A Novel Mechanism-Equivalence-Based Tweedie Exponential Dispersion Process for Adaptive Degradation Modeling and Life Prediction

Accurately predicting the remaining useful life (RUL) of critical mechanical components is a central challenge in reliability engineering. Stochastic processes, which are capable of modeling uncertainties, are widely used in RUL prediction. However, conventional stochastic process models face two ma...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 25; no. 2; p. 347
Main Authors Wu, Jiayue, Liu, Yujie, Wang, Han, Ma, Xiaobing, Zhao, Yu
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 01.01.2025
MDPI
Subjects
Online AccessGet full text
ISSN1424-8220
1424-8220
DOI10.3390/s25020347

Cover

Loading…
Abstract Accurately predicting the remaining useful life (RUL) of critical mechanical components is a central challenge in reliability engineering. Stochastic processes, which are capable of modeling uncertainties, are widely used in RUL prediction. However, conventional stochastic process models face two major limitations: (1) the reliance on strict assumptions during model formulation, restricting their applicability to a narrow range of degradation processes, and (2) the inability to account for potential variations in the degradation mechanism during modeling and prediction. To address these issues, we propose a novel mechanism-equivalence-based Tweedie exponential dispersion process (ME-based TEDP) for adaptive degradation modeling and RUL prediction of mechanical components. The proposed model enhances the original Tweedie exponential dispersion process (TEDP) by incorporating degradation mechanism equivalence, effectively capturing the correlation between model parameters. Furthermore, it improves prediction accuracy and interpretability by employing a dynamic testing–modeling–predicting strategy. Application of the ME-based TEDP model to high-speed rail bogie systems demonstrates its effectiveness and superiority over existing approaches. This study advances the theory of degradation modeling and significantly improves the precision of RUL predictions.
AbstractList Accurately predicting the remaining useful life (RUL) of critical mechanical components is a central challenge in reliability engineering. Stochastic processes, which are capable of modeling uncertainties, are widely used in RUL prediction. However, conventional stochastic process models face two major limitations: (1) the reliance on strict assumptions during model formulation, restricting their applicability to a narrow range of degradation processes, and (2) the inability to account for potential variations in the degradation mechanism during modeling and prediction. To address these issues, we propose a novel mechanism-equivalence-based Tweedie exponential dispersion process (ME-based TEDP) for adaptive degradation modeling and RUL prediction of mechanical components. The proposed model enhances the original Tweedie exponential dispersion process (TEDP) by incorporating degradation mechanism equivalence, effectively capturing the correlation between model parameters. Furthermore, it improves prediction accuracy and interpretability by employing a dynamic testing–modeling–predicting strategy. Application of the ME-based TEDP model to high-speed rail bogie systems demonstrates its effectiveness and superiority over existing approaches. This study advances the theory of degradation modeling and significantly improves the precision of RUL predictions.
Accurately predicting the remaining useful life (RUL) of critical mechanical components is a central challenge in reliability engineering. Stochastic processes, which are capable of modeling uncertainties, are widely used in RUL prediction. However, conventional stochastic process models face two major limitations: (1) the reliance on strict assumptions during model formulation, restricting their applicability to a narrow range of degradation processes, and (2) the inability to account for potential variations in the degradation mechanism during modeling and prediction. To address these issues, we propose a novel mechanism-equivalence-based Tweedie exponential dispersion process (ME-based TEDP) for adaptive degradation modeling and RUL prediction of mechanical components. The proposed model enhances the original Tweedie exponential dispersion process (TEDP) by incorporating degradation mechanism equivalence, effectively capturing the correlation between model parameters. Furthermore, it improves prediction accuracy and interpretability by employing a dynamic testing-modeling-predicting strategy. Application of the ME-based TEDP model to high-speed rail bogie systems demonstrates its effectiveness and superiority over existing approaches. This study advances the theory of degradation modeling and significantly improves the precision of RUL predictions.Accurately predicting the remaining useful life (RUL) of critical mechanical components is a central challenge in reliability engineering. Stochastic processes, which are capable of modeling uncertainties, are widely used in RUL prediction. However, conventional stochastic process models face two major limitations: (1) the reliance on strict assumptions during model formulation, restricting their applicability to a narrow range of degradation processes, and (2) the inability to account for potential variations in the degradation mechanism during modeling and prediction. To address these issues, we propose a novel mechanism-equivalence-based Tweedie exponential dispersion process (ME-based TEDP) for adaptive degradation modeling and RUL prediction of mechanical components. The proposed model enhances the original Tweedie exponential dispersion process (TEDP) by incorporating degradation mechanism equivalence, effectively capturing the correlation between model parameters. Furthermore, it improves prediction accuracy and interpretability by employing a dynamic testing-modeling-predicting strategy. Application of the ME-based TEDP model to high-speed rail bogie systems demonstrates its effectiveness and superiority over existing approaches. This study advances the theory of degradation modeling and significantly improves the precision of RUL predictions.
Audience Academic
Author Wu, Jiayue
Zhao, Yu
Liu, Yujie
Wang, Han
Ma, Xiaobing
AuthorAffiliation 1 School of Reliability and Systems Engineering, Beihang University, Beijing 100191, China
2 Reliability and Environmental Engineering Science & Technology Laboratory, Beihang University, Beijing 100191, China
AuthorAffiliation_xml – name: 2 Reliability and Environmental Engineering Science & Technology Laboratory, Beihang University, Beijing 100191, China
– name: 1 School of Reliability and Systems Engineering, Beihang University, Beijing 100191, China
Author_xml – sequence: 1
  givenname: Jiayue
  surname: Wu
  fullname: Wu, Jiayue
– sequence: 2
  givenname: Yujie
  surname: Liu
  fullname: Liu, Yujie
– sequence: 3
  givenname: Han
  orcidid: 0000-0002-2483-9244
  surname: Wang
  fullname: Wang, Han
– sequence: 4
  givenname: Xiaobing
  surname: Ma
  fullname: Ma, Xiaobing
– sequence: 5
  givenname: Yu
  surname: Zhao
  fullname: Zhao, Yu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39860716$$D View this record in MEDLINE/PubMed
BookMark eNpdkktvEzEQgFeoiD7gwB9AlrjAYYsfGz9OKG0DVEqBQzlbjj2bOtq1t_Ym0Ft_Ok5Tohb5YMv-5hvbM8fVQYgBquotwaeMKfwp0wmmmDXiRXVEGtrUklJ88GR9WB3nvMKYMsbkq-qQKcmxIPyoup-i73EDHboCe2OCz309u137jekgWKjPTAaHrn8DOA9o9mcoicPoTYcufB4gZR8D-pmihZxRGxOaOjOMfgPoApbJODNugavooPNhiUxwaO5bKCFFaLeHr6uXrekyvHmcT6pfX2bX59_q-Y-vl-fTeW0brsZaSiXsggrqQBBBLJ0wAQ1tW2yMUgvGCCwEJ1gqCi1zhkoOWCnLmLBCWcNOqsud10Wz0kPyvUl3OhqvHzZiWmqTRm870AvnLBESYCKaRllhmFO2ddhIwCWRLa7PO9ewXvTgbPmSZLpn0ucnwd_oZdxoQgSXnONi-PBoSPF2DXnUvc8Wus4EiOusGZkoiRnlvKDv_0NXcZ1C-asHihMlcFOo0x21LJXTPrSxJLZlOOi9LVVrfdmfyqKcSKFYCXj39A37y_9rjQJ83AE2xZwTtHuEYL1tO71vO_YX-K3J0Q
Cites_doi 10.1080/03610918.2013.773347
10.1007/s00170-017-1143-y
10.1023/A:1009664101413
10.1109/TIE.2016.2515054
10.1016/j.ymssp.2023.110435
10.1016/j.jsv.2022.116746
10.3390/s24206581
10.1186/s12874-023-02020-5
10.1109/TR.2005.863811
10.1023/B:LIDA.0000036389.14073.dd
10.1016/j.ress.2021.108136
10.1109/TR.2019.2955596
10.1016/j.ymssp.2024.112134
10.1109/TR.2009.2026784
10.1002/qre.3210
10.5005/jp-journals-10028-1653
10.1080/02664763.2012.725465
10.1109/TR.2021.3107050
10.1002/qre.1771
10.1109/TETCI.2024.3377728
10.1080/16843703.2024.2400434
10.1109/ACCESS.2020.3041682
10.1109/TR.2018.2849087
10.1016/j.ymssp.2019.03.019
10.1109/TR.2019.2895352
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2025 by the authors. 2025
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2025 by the authors. 2025
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s25020347
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database
MEDLINE - Academic

CrossRef

PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_bddc178ee57449c7a3d9cfd0a8e0331c
PMC11768660
A832658793
39860716
10_3390_s25020347
Genre Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 72201019
– fundername: Fundamental Research Funds for the Central Universities
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
NPM
PJZUB
PPXIY
PMFND
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c469t-8897cb272de7171c2537e42ff0aa99b331eb7610892ef3da286e099c337c79ca3
IEDL.DBID 7X7
ISSN 1424-8220
IngestDate Wed Aug 27 01:29:14 EDT 2025
Thu Aug 21 18:40:33 EDT 2025
Fri Jul 11 05:21:13 EDT 2025
Fri Jul 25 22:24:58 EDT 2025
Tue Jun 10 20:59:52 EDT 2025
Mon Jul 21 05:52:28 EDT 2025
Tue Jul 01 02:10:09 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords RUL prediction
Tweedie exponential dispersion process
degradation analysis
mechanism equivalence
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c469t-8897cb272de7171c2537e42ff0aa99b331eb7610892ef3da286e099c337c79ca3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2483-9244
OpenAccessLink https://www.proquest.com/docview/3159619704?pq-origsite=%requestingapplication%
PMID 39860716
PQID 3159619704
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_bddc178ee57449c7a3d9cfd0a8e0331c
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11768660
proquest_miscellaneous_3159803266
proquest_journals_3159619704
gale_infotracacademiconefile_A832658793
pubmed_primary_39860716
crossref_primary_10_3390_s25020347
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2025
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Zhang (ref_30) 2015; 32
Yang (ref_29) 2016; 63
Ma (ref_25) 2015; 44
Kishore (ref_27) 2024; 58
Wang (ref_24) 2022; 55
Chen (ref_3) 2020; 69
Lawless (ref_11) 2004; 10
Ferreira (ref_5) 2012; 39
ref_31
Peng (ref_7) 2009; 58
Luo (ref_14) 2022; 218
Suo (ref_17) 2021; 28
Dong (ref_18) 2019; 46
Chen (ref_2) 2022; 71
Ma (ref_28) 2023; 198
Fu (ref_26) 2018; 94
Whitmore (ref_9) 1997; 3
Cheng (ref_12) 2022; 523
Duan (ref_13) 2018; 67
Cheng (ref_15) 2025; 224
Liao (ref_8) 2006; 55
ref_23
Zhou (ref_6) 2019; 68
Yan (ref_21) 2024; 8
Chen (ref_22) 2023; 39
Wang (ref_20) 2019; 127
ref_1
Wang (ref_19) 2015; 36
Chen (ref_4) 2020; 8
Zhang (ref_10) 2022; 51
Sun (ref_16) 2008; 26
Bai (ref_32) 2022; 28
References_xml – volume: 44
  start-page: 257
  year: 2015
  ident: ref_25
  article-title: An adjustment to the Bartlett’s test for small sample size
  publication-title: Commun. Stat. Simul. Comput.
  doi: 10.1080/03610918.2013.773347
– volume: 94
  start-page: 4493
  year: 2018
  ident: ref_26
  article-title: F test-based automatic modeling of single geometric error component for error compensation of five-axis machine tools
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-017-1143-y
– volume: 3
  start-page: 27
  year: 1997
  ident: ref_9
  article-title: Modelling accelerated degradation data using Wiener dispersion with a time scale transformation
  publication-title: Lifetime Data Anal.
  doi: 10.1023/A:1009664101413
– volume: 55
  start-page: 129
  year: 2022
  ident: ref_24
  article-title: A new class of mechanism-equivalence-based Wiener process models for reliability analysis
  publication-title: IISE Trans.
– volume: 26
  start-page: 6
  year: 2008
  ident: ref_16
  article-title: A condition that the failure mechanism remains unchanged
  publication-title: Reliab. Environ. Test. Electron. Prod.
– volume: 63
  start-page: 2633
  year: 2016
  ident: ref_29
  article-title: Health index-based prognostics for remaining useful life predictions in electrical machines
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2016.2515054
– volume: 36
  start-page: 889
  year: 2015
  ident: ref_19
  article-title: Equivalence testing method for failure mechanism based on degradation model
  publication-title: J. Aeronaut.
– volume: 198
  start-page: 110435
  year: 2023
  ident: ref_28
  article-title: Decision-level machinery fault prognosis using N-BEATS-based degradation feature prediction and reconstruction
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2023.110435
– volume: 523
  start-page: 116746
  year: 2022
  ident: ref_12
  article-title: An improved envelope spectrum via candidate fault frequency optimization-gram for bearing fault diagnosis
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2022.116746
– ident: ref_1
  doi: 10.3390/s24206581
– volume: 51
  start-page: 27
  year: 2022
  ident: ref_10
  article-title: Prediction of high-pressure valve life based on Wiener process degradation model
  publication-title: J. Hebei Univ. Technol.
– ident: ref_31
  doi: 10.1186/s12874-023-02020-5
– volume: 55
  start-page: 59
  year: 2006
  ident: ref_8
  article-title: Optimal design for step-stress accelerated degradation tests
  publication-title: IEEE Trans. Reliab.
  doi: 10.1109/TR.2005.863811
– volume: 10
  start-page: 213
  year: 2004
  ident: ref_11
  article-title: Covariates and random effects in a gamma process model with application to degradation and failure
  publication-title: Lifetime Data Anal.
  doi: 10.1023/B:LIDA.0000036389.14073.dd
– volume: 218
  start-page: 108
  year: 2022
  ident: ref_14
  article-title: Modelling and estimation of system reliability under dynamic operating environments and lifetime ordering constraints
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2021.108136
– volume: 69
  start-page: 887
  year: 2020
  ident: ref_3
  article-title: Tweedie Exponential Dispersion Processes for Degradation Modeling, Prognostic, and Accelerated Degradation Test Planning
  publication-title: IEEE Trans. Reliab.
  doi: 10.1109/TR.2019.2955596
– volume: 224
  start-page: 112134
  year: 2025
  ident: ref_15
  article-title: Surrogate modeling of pantograph-catenary system interactions
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2024.112134
– volume: 46
  start-page: 23
  year: 2019
  ident: ref_18
  article-title: Equivalence determination of failure mechanism in accelerated degradation test based on inverse Gaussian process
  publication-title: Intensity Environ.
– volume: 58
  start-page: 444
  year: 2009
  ident: ref_7
  article-title: Mis-specification analysis of linear degradation models
  publication-title: IEEE Trans. Reliab.
  doi: 10.1109/TR.2009.2026784
– volume: 39
  start-page: 25
  year: 2023
  ident: ref_22
  article-title: Dynamic reliability analysis of gear transmission system based on sparse grid numerical integration and saddle-point approximation method
  publication-title: Qual. Reliab. Eng. Int.
  doi: 10.1002/qre.3210
– volume: 58
  start-page: 38
  year: 2024
  ident: ref_27
  article-title: Statistics Corner: Analysis of Variance
  publication-title: J. Postgrad. Med. Educ. Res.
  doi: 10.5005/jp-journals-10028-1653
– volume: 28
  start-page: 2375
  year: 2022
  ident: ref_32
  article-title: Asymptotics of AIC, BIC and Cp model selection rules in high-dimensional regression
  publication-title: Bernoulli Soc. Math. Stat. Probab.
– volume: 39
  start-page: 2721
  year: 2012
  ident: ref_5
  article-title: Degradation data analysis for samples under unequal operating conditions: A case study on train wheels
  publication-title: J. Appl. Stat.
  doi: 10.1080/02664763.2012.725465
– volume: 71
  start-page: 47
  year: 2022
  ident: ref_2
  article-title: Random-Effect Models for Degradation Analysis Based on Nonlinear Tweedie Exponential-Dispersion Processes
  publication-title: IEEE Trans. Reliab.
  doi: 10.1109/TR.2021.3107050
– volume: 32
  start-page: 547
  year: 2015
  ident: ref_30
  article-title: Degradation feature selection for remaining useful life prediction of rolling element bearings
  publication-title: Qual. Reliab. Eng. Int.
  doi: 10.1002/qre.1771
– volume: 8
  start-page: 2827
  year: 2024
  ident: ref_21
  article-title: Transformer and Graph Convolution-Based Unsupervised Detection of Machine Anomalous Sound Under Domain Shifts
  publication-title: IEEE Trans. Emerg. Top. Comput. Intell.
  doi: 10.1109/TETCI.2024.3377728
– volume: 28
  start-page: 10
  year: 2021
  ident: ref_17
  article-title: Equivalence testing of failure mechanism based on the principle of constant acceleration factor
  publication-title: Electro Opt. Control
– ident: ref_23
  doi: 10.1080/16843703.2024.2400434
– volume: 8
  start-page: 215145
  year: 2020
  ident: ref_4
  article-title: Remaining Useful Life Prediction for Complex Systems with Multiple Indicators Based on Particle Filter and Parameter Correlation
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3041682
– volume: 67
  start-page: 1128
  year: 2018
  ident: ref_13
  article-title: Exponential-dispersion degradation process models with random effects and covariates
  publication-title: IEEE Trans. Reliab.
  doi: 10.1109/TR.2018.2849087
– volume: 127
  start-page: 370
  year: 2019
  ident: ref_20
  article-title: An improved Wiener process model with adaptive drift and diffusion for online remaining useful life prediction
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2019.03.019
– volume: 68
  start-page: 398
  year: 2019
  ident: ref_6
  article-title: Exponential Dispersion Process for Degradation Analysis
  publication-title: IEEE Trans. Reliab.
  doi: 10.1109/TR.2019.2895352
SSID ssj0023338
Score 2.4368515
Snippet Accurately predicting the remaining useful life (RUL) of critical mechanical components is a central challenge in reliability engineering. Stochastic...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 347
SubjectTerms Accuracy
Analysis
degradation analysis
Machine learning
mechanism equivalence
Methods
Parameter estimation
RUL prediction
Stochastic models
Stochastic processes
Stress
Trends
Tweedie exponential dispersion process
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT3BAUF4pLTIIiVNUx3Zi-7ilW1WI9tRKvVmOPRGRILuwu4UjP52ZJLvKigMXrnESTTzPz7G_Yew9GJPQEIo8NQJyXYqYh7JK6PG6rJ02Gvpeh1fX1eWt_nRX3k1afdGesIEeeJi40zqlWBgLUBqtXTRBJRebJIIFoVQRKfpiztuCqRFqKUReA4-QQlB_usJEL4WiHiqT7NOT9P8diie5aH-f5CTxXDxhj8eKkc8GSZ-yB9AdskcTHsFn7PeMXy_u4Su_AjrI266-5fPvmxaNiPw2P8NMlfjNT0pUwOe_louO9gjhS89bIgqnBTM-nhjgWMTyWQpLCoP8nKgkhq5LnLqm0dl1HrrEP7cN4CP0l4cGn7Pbi_nNx8t8bK2QR8TD69xaZ2ItjUyAeK6IslQGtGwaEYJzNU4s1AYrK-skNCoFaSvAWjIqZaJxMagX7KBDYV8xHsBhxktJI7DSIQrbKLAomoyNScLJjL3bTrlfDgwaHpEH6cXv9JKxM1LG7gYive4voCn40RT8v0whYx9IlZ5cE_UVw3jCAOUkkis_w-iFBRdGpIwdb7XtR59deYWVHcJJI3TG3u6G0dvoF0roYLEZ7rECX1Nl7OVgHDuZlbNE1ocjds9s9j5qf6Rrv_SM3kWBqK-qxNH_mIbX7KGkJsX9OtExO1j_2MAJVk7r-k3vJH8AdJ4aXw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZKucAB8SZQkEFInAKO7cT2AaEt3apCbE-t1Fvk2JOyUslu9wHlxk9nJsmuNgJxjZ1o4pnxzOfHN4y9BWMiGkKWxlpAqnMRUp8XET1e55XTRkNb63ByWpyc6y8X-cUe29TY7Adw-U9oR_WkzhdX72-uf31Ch_9IiBMh-4clhnEplDa32G0MSIb8c6K3mwlSIQzrSIWG3QehqGXs_3te3glMw0OTO1Ho-D6716ePfNTp-wHbg-Yhu7tDKviI_R7x09kPuOIToFu90-X3dHy9nqJFkROnhxi2Ij_7SVEL-PhmPmvowBB-9GhKrOG0esb76wMcM1o-in5OcyI_Il6JrgQTpxJqdJGd-ybyr9Ma8BXa8qHGx-z8eHz2-STt6yykAcHxKrXWmVBJIyMguMuCzJUBLetaeO9cpVQGlcE0yzoJtYpe2gIwsQxKmWBc8OoJ229Q2GeMe3AY_mLUiLK0D8LWCiyKJkNtonAyYW82Q17OOzqNEmEI6aXc6iVhh6SMbQdiwG4fzBaXZe9QZRVjyIwFyI3WLhivogt1FN6CQIlDwt6RKkuyHNRX8P11A5STGK_KEU5lmH3h9JSwg422y439lQrTPMSWRuiEvd42o-vRfopvYLbu-liBnykS9rQzjq3Mylli7sMWOzCbwU8NW5rpt5beO8sQAhaFeP5_uV6wO5JqEbfLQQdsf7VYw0tMkFbVq9b8_wD9BBIJ
  priority: 102
  providerName: Scholars Portal
Title A Novel Mechanism-Equivalence-Based Tweedie Exponential Dispersion Process for Adaptive Degradation Modeling and Life Prediction
URI https://www.ncbi.nlm.nih.gov/pubmed/39860716
https://www.proquest.com/docview/3159619704
https://www.proquest.com/docview/3159803266
https://pubmed.ncbi.nlm.nih.gov/PMC11768660
https://doaj.org/article/bddc178ee57449c7a3d9cfd0a8e0331c
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwELZg9wIHxJvAUhmExClaJ3Zi-4RatmWFaIXQrtRb5NgTqARJd9sCR346M0nabYXEJYfYiSaZ99j-hrE3oHVAQUjiUAmIVSZ87LI8oMarrLRKK2h7HU5n-fml-jjP5n3BbdVvq9zaxNZQh8ZTjfxUot_FYF8L9W55FVPXKFpd7Vto3GbHBF1GW7r0_Cbhkph_dWhCElP70xW6-1RI6qSy54NaqP5_DfKeRzrcLbnnfib32b0-buTDjtEP2C2oH7K7e2iCj9ifIZ81P-E7nwId512sfsTjq80CRYm0Nx6hvwr84he5K-Dj38umpp1C-NKzBcGFU9mM9-cGOIayfBjckowhPyNAia73EqfeaXSCnbs68E-LCvARWuuhwcfscjK-eH8e9w0WYo9Z8To2xmpfpjoNgFld4tNMalBpVQnnrC2lTKDUGF8Zm0Ilg0tNDhhReim119Y7-YQd1UjsM8YdWPR7IShMr5TzwlQSDJKW-koHYdOIvd7-8mLZ4WgUmH8QX4odXyI2ImbsJhD0dXujuf5a9JpUlCH4RBuATCtlvXYyWF8F4QwIpNhH7C2xsiAFRX55158zQDoJ6qoYog3DsAvtUsROttwues1dFTdyFrFXu2HUOVpIcTU0m26OEfiaPGJPO-HY0SytIcg-HDEHYnPwUYcj9eJbi-udJJj75bl4_n-6XrA7KTUhbutAJ-xofb2BlxgZrctBK_54NZMPA3Y8Gs8-fxm0VQa8TpX5C3AdFPs
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLfGOAAHxOcIDDAIxCmaYzuxfUCoo5061vbUSbsFx3agEqTd2jK48RfxN_JeknatkLjtGifWi9_nz_Z7j5A3QSkPgpDEvmQhlilzsU0zDxov08JIJUPd63A4yvqn8tNZerZD_qxyYfBa5com1obaTx3ukR8I8LsQ7CsmP8zOY-wahaerqxYajVichF-XANnm74-7wN-3nB_1xh_7cdtVIHYABRex1ka5givuA0CZxPFUqCB5WTJrjSmESEIB2J5pw0MpvOU6CxBGOSGUU8ZZAfPeIDfB8TLUKHV2BfAE4L2mepEQhh3MIbzgTGDnlg2fV7cG-NcBbHjA7duZG-7u6B6528aptNMI1n2yE6oH5M5G9cKH5HeHjqY_wjc6DJg-PJl_j3vnywmILlqL-BD8o6fjS3SPgfZ-zqYV3kyCSbsTLE-O23S0zVOgEDrTjrczNL60iwUsml5PFHu1YcY8tZWng0kZ4BM8W8LBR-T0Wpb-MdmtgNgnhNpgwM96LwHOSeuYLkXQQBp3pfLM8Ii8Xi15PmvqduSAd5Av-ZovETlEZqxfwFLb9YPpxZe81dy88N4lSoeQKimNU1Z440rPrA4MKHYReYeszNEgAL-cbfMagE4srZV3wGZCmAd2MCL7K27nraWY51dyHZFX62HQcTy4sVWYLpt3NINpsojsNcKxplkYjSUCYURvic3WT22PVJOvdR3xJAGsmWXs6f_peklu9cfDQT44Hp08I7c5NkCu96D2ye7iYhmeQ1S2KF7UqkDJ5-vWvb_RnEzD
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLfGkBA7IL4JDDAIxCmqYzuxfUCoo602tlUcNqm34NgOVBppt7YMbvxd_HW8l6RdKyRuu8aJ9eL3-bP93iPkTVDKgyAksS9ZiGXKXGzTzIPGy7QwUslQ9zo8Hmb7p_LTKB1tkT_LXBi8Vrm0ibWh9hOHe-QdAX4Xgn3FZKdsr0V87g0-TM9j7CCFJ63LdhqNiByGX5cA32bvD3rA67ecD_onH_fjtsNA7AAWzmOtjXIFV9wHgDWJ46lQQfKyZNYaUwiRhAJwPtOGh1J4y3UWIKRyQiinjLMC5r1BbiqRJqhjanQF9gRgv6aSkRCGdWYQanAmsIvLmv-r2wT86wzWvOHmTc011ze4S-60MSvtNkJ2j2yF6j7ZWatk-ID87tLh5Ec4o8cBU4nHs-9x_3wxBjFGyxHvga_09OQSXWWg_Z_TSYW3lGDS3hhLleOWHW1zFiiE0bTr7RQNMe1hMYum7xPFvm2YPU9t5enRuAzwCZ4z4eBDcnotS_-IbFdA7BNCbTDgc72XAO2kdUyXImggjbtSeWZ4RF4vlzyfNjU8csA-yJd8xZeI7CEzVi9g2e36weTia95qcV547xKlQ0iVlMYpK7xxpWdWBwYUu4i8Q1bmaByAX862OQ5AJ5bZyrtgPyHkA5sYkd0lt_PWaszyKxmPyKvVMOg7HuLYKkwWzTuawTRZRB43wrGiWRiN5QJhRG-IzcZPbY5U4291TfEkAdyZZezp_-l6SW6B1uVHB8PDZ-Q2x17I9XbULtmeXyzCcwjQ5sWLWhMo-XLdqvcXHIVQ-Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Mechanism-Equivalence-Based+Tweedie+Exponential+Dispersion+Process+for+Adaptive+Degradation+Modeling+and+Life+Prediction&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Wu%2C+Jiayue&rft.au=Liu%2C+Yujie&rft.au=Wang%2C+Han&rft.au=Ma%2C+Xiaobing&rft.date=2025-01-01&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=25&rft.issue=2&rft.spage=347&rft_id=info:doi/10.3390%2Fs25020347&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon