jeon (BFnrmicro2016164_CR158) 2011; 90
C Schoeler (BFnrmicro2016164_CR64) 2014; 5
TW Dror (BFnrmicro2016164_CR80) 2003; 185
L Artzi (BFnrmicro2016164_CR16) 2014; 7
T Eriksson (BFnrmicro2016164_CR49) 2002; 101
W Hong (BFnrmicro2016164_CR124) 2014; 7
P Hugenholtz (BFnrmicro2016164_CR140) 2008; 455
HP Fierobe (BFnrmicro2016164_CR156) 2005; 280
M Garvey (BFnrmicro2016164_CR102) 2013; 31
K Bhat (BFnrmicro2016164_CR63) 1992; 227
S-Y Ding (BFnrmicro2016164_CR137) 2005; 1
B Papanek (BFnrmicro2016164_CR118) 2015; 32
SW Stahl (BFnrmicro2016164_CR60) 2012; 109
B Dassa (BFnrmicro2016164_CR28) 2014; 9
EA Bayer (BFnrmicro2016164_CR35) 1999; 463
J Wiegel (BFnrmicro2016164_CR120) 1985; 49
I Levy (BFnrmicro2016164_CR131) 2002; 20
EA Bayer (BFnrmicro2016164_CR47) 1986; 167
L Davidi (BFnrmicro2016164_CR91) 2016; 113
TI Williams (BFnrmicro2016164_CR116) 2007; 74
Y Hamberg (BFnrmicro2016164_CR12) 2014; 2
M Hess (BFnrmicro2016164_CR143) 2011; 331
M Gunnoo (BFnrmicro2016164_CR61) 2016; 28
Y Xia (BFnrmicro2016164_CR145) 2013; 8
MG Resch (BFnrmicro2016164_CR10) 2013; 6
M Desvaux (BFnrmicro2016164_CR40) 2005; 29
C You (BFnrmicro2016164_CR108) 2013; 2
H-P Fierobe (BFnrmicro2016164_CR159) 2002; 277
TW Dror (BFnrmicro2016164_CR83) 2003; 185
P Albersheim (BFnrmicro2016164_CR3) 2011
M Pohlschröder (BFnrmicro2016164_CR25) 1994; 176
MA Currie (BFnrmicro2016164_CR74) 2012; 287
BJ Willson (BFnrmicro2016164_CR103) 2016; 9
JE Hyeon (BFnrmicro2016164_CR106) 2011; 48
H Morisaka (BFnrmicro2016164_CR147) 2012; 2
M Lemaire (BFnrmicro2016164_CR43) 1995; 177
E Morag (BFnrmicro2016164_CR53) 1991; 173
JE Hyeon (BFnrmicro2016164_CR133) 2012; 47
F Warnecke (BFnrmicro2016164_CR141) 2007; 450
V Lombard (BFnrmicro2016164_CR48) 2014; 42
MA Currie (BFnrmicro2016164_CR139) 2013; 288
O Shoseyov (BFnrmicro2016164_CR24) 1992; 89
A Valbuena (BFnrmicro2016164_CR62) 2009; 106
SD Brown (BFnrmicro2016164_CR115) 2011; 108
C Chassard (BFnrmicro2016164_CR18) 2010; 74
PP Lin (BFnrmicro2016164_CR117) 2015; 31
J Stern (BFnrmicro2016164_CR164) 2015; 10
MF Simões (BFnrmicro2016164_CR146) 2015; 13
R Borne (BFnrmicro2016164_CR155) 2013; 280
JM Brulc (BFnrmicro2016164_CR142) 2009; 106
S-Y Ding (BFnrmicro2016164_CR9) 2012; 338
F Mingardon (BFnrmicro2016164_CR163) 2007; 73
B Dassa (BFnrmicro2016164_CR14) 2012; 13
L Thomas (BFnrmicro2016164_CR112) 2014; 158
S Moraïs (BFnrmicro2016164_CR101) 2014; 7
E Shpigel (BFnrmicro2016164_CR132) 1999; 5
JE Hyeon (BFnrmicro2016164_CR127) 2014; 139
S Pagès (BFnrmicro2016164_CR71) 1997; 29
References_xml – reference: CaspiJEffect of linker length and dockerin position on conversion of a Thermobifida fusca endoglucanase to the cellulosomal modeAppl. Environ. Microbiol.200975733573421:CAS:528:DC%2BC3cXis1ynsA%3D%3D10.1128/AEM.01241-09198201542786427
– reference: WarneckeFMetagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termiteNature20074505605651:CAS:528:DC%2BD2sXhtlCrtb3J10.1038/nature0626918033299
– reference: LemaireMOhayonHGounonPFujinoTBéguinPOlpB, a new outer layer protein of Clostridium thermocellum, and binding of its S-layer-like domains to components of the cell envelopeJ. Bacteriol.1995177245124591:CAS:528:DyaK2MXlsVGltb0%3D10.1128/jb.177.9.2451-2459.19957730277176904
– reference: WilchekMBayerEALivnahOEssentials of biorecognition: the (strept)avidin-biotin system as a model for protein–protein and protein–ligand interactionImmunol. Lett.200610327321:CAS:528:DC%2BD28XhtV2ktLw%3D10.1016/j.imlet.2005.10.02216325268
– reference: MoraïsSEnhancement of cellulosome-mediated deconstruction of cellulose by improving enzyme thermostabilityBiotechnol. Biofuels.2016916410.1186/s13068-016-0577-z1:CAS:528:DC%2BC2sXhvVGksL7L274936864973527
– reference: WilliamsTICombsJCLynnBCStrobelHJProteomic profile changes in membranes of ethanol-tolerant Clostridium thermocellumAppl. Microbiol. Biotechnol.2007744224321:CAS:528:DC%2BD2sXht1yhuro%3D10.1007/s00253-006-0689-717124583
– reference: DingSYBayerEASteinerDShohamYLamedRA novel cellulosomal scaffoldin from Acetivibrio cellulolyticus that contains a family 9 glycosyl hydrolaseJ. Bacteriol.1999181672067291:CAS:528:DyaK1MXntFeqtL8%3D1054217494137
– reference: GunnooMNanoscale engineering of designer cellulosomesAdv. Mater.201628561956471:CAS:528:DC%2BC28Xlt1WmsQ%3D%3D10.1002/adma.20150394826748482
– reference: DykstraABDevelopment of a multipoint quantitation method to simultaneously measure enzymatic and structural components of the Clostridium thermocellum cellulosome protein complexJ. Proteome Res.2014136927011:CAS:528:DC%2BC3sXhvVCisL3F10.1021/pr400788e24274857
– reference: SmithSPBayerEAInsights into cellulosome assembly and dynamics: from dissection to reconstruction of the supramolecular enzyme complexCurr. Opin. Struct. Biol.2013236866941:CAS:528:DC%2BC3sXhsFeltbzK10.1016/j.sbi.2013.09.00224080387
– reference: FanLHBiotechnology for biofuels engineering yeast with bifunctional minicellulosome and cellodextrin pathway for co-utilization of cellulose-mixed sugarsBiotechnol. Biofuels2016913710.1186/s13068-016-0554-61:CAS:528:DC%2BC2sXhvVGksLfL273824144932713
– reference: NashMASmithSPFontesCBayerEASingle versus dual-binding conformations in cellulosomal cohesin–dockerin complexesCurr. Opin. Struct. Biol.20164089961:CAS:528:DC%2BC28XhtleisrvK10.1016/j.sbi.2016.08.00227579515
– reference: JindouSConservation and divergence in cellulosome architecture between two strains of Ruminococcus flavefaciensJ. Bacteriol.2006188797179761:CAS:528:DC%2BD28Xht1ahsb3N10.1128/JB.00973-06169979631636321
– reference: ArtziLMoragEBarakYLamedRBayerEAClostridium clariflavum: key cellulosome players are revealed by proteomic analysismBio20156e00411-1510.1128/mBio.00411-151:CAS:528:DC%2BC2MXhvVymsL7E259916834442141
– reference: SchoelerCUltrastable cellulosome–adhesion complex tightens under loadNat. Commun.2014556351:CAS:528:DC%2BC2MXjvFahsLc%3D10.1038/ncomms6635254823954266597
– reference: BlanchetteCLacayoCIFischerNOHwangMThelenMPEnhanced cellulose degradation using cellulase–nanosphere complexesPLoS ONE20127e421161:CAS:528:DC%2BC38XhtFKhtrbF10.1371/journal.pone.0042116228702873411664
– reference: DrorTWRoliderABayerEALamedRShohamYRegulation of expression of scaffoldin-related genes in Clostridium thermocellumJ. Bacteriol.2003185510951161:CAS:528:DC%2BD3sXmvVers7Y%3D10.1128/JB.185.17.5109-5116.200312923083181014
– reference: FujinoTBéguinPAubertJPOrganization of a Clostridium thermocellum gene cluster encoding the cellulosomal scaffolding protein CipA and a protein possibly involved in attachment of the cellulosome to the cell surfaceJ. Bacteriol.1993175189118991:CAS:528:DyaK3sXks1Cnurk%3D10.1128/jb.175.7.1891-1899.19938458832204254
– reference: LinPPConsolidated bioprocessing of cellulose to isobutanol using Clostridium thermocellumMetab. Eng.20153144521:CAS:528:DC%2BC2MXhtF2ks7nE10.1016/j.ymben.2015.07.00126170002
– reference: EsakaKAburayaSMorisakaHKurodaKUedaMExoproteome analysis of Clostridium cellulovorans in natural soft-biomass degradationAMB Express20155210.1186/s13568-014-0089-91:CAS:528:DC%2BC2MXhvFGlurs%3D256423994305082
– reference: YouCZhangY-HPAnnexation of a high-activity enzyme in a synthetic three-enzyme complex greatly decreases the degree of substrate channelingACS Synth. Biol.201433803861:CAS:528:DC%2BC3sXhvVGnt7fN10.1021/sb400099324283966
– reference: Levy-AssarafMCrystal structure of an uncommon cellulosome-related protein module from Ruminococcus flavefaciens that resembles papain-like cysteine peptidasesPLoS ONE20138e561381:CAS:528:DC%2BC3sXjtl2qtb0%3D10.1371/journal.pone.0056138234575133573020
– reference: LiangYSiTAngELZhaoHEngineered pentafunctional minicellulosome for simultaneous saccharification and ethanol fermentation in Saccharomyces cerevisiaeAppl. Environ. Microbiol.2014806677668410.1128/AEM.02070-141:CAS:528:DC%2BC2cXhslCns7nE251495224249053
– reference: ReschMGFungal cellulases and complexed cellulosomal enzymes exhibit synergistic mechanisms in cellulose deconstructionEnergy Environ. Sci.20136185818671:CAS:528:DC%2BC3sXnvFyrsbk%3D10.1039/c3ee00019b
– reference: Blumer-SchuetteSEThermophilic lignocellulose deconstructionFEMS Microbiol. Rev.2014383934481:CAS:528:DC%2BC2cXnt1altb4%3D10.1111/1574-6976.1204424118059
– reference: DoiRHKosugiACellulosomes: plant-cell-wall-degrading enzyme complexesNat. Rev. Microbiol.200425415511:CAS:528:DC%2BD2cXkvVSru7Y%3D10.1038/nrmicro92515197390
– reference: RinconMTAbundance and diversity of dockerin-containing proteins in the fiber-degrading rumen bacterium, Ruminococcus flavefaciens FD-1PLoS ONE20105e1247610.1371/journal.pone.00124761:CAS:528:DC%2BC3cXhtFSqs73N208145772930009
– reference: VodovnikMExpression of cellulosome components and type IV pili within the extracellular proteome of Ruminococcus flavefaciens 007PLoS ONE20138e653331:CAS:528:DC%2BC3sXpvFWntrg%3D10.1371/journal.pone.0065333237502533672088
– reference: MoraïsSDeconstruction of lignocellulose into soluble sugars by native and designer cellulosomesmBio20123e00508-1210.1128/mBio.00508-121:CAS:528:DC%2BC3sXpsFCiuw%3D%3D232327183520109
– reference: PooleDMIdentification of the cellulose binding domain of the cellulosome subunit S1 from Clostridium thermocellumFEMS Microbiol. Lett.1992991811861:CAS:528:DyaK3sXlsF2huw%3D%3D10.1111/j.1574-6968.1992.tb05563.x
– reference: RavacholJBorneRTardifCde PhilipPFierobeH-PCharacterization of all family-9 glycoside hydrolases synthesized by the cellulosome-producing bacterium Clostridium cellulolyticumJ. Biol. Chem.2014289733573481:CAS:528:DC%2BC2cXktlWmsro%3D10.1074/jbc.M113.545046244513793953250
– reference: HongWThe contribution of cellulosomal scaffoldins to cellulose hydrolysis by Clostridium thermocellum analyzed by using thermotargetronsBiotechnol. Biofuels201478010.1186/1754-6834-7-80249551124045903
– reference: KosugiAMurashimaKTamaruYDoiRHCell-surface-anchoring role of N-terminal surface layer homology domains of Clostridium cellulovorans EngEJ. Bacteriol.20021848848881:CAS:528:DC%2BD38XhtVejtbg%3D10.1128/jb.184.4.884-888.200211807046134812
– reference: DassaBGenome-wide analysis of Acetivibrio cellulolyticus provides a blueprint of an elaborate cellulosome systemBMC Genomics2012132101:CAS:528:DC%2BC38XhslamurnE10.1186/1471-2164-13-210226468013413522
– reference: PagèsSSequence analysis of scaffolding protein CipC and ORFXp, a new cohesin-containing protein in Clostridium cellulolyticum: comparison of various cohesin domains and subcellular localization of ORFXpJ. Bacteriol.1999181180118101007407293578
– reference: GilmoreSPHenskeJKO'MalleyMDriving biomass breakdown through engineered cellulosomesBioengineered201562042081:CAS:528:DC%2BC28XhslKru7s%3D10.1080/21655979.2015.1060379260681804601266
– reference: WiegelJMothershedCPPulsJDifferences in xylan degradation by various noncellulolytic thermophilic anaerobes and Clostridium thermocellumAppl. Environ. Microbiol.1985496566591:CAS:528:DyaL2MXhtlCqt74%3D16346758373565
– reference: BayerEAMoragELamedRThe cellulosome — a treasure-trove for biotechnologyTrends Biotechnol.1994123793861:CAS:528:DyaK2cXmt1yrsbw%3D10.1016/0167-7799(94)90039-67765191
– reference: FierobeH-PDegradation of cellulose substrates by cellulosome chimeras: substrate targeting versus proximity of enzyme componentsJ. Biol. Chem.200227749621496301:CAS:528:DC%2BD38XpsFaksbY%3D10.1074/jbc.M20767220012397074
– reference: BayerEAKenigRLamedRAdherence of Clostridium thermocellum to celluloseJ. Bacteriol.19831568188271:CAS:528:DyaL3sXmtV2ksbs%3D6630152217900
– reference: ChenCIntegration of bacterial expansin-like proteins into cellulosome promotes the cellulose degradationAppl. Microbiol. Biotechnol.2016100220322121:CAS:528:DC%2BC2MXhslKgtrzN10.1007/s00253-015-7071-626521249
– reference: SimõesMFSoil and rhizosphere associated fungi in gray mangroves (Avicennia marina) from the red sea — a metagenomic approachGenomics Proteomics Bioinformatics20151331032010.1016/j.gpb.2015.07.002265498424678792
– reference: BhatKWoodTMThe cellulase of the anaerobic bacterium Clostridium thermocellum: isolation, dissociation, and reassociation of the cellulosomeCarbohydr. Res.19922272933001:CAS:528:DyaK38Xlt1Kqtbo%3D10.1016/0008-6215(92)85079-F
– reference: XuCStructure and regulation of the cellulose degradome in Clostridium cellulolyticumBiotechnol. Biofuels20136731:CAS:528:DC%2BC3sXptFyiurY%3D10.1186/1754-6834-6-73236570553656788
– reference: MitsuzawaSThe rosettazyme: a synthetic cellulosomeJ. Biotechnol.20091431391441:CAS:528:DC%2BD1MXhtVSitrfM10.1016/j.jbiotec.2009.06.01919559062
– reference: RamanBImpact of pretreated switchgrass and biomass carbohydrates on Clostridium thermocellum ATCC 27405 cellulosome composition: a quantitative proteomic analysisPLoS ONE20094e527110.1371/journal.pone.00052711:CAS:528:DC%2BD1MXltlGhtbo%3D193844222668762
– reference: NatafYClostridium thermocellum cellulosomal genes are regulated by extracytoplasmic polysaccharides via alternative sigma factorsProc. Natl Acad. Sci. USA201010718646186511:CAS:528:DC%2BC3cXhtl2mu7vN10.1073/pnas.101217510720937888
– reference: MorrisonMPopePBDenmanSEMcSweeneyCSPlant biomass degradation by gut microbiomes: more of the same or something new?Curr. Opin. Biotechnol.2009203583631:CAS:528:DC%2BD1MXosVajtrs%3D10.1016/j.copbio.2009.05.00419515552
– reference: PeerASmithSPBayerEALamedRBorovokINoncellulosomal cohesin- and dockerin-like modules in the three domains of lifeFEMS Microbiol. Lett.20092911161:CAS:528:DC%2BD1MXhslejtbw%3D10.1111/j.1574-6968.2008.01420.x19025568
– reference: WilsonCMGlobal transcriptome analysis of Clostridium thermocellum ATCC 27405 during growth on dilute acid pretreated Populus and switchgrassBiotechnol. Biofuels2013617910.1186/1754-6834-6-1791:CAS:528:DC%2BC2cXovF2kt7k%3D242955623880215
– reference: HammelMStructural basis of cellulosome efficiency explored by small angle X-ray scatteringJ. Biol. Chem.200528038562385681:CAS:528:DC%2BD2MXht1SktLrE10.1074/jbc.M50316820016157599
– reference: FierobeHPAction of designer cellulosomes on homogeneous versus complex substrates: controlled incorporation of three distinct enzymes into a defined trifunctional scaffoldinJ. Biol. Chem.200528016325163341:CAS:528:DC%2BD2MXjtleiur0%3D10.1074/jbc.M41444920015705576
– reference: RinconMTUnconventional mode of attachment of the Ruminococcus flavefaciens cellulosome to the cell surfaceJ. Bacteriol.2005187756975781:CAS:528:DC%2BD2MXht1WnurnL10.1128/JB.187.22.7569-7578.2005162672811280307
– reference: GerngrossUTRomaniecMPMKobayashiTHuskissonNSDemainALSequencing of a Clostridium thermocellum gene (cipA) encoding the cellulosomal SL-protein reveals an unusual degree of internal homologyMol. Microbiol.199383253341:CAS:528:DyaK3sXkvVyjt7g%3D10.1111/j.1365-2958.1993.tb01576.x8316083
– reference: PagèsSSpecies-specificity of the cohesin–dockerin interaction between Clostridium thermocellum and Clostridium cellulolyticum: prediction of specificity determinants of the dockerin domainProteins19972951752710.1002/(SICI)1097-0134(199712)29:4<517::AID-PROT11>3.0.CO;2-P9408948
– reference: MolinierA-LSynergy, structure and conformational flexibility of hybrid cellulosomes displaying various inter-cohesins linkersJ. Mol. Biol.20114051431571:CAS:528:DC%2BC3cXhsF2itrvM10.1016/j.jmb.2010.10.01320970432
– reference: MingardonFChantalATardifCBayerEAFierobeH-PExploration of new geometries in cellulosome-like chimerasAppl. Environ. Microbiol.200773713871491:CAS:528:DC%2BD1cXnsFOqug%3D%3D10.1128/AEM.01306-07179058852168198
– reference: DrorTWRegulation of the cellulosomal celS (Cel48A) gene of Clostridium thermocellum is growth-rate dependentJ. Bacteriol.2003185304230481:CAS:528:DC%2BD3sXjs1ejsrw%3D10.1128/JB.185.10.3042-3048.200312730163154088
– reference: LamedRSetterEBayerEACharacterization of a cellulose-binding, cellulase-containing complex in Clostridium thermocellumJ. Bacteriol.19831568288361:CAS:528:DyaL2cXjt1Cm6195146217901
– reference: MichelGRuminococcal cellulosomes: molecular Lego to deconstruct microcrystalline cellulose in human gutEnviron. Microbiol.2015173113311510.1111/1462-2920.1292026219082
– reference: PodkaminerKKShaoXHogsettDALyndLREnzyme inactivation by ethanol and development of a kinetic model for thermophilic simultaneous saccharification and fermentation at 50 °C with Thermoanaerobacterium saccharolyticum ALK2Biotechnol. Bioeng.2011108126812781:CAS:528:DC%2BC3MXksFeksbo%3D10.1002/bit.2305021192004
– reference: Muñoz-GutiérrezIDecoding biomass-sensing regulons of Clostridium thermocellum alternative sigma-I factors in a heterologous Bacillus subtilis host systemPLoS ONE201511e014631610.1371/journal.pone.0146316
– reference: LevyIShoseyovOCellulose-binding domains: biotechnological applicationsBiotechnol. Adv.2002201912131:CAS:528:DC%2BD38XosFKltr8%3D10.1016/S0734-9750(02)00006-X14550028
– reference: BiswasRZhengTOlsonDGLyndLRGussAMElimination of hydrogenase active site assembly blocks H2 production and increases ethanol yield in Clostridium thermocellumBiotechnol. Biofuels201582010.1186/s13068-015-0204-41:CAS:528:DC%2BC2MXlt1Kis7c%3D257631014355364
– reference: DuRLiSZhangXFanCWangLUsing a microorganism consortium for consolidated bioprocessing cellulosic ethanol productionBiofuels201125695751:CAS:528:DC%2BC3MXhtFCisr3P10.4155/bfs.11.126
– reference: HyeonJEJeonWJWhangSYHanSOProduction of minicellulosomes for the enhanced hydrolysis of cellulosic substrates by recombinant Corynebacterium glutamicumEnzyme Microb. Technol.2011483713771:CAS:528:DC%2BC3MXjvFegs70%3D10.1016/j.enzmictec.2010.12.01422112952
– reference: ShoseyovOTakagiMGoldsteinMADoiRHPrimary sequence analysis of Clostridium cellulovorans cellulose binding protein AProc. Natl Acad. Sci. USA199289348334871:CAS:528:DyaK3sXitVOrsrs%3D10.1073/pnas.89.8.34831565642
– reference: XuJA genomic view of the human–Bacteroides thetaiotaomicron symbiosisScience2003299207420761:CAS:528:DC%2BD3sXitlCisL0%3D10.1126/science.108002912663928
– reference: AndersonTDAssembly of minicellulosomes on the surface of Bacillus subtilisAppl. Environ. Microbiol.201177484948581:CAS:528:DC%2BC3MXhtVWlsbrJ10.1128/AEM.02599-10216227973147385
– reference: HugenholtzPTysonGWMicrobiology: metagenomicsNature20084554814831:CAS:528:DC%2BD1cXhtFKhtLnL10.1038/455481a18818648
– reference: PapanekBBiswasRRydzakTGussAMElimination of metabolic pathways to all traditional fermentation products increases ethanol yields in Clostridium thermocellumMetab. Eng.20153249541:CAS:528:DC%2BC2MXhsFWls7vJ10.1016/j.ymben.2015.09.00226369438
– reference: MorisakaHProfile of native cellulosomal proteins of Clostridium cellulovorans adapted to various carbon sourcesAMB Express201223710.1186/2191-0855-2-371:CAS:528:DC%2BC3sXhtlyitbvF228399663444338
– reference: RavacholJCombining free and aggregated cellulolytic systems in the cellulosome-producing bacterium Ruminiclostridium cellulolyticumBiotechnol. Biofuels2015811410.1186/s13068-015-0301-41:CAS:528:DC%2BC28XhtVaqsbzK262697134533799
– reference: BayerEALamedRHimmelMEThe potential of cellulases and cellulosomes for cellulosic waste managementCurr. Opin. Biotechnol.2007182372451:CAS:528:DC%2BD2sXmtlagsbk%3D10.1016/j.copbio.2007.04.00417462879
– reference: GourlayKArantesVSaddlerJNUse of substructure-specific carbohydrate binding modules to track changes in cellulose accessibility and surface morphology during the amorphogenesis step of enzymatic hydrolysisBiotechnol. Biofuels20125511:CAS:528:DC%2BC38Xhtlyqtb3M10.1186/1754-6834-5-51228282703432595
– reference: DemishteinAKarpolABarakYLamedRBayerEACharacterization of a dockerin-based affinity tag: application for purification of a broad variety of target proteinsJ. Mol. Recognit.2010235255351:CAS:528:DC%2BC3cXhtlGkur3F10.1002/jmr.102921038354
– reference: XuTEfficient genome editing in Clostridium cellulolyticum via CRISPR–Cas9 nickaseAppl. Environ. Microbiol.201581442344311:CAS:528:DC%2BC2MXhtVGhsbnO10.1128/AEM.00873-15259114834475897
– reference: BlouzardJ-CModulation of cellulosome composition in Clostridium cellulolyticum: adaptation to the polysaccharide environment revealed by proteomic and carbohydrate-active enzyme analysesProteomics2010105415541:CAS:528:DC%2BC3cXhvFGhsLo%3D10.1002/pmic.20090031120013800
– reference: VazanaYA synthetic biology approach for evaluating the functional contribution of designer cellulosome components to deconstruction of cellulosic substratesBiotechnol. Biofuels2013618210.1186/1754-6834-6-1821:CAS:528:DC%2BC2cXovF2ksbw%3D243413313878649
– reference: BayerEABelaichJ-PShohamYLamedRThe cellulosomes: multienzyme machines for degradation of plant cell wall polysaccharidesAnnu. Rev. Microbiol.2004585215541:CAS:528:DC%2BD2cXhtVejsr3M10.1146/annurev.micro.57.030502.09102215487947
– reference: LambertzCChallenges and advances in the heterologous expression of cellulolytic enzymes: a reviewBiotechnol. Biofuels2014711510.1186/s13068-014-0135-51:CAS:528:DC%2BC2MXhtVyntrs%3D
– reference: HambergYElaborate cellulosome architecture of Acetivibrio cellulolyticus revealed by selective screening of cohesin–dockerin interactionsPeerJ20142e63610.7717/peerj.636253747804217186
– reference: ArtziLCellulosomics of the cellulolytic thermophile Clostridium clariflavumBiotechnol. Biofuels2014710010.1186/1754-6834-7-1001:CAS:528:DC%2BC2cXhs1OmtLfO264131544582956
– reference: BrownSDMutant alcohol dehydrogenase leads to improved ethanol tolerance in Clostridium thermocellumProc. Natl Acad. Sci. USA201110813752137571:CAS:528:DC%2BC3MXhtV2ms7bJ10.1073/pnas.110244410821825121
– reference: KimD-MA nanocluster design for the construction of artificial cellulosomesCatal. Sci. Technol.201224991:CAS:528:DC%2BC38XjsFCrtLk%3D10.1039/c2cy00371f
– reference: MoraïsSEnzymatic profiling of cellulosomal enzymes from the human gut bacterium, Ruminococcus champanellensis, reveals a fine-tuned system for cohesin–dockerin recognitionEnviron. Microbiol.20161854255610.1111/1462-2920.130471:CAS:528:DC%2BC28XjtlGrtr4%3D26347002
– reference: ThomasLJosephAGottumukkalaLDXylanase and cellulase systems of Clostridium sp.: an insight on molecular approaches for strain improvementBioresour. Technol.20141583433501:CAS:528:DC%2BC2cXjtVGqtbg%3D10.1016/j.biortech.2014.01.14024581864
– reference: WeiHNatural paradigms of plant cell wall degradationCurr. Opin. Biotechnol.2009203303381:CAS:528:DC%2BD1MXosVajtrw%3D10.1016/j.copbio.2009.05.00819523812
– reference: Salama-AlberOAtypical cohesin–dockerin complex responsible for cell surface attachment of cellulosomal components: binding fidelity, promiscuity, and structural buttressesJ. Biol. Chem.201328816827168381:CAS:528:DC%2BC3sXptVCrsLs%3D10.1074/jbc.M113.466672235806483675615
– reference: BayerEABiotechnology of Lignocellulose Degradation and Biomass Utilization2009183205
– reference: JeonSDYuKOKimSWHanSOA celluloytic complex from Clostridium cellulovorans consisting of mannanase B and endoglucanase E has synergistic effects on galactomannan degradationAppl. Microbiol. Biotechnol.2011905655721:CAS:528:DC%2BC3MXjsFGhsLw%3D10.1007/s00253-011-3108-721311881
– reference: XuQThe cellulosome system of Acetivibrio cellulolyticus includes a novel type of adaptor protein and a cell surface anchoring proteinJ. Bacteriol.2003185454845571:CAS:528:DC%2BD3sXlvVCiu74%3D10.1128/JB.185.15.4548-4557.200312867464165778
– reference: Bensoussan, L. et al. Broad phylogeny and functionality of cellulosomal components in the bovine rumen microbiome. Environ. Microbiol.http://dx.doi.org/10.1111/1462-2920.13561 (2016). This study details the ultra-deep sequencing of the fibre-adherent rumen microbiome, which reveals that the cellulosomal machinery is conserved and widely used.Dockerin-containing proteins are not restricted to fibre degradation per se and mediate other catabolic processes as well as microbial interactions.
– reference: HessMMetagenomic discovery of biomass-degrading genes and genomes from cow rumenScience20113314634671:CAS:528:DC%2BC3MXpsF2mtA%3D%3D10.1126/science.120038721273488
– reference: DassaBRumen cellulosomics: divergent fiber-degrading strategies revealed by comparative genome-wide analysis of six ruminococcal strainsPLoS ONE20149e9922110.1371/journal.pone.00992211:CAS:528:DC%2BC2cXhs1emu7%2FK249926794081043
– reference: GalanopoulouAPInsights into the functionality and stability of designer cellulosomes at elevated temperaturesAppl. Microbiol. Biotechnol.2016100873187431:CAS:528:DC%2BC28XosVShtrc%3D10.1007/s00253-016-7594-527207145
– reference: HussackGMultivalent anchoring and oriented display of single-domain antibodies on celluloseSensors (Basel).20099535153671:CAS:528:DC%2BD1MXosVKmsL8%3D10.3390/s90705351223467023274147
– reference: GarveyMKloseHFischerRLambertzCCommandeurUCellulases for biomass degradation: comparing recombinant cellulase expression platformsTrends Biotechnol.2013315815931:CAS:528:DC%2BC3sXht1ShsbjF10.1016/j.tibtech.2013.06.00623910542
– reference: CannIBernardiRCMackieRICellulose degradation in the human gut: Ruminococcus champanellensis expands the cellulosome paradigmEnviron. Microbiol.20161830731010.1111/1462-2920.1315226781441
– reference: RincónMTScaC, an adaptor protein carrying a novel cohesin that expands the dockerin-binding repertoire of the Ruminococcus flavefaciens 17 cellulosomeJ. Bacteriol.20041862576258510.1128/JB.186.9.2576-2585.20041:CAS:528:DC%2BD2cXjsFKrtrg%3D15090497387807
– reference: OuJCaoYIncorporation of Nasutitermes takasagoensis endoglucanase into cell surface-displayed minicellulosomes in Pichia pastoris X33J. Microbiol. Biotechnol.201424117811881:CAS:528:DC%2BC2cXhvFyjs77O10.4014/jmb.1402.0203424851815
– reference: IzquierdoJAPattathilSGusevaAHahnMGLyndLRComparative analysis of the ability of Clostridium clariflavum strains and Clostridium thermocellum to utilize hemicellulose and unpretreated plant materialBiotechnol. Biofuels2014713610.1186/s13068-014-0136-41:CAS:528:DC%2BC2MXit1Oks7w%3D254261634243297
– reference: ValbuenaAOn the remarkable mechanostability of scaffoldins and the mechanical clamp motifProc. Natl Acad. Sci. USA200910613791137961:CAS:528:DC%2BD1MXhtFWksLvP10.1073/pnas.081309310619666489
– reference: CurrieMAScaffoldin conformation and dynamics revealed by a ternary complex from the Clostridium thermocellumJ. Biol. Chem.201228726953269611:CAS:528:DC%2BC38XhtFaqtrzI10.1074/jbc.M112.343897227077183411031
– reference: SchoelerCMapping mechanical force propagation through biomolecular complexesNano Lett.201515737073761:CAS:528:DC%2BC2MXhtlSmtrvO10.1021/acs.nanolett.5b02727262595444721519
– reference: Ben DavidYRuminococcal cellulosome systems from rumen to humanEnviron. Microbiol.201517340734261:CAS:528:DC%2BC2MXhsV2jsr3M10.1111/1462-2920.1286825845888
– reference: KangSBarakYLamedRBayerEAMorrisonMThe functional repertoire of prokaryote cellulosomes includes the serpin superfamily of serine proteinase inhibitorsMol. Microbiol.200660134413541:CAS:528:DC%2BD28Xms1Cnu70%3D10.1111/j.1365-2958.2006.05182.x16796673
– reference: RamanBMcKeownCKRodriguezMBrownSDMielenzJRTranscriptomic analysis of Clostridium thermocellum ATCC 27405 cellulose fermentationBMC Microbiol.2011111341:CAS:528:DC%2BC3MXotVWjtrk%3D10.1186/1471-2180-11-134216722253130646
– reference: ChassardCDelmasERobertCBernalier-DonadilleAThe cellulose-degrading microbial community of the human gut varies according to the presence or absence of methanogensFEMS Microbiol. Ecol.2010742052131:CAS:528:DC%2BC3cXht1CmtrnF10.1111/j.1574-6941.2010.00941.x20662929
– reference: ChenCRevisiting the NMR solution structure of the Cel48S type-I dockerin module from Clostridium thermocellum reveals a cohesin-primed conformationJ. Struct. Biol.20141881881931:CAS:528:DC%2BC2cXhs1KltL%2FE10.1016/j.jsb.2014.09.00625270376
– reference: HyeonJEProduction of functional agarolytic nano-complex for the synergistic hydrolysis of marine biomass and its potential application in carbohydrate-binding module-utilizing one-step purificationProcess Biochem.2012478778811:CAS:528:DC%2BC38Xis1Olu70%3D10.1016/j.procbio.2012.01.009
– reference: SakkaKAnalysis of cohesin–dockerin interactions using mutant dockerin proteinsFEMS Microbiol. Lett.201131475801:CAS:528:DC%2BC3cXhs1aitL3O10.1111/j.1574-6968.2010.02146.x21054503
– reference: PohlschröderMLeschineSBCanale-ParolaEMulticomplex cellulase–xylanase system of Clostridium papyrosolvens C7J. Bacteriol.1994176707610.1128/jb.176.1.70-76.19948282713205015
– reference: GaoSYouCRenneckarSBaoJZhangY-HPNew insights into enzymatic hydrolysis of heterogeneous cellulose by using carbohydrate-binding module 3 containing GFP and carbohydrate-binding module 17 containing CFPBiotechnol. Biofuels201472410.1186/1754-6834-7-241:CAS:528:DC%2BC2MXjsVejurY%3D245525543943381
– reference: BéguinPAubertJ-PBeguinPThe biological degradation of celluloseFEMS Microbiol. Rev.199413255810.1111/j.1574-6976.1994.tb00033.x8117466
– reference: MoragEExpression, purification and characterization of the cellulose-binding domain of the scaffoldin subunit from the cellulosome of Clostridium thermocellumAppl. Environ. Microbiol.199561198019861:CAS:528:DyaK2MXlsFyktbk%3D7646033167460
– reference: ZverlovVVKluppMKraussJSchwarzWHMutations in the scaffoldin gene, cipA, of Clostridium thermocellum with impaired cellulosome formation and cellulose hydrolysis: insertions of a new transposable element, IS1447, and implications for cellulase synergism on crystalline celluloseJ. Bacteriol.2008190432143271:CAS:528:DC%2BD1cXnt1equ70%3D10.1128/JB.00097-08184080272446765
– reference: BrulcJMGene-centric metagenomics of the fiber-adherent bovine rumen microbiome reveals forage specific glycoside hydrolasesProc. Natl Acad. Sci. USA2009106194819531:CAS:528:DC%2BD1MXitVKitro%3D10.1073/pnas.080619110519181843
– reference: AdamsJJGreggKBayerEABorastonABSmithSPStructural basis of Clostridium perfringens toxin complex formationProc. Natl Acad. Sci. USA200810512194121991:CAS:528:DC%2BD1cXhtVOhtr3P10.1073/pnas.080315410518716000
– reference: SimpsonPJXieHBolamDNGilbertHJWilliamsonMPThe structural basis for the ligand specificity of family 2 carbohydrate-binding modulesJ. Biol. Chem.200027541137411421:CAS:528:DC%2BD3MXjsVGqtg%3D%3D10.1074/jbc.M00694820010973978
– reference: GefenGAnbarMMoragELamedRBayerEAEnhanced cellulose degradation by targeted integration of a cohesin-fused β-glucosidase into the Clostridium thermocellum cellulosomeProc. Natl Acad. Sci. USA201210910298103031:CAS:528:DC%2BC38XhtFWgt73E10.1073/pnas.120274710922689961
– reference: ArfiYShamshoumMRogachevIPelegYBayerEAIntegration of bacterial lytic polysaccharide monooxygenases into designer cellulosomes promotes enhanced cellulose degradationProc. Natl Acad. Sci. USA2014111910991141:CAS:528:DC%2BC2cXpsVamur8%3D10.1073/pnas.140414811124927597
– reference: BhallaAImproved lignocellulose conversion to biofuels with thermophilic bacteria and thermostable enzymesBioresour. Technol.2013158581593
– reference: HyeonJEKangDHHanSOSignal amplification by a self-assembled biosensor system designed on the principle of dockerin–cohesin interactions in a cellulosome complexAnalyst2014139479047931:CAS:528:DC%2BC2cXht1SlurfO10.1039/C4AN00856A25093214
– reference: YouCZhangYHPSelf-assembly of synthetic metabolons through synthetic protein scaffolds: one-step purification, co-immobilization, and substrate channelingACS Synth. Biol.201321021101:CAS:528:DC%2BC38Xht1Kms7bJ10.1021/sb300068g23656373
– reference: CarvalhoALCellulosome assembly revealed by the crystal structure of the cohesin–dockerin complexProc. Natl Acad. Sci. USA200310013809138141:CAS:528:DC%2BD3sXpsFGis7w%3D10.1073/pnas.193612410014623971
– reference: BorneRBayerEAPagèsSPerretSFierobeH-PUnraveling enzyme discrimination during cellulosome assembly independent of cohesin–dockerin affinityFEBS J.2013280576457791:CAS:528:DC%2BC3sXhs1KrsLbN10.1111/febs.1249724033928
– reference: LombardVRamuluHGDrulaECoutinhoPMHenrissatBThe carbohydrate-active enzymes database (CAZy) in 2013Nucleic Acids Res.20144249049510.1093/nar/gkt11781:CAS:528:DC%2BC2cXoslWn
– reference: IzquierdoJAComplete genome sequence of Clostridium clariflavum DSM 19732Stand. Genomic Sci.201261041151:CAS:528:DC%2BC38Xmtlyrsrg%3D10.4056/sigs.2535732226756033368404
– reference: DesvauxMClostridium cellulolyticum: model organism of mesophilic cellulolytic clostridiaFEMS Microbiol. Rev.2005297417641:CAS:528:DC%2BD2MXos1WktLw%3D10.1016/j.femsre.2004.11.00316102601
– reference: ArtziLMoragEShamshoumMBayerEACellulosomal expansin: functionality and incorporation into the complexBiotechnol. Biofuels201696110.1186/s13068-016-0474-51:CAS:528:DC%2BC2sXisFWgt7s%3D269737154788839
– reference: HimmelMEMicrobial enzyme systems for biomass conversion: emerging paradigmsBiofuels201013233411:CAS:528:DC%2BC3cXksVOitb0%3D10.4155/bfs.09.25
– reference: HaimovitzRCohesin–dockerin microarray: diverse specificities between two complementary families of interacting protein modulesProteomics200889689791:CAS:528:DC%2BD1cXktVeksro%3D10.1002/pmic.20070048618219699
– reference: BayerEALamedRUltrastructure of the cell surface cellulosome of Clostridium thermocellum and its interaction with celluloseJ. Bacteriol.19861678288361:CAS:528:DyaL28XlsV2lsLo%3D10.1128/jb.167.3.828-836.19863745121215948
– reference: StahlSWSingle-molecule dissection of the high-affinity cohesin–dockerin complexProc. Natl Acad. Sci. USA201210920431204361:CAS:528:DC%2BC3sXnvVSltA%3D%3D10.1073/pnas.121192910923188794
– reference: DingS-YHow does plant cell wall nanoscale architecture correlate with enzymatic digestibility?Science2012338105510601:CAS:528:DC%2BC38Xhs12itrjK10.1126/science.122749123180856
– reference: XuQLuoYDingSHimmelMEMultifunctional enzyme systems for plant cell wall degradationCompr. Biotechnol.201131525
– reference: MoriYAligning an endoglucanase Cel5A from Thermobifida fusca on a DNA scaffold: potent design of an artificial cellulosomeChem. Commun. (Camb.).201349697169731:CAS:528:DC%2BC3sXhtVOjsL7J10.1039/c3cc42614a23764949
– reference: ErikssonTKarlssonJTjerneldFA model explaining declining rate in hydrolysis of lignocellulose substrates with cellobiohydrolase I (Cel7A) and endoglucanase I (Cel7B) of Trichoderma reeseiAppl. Biochem. Biotechnol.200210141601:CAS:528:DC%2BD38XjsVKnurg%3D10.1385/ABAB:101:1:4112008866
– reference: HanSOYukawaHInuiMDoiRHRegulation of expression of cellulosomal cellulase and hemicellulase genes in Clostridium cellulovoransJ. Bacteriol.2003185606760751:CAS:528:DC%2BD3sXotFOiu7s%3D10.1128/JB.185.20.6067-6075.200314526018225016
– reference: MoriYPurification and characterization of an endoglucanase from the cellulosome (multicomponent cellulase complex) of Clostridium thermocellumBiosci. Biotechnol. Biochem.19925611991203
– reference: ZeXDuncanSHLouisPFlintHJRuminococcus bromii is a keystone species for the degradation of resistant starch in the human colonISME J.20126153515431:CAS:528:DC%2BC38XhtVOjtL3L10.1038/ismej.2012.4223433083400402
– reference: ShpigelEImmobilization of recombinant heparinase I fused to cellulose-binding domainBiotechnol. Bioeng.19995172310.1002/(SICI)1097-0290(19991005)65:1<17::AID-BIT3>3.0.CO;2-Y
– reference: ZeXUnique organization of extracellular amylases into amylosomes in the resistant starch-utilizing human colonic Firmicutes bacterium Ruminococcus bromiimBio20156e01058-1510.1128/mBio.01058-151:CAS:528:DC%2BC28XitVGlsbjO264198774611034
– reference: XuCCellulosome stoichiometry in Clostridium cellulolyticum is regulated by selective RNA processing and stabilizationNat. Commun.20156690010.1038/ncomms79001:CAS:528:DC%2BC2MXotlGltrY%3D259082254423207
– reference: SternJSignificance of relative position of cellulases in designer cellulosomes for optimized cellulolysisPLoS ONE201510e012732610.1371/journal.pone.01273261:CAS:528:DC%2BC2MXhvVeitL3P260242274449128
– reference: WillsonBJBiotechnology for biofuels production of a functional cell wall-anchored minicellulosome by recombinant clostridium acetobutylicum ATCC 824Biotechnol. Biofuels2016910910.1186/s13068-016-0526-x1:CAS:528:DC%2BC2sXnsFGmsLw%3D272226644877998
– reference: BayerEAShohamYLamedRThe Prokaryotes. Prokaryotic Physiology and Biochemistry2013215265
– reference: Kahel-RaiferHThe unique set of putative membrane-associated anti-σ factors in Clostridium thermocellum suggests a novel extracellular carbohydrate-sensing mechanism involved in gene regulationFEMS Microbiol. Lett.201030884931:CAS:528:DC%2BC3cXotFGqtrY%3D10.1111/j.1574-6968.2010.01997.x20487018
– reference: FendriIThe cellulosomes from Clostridium cellulolyticum: identification of new components and synergies between complexesFEBS J.2009276307630861:CAS:528:DC%2BD1MXmslaqsrw%3D10.1111/j.1742-4658.2009.07025.x19490109
– reference: MoraïsSEnhanced cellulose degradation by nano-complexed enzymes: synergism between a scaffold-linked exoglucanase and a free endoglucanaseJ. Biotechnol.201014720521110.1016/j.jbiotec.2010.04.0121:CAS:528:DC%2BC3cXntVemu7Y%3D20438772
– reference: AlbersheimPDarvillARobertsKSederoffRStaehelinAPlant Cell Walls: From Chemistry to Biology2011
– reference: SternJMoraïsSLamedRBayerEAAdaptor scaffoldins: an original strategy for extended designer cellulosomes, inspired from naturemBio20167e00083-1610.1128/mBio.00083-16270487964959524
– reference: MoraïsSShterzerNLamedRBayerEAMizrahiIA combined cell-consortium approach for lignocellulose degradation by specialized Lactobacillus plantarum cellsBiotechnol. Biofuels2014711210.1186/1754-6834-7-1121:CAS:528:DC%2BC2MXisV2ns74%3D257889774364503
– reference: CurrieMASmall angle X-ray scattering analysis of Clostridium thermocellum cellulosome N-terminal complexes reveals a highly dynamic structureJ. Biol. Chem.2013288797879851:CAS:528:DC%2BC3sXktVKnt7c%3D10.1074/jbc.M112.408757233414543597834
– reference: MoragEHalevyIBayerEALamedRIsolation and properties of a major cellobiohydrolase from the cellulosome of Clostridium thermocellumJ. Bacteriol.1991173415541621:CAS:528:DyaK3MXmtVWks7k%3D10.1128/jb.173.13.4155-4162.19912061292208065
– reference: XuQArchitecture of the Bacteroides cellulosolvens cellulosome: description of a cell surface-anchoring scaffoldin and a family 48 cellulaseJ. Bacteriol.20041869689771:CAS:528:DC%2BD2cXhsVWjtrg%3D10.1128/JB.186.4.968-977.200414761991344227
– reference: DavidiLToward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosomeProc. Natl Acad. Sci. USA201611310854108591:CAS:528:DC%2BC28XhsV2kurrL10.1073/pnas.160801211327621442
– reference: MunirRIQuantitative proteomic analysis of the cellulolytic system of Clostridium termitidis CT1112 reveals distinct protein expression profiles upon growth on α-cellulose and cellobioseJ. Proteomics201512541531:CAS:528:DC%2BC2MXotlGnurk%3D10.1016/j.jprot.2015.04.02625957533
– reference: XuQDramatic performance of Clostridium thermocellum explained by its wide range of cellulase modalitiesSci. Adv.20162e150125410.1126/sciadv.15012541:CAS:528:DC%2BC2sXlvVWrs70%3D269897794788478
– reference: AdamsJJPalGJiaZSmithSPMechanism of bacterial cell-surface attachment revealed by the structure of cellulosomal type II cohesin–dockerin complexProc. Natl Acad. Sci. USA20061033053101:CAS:528:DC%2BD28XpsVSntw%3D%3D10.1073/pnas.050710910316384918
– reference: DingS-YOrdered arrays of quantum dots using cellulosomal proteinsIndust. Biotechnol.200511982061:CAS:528:DC%2BD28XhtVyis77P10.1089/ind.2005.1.198
– reference: BayerEACoutinhoPMHenrissatBCellulosome-like sequences in Archaeoglobus fulgidus: an enigmatic vestige of cohesin and dockerin domainsFEBS Lett.19994632772801:CAS:528:DyaK1MXnvFemtrg%3D10.1016/S0014-5793(99)01634-810606737
– reference: XiaYJuFFangHHPZhangTMining of novel thermo-stable cellulolytic genes from a thermophilic cellulose-degrading consortium by metagenomicsPLoS ONE20138e537791:CAS:528:DC%2BC3sXhsVGmur0%3D10.1371/journal.pone.0053779233419993544849
– volume: 338
  start-page: 1055
  year: 2012
  ident: BFnrmicro2016164_CR9
  publication-title: Science
  doi: 10.1126/science.1227491
– volume: 11
  start-page: 134
  year: 2011
  ident: BFnrmicro2016164_CR153
  publication-title: BMC Microbiol.
  doi: 10.1186/1471-2180-11-134
– volume: 190
  start-page: 4321
  year: 2008
  ident: BFnrmicro2016164_CR39
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.00097-08
– volume: 60
  start-page: 1344
  year: 2006
  ident: BFnrmicro2016164_CR56
  publication-title: Mol. Microbiol.
  doi: 10.1111/j.1365-2958.2006.05182.x
– volume: 106
  start-page: 13791
  year: 2009
  ident: BFnrmicro2016164_CR62
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0813093106
– volume: 2
  start-page: 499
  year: 2012
  ident: BFnrmicro2016164_CR96
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/c2cy00371f
– volume: 48
  start-page: 371
  year: 2011
  ident: BFnrmicro2016164_CR106
  publication-title: Enzyme Microb. Technol.
  doi: 10.1016/j.enzmictec.2010.12.014
– volume: 8
  start-page: 325
  year: 1993
  ident: BFnrmicro2016164_CR31
  publication-title: Mol. Microbiol.
  doi: 10.1111/j.1365-2958.1993.tb01576.x
– volume: 188
  start-page: 7971
  year: 2006
  ident: BFnrmicro2016164_CR45
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.00973-06
– volume: 90
  start-page: 565
  year: 2011
  ident: BFnrmicro2016164_CR158
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-011-3108-7
– volume: 99
  start-page: 181
  year: 1992
  ident: BFnrmicro2016164_CR76
  publication-title: FEMS Microbiol. Lett.
  doi: 10.1111/j.1574-6968.1992.tb05563.x
– volume: 185
  start-page: 3042
  year: 2003
  ident: BFnrmicro2016164_CR83
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.185.10.3042-3048.2003
– volume: 81
  start-page: 4423
  year: 2015
  ident: BFnrmicro2016164_CR125
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.00873-15
– volume: 56
  start-page: 1199
  year: 1992
  ident: BFnrmicro2016164_CR128
  publication-title: Biosci. Biotechnol. Biochem.
– volume: 276
  start-page: 3076
  year: 2009
  ident: BFnrmicro2016164_CR152
  publication-title: FEBS J.
  doi: 10.1111/j.1742-4658.2009.07025.x
– volume: 2
  start-page: e1501254
  year: 2016
  ident: BFnrmicro2016164_CR13
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1501254
– volume: 113
  start-page: 10854
  year: 2016
  ident: BFnrmicro2016164_CR91
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1608012113
– volume: 5
  start-page: e12476
  year: 2010
  ident: BFnrmicro2016164_CR17
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0012476
– volume: 181
  start-page: 1801
  year: 1999
  ident: BFnrmicro2016164_CR23
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.181.6.1801-1810.1999
– volume: 20
  start-page: 358
  year: 2009
  ident: BFnrmicro2016164_CR144
  publication-title: Curr. Opin. Biotechnol.
  doi: 10.1016/j.copbio.2009.05.004
– volume: 156
  start-page: 818
  year: 1983
  ident: BFnrmicro2016164_CR6
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.156.2.818-827.1983
– volume: 29
  start-page: 741
  year: 2005
  ident: BFnrmicro2016164_CR40
  publication-title: FEMS Microbiol. Rev.
  doi: 10.1016/j.femsre.2004.11.003
– start-page: 183
  volume-title: Biotechnology of Lignocellulose Degradation and Biomass Utilization
  year: 2009
  ident: BFnrmicro2016164_CR138
– volume: 463
  start-page: 277
  year: 1999
  ident: BFnrmicro2016164_CR35
  publication-title: FEBS Lett.
  doi: 10.1016/S0014-5793(99)01634-8
– volume: 3
  start-page: e00508-12
  year: 2012
  ident: BFnrmicro2016164_CR157
  publication-title: mBio
  doi: 10.1128/mBio.00508-12
– volume: 75
  start-page: 7335
  year: 2009
  ident: BFnrmicro2016164_CR162
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.01241-09
– volume: 156
  start-page: 828
  year: 1983
  ident: BFnrmicro2016164_CR5
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.156.2.828-836.1983
– volume: 100
  start-page: 2203
  year: 2016
  ident: BFnrmicro2016164_CR59
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-015-7071-6
– volume: 7
  start-page: 1
  year: 2014
  ident: BFnrmicro2016164_CR123
  publication-title: Biotechnol. Biofuels
  doi: 10.1186/s13068-014-0135-5
– volume: 280
  start-page: 5764
  year: 2013
  ident: BFnrmicro2016164_CR155
  publication-title: FEBS J.
  doi: 10.1111/febs.12497
– volume: 5
  start-page: 51
  year: 2012
  ident: BFnrmicro2016164_CR135
  publication-title: Biotechnol. Biofuels
  doi: 10.1186/1754-6834-5-51
– volume: 185
  start-page: 6067
  year: 2003
  ident: BFnrmicro2016164_CR79
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.185.20.6067-6075.2003
– volume: 24
  start-page: 1178
  year: 2014
  ident: BFnrmicro2016164_CR100
  publication-title: J. Microbiol. Biotechnol.
  doi: 10.4014/jmb.1402.02034
– volume: 18
  start-page: 237
  year: 2007
  ident: BFnrmicro2016164_CR107
  publication-title: Curr. Opin. Biotechnol.
  doi: 10.1016/j.copbio.2007.04.004
– volume: 8
  start-page: e53779
  year: 2013
  ident: BFnrmicro2016164_CR145
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0053779
– volume: 455
  start-page: 481
  year: 2008
  ident: BFnrmicro2016164_CR140
  publication-title: Nature
  doi: 10.1038/455481a
– volume: 107
  start-page: 18646
  year: 2010
  ident: BFnrmicro2016164_CR86
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1012175107
– volume: 186
  start-page: 968
  year: 2004
  ident: BFnrmicro2016164_CR66
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.186.4.968-977.2004
– volume: 74
  start-page: 422
  year: 2007
  ident: BFnrmicro2016164_CR116
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-006-0689-7
– volume: 2
  start-page: e636
  year: 2014
  ident: BFnrmicro2016164_CR12
  publication-title: PeerJ
  doi: 10.7717/peerj.636
– volume: 7
  start-page: 112
  year: 2014
  ident: BFnrmicro2016164_CR101
  publication-title: Biotechnol. Biofuels
  doi: 10.1186/1754-6834-7-112
– volume: 5
  start-page: 17
  year: 1999
  ident: BFnrmicro2016164_CR132
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/(SICI)1097-0290(19991005)65:1<17::AID-BIT3>3.0.CO;2-Y
– volume: 100
  start-page: 13809
  year: 2003
  ident: BFnrmicro2016164_CR67
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1936124100
– volume: 8
  start-page: e65333
  year: 2013
  ident: BFnrmicro2016164_CR150
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0065333
– volume: 227
  start-page: 293
  year: 1992
  ident: BFnrmicro2016164_CR63
  publication-title: Carbohydr. Res.
  doi: 10.1016/0008-6215(92)85079-F
– volume: 40
  start-page: 89
  year: 2016
  ident: BFnrmicro2016164_CR73
  publication-title: Curr. Opin. Struct. Biol.
  doi: 10.1016/j.sbi.2016.08.002
– volume: 9
  start-page: 109
  year: 2016
  ident: BFnrmicro2016164_CR103
  publication-title: Biotechnol. Biofuels
  doi: 10.1186/s13068-016-0526-x
– volume: 7
  start-page: 80
  year: 2014
  ident: BFnrmicro2016164_CR124
  publication-title: Biotechnol. Biofuels
  doi: 10.1186/1754-6834-7-80
– volume: 12
  start-page: 379
  year: 1994
  ident: BFnrmicro2016164_CR11
  publication-title: Trends Biotechnol.
  doi: 10.1016/0167-7799(94)90039-6
– volume: 143
  start-page: 139
  year: 2009
  ident: BFnrmicro2016164_CR94
  publication-title: J. Biotechnol.
  doi: 10.1016/j.jbiotec.2009.06.019
– volume: 147
  start-page: 205
  year: 2010
  ident: BFnrmicro2016164_CR93
  publication-title: J. Biotechnol.
  doi: 10.1016/j.jbiotec.2010.04.012
– volume: 100
  start-page: 8731
  year: 2016
  ident: BFnrmicro2016164_CR113
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-016-7594-5
– volume: 167
  start-page: 828
  year: 1986
  ident: BFnrmicro2016164_CR47
  publication-title: J. Bacteriol.
  doi: 10.1128/jb.167.3.828-836.1986
– volume: 29
  start-page: 517
  year: 1997
  ident: BFnrmicro2016164_CR71
  publication-title: Proteins
  doi: 10.1002/(SICI)1097-0134(199712)29:4<517::AID-PROT11>3.0.CO;2-P
– volume: 2
  start-page: 541
  year: 2004
  ident: BFnrmicro2016164_CR8
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro925
– volume: 1
  start-page: 323
  year: 2010
  ident: BFnrmicro2016164_CR7
  publication-title: Biofuels
  doi: 10.4155/bfs.09.25
– volume: 6
  start-page: 204
  year: 2015
  ident: BFnrmicro2016164_CR29
  publication-title: Bioengineered
  doi: 10.1080/21655979.2015.1060379
– volume: 5
  start-page: 2
  year: 2015
  ident: BFnrmicro2016164_CR148
  publication-title: AMB Express
  doi: 10.1186/s13568-014-0089-9
– volume: 185
  start-page: 5109
  year: 2003
  ident: BFnrmicro2016164_CR80
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.185.17.5109-5116.2003
– volume: 38
  start-page: 393
  year: 2014
  ident: BFnrmicro2016164_CR110
  publication-title: FEMS Microbiol. Rev.
  doi: 10.1111/1574-6976.12044
– volume: 28
  start-page: 5619
  year: 2016
  ident: BFnrmicro2016164_CR61
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201503948
– volume: 10
  start-page: e0127326
  year: 2015
  ident: BFnrmicro2016164_CR164
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0127326
– volume: 280
  start-page: 16325
  year: 2005
  ident: BFnrmicro2016164_CR156
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M414449200
– volume: 275
  start-page: 41137
  year: 2000
  ident: BFnrmicro2016164_CR77
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M006948200
– volume: 49
  start-page: 656
  year: 1985
  ident: BFnrmicro2016164_CR120
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.49.3.656-659.1985
– volume: 49
  start-page: 6971
  year: 2013
  ident: BFnrmicro2016164_CR97
  publication-title: Chem. Commun. (Camb.).
  doi: 10.1039/c3cc42614a
– volume: 405
  start-page: 143
  year: 2011
  ident: BFnrmicro2016164_CR161
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2010.10.013
– volume: 280
  start-page: 38562
  year: 2005
  ident: BFnrmicro2016164_CR78
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M503168200
– volume: 89
  start-page: 3483
  year: 1992
  ident: BFnrmicro2016164_CR24
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.89.8.3483
– volume: 11
  start-page: e0146316
  year: 2015
  ident: BFnrmicro2016164_CR84
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0146316
– volume: 8
  start-page: 114
  year: 2015
  ident: BFnrmicro2016164_CR54
  publication-title: Biotechnol. Biofuels
  doi: 10.1186/s13068-015-0301-4
– volume: 109
  start-page: 10298
  year: 2012
  ident: BFnrmicro2016164_CR50
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1202747109
– volume: 176
  start-page: 70
  year: 1994
  ident: BFnrmicro2016164_CR25
  publication-title: J. Bacteriol.
  doi: 10.1128/jb.176.1.70-76.1994
– volume: 31
  start-page: 581
  year: 2013
  ident: BFnrmicro2016164_CR102
  publication-title: Trends Biotechnol.
  doi: 10.1016/j.tibtech.2013.06.006
– volume: 177
  start-page: 2451
  year: 1995
  ident: BFnrmicro2016164_CR43
  publication-title: J. Bacteriol.
  doi: 10.1128/jb.177.9.2451-2459.1995
– volume: 2
  start-page: 569
  year: 2011
  ident: BFnrmicro2016164_CR119
  publication-title: Biofuels
  doi: 10.4155/bfs.11.126
– volume: 9
  start-page: e99221
  year: 2014
  ident: BFnrmicro2016164_CR28
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0099221
– volume: 308
  start-page: 84
  year: 2010
  ident: BFnrmicro2016164_CR85
  publication-title: FEMS Microbiol. Lett.
  doi: 10.1111/j.1574-6968.2010.01997.x
– volume: 6
  start-page: 1858
  year: 2013
  ident: BFnrmicro2016164_CR10
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c3ee00019b
– volume: 58
  start-page: 521
  year: 2004
  ident: BFnrmicro2016164_CR4
  publication-title: Annu. Rev. Microbiol.
  doi: 10.1146/annurev.micro.57.030502.091022
– volume: 6
  start-page: 6900
  year: 2015
  ident: BFnrmicro2016164_CR89
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms7900
– volume: 450
  start-page: 560
  year: 2007
  ident: BFnrmicro2016164_CR141
  publication-title: Nature
  doi: 10.1038/nature06269
– volume: 8
  start-page: 968
  year: 2008
  ident: BFnrmicro2016164_CR37
  publication-title: Proteomics
  doi: 10.1002/pmic.200700486
– volume: 13
  start-page: 210
  year: 2012
  ident: BFnrmicro2016164_CR14
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-13-210
– volume: 331
  start-page: 463
  year: 2011
  ident: BFnrmicro2016164_CR143
  publication-title: Science
  doi: 10.1126/science.1200387
– volume: 20
  start-page: 191
  year: 2002
  ident: BFnrmicro2016164_CR131
  publication-title: Biotechnol. Adv.
  doi: 10.1016/S0734-9750(02)00006-X
– volume: 125
  start-page: 41
  year: 2015
  ident: BFnrmicro2016164_CR151
  publication-title: J. Proteomics
  doi: 10.1016/j.jprot.2015.04.026
– volume: 7
  start-page: e42116
  year: 2012
  ident: BFnrmicro2016164_CR95
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0042116
– volume: 2
  start-page: 102
  year: 2013
  ident: BFnrmicro2016164_CR108
  publication-title: ACS Synth. Biol.
  doi: 10.1021/sb300068g
– volume: 103
  start-page: 27
  year: 2006
  ident: BFnrmicro2016164_CR126
  publication-title: Immunol. Lett.
  doi: 10.1016/j.imlet.2005.10.022
– volume: 6
  start-page: e01058-15
  year: 2015
  ident: BFnrmicro2016164_CR26
  publication-title: mBio
  doi: 10.1128/mBio.01058-15
– volume: 188
  start-page: 188
  year: 2014
  ident: BFnrmicro2016164_CR72
  publication-title: J. Struct. Biol.
  doi: 10.1016/j.jsb.2014.09.006
– volume: 13
  start-page: 25
  year: 1994
  ident: BFnrmicro2016164_CR51
  publication-title: FEMS Microbiol. Rev.
  doi: 10.1111/j.1574-6976.1994.tb00033.x
– volume: 7
  start-page: 136
  year: 2014
  ident: BFnrmicro2016164_CR121
  publication-title: Biotechnol. Biofuels
  doi: 10.1186/s13068-014-0136-4
– volume: 7
  start-page: e00083-16
  year: 2016
  ident: BFnrmicro2016164_CR92
  publication-title: mBio
  doi: 10.1128/mBio.00083-16
– volume: 158
  start-page: 343
  year: 2014
  ident: BFnrmicro2016164_CR112
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2014.01.140
– volume: 42
  start-page: 490
  year: 2014
  ident: BFnrmicro2016164_CR48
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkt1178
– volume: 9
  start-page: 164
  year: 2016
  ident: BFnrmicro2016164_CR114
  publication-title: Biotechnol. Biofuels.
  doi: 10.1186/s13068-016-0577-z
– start-page: 215
  volume-title: The Prokaryotes. Prokaryotic Physiology and Biochemistry
  year: 2013
  ident: BFnrmicro2016164_CR1
– volume: 186
  start-page: 2576
  year: 2004
  ident: BFnrmicro2016164_CR44
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.186.9.2576-2585.2004
– volume: 6
  start-page: 104
  year: 2012
  ident: BFnrmicro2016164_CR33
  publication-title: Stand. Genomic Sci.
  doi: 10.4056/sigs.2535732
– volume: 111
  start-page: 9109
  year: 2014
  ident: BFnrmicro2016164_CR90
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1404148111
– volume: 6
  start-page: 182
  year: 2013
  ident: BFnrmicro2016164_CR160
  publication-title: Biotechnol. Biofuels
  doi: 10.1186/1754-6834-6-182
– volume: 6
  start-page: 179
  year: 2013
  ident: BFnrmicro2016164_CR154
  publication-title: Biotechnol. Biofuels
  doi: 10.1186/1754-6834-6-179
– volume: 5
  start-page: 5635
  year: 2014
  ident: BFnrmicro2016164_CR64
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms6635
– volume: 1
  start-page: 198
  year: 2005
  ident: BFnrmicro2016164_CR137
  publication-title: Indust. Biotechnol.
  doi: 10.1089/ind.2005.1.198
– volume: 9
  start-page: 137
  year: 2016
  ident: BFnrmicro2016164_CR105
  publication-title: Biotechnol. Biofuels
  doi: 10.1186/s13068-016-0554-6
– ident: BFnrmicro2016164_CR34
  doi: 10.1111/1462-2920.13561
– volume: 61
  start-page: 1980
  year: 1995
  ident: BFnrmicro2016164_CR75
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.61.5.1980-1986.1995
– volume: 32
  start-page: 49
  year: 2015
  ident: BFnrmicro2016164_CR118
  publication-title: Metab. Eng.
  doi: 10.1016/j.ymben.2015.09.002
– volume: 18
  start-page: 542
  year: 2016
  ident: BFnrmicro2016164_CR22
  publication-title: Environ. Microbiol.
  doi: 10.1111/1462-2920.13047
– volume: 18
  start-page: 307
  year: 2016
  ident: BFnrmicro2016164_CR20
  publication-title: Environ. Microbiol.
  doi: 10.1111/1462-2920.13152
– volume: 17
  start-page: 3113
  year: 2015
  ident: BFnrmicro2016164_CR21
  publication-title: Environ. Microbiol.
  doi: 10.1111/1462-2920.12920
– volume: 7
  start-page: 100
  year: 2014
  ident: BFnrmicro2016164_CR16
  publication-title: Biotechnol. Biofuels
  doi: 10.1186/1754-6834-7-100
– volume: 3
  start-page: 15
  year: 2011
  ident: BFnrmicro2016164_CR52
  publication-title: Compr. Biotechnol.
– volume: 288
  start-page: 16827
  year: 2013
  ident: BFnrmicro2016164_CR70
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M113.466672
– volume: 175
  start-page: 1891
  year: 1993
  ident: BFnrmicro2016164_CR32
  publication-title: J. Bacteriol.
  doi: 10.1128/jb.175.7.1891-1899.1993
– volume: 10
  start-page: 541
  year: 2010
  ident: BFnrmicro2016164_CR149
  publication-title: Proteomics
  doi: 10.1002/pmic.200900311
– volume: 185
  start-page: 4548
  year: 2003
  ident: BFnrmicro2016164_CR15
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.185.15.4548-4557.2003
– volume: 23
  start-page: 686
  year: 2013
  ident: BFnrmicro2016164_CR68
  publication-title: Curr. Opin. Struct. Biol.
  doi: 10.1016/j.sbi.2013.09.002
– volume: 9
  start-page: 61
  year: 2016
  ident: BFnrmicro2016164_CR58
  publication-title: Biotechnol. Biofuels
  doi: 10.1186/s13068-016-0474-5
– volume: 77
  start-page: 4849
  year: 2011
  ident: BFnrmicro2016164_CR99
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.02599-10
– volume: 6
  start-page: 73
  year: 2013
  ident: BFnrmicro2016164_CR88
  publication-title: Biotechnol. Biofuels
  doi: 10.1186/1754-6834-6-73
– volume: 80
  start-page: 6677
  year: 2014
  ident: BFnrmicro2016164_CR104
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.02070-14
– volume: 6
  start-page: e00411-15
  year: 2015
  ident: BFnrmicro2016164_CR46
  publication-title: mBio
  doi: 10.1128/mBio.00411-15
– volume: 299
  start-page: 2074
  year: 2003
  ident: BFnrmicro2016164_CR87
  publication-title: Science
  doi: 10.1126/science.1080029
– volume-title: Plant Cell Walls: From Chemistry to Biology
  year: 2011
  ident: BFnrmicro2016164_CR3
– volume: 8
  start-page: e56138
  year: 2013
  ident: BFnrmicro2016164_CR57
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0056138
– volume: 101
  start-page: 41
  year: 2002
  ident: BFnrmicro2016164_CR49
  publication-title: Appl. Biochem. Biotechnol.
  doi: 10.1385/ABAB:101:1:41
– volume: 289
  start-page: 7335
  year: 2014
  ident: BFnrmicro2016164_CR55
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M113.545046
– volume: 108
  start-page: 13752
  year: 2011
  ident: BFnrmicro2016164_CR115
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1102444108
– volume: 287
  start-page: 26953
  year: 2012
  ident: BFnrmicro2016164_CR74
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M112.343897
– volume: 187
  start-page: 7569
  year: 2005
  ident: BFnrmicro2016164_CR42
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.187.22.7569-7578.2005
– volume: 109
  start-page: 20431
  year: 2012
  ident: BFnrmicro2016164_CR60
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1211929109
– volume: 2
  start-page: 37
  year: 2012
  ident: BFnrmicro2016164_CR147
  publication-title: AMB Express
  doi: 10.1186/2191-0855-2-37
– volume: 7
  start-page: 24
  year: 2014
  ident: BFnrmicro2016164_CR136
  publication-title: Biotechnol. Biofuels
  doi: 10.1186/1754-6834-7-24
– volume: 105
  start-page: 12194
  year: 2008
  ident: BFnrmicro2016164_CR38
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0803154105
– volume: 20
  start-page: 330
  year: 2009
  ident: BFnrmicro2016164_CR2
  publication-title: Curr. Opin. Biotechnol.
  doi: 10.1016/j.copbio.2009.05.008
– volume: 158
  start-page: 581
  year: 2013
  ident: BFnrmicro2016164_CR111
  publication-title: Bioresour. Technol.
– volume: 4
  start-page: e5271
  year: 2009
  ident: BFnrmicro2016164_CR81
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0005271
– volume: 139
  start-page: 4790
  year: 2014
  ident: BFnrmicro2016164_CR127
  publication-title: Analyst
  doi: 10.1039/C4AN00856A
– volume: 73
  start-page: 7138
  year: 2007
  ident: BFnrmicro2016164_CR163
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.01306-07
– volume: 291
  start-page: 1
  year: 2009
  ident: BFnrmicro2016164_CR36
  publication-title: FEMS Microbiol. Lett.
  doi: 10.1111/j.1574-6968.2008.01420.x
– volume: 184
  start-page: 884
  year: 2002
  ident: BFnrmicro2016164_CR41
  publication-title: J. Bacteriol.
  doi: 10.1128/jb.184.4.884-888.2002
– volume: 3
  start-page: 380
  year: 2014
  ident: BFnrmicro2016164_CR109
  publication-title: ACS Synth. Biol.
  doi: 10.1021/sb4000993
– volume: 23
  start-page: 525
  year: 2010
  ident: BFnrmicro2016164_CR130
  publication-title: J. Mol. Recognit.
  doi: 10.1002/jmr.1029
– volume: 6
  start-page: 1535
  year: 2012
  ident: BFnrmicro2016164_CR27
  publication-title: ISME J.
  doi: 10.1038/ismej.2012.4
– volume: 103
  start-page: 305
  year: 2006
  ident: BFnrmicro2016164_CR69
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0507109103
– volume: 106
  start-page: 1948
  year: 2009
  ident: BFnrmicro2016164_CR142
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0806191105
– volume: 13
  start-page: 692
  year: 2014
  ident: BFnrmicro2016164_CR82
  publication-title: J. Proteome Res.
  doi: 10.1021/pr400788e
– volume: 288
  start-page: 7978
  year: 2013
  ident: BFnrmicro2016164_CR139
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M112.408757
– volume: 277
  start-page: 49621
  year: 2002
  ident: BFnrmicro2016164_CR159
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M207672200
– volume: 74
  start-page: 205
  year: 2010
  ident: BFnrmicro2016164_CR18
  publication-title: FEMS Microbiol. Ecol.
  doi: 10.1111/j.1574-6941.2010.00941.x
– volume: 314
  start-page: 75
  year: 2011
  ident: BFnrmicro2016164_CR129
  publication-title: FEMS Microbiol. Lett.
  doi: 10.1111/j.1574-6968.2010.02146.x
– volume: 108
  start-page: 1268
  year: 2011
  ident: BFnrmicro2016164_CR122
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.23050
– volume: 173
  start-page: 4155
  year: 1991
  ident: BFnrmicro2016164_CR53
  publication-title: J. Bacteriol.
  doi: 10.1128/jb.173.13.4155-4162.1991
– volume: 8
  start-page: 20
  year: 2015
  ident: BFnrmicro2016164_CR98
  publication-title: Biotechnol. Biofuels
  doi: 10.1186/s13068-015-0204-4
– volume: 47
  start-page: 877
  year: 2012
  ident: BFnrmicro2016164_CR133
  publication-title: Process Biochem.
  doi: 10.1016/j.procbio.2012.01.009
– volume: 15
  start-page: 7370
  year: 2015
  ident: BFnrmicro2016164_CR65
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b02727
– volume: 181
  start-page: 6720
  year: 1999
  ident: BFnrmicro2016164_CR30
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.181.21.6720-6729.1999
– volume: 13
  start-page: 310
  year: 2015
  ident: BFnrmicro2016164_CR146
  publication-title: Genomics Proteomics Bioinformatics
  doi: 10.1016/j.gpb.2015.07.002
– volume: 17
  start-page: 3407
  year: 2015
  ident: BFnrmicro2016164_CR19
  publication-title: Environ. Microbiol.
  doi: 10.1111/1462-2920.12868
– volume: 31
  start-page: 44
  year: 2015
  ident: BFnrmicro2016164_CR117
  publication-title: Metab. Eng.
  doi: 10.1016/j.ymben.2015.07.001
– volume: 9
  start-page: 5351
  year: 2009
  ident: BFnrmicro2016164_CR134
  publication-title: Sensors (Basel).
  doi: 10.3390/s90705351
SSID ssj0025572
Score 2.643218
SecondaryResourceType review_article
Snippet Key Points Cellulosomes are self-assembled multienzyme complexes that are highly efficient at degrading lignocellulose, mainly owing to common substrate...
Cellulosomes are multienzyme complexes that are produced by anaerobic cellulolytic bacteria for the degradation of lignocellulosic biomass. They comprise a...
SourceID proquest
gale
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 83
SubjectTerms 631/326/252/318
631/326/2522
631/326/41/1969
631/326/41/2173
631/326/41/2536
631/326/41/2537
Bacteria
Biofuels
Botanical research
Cell Cycle Proteins - metabolism
Cell Wall - metabolism
Cellulose
Cellulosomes - enzymology
Cellulosomes - metabolism
Cellulosomes - ultrastructure
Chromosomal Proteins, Non-Histone - metabolism
Clostridium thermocellum - metabolism
Cohesins
Enzymes
Gene expression
Genetic research
Heterogeneity
Infectious Diseases
Life Sciences
Lignin
Lignin - metabolism
Medical Microbiology
Microbiology
Microorganisms
Observations
Parasitology
Plant Cells - metabolism
Plant genetics
Plant proteins
Plants - metabolism
Plants - microbiology
Properties
review-article
Saccharides
Sludge
Virology
Title Cellulosomes: bacterial nanomachines for dismantling plant polysaccharides
URI https://link.springer.com/article/10.1038/nrmicro.2016.164
https://www.ncbi.nlm.nih.gov/pubmed/27941816
https://www.proquest.com/docview/1860128126
https://www.proquest.com/docview/1852663910
https://www.proquest.com/docview/1868305446
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9wwDBdby2AvY99N15UMBmOD7PLh2M5eRne0lMLKGB3cW_DXQSGX3Jq7h_73kxzn2ivsXkKC5eDIsvxTJEsAH1XuaG7naJYULGGmEknluEmsKZSTTujckaH485Kf_2EXs3IWfrj1Iaxy1IleUdvO0D_ySSa59_rk_Pvyb0JVo8i7GkpoPIZ9n7oM5VnM7gyusvTFmxB0pwnuU6ObMi3kpEU2oqaj2C7-NeNsa1t6qJzv7U4P3KV-Fzp7Ds8CfIxPhvl-AY9c-xKeDAUlb1_BxdQ1zZpqEyxc_y3WQypm7NCqtlv4uEnXx4hTY3vdL5CpdBg9XjZ4Fy-75rZXho5hXVvXv4ars9Or6XkSqiUkBk3cVSKNcEwYqtvLNAIjLcs5l1aL3NmMz6WqKstUKpnmPNWV4jLFR4Mr2BQVztQb2Gu71h1AnFltjWQyt4oxgQSVKp2VWSk5S3XBIpiMvKpNyCROBS2a2nu0C1kH7tbE3Rq5G8HnTY_lkEVjB-0nYn9NCwzfalQ4J4Bjo1RV9QkTglBqVUZwtEWJC8NsN48TWIeF2dd3YhTBh00z9aRgs9Z1a6JBWUHklqW7aLhEVYnGdARvB-HYfFmOOg6BE7Z8GaXl3gD-89mHu0f7Dp7mBCh8vPgR7K1u1u49wqGVPvYyj1c5zY5h_8fp5a_f_wD5jQnw
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1ri9NAcDh7iPdFfFs9NYIiCrF5bDYbQeQ87-i9ikiF-7bsq3CQJj3TIv1R_kdn8qjXA_vtviXsbNidmZ1HZmYH4I2KHNF2gm5JzHxmstTPHDe-NbFywqU6cuQono348Cc7Pk_Ot-BPVwtDaZWdTKwFtS0N_SMfhILXUZ-If5ld-tQ1iqKrXQuNhi1O3PI3umzV56NvSN-3UXR4MN4f-m1XAd-gKzj3hUkdSw31t2UaDQgtkgkXVqeRsyGfCJVllqlAMM15oDPFRYCvBjndxBnuCD97C7YZFbT2YPvrwej7j5WHlyR1tyi08gMfFWMXFw1iMSiQbihaKZmMfww5W9OD17XBFXV4LT5bq73De3C3tVe9vYbB7sOWKx7A7aaD5fIhHO-7PF9QM4Spqz55urn7GScUqiindaKmqzw0jD17UU2RilT97s1yfPJmZb6slKG6rwvrqkcwvglEPoZeURbuKXih1dYIJiKrGEsRIFOJsyJMBGeBjlkfBh2upGmvLqcOGrmsQ-ixkC12JWFXInb78H41Y9Zc27EB9h2hX9KJxq8a1RYm4Nrobiy5x9KUzOIs6cPuGiSeRLM-3BFQtpKgkv_4tg-vV8M0k7LbClcuCAZ5BU3FMNgEwwXKZvTe-_CkYY7VziIUqmip4ciHjluuLOA_2362ebWv4M5wfHYqT49GJ89hJyJrpk5W34Xe_NfCvUBbbK5ftifAA3nDZ-4vwyJD2A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1ra9RAcKgVxS_i22jVCIooxMtjs7sRRErr0YcWP1S4b8u-Dgp3ybW5Q-6n-e-cyePaK3jf-i1hZ8PuvCczuwPwTqeeaDvGsCRjEbOFiArPbeRspr30wqSeAsWfJ_zgNzsa5aMt-NufhaGyyl4nNoraVZb-kQ8SyZusT8oH464s4tf-8NvsPKIOUpRp7dtptCxy7Jd_MHyrvx7uI63fp-nw--neQdR1GIgshoXzSFrhmbDU65YZdCaMzMdcOiNS7xI-lrooHNOxZIbz2BSayxhfLXK9zQrcHX72FtwWGTpVKEpidBnr5XnTNwr9_ThCE9lnSONMDkqkICpZKivjnxPO1izidbtwxTBey9Q2BnD4AO53nmu427LaQ9jy5SO40_ayXD6Goz0_mSyoLcLU119C094CjRNKXVbTpmTT1yG6yKE7q6dITzoHH84m-BTOqsmy1pZOgJ05Xz-B05tA41PYLqvSP4cwccZZyWTqNGMCAQqdeyeTXHIWm4wFMOhxpWx3iTn10pioJpmeSdVhVxF2FWI3gI-rGbP2Ao8NsB8I_YpkG79qdXdEAddGt2SpXSYEOchFHsDOGiTKpF0f7gmoOp1Qq0sODuDtaphmUp1b6asFwSCvoNOYxJtguEQtjXF8AM9a5ljtLEX1ij4bjnzqueXKAv6z7RebV_sG7qKkqR-HJ8cv4V5Kbk1Ttb4D2_OLhX-FTtncvG7YPwR1w-L2D0LaRp8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cellulosomes%3A+bacterial+nanomachines+for+dismantling+plant+polysaccharides&rft.jtitle=Nature+reviews.+Microbiology&rft.au=Artzi%2C+Lior&rft.au=Bayer%2C+Edward+A.&rft.au=Mora%C3%AFs%2C+Sarah&rft.date=2017-02-01&rft.issn=1740-1526&rft.eissn=1740-1534&rft.volume=15&rft.issue=2&rft.spage=83&rft.epage=95&rft_id=info:doi/10.1038%2Fnrmicro.2016.164&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_nrmicro_2016_164
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1740-1526&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1740-1526&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1740-1526&client=summon