A Novel Mechanism-Equivalence-Based Tweedie Exponential Dispersion Process for Adaptive Degradation Modeling and Life Prediction
Accurately predicting the remaining useful life (RUL) of critical mechanical components is a central challenge in reliability engineering. Stochastic processes, which are capable of modeling uncertainties, are widely used in RUL prediction. However, conventional stochastic process models face two ma...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 25; no. 2; p. 347 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
01.01.2025
MDPI |
Subjects | |
Online Access | Get full text |
ISSN | 1424-8220 1424-8220 |
DOI | 10.3390/s25020347 |
Cover
Loading…
Abstract | Accurately predicting the remaining useful life (RUL) of critical mechanical components is a central challenge in reliability engineering. Stochastic processes, which are capable of modeling uncertainties, are widely used in RUL prediction. However, conventional stochastic process models face two major limitations: (1) the reliance on strict assumptions during model formulation, restricting their applicability to a narrow range of degradation processes, and (2) the inability to account for potential variations in the degradation mechanism during modeling and prediction. To address these issues, we propose a novel mechanism-equivalence-based Tweedie exponential dispersion process (ME-based TEDP) for adaptive degradation modeling and RUL prediction of mechanical components. The proposed model enhances the original Tweedie exponential dispersion process (TEDP) by incorporating degradation mechanism equivalence, effectively capturing the correlation between model parameters. Furthermore, it improves prediction accuracy and interpretability by employing a dynamic testing–modeling–predicting strategy. Application of the ME-based TEDP model to high-speed rail bogie systems demonstrates its effectiveness and superiority over existing approaches. This study advances the theory of degradation modeling and significantly improves the precision of RUL predictions. |
---|---|
AbstractList | Accurately predicting the remaining useful life (RUL) of critical mechanical components is a central challenge in reliability engineering. Stochastic processes, which are capable of modeling uncertainties, are widely used in RUL prediction. However, conventional stochastic process models face two major limitations: (1) the reliance on strict assumptions during model formulation, restricting their applicability to a narrow range of degradation processes, and (2) the inability to account for potential variations in the degradation mechanism during modeling and prediction. To address these issues, we propose a novel mechanism-equivalence-based Tweedie exponential dispersion process (ME-based TEDP) for adaptive degradation modeling and RUL prediction of mechanical components. The proposed model enhances the original Tweedie exponential dispersion process (TEDP) by incorporating degradation mechanism equivalence, effectively capturing the correlation between model parameters. Furthermore, it improves prediction accuracy and interpretability by employing a dynamic testing–modeling–predicting strategy. Application of the ME-based TEDP model to high-speed rail bogie systems demonstrates its effectiveness and superiority over existing approaches. This study advances the theory of degradation modeling and significantly improves the precision of RUL predictions. Accurately predicting the remaining useful life (RUL) of critical mechanical components is a central challenge in reliability engineering. Stochastic processes, which are capable of modeling uncertainties, are widely used in RUL prediction. However, conventional stochastic process models face two major limitations: (1) the reliance on strict assumptions during model formulation, restricting their applicability to a narrow range of degradation processes, and (2) the inability to account for potential variations in the degradation mechanism during modeling and prediction. To address these issues, we propose a novel mechanism-equivalence-based Tweedie exponential dispersion process (ME-based TEDP) for adaptive degradation modeling and RUL prediction of mechanical components. The proposed model enhances the original Tweedie exponential dispersion process (TEDP) by incorporating degradation mechanism equivalence, effectively capturing the correlation between model parameters. Furthermore, it improves prediction accuracy and interpretability by employing a dynamic testing-modeling-predicting strategy. Application of the ME-based TEDP model to high-speed rail bogie systems demonstrates its effectiveness and superiority over existing approaches. This study advances the theory of degradation modeling and significantly improves the precision of RUL predictions.Accurately predicting the remaining useful life (RUL) of critical mechanical components is a central challenge in reliability engineering. Stochastic processes, which are capable of modeling uncertainties, are widely used in RUL prediction. However, conventional stochastic process models face two major limitations: (1) the reliance on strict assumptions during model formulation, restricting their applicability to a narrow range of degradation processes, and (2) the inability to account for potential variations in the degradation mechanism during modeling and prediction. To address these issues, we propose a novel mechanism-equivalence-based Tweedie exponential dispersion process (ME-based TEDP) for adaptive degradation modeling and RUL prediction of mechanical components. The proposed model enhances the original Tweedie exponential dispersion process (TEDP) by incorporating degradation mechanism equivalence, effectively capturing the correlation between model parameters. Furthermore, it improves prediction accuracy and interpretability by employing a dynamic testing-modeling-predicting strategy. Application of the ME-based TEDP model to high-speed rail bogie systems demonstrates its effectiveness and superiority over existing approaches. This study advances the theory of degradation modeling and significantly improves the precision of RUL predictions. |
Audience | Academic |
Author | Wu, Jiayue Zhao, Yu Liu, Yujie Wang, Han Ma, Xiaobing |
AuthorAffiliation | 1 School of Reliability and Systems Engineering, Beihang University, Beijing 100191, China 2 Reliability and Environmental Engineering Science & Technology Laboratory, Beihang University, Beijing 100191, China |
AuthorAffiliation_xml | – name: 2 Reliability and Environmental Engineering Science & Technology Laboratory, Beihang University, Beijing 100191, China – name: 1 School of Reliability and Systems Engineering, Beihang University, Beijing 100191, China |
Author_xml | – sequence: 1 givenname: Jiayue surname: Wu fullname: Wu, Jiayue – sequence: 2 givenname: Yujie surname: Liu fullname: Liu, Yujie – sequence: 3 givenname: Han orcidid: 0000-0002-2483-9244 surname: Wang fullname: Wang, Han – sequence: 4 givenname: Xiaobing surname: Ma fullname: Ma, Xiaobing – sequence: 5 givenname: Yu surname: Zhao fullname: Zhao, Yu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39860716$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkktvEzEQgFeoiD7gwB9AlrjAYYsfGz9OKG0DVEqBQzlbjj2bOtq1t_Ym0Ft_Ok5Tohb5YMv-5hvbM8fVQYgBquotwaeMKfwp0wmmmDXiRXVEGtrUklJ88GR9WB3nvMKYMsbkq-qQKcmxIPyoup-i73EDHboCe2OCz309u137jekgWKjPTAaHrn8DOA9o9mcoicPoTYcufB4gZR8D-pmihZxRGxOaOjOMfgPoApbJODNugavooPNhiUxwaO5bKCFFaLeHr6uXrekyvHmcT6pfX2bX59_q-Y-vl-fTeW0brsZaSiXsggrqQBBBLJ0wAQ1tW2yMUgvGCCwEJ1gqCi1zhkoOWCnLmLBCWcNOqsud10Wz0kPyvUl3OhqvHzZiWmqTRm870AvnLBESYCKaRllhmFO2ddhIwCWRLa7PO9ewXvTgbPmSZLpn0ucnwd_oZdxoQgSXnONi-PBoSPF2DXnUvc8Wus4EiOusGZkoiRnlvKDv_0NXcZ1C-asHihMlcFOo0x21LJXTPrSxJLZlOOi9LVVrfdmfyqKcSKFYCXj39A37y_9rjQJ83AE2xZwTtHuEYL1tO71vO_YX-K3J0Q |
Cites_doi | 10.1080/03610918.2013.773347 10.1007/s00170-017-1143-y 10.1023/A:1009664101413 10.1109/TIE.2016.2515054 10.1016/j.ymssp.2023.110435 10.1016/j.jsv.2022.116746 10.3390/s24206581 10.1186/s12874-023-02020-5 10.1109/TR.2005.863811 10.1023/B:LIDA.0000036389.14073.dd 10.1016/j.ress.2021.108136 10.1109/TR.2019.2955596 10.1016/j.ymssp.2024.112134 10.1109/TR.2009.2026784 10.1002/qre.3210 10.5005/jp-journals-10028-1653 10.1080/02664763.2012.725465 10.1109/TR.2021.3107050 10.1002/qre.1771 10.1109/TETCI.2024.3377728 10.1080/16843703.2024.2400434 10.1109/ACCESS.2020.3041682 10.1109/TR.2018.2849087 10.1016/j.ymssp.2019.03.019 10.1109/TR.2019.2895352 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2025 by the authors. 2025 |
Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2025 by the authors. 2025 |
DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/s25020347 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic CrossRef PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_bddc178ee57449c7a3d9cfd0a8e0331c PMC11768660 A832658793 39860716 10_3390_s25020347 |
Genre | Journal Article |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 72201019 – fundername: Fundamental Research Funds for the Central Universities |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M NPM PJZUB PPXIY PMFND 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c469t-8897cb272de7171c2537e42ff0aa99b331eb7610892ef3da286e099c337c79ca3 |
IEDL.DBID | 7X7 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:29:14 EDT 2025 Thu Aug 21 18:40:33 EDT 2025 Fri Jul 11 05:21:13 EDT 2025 Fri Jul 25 22:24:58 EDT 2025 Tue Jun 10 20:59:52 EDT 2025 Mon Jul 21 05:52:28 EDT 2025 Tue Jul 01 02:10:09 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | RUL prediction Tweedie exponential dispersion process degradation analysis mechanism equivalence |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c469t-8897cb272de7171c2537e42ff0aa99b331eb7610892ef3da286e099c337c79ca3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-2483-9244 |
OpenAccessLink | https://www.proquest.com/docview/3159619704?pq-origsite=%requestingapplication% |
PMID | 39860716 |
PQID | 3159619704 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_bddc178ee57449c7a3d9cfd0a8e0331c pubmedcentral_primary_oai_pubmedcentral_nih_gov_11768660 proquest_miscellaneous_3159803266 proquest_journals_3159619704 gale_infotracacademiconefile_A832658793 pubmed_primary_39860716 crossref_primary_10_3390_s25020347 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-01-01 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2025 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Zhang (ref_30) 2015; 32 Yang (ref_29) 2016; 63 Ma (ref_25) 2015; 44 Kishore (ref_27) 2024; 58 Wang (ref_24) 2022; 55 Chen (ref_3) 2020; 69 Lawless (ref_11) 2004; 10 Ferreira (ref_5) 2012; 39 ref_31 Peng (ref_7) 2009; 58 Luo (ref_14) 2022; 218 Suo (ref_17) 2021; 28 Dong (ref_18) 2019; 46 Chen (ref_2) 2022; 71 Ma (ref_28) 2023; 198 Fu (ref_26) 2018; 94 Whitmore (ref_9) 1997; 3 Cheng (ref_12) 2022; 523 Duan (ref_13) 2018; 67 Cheng (ref_15) 2025; 224 Liao (ref_8) 2006; 55 ref_23 Zhou (ref_6) 2019; 68 Yan (ref_21) 2024; 8 Chen (ref_22) 2023; 39 Wang (ref_20) 2019; 127 ref_1 Wang (ref_19) 2015; 36 Chen (ref_4) 2020; 8 Zhang (ref_10) 2022; 51 Sun (ref_16) 2008; 26 Bai (ref_32) 2022; 28 |
References_xml | – volume: 44 start-page: 257 year: 2015 ident: ref_25 article-title: An adjustment to the Bartlett’s test for small sample size publication-title: Commun. Stat. Simul. Comput. doi: 10.1080/03610918.2013.773347 – volume: 94 start-page: 4493 year: 2018 ident: ref_26 article-title: F test-based automatic modeling of single geometric error component for error compensation of five-axis machine tools publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-017-1143-y – volume: 3 start-page: 27 year: 1997 ident: ref_9 article-title: Modelling accelerated degradation data using Wiener dispersion with a time scale transformation publication-title: Lifetime Data Anal. doi: 10.1023/A:1009664101413 – volume: 55 start-page: 129 year: 2022 ident: ref_24 article-title: A new class of mechanism-equivalence-based Wiener process models for reliability analysis publication-title: IISE Trans. – volume: 26 start-page: 6 year: 2008 ident: ref_16 article-title: A condition that the failure mechanism remains unchanged publication-title: Reliab. Environ. Test. Electron. Prod. – volume: 63 start-page: 2633 year: 2016 ident: ref_29 article-title: Health index-based prognostics for remaining useful life predictions in electrical machines publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2016.2515054 – volume: 36 start-page: 889 year: 2015 ident: ref_19 article-title: Equivalence testing method for failure mechanism based on degradation model publication-title: J. Aeronaut. – volume: 198 start-page: 110435 year: 2023 ident: ref_28 article-title: Decision-level machinery fault prognosis using N-BEATS-based degradation feature prediction and reconstruction publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2023.110435 – volume: 523 start-page: 116746 year: 2022 ident: ref_12 article-title: An improved envelope spectrum via candidate fault frequency optimization-gram for bearing fault diagnosis publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2022.116746 – ident: ref_1 doi: 10.3390/s24206581 – volume: 51 start-page: 27 year: 2022 ident: ref_10 article-title: Prediction of high-pressure valve life based on Wiener process degradation model publication-title: J. Hebei Univ. Technol. – ident: ref_31 doi: 10.1186/s12874-023-02020-5 – volume: 55 start-page: 59 year: 2006 ident: ref_8 article-title: Optimal design for step-stress accelerated degradation tests publication-title: IEEE Trans. Reliab. doi: 10.1109/TR.2005.863811 – volume: 10 start-page: 213 year: 2004 ident: ref_11 article-title: Covariates and random effects in a gamma process model with application to degradation and failure publication-title: Lifetime Data Anal. doi: 10.1023/B:LIDA.0000036389.14073.dd – volume: 218 start-page: 108 year: 2022 ident: ref_14 article-title: Modelling and estimation of system reliability under dynamic operating environments and lifetime ordering constraints publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2021.108136 – volume: 69 start-page: 887 year: 2020 ident: ref_3 article-title: Tweedie Exponential Dispersion Processes for Degradation Modeling, Prognostic, and Accelerated Degradation Test Planning publication-title: IEEE Trans. Reliab. doi: 10.1109/TR.2019.2955596 – volume: 224 start-page: 112134 year: 2025 ident: ref_15 article-title: Surrogate modeling of pantograph-catenary system interactions publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2024.112134 – volume: 46 start-page: 23 year: 2019 ident: ref_18 article-title: Equivalence determination of failure mechanism in accelerated degradation test based on inverse Gaussian process publication-title: Intensity Environ. – volume: 58 start-page: 444 year: 2009 ident: ref_7 article-title: Mis-specification analysis of linear degradation models publication-title: IEEE Trans. Reliab. doi: 10.1109/TR.2009.2026784 – volume: 39 start-page: 25 year: 2023 ident: ref_22 article-title: Dynamic reliability analysis of gear transmission system based on sparse grid numerical integration and saddle-point approximation method publication-title: Qual. Reliab. Eng. Int. doi: 10.1002/qre.3210 – volume: 58 start-page: 38 year: 2024 ident: ref_27 article-title: Statistics Corner: Analysis of Variance publication-title: J. Postgrad. Med. Educ. Res. doi: 10.5005/jp-journals-10028-1653 – volume: 28 start-page: 2375 year: 2022 ident: ref_32 article-title: Asymptotics of AIC, BIC and Cp model selection rules in high-dimensional regression publication-title: Bernoulli Soc. Math. Stat. Probab. – volume: 39 start-page: 2721 year: 2012 ident: ref_5 article-title: Degradation data analysis for samples under unequal operating conditions: A case study on train wheels publication-title: J. Appl. Stat. doi: 10.1080/02664763.2012.725465 – volume: 71 start-page: 47 year: 2022 ident: ref_2 article-title: Random-Effect Models for Degradation Analysis Based on Nonlinear Tweedie Exponential-Dispersion Processes publication-title: IEEE Trans. Reliab. doi: 10.1109/TR.2021.3107050 – volume: 32 start-page: 547 year: 2015 ident: ref_30 article-title: Degradation feature selection for remaining useful life prediction of rolling element bearings publication-title: Qual. Reliab. Eng. Int. doi: 10.1002/qre.1771 – volume: 8 start-page: 2827 year: 2024 ident: ref_21 article-title: Transformer and Graph Convolution-Based Unsupervised Detection of Machine Anomalous Sound Under Domain Shifts publication-title: IEEE Trans. Emerg. Top. Comput. Intell. doi: 10.1109/TETCI.2024.3377728 – volume: 28 start-page: 10 year: 2021 ident: ref_17 article-title: Equivalence testing of failure mechanism based on the principle of constant acceleration factor publication-title: Electro Opt. Control – ident: ref_23 doi: 10.1080/16843703.2024.2400434 – volume: 8 start-page: 215145 year: 2020 ident: ref_4 article-title: Remaining Useful Life Prediction for Complex Systems with Multiple Indicators Based on Particle Filter and Parameter Correlation publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3041682 – volume: 67 start-page: 1128 year: 2018 ident: ref_13 article-title: Exponential-dispersion degradation process models with random effects and covariates publication-title: IEEE Trans. Reliab. doi: 10.1109/TR.2018.2849087 – volume: 127 start-page: 370 year: 2019 ident: ref_20 article-title: An improved Wiener process model with adaptive drift and diffusion for online remaining useful life prediction publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2019.03.019 – volume: 68 start-page: 398 year: 2019 ident: ref_6 article-title: Exponential Dispersion Process for Degradation Analysis publication-title: IEEE Trans. Reliab. doi: 10.1109/TR.2019.2895352 |
SSID | ssj0023338 |
Score | 2.4368515 |
Snippet | Accurately predicting the remaining useful life (RUL) of critical mechanical components is a central challenge in reliability engineering. Stochastic... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | 347 |
SubjectTerms | Accuracy Analysis degradation analysis Machine learning mechanism equivalence Methods Parameter estimation RUL prediction Stochastic models Stochastic processes Stress Trends Tweedie exponential dispersion process |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT3BAUF4pLTIIiVNUx3Zi-7ilW1WI9tRKvVmOPRGRILuwu4UjP52ZJLvKigMXrnESTTzPz7G_Yew9GJPQEIo8NQJyXYqYh7JK6PG6rJ02Gvpeh1fX1eWt_nRX3k1afdGesIEeeJi40zqlWBgLUBqtXTRBJRebJIIFoVQRKfpiztuCqRFqKUReA4-QQlB_usJEL4WiHiqT7NOT9P8diie5aH-f5CTxXDxhj8eKkc8GSZ-yB9AdskcTHsFn7PeMXy_u4Su_AjrI266-5fPvmxaNiPw2P8NMlfjNT0pUwOe_louO9gjhS89bIgqnBTM-nhjgWMTyWQpLCoP8nKgkhq5LnLqm0dl1HrrEP7cN4CP0l4cGn7Pbi_nNx8t8bK2QR8TD69xaZ2ItjUyAeK6IslQGtGwaEYJzNU4s1AYrK-skNCoFaSvAWjIqZaJxMagX7KBDYV8xHsBhxktJI7DSIQrbKLAomoyNScLJjL3bTrlfDgwaHpEH6cXv9JKxM1LG7gYive4voCn40RT8v0whYx9IlZ5cE_UVw3jCAOUkkis_w-iFBRdGpIwdb7XtR59deYWVHcJJI3TG3u6G0dvoF0roYLEZ7rECX1Nl7OVgHDuZlbNE1ocjds9s9j5qf6Rrv_SM3kWBqK-qxNH_mIbX7KGkJsX9OtExO1j_2MAJVk7r-k3vJH8AdJ4aXw priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZKucAB8SZQkEFInAKO7cT2AaEt3apCbE-t1Fvk2JOyUslu9wHlxk9nJsmuNgJxjZ1o4pnxzOfHN4y9BWMiGkKWxlpAqnMRUp8XET1e55XTRkNb63ByWpyc6y8X-cUe29TY7Adw-U9oR_WkzhdX72-uf31Ch_9IiBMh-4clhnEplDa32G0MSIb8c6K3mwlSIQzrSIWG3QehqGXs_3te3glMw0OTO1Ho-D6716ePfNTp-wHbg-Yhu7tDKviI_R7x09kPuOIToFu90-X3dHy9nqJFkROnhxi2Ij_7SVEL-PhmPmvowBB-9GhKrOG0esb76wMcM1o-in5OcyI_Il6JrgQTpxJqdJGd-ybyr9Ma8BXa8qHGx-z8eHz2-STt6yykAcHxKrXWmVBJIyMguMuCzJUBLetaeO9cpVQGlcE0yzoJtYpe2gIwsQxKmWBc8OoJ229Q2GeMe3AY_mLUiLK0D8LWCiyKJkNtonAyYW82Q17OOzqNEmEI6aXc6iVhh6SMbQdiwG4fzBaXZe9QZRVjyIwFyI3WLhivogt1FN6CQIlDwt6RKkuyHNRX8P11A5STGK_KEU5lmH3h9JSwg422y439lQrTPMSWRuiEvd42o-vRfopvYLbu-liBnykS9rQzjq3Mylli7sMWOzCbwU8NW5rpt5beO8sQAhaFeP5_uV6wO5JqEbfLQQdsf7VYw0tMkFbVq9b8_wD9BBIJ priority: 102 providerName: Scholars Portal |
Title | A Novel Mechanism-Equivalence-Based Tweedie Exponential Dispersion Process for Adaptive Degradation Modeling and Life Prediction |
URI | https://www.ncbi.nlm.nih.gov/pubmed/39860716 https://www.proquest.com/docview/3159619704 https://www.proquest.com/docview/3159803266 https://pubmed.ncbi.nlm.nih.gov/PMC11768660 https://doaj.org/article/bddc178ee57449c7a3d9cfd0a8e0331c |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwELZg9wIHxJvAUhmExClaJ3Zi-4RatmWFaIXQrtRb5NgTqARJd9sCR346M0nabYXEJYfYiSaZ99j-hrE3oHVAQUjiUAmIVSZ87LI8oMarrLRKK2h7HU5n-fml-jjP5n3BbdVvq9zaxNZQh8ZTjfxUot_FYF8L9W55FVPXKFpd7Vto3GbHBF1GW7r0_Cbhkph_dWhCElP70xW6-1RI6qSy54NaqP5_DfKeRzrcLbnnfib32b0-buTDjtEP2C2oH7K7e2iCj9ifIZ81P-E7nwId512sfsTjq80CRYm0Nx6hvwr84he5K-Dj38umpp1C-NKzBcGFU9mM9-cGOIayfBjckowhPyNAia73EqfeaXSCnbs68E-LCvARWuuhwcfscjK-eH8e9w0WYo9Z8To2xmpfpjoNgFld4tNMalBpVQnnrC2lTKDUGF8Zm0Ilg0tNDhhReim119Y7-YQd1UjsM8YdWPR7IShMr5TzwlQSDJKW-koHYdOIvd7-8mLZ4WgUmH8QX4odXyI2ImbsJhD0dXujuf5a9JpUlCH4RBuATCtlvXYyWF8F4QwIpNhH7C2xsiAFRX55158zQDoJ6qoYog3DsAvtUsROttwues1dFTdyFrFXu2HUOVpIcTU0m26OEfiaPGJPO-HY0SytIcg-HDEHYnPwUYcj9eJbi-udJJj75bl4_n-6XrA7KTUhbutAJ-xofb2BlxgZrctBK_54NZMPA3Y8Gs8-fxm0VQa8TpX5C3AdFPs |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLfGOAAHxOcIDDAIxCmaYzuxfUCoo5061vbUSbsFx3agEqTd2jK48RfxN_JeknatkLjtGifWi9_nz_Z7j5A3QSkPgpDEvmQhlilzsU0zDxov08JIJUPd63A4yvqn8tNZerZD_qxyYfBa5com1obaTx3ukR8I8LsQ7CsmP8zOY-wahaerqxYajVichF-XANnm74-7wN-3nB_1xh_7cdtVIHYABRex1ka5givuA0CZxPFUqCB5WTJrjSmESEIB2J5pw0MpvOU6CxBGOSGUU8ZZAfPeIDfB8TLUKHV2BfAE4L2mepEQhh3MIbzgTGDnlg2fV7cG-NcBbHjA7duZG-7u6B6528aptNMI1n2yE6oH5M5G9cKH5HeHjqY_wjc6DJg-PJl_j3vnywmILlqL-BD8o6fjS3SPgfZ-zqYV3kyCSbsTLE-O23S0zVOgEDrTjrczNL60iwUsml5PFHu1YcY8tZWng0kZ4BM8W8LBR-T0Wpb-MdmtgNgnhNpgwM96LwHOSeuYLkXQQBp3pfLM8Ii8Xi15PmvqduSAd5Av-ZovETlEZqxfwFLb9YPpxZe81dy88N4lSoeQKimNU1Z440rPrA4MKHYReYeszNEgAL-cbfMagE4srZV3wGZCmAd2MCL7K27nraWY51dyHZFX62HQcTy4sVWYLpt3NINpsojsNcKxplkYjSUCYURvic3WT22PVJOvdR3xJAGsmWXs6f_peklu9cfDQT44Hp08I7c5NkCu96D2ye7iYhmeQ1S2KF7UqkDJ5-vWvb_RnEzD |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLfGkBA7IL4JDDAIxCmqYzuxfUCoo602tlUcNqm34NgOVBppt7YMbvxd_HW8l6RdKyRuu8aJ9eL3-bP93iPkTVDKgyAksS9ZiGXKXGzTzIPGy7QwUslQ9zo8Hmb7p_LTKB1tkT_LXBi8Vrm0ibWh9hOHe-QdAX4Xgn3FZKdsr0V87g0-TM9j7CCFJ63LdhqNiByGX5cA32bvD3rA67ecD_onH_fjtsNA7AAWzmOtjXIFV9wHgDWJ46lQQfKyZNYaUwiRhAJwPtOGh1J4y3UWIKRyQiinjLMC5r1BbiqRJqhjanQF9gRgv6aSkRCGdWYQanAmsIvLmv-r2wT86wzWvOHmTc011ze4S-60MSvtNkJ2j2yF6j7ZWatk-ID87tLh5Ec4o8cBU4nHs-9x_3wxBjFGyxHvga_09OQSXWWg_Z_TSYW3lGDS3hhLleOWHW1zFiiE0bTr7RQNMe1hMYum7xPFvm2YPU9t5enRuAzwCZ4z4eBDcnotS_-IbFdA7BNCbTDgc72XAO2kdUyXImggjbtSeWZ4RF4vlzyfNjU8csA-yJd8xZeI7CEzVi9g2e36weTia95qcV547xKlQ0iVlMYpK7xxpWdWBwYUu4i8Q1bmaByAX862OQ5AJ5bZyrtgPyHkA5sYkd0lt_PWaszyKxmPyKvVMOg7HuLYKkwWzTuawTRZRB43wrGiWRiN5QJhRG-IzcZPbY5U4291TfEkAdyZZezp_-l6SW6B1uVHB8PDZ-Q2x17I9XbULtmeXyzCcwjQ5sWLWhMo-XLdqvcXHIVQ-Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Mechanism-Equivalence-Based+Tweedie+Exponential+Dispersion+Process+for+Adaptive+Degradation+Modeling+and+Life+Prediction&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Wu%2C+Jiayue&rft.au=Liu%2C+Yujie&rft.au=Wang%2C+Han&rft.au=Ma%2C+Xiaobing&rft.date=2025-01-01&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=25&rft.issue=2&rft.spage=347&rft_id=info:doi/10.3390%2Fs25020347&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |