On-the-Fly Fusion of Remotely-Sensed Big Data Using an Elastic Computing Paradigm with a Containerized Spark Engine on Kubernetes
Remotely-sensed satellite image fusion is indispensable for the generation of long-term gap-free Earth observation data. While cloud computing (CC) provides the big picture for RS big data (RSBD), the fundamental question of the efficient fusion of RSBD on CC platforms has not yet been settled. To t...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 21; no. 9; p. 2971 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
23.04.2021
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Remotely-sensed satellite image fusion is indispensable for the generation of long-term gap-free Earth observation data. While cloud computing (CC) provides the big picture for RS big data (RSBD), the fundamental question of the efficient fusion of RSBD on CC platforms has not yet been settled. To this end, we propose a lightweight cloud-native framework for the elastic processing of RSBD in this study. With the scaling mechanisms provided by both the Infrastructure as a Service (IaaS) and Platform as a Services (PaaS) of CC, the Spark-on-Kubernetes operator model running in the framework can enhance the efficiency of Spark-based algorithms without considering bottlenecks such as task latency caused by an unbalanced workload, and can ease the burden to tune the performance parameters for their parallel algorithms. Internally, we propose a task scheduling mechanism (TSM) to dynamically change the Spark executor pods’ affinities to the computing hosts. The TSM learns the workload of a computing host. Learning from the ratio between the number of completed and failed tasks on a computing host, the TSM dispatches Spark executor pods to newer and less-overwhelmed computing hosts. In order to illustrate the advantage, we implement a parallel enhanced spatial and temporal adaptive reflectance fusion model (PESTARFM) to enable the efficient fusion of big RS images with a Spark aggregation function. We construct an OpenStack cloud computing environment to test the usability of the framework. According to the experiments, TSM can improve the performance of the PESTARFM using only PaaS scaling to about 11.7%. When using both the IaaS and PaaS scaling, the maximum performance gain with the TSM can be even greater than 13.6%. The fusion of such big Sentinel and PlanetScope images requires less than 4 min in the experimental environment. |
---|---|
AbstractList | Remotely-sensed satellite image fusion is indispensable for the generation of long-term gap-free Earth observation data. While cloud computing (CC) provides the big picture for RS big data (RSBD), the fundamental question of the efficient fusion of RSBD on CC platforms has not yet been settled. To this end, we propose a lightweight cloud-native framework for the elastic processing of RSBD in this study. With the scaling mechanisms provided by both the Infrastructure as a Service (IaaS) and Platform as a Services (PaaS) of CC, the Spark-on-Kubernetes operator model running in the framework can enhance the efficiency of Spark-based algorithms without considering bottlenecks such as task latency caused by an unbalanced workload, and can ease the burden to tune the performance parameters for their parallel algorithms. Internally, we propose a task scheduling mechanism (TSM) to dynamically change the Spark executor pods' affinities to the computing hosts. The TSM learns the workload of a computing host. Learning from the ratio between the number of completed and failed tasks on a computing host, the TSM dispatches Spark executor pods to newer and less-overwhelmed computing hosts. In order to illustrate the advantage, we implement a parallel enhanced spatial and temporal adaptive reflectance fusion model (PESTARFM) to enable the efficient fusion of big RS images with a Spark aggregation function. We construct an OpenStack cloud computing environment to test the usability of the framework. According to the experiments, TSM can improve the performance of the PESTARFM using only PaaS scaling to about 11.7%. When using both the IaaS and PaaS scaling, the maximum performance gain with the TSM can be even greater than 13.6%. The fusion of such big Sentinel and PlanetScope images requires less than 4 min in the experimental environment.Remotely-sensed satellite image fusion is indispensable for the generation of long-term gap-free Earth observation data. While cloud computing (CC) provides the big picture for RS big data (RSBD), the fundamental question of the efficient fusion of RSBD on CC platforms has not yet been settled. To this end, we propose a lightweight cloud-native framework for the elastic processing of RSBD in this study. With the scaling mechanisms provided by both the Infrastructure as a Service (IaaS) and Platform as a Services (PaaS) of CC, the Spark-on-Kubernetes operator model running in the framework can enhance the efficiency of Spark-based algorithms without considering bottlenecks such as task latency caused by an unbalanced workload, and can ease the burden to tune the performance parameters for their parallel algorithms. Internally, we propose a task scheduling mechanism (TSM) to dynamically change the Spark executor pods' affinities to the computing hosts. The TSM learns the workload of a computing host. Learning from the ratio between the number of completed and failed tasks on a computing host, the TSM dispatches Spark executor pods to newer and less-overwhelmed computing hosts. In order to illustrate the advantage, we implement a parallel enhanced spatial and temporal adaptive reflectance fusion model (PESTARFM) to enable the efficient fusion of big RS images with a Spark aggregation function. We construct an OpenStack cloud computing environment to test the usability of the framework. According to the experiments, TSM can improve the performance of the PESTARFM using only PaaS scaling to about 11.7%. When using both the IaaS and PaaS scaling, the maximum performance gain with the TSM can be even greater than 13.6%. The fusion of such big Sentinel and PlanetScope images requires less than 4 min in the experimental environment. Remotely-sensed satellite image fusion is indispensable for the generation of long-term gap-free Earth observation data. While cloud computing (CC) provides the big picture for RS big data (RSBD), the fundamental question of the efficient fusion of RSBD on CC platforms has not yet been settled. To this end, we propose a lightweight cloud-native framework for the elastic processing of RSBD in this study. With the scaling mechanisms provided by both the Infrastructure as a Service (IaaS) and Platform as a Services (PaaS) of CC, the Spark-on-Kubernetes operator model running in the framework can enhance the efficiency of Spark-based algorithms without considering bottlenecks such as task latency caused by an unbalanced workload, and can ease the burden to tune the performance parameters for their parallel algorithms. Internally, we propose a task scheduling mechanism (TSM) to dynamically change the Spark executor pods' affinities to the computing hosts. The TSM learns the workload of a computing host. Learning from the ratio between the number of completed and failed tasks on a computing host, the TSM dispatches Spark executor pods to newer and less-overwhelmed computing hosts. In order to illustrate the advantage, we implement a parallel enhanced spatial and temporal adaptive reflectance fusion model (PESTARFM) to enable the efficient fusion of big RS images with a Spark aggregation function. We construct an OpenStack cloud computing environment to test the usability of the framework. According to the experiments, TSM can improve the performance of the PESTARFM using only PaaS scaling to about 11.7%. When using both the IaaS and PaaS scaling, the maximum performance gain with the TSM can be even greater than 13.6%. The fusion of such big Sentinel and PlanetScope images requires less than 4 min in the experimental environment. |
Author | Zhang, Dongying Zhou, Jianzhong Huang, Wei |
AuthorAffiliation | School of Civil and Hydraulic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; huangwei0316@hust.edu.cn (W.H.); zhangdongying@hust.edu.cn (D.Z.) |
AuthorAffiliation_xml | – name: School of Civil and Hydraulic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; huangwei0316@hust.edu.cn (W.H.); zhangdongying@hust.edu.cn (D.Z.) |
Author_xml | – sequence: 1 givenname: Wei orcidid: 0000-0003-1696-1503 surname: Huang fullname: Huang, Wei – sequence: 2 givenname: Jianzhong surname: Zhou fullname: Zhou, Jianzhong – sequence: 3 givenname: Dongying orcidid: 0000-0003-2488-7243 surname: Zhang fullname: Zhang, Dongying |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33922709$$D View this record in MEDLINE/PubMed |
BookMark | eNplkk1v1DAQhiNURD_gwB9AlrjAIdQf2cS-IMGyCxWViig9WxPbyXpJ7MV2QMuNf46Xbau2XGxr5p1n3rF9XBw470xRPCf4DWMCn0ZKsKCiIY-KI1LRquSU4oM758PiOMY1xpQxxp8Uh7mK0gaLo-LPhSvTypTLYYuWU7TeId-hr2b0yQzb8tK4aDR6b3v0ARKgq2hdj8ChxQAxWYXmftxMaRf8AgG07Uf0y6YVgpxxCawzwf7OhMsNhO9o4focQbnJ56k1wZlk4tPicQdDNM-u95Piarn4Nv9Unl98PJu_Oy9VVYtUck5x3XHQ0AA3glcY65khbZ5f6ZmiututUKm2JrplvFINxkp0na5w2wBmJ8XZnqs9rOUm2BHCVnqw8l_Ah15CyCMNRmLOaKNxS2YC5-aCd1w0da0UU4QSVmfW2z1rM7Wj0cq4FGC4B72fcXYle_9TckJp9p4Br64Bwf-YTExytFGZYQBn_BQlnVHMG0HITvrygXTtp-DyVWUVw6SuqGBZ9eKuo1srNy-dBad7gQo-xmA6qWyClB88G7SDJHinxfL2L-WK1w8qbqD_a_8C-NDH_A |
CitedBy_id | crossref_primary_10_1109_JIOT_2024_3408166 crossref_primary_10_3390_info12120517 crossref_primary_10_1155_2022_5636449 crossref_primary_10_3390_app131810478 crossref_primary_10_3390_computers14040114 crossref_primary_10_3390_rs14030521 crossref_primary_10_3390_rs13224550 |
Cites_doi | 10.3390/ijgi6030084 10.1109/INFOCOM.2018.8485865 10.1109/JSTARS.2016.2547020 10.1016/j.future.2017.02.044 10.1016/j.isprsjprs.2018.07.017 10.1016/j.future.2016.06.009 10.1002/cpe.5323 10.1016/j.inffus.2020.12.008 10.1109/TII.2020.3022843 10.1016/j.future.2019.04.008 10.1109/CFEC.2018.8358729 10.3390/rs13040645 10.3390/rs11060629 10.1145/2797211 10.3390/rs8080662 10.3390/rs12040607 10.1016/j.ins.2019.10.035 10.1016/j.isprsjprs.2020.04.001 10.1109/HPEC.2017.8091086 10.1007/978-3-030-10549-5_9 10.1038/s41592-019-0650-1 10.1145/3381027 10.1038/nrg.2017.113 10.1016/j.inffus.2016.03.003 10.1109/MGRS.2016.2637824 10.1109/TGRS.2018.2890513 10.1016/j.rse.2010.05.032 10.1145/2723372.2742797 10.1109/ISSREW.2019.00066 10.1016/j.rse.2020.112002 10.1007/978-3-319-14313-2_7 10.1109/TC.2017.2669964 |
ContentType | Journal Article |
Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 by the authors. 2021 |
Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 by the authors. 2021 |
DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/s21092971 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni) Medical Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_08327d0b159046998f89766cc3c12136 PMC8122984 33922709 10_3390_s21092971 |
Genre | Journal Article |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M NPM 3V. 7XB 8FK AZQEC DWQXO K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c469t-88206f8ada7a8e98400d5e1b390cd5c2dfd5c2a4cb61db384c700c9ffd40b7a03 |
IEDL.DBID | DOA |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:30:34 EDT 2025 Thu Aug 21 14:01:14 EDT 2025 Thu Jul 10 19:22:07 EDT 2025 Fri Jul 25 10:00:35 EDT 2025 Thu Apr 03 06:59:23 EDT 2025 Tue Jul 01 03:56:11 EDT 2025 Thu Apr 24 23:11:31 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | big data cloud computing fusion algorithm parallel computing Kubernetes |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c469t-88206f8ada7a8e98400d5e1b390cd5c2dfd5c2a4cb61db384c700c9ffd40b7a03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-1696-1503 0000-0003-2488-7243 |
OpenAccessLink | https://doaj.org/article/08327d0b159046998f89766cc3c12136 |
PMID | 33922709 |
PQID | 2530164293 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_08327d0b159046998f89766cc3c12136 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8122984 proquest_miscellaneous_2520879114 proquest_journals_2530164293 pubmed_primary_33922709 crossref_citationtrail_10_3390_s21092971 crossref_primary_10_3390_s21092971 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210423 |
PublicationDateYYYYMMDD | 2021-04-23 |
PublicationDate_xml | – month: 4 year: 2021 text: 20210423 day: 23 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2021 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Huang (ref_23) 2017; 10 Langmead (ref_1) 2018; 19 Tamiminia (ref_30) 2020; 164 ref_12 Yan (ref_3) 2018; 86 Tong (ref_8) 2020; 512 Zhu (ref_27) 2010; 114 ref_33 ref_10 ref_32 Mann (ref_9) 2015; 48 Sefraoui (ref_28) 2012; 55 Sollfrank (ref_11) 2021; 17 ref_19 ref_18 Yokoya (ref_16) 2017; 5 Ghassemian (ref_4) 2016; 32 Teluguntla (ref_2) 2018; 144 Haase (ref_17) 2020; 17 ref_25 ref_24 ref_22 ref_20 Zhu (ref_15) 2021; 70 Wang (ref_31) 2018; 78 Jha (ref_21) 2021; 33 Cheng (ref_7) 2017; 66 ref_29 Sun (ref_5) 2019; 57 ref_26 Wang (ref_14) 2020; 248 Herodotou (ref_34) 2020; 53 Cigale (ref_13) 2019; 99 ref_6 |
References_xml | – ident: ref_33 doi: 10.3390/ijgi6030084 – ident: ref_25 doi: 10.1109/INFOCOM.2018.8485865 – volume: 10 start-page: 3 year: 2017 ident: ref_23 article-title: In-Memory Parallel Processing of Massive Remotely Sensed Data Using an Apache Spark on Hadoop YARN Model publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2016.2547020 – volume: 86 start-page: 1154 year: 2018 ident: ref_3 article-title: A cloud-based remote sensing data production system publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2017.02.044 – volume: 144 start-page: 325 year: 2018 ident: ref_2 article-title: A 30-m landsat-derived cropland extent product of Australia and China using random forest machine learning algorithm on Google Earth Engine cloud computing platform publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2018.07.017 – volume: 78 start-page: 353 year: 2018 ident: ref_31 article-title: pipsCloud: High performance cloud computing for remote sensing big data management and processing publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2016.06.009 – volume: 33 start-page: e5323 year: 2021 ident: ref_21 article-title: A study on the evaluation of HPC microservices in containerized environment publication-title: Concurr. Comput. Pract. Exp. doi: 10.1002/cpe.5323 – volume: 70 start-page: 72 year: 2021 ident: ref_15 article-title: A spatial-channel progressive fusion ResNet for remote sensing classification publication-title: Inf. Fusion doi: 10.1016/j.inffus.2020.12.008 – volume: 17 start-page: 3566 year: 2021 ident: ref_11 article-title: Evaluating Docker for Lightweight Virtualization of Distributed and Time-Sensitive Applications in Industrial Automation publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2020.3022843 – volume: 99 start-page: 197 year: 2019 ident: ref_13 article-title: SWITCH workbench: A novel approach for the development and deployment of time-critical microservice-based cloud-native applications publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2019.04.008 – ident: ref_24 doi: 10.1109/CFEC.2018.8358729 – ident: ref_18 doi: 10.3390/rs13040645 – ident: ref_6 doi: 10.3390/rs11060629 – volume: 48 start-page: 1 year: 2015 ident: ref_9 article-title: Allocation of Virtual Machines in Cloud Data Centers—A Survey of Problem Models and Optimization Algorithms publication-title: ACM Comput. Surv. doi: 10.1145/2797211 – ident: ref_32 doi: 10.3390/rs8080662 – ident: ref_22 doi: 10.3390/rs12040607 – volume: 512 start-page: 1170 year: 2020 ident: ref_8 article-title: A scheduling scheme in the cloud computing environment using deep Q-learning publication-title: Inf. Sci. doi: 10.1016/j.ins.2019.10.035 – volume: 164 start-page: 152 year: 2020 ident: ref_30 article-title: Google Earth Engine for geo-big data applications: A meta-analysis and systematic review publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2020.04.001 – ident: ref_10 doi: 10.1109/HPEC.2017.8091086 – ident: ref_20 doi: 10.1007/978-3-030-10549-5_9 – volume: 17 start-page: 5 year: 2020 ident: ref_17 article-title: CLIJ: GPU-accelerated image processing for everyone publication-title: Nat. Methods doi: 10.1038/s41592-019-0650-1 – volume: 53 start-page: 1 year: 2020 ident: ref_34 article-title: A Survey on Automatic Parameter Tuning for Big Data Processing Systems publication-title: ACM Comput. Surv. doi: 10.1145/3381027 – volume: 19 start-page: 208 year: 2018 ident: ref_1 article-title: Cloud computing for genomic data analysis and collaboration publication-title: Nat. Rev. Genet. doi: 10.1038/nrg.2017.113 – volume: 32 start-page: 75 year: 2016 ident: ref_4 article-title: A review of remote sensing image fusion methods publication-title: Inf. Fusion doi: 10.1016/j.inffus.2016.03.003 – volume: 5 start-page: 29 year: 2017 ident: ref_16 article-title: Hyperspectral and Multispectral Data Fusion: A comparative review of the recent literature publication-title: IEEE Geosci. Remote Sens. Mag. doi: 10.1109/MGRS.2016.2637824 – volume: 57 start-page: 4294 year: 2019 ident: ref_5 article-title: An Efficient and Scalable Framework for Processing Remotely Sensed Big Data in Cloud Computing Environments publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2018.2890513 – volume: 114 start-page: 2610 year: 2010 ident: ref_27 article-title: An enhanced spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2010.05.032 – ident: ref_26 doi: 10.1145/2723372.2742797 – ident: ref_12 doi: 10.1109/ISSREW.2019.00066 – ident: ref_19 – volume: 55 start-page: 38 year: 2012 ident: ref_28 article-title: OpenStack: Toward an open-source solution for cloud computing publication-title: Int. J. Comput. Appl. – volume: 248 start-page: 112002 year: 2020 ident: ref_14 article-title: A summary of the special issue on remote sensing of land change science with Google earth engine publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2020.112002 – ident: ref_29 doi: 10.1007/978-3-319-14313-2_7 – volume: 66 start-page: 1341 year: 2017 ident: ref_7 article-title: Cross-Platform Resource Scheduling for Spark and MapReduce on YARN publication-title: IEEE Trans. Comput. doi: 10.1109/TC.2017.2669964 |
SSID | ssj0023338 |
Score | 2.389891 |
Snippet | Remotely-sensed satellite image fusion is indispensable for the generation of long-term gap-free Earth observation data. While cloud computing (CC) provides... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 2971 |
SubjectTerms | Algorithms Big Data Cloud computing Containerization Earth Earth science fusion algorithm Kubernetes Life sciences parallel computing Satellites Scheduling |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwEB7BcoED4k1gQQZx4GKtayd1ckIsbLUC8RDLSr1FfnYrSlLS9rDc-OfMJGl2i1Zcckis2MrYme8bj78BeFWoTJCf5bmXkafRZtwaQTnudAo0taFoj4t9-jw-Pk0_TLNpH3Bb9WmV239i-6P2taMY-YHMFKlBoXd6s_zFqWoU7a72JTSuww2SLqOULj29IFwK-VenJqSQ2h-skN4gGtCjHR_USvVfhS__TZO85Hcmd-B2DxjZ287Cd-FaqO7BrUsygvfhz5eKI47jk8U5m2wo_MXqyL4FtEJYnPMTZKrBs8P5jL03a8PaLAFmKnaEyBnfyrrKDnTzq2mMn89-MgrPMsNIu8rQ8cD5b3zDydI0P1jXNcNOPm5saCqK3D6A08nR93fHvC-twB3y4TXPSbY95sYbbfJQIMsTPgsji5_J-cxJH-lqUmfHI29VnjothCti9Kmw2gj1EPaqugqPgWnkuMoikGzRgNIGO0AYKLIspnIUXQKvtx-7dL3uOJW_WJTIP8gu5WCXBF4OTZed2MZVjQ7JYkMD0sdub9TNrOyXW4nAUmovLII1CgAUecwRd42dU4407MYJ7G_tXfaLdlVeTLEEXgyPcbnRHoqpQr2hNlLkGj1EmsCjbnoMI8FxSqlFkYDemTg7Q919Us3PWklvhFkSrfDk_8N6CjclpdSIlEu1D3vrZhOeISZa2-ftxP8LDpILDg priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nj9MwEB2tlgscEN8EFmQQBy4G13Hq5IAQC1utQAuIpdLeIn-WipIu2Vai3PjnzCRptEE9cskhGcWOx6N5z7HfADwr0kxQnuW5l5GraDNujaA97nQKVNlQNMfFTj6Oj6fq_Vl2tgfbGpvdAF7spHZUT2paL178-rl5jQH_ihgnUvaXF0hbMMvTSfIrmJA0xeeJ6n8myBRpWCsqNDQfpKJGsX8XzPx3t-Sl9DO5Adc73MjetI6-CXuhugXXLqkJ3oY_nyqOcI5PFhs2WdMqGFtG9iWgM8Jiw0-RsAbPDucz9s6sDGs2CzBTsSME0PhW1hZ4oJufTW38fPaD0SotM4wkrAydEpz_xjecnpv6O2ubZtjIh7UNdUULuHdgOjn6-vaYdxUWuENavOI5qbfH3HijTR4KJHvCZ2FkcZicz5z0ka5GOTseeZvmymkhXBGjV8JqI9K7sF8tq3AfmEaqm1rEkw0oSLXBBhANiiyLSo6iS-D5drBL18mPUxWMRYk0hPxS9n5J4Glvet5qbuwyOiSP9QYkk93cWNazsou6EvGl1F5YxGy0DlDkMUf4NXYudSRlN07gYOvvcjv1SpmlpDuGOCiBJ_1jjDr6lWKqsFyTjRS5xkShErjXTo--J9hPKbUoEtCDiTPo6vBJNf_WKHsj2pLohQf_49sewlVJ-2-E4jI9gP1VvQ6PEECt7OMmPP4CRRMYgA priority: 102 providerName: Scholars Portal |
Title | On-the-Fly Fusion of Remotely-Sensed Big Data Using an Elastic Computing Paradigm with a Containerized Spark Engine on Kubernetes |
URI | https://www.ncbi.nlm.nih.gov/pubmed/33922709 https://www.proquest.com/docview/2530164293 https://www.proquest.com/docview/2520879114 https://pubmed.ncbi.nlm.nih.gov/PMC8122984 https://doaj.org/article/08327d0b159046998f89766cc3c12136 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NbxMxELWgXOCA-GahRAZx4GLVsb2x90ggSwVqqVoq5bbyZ4kImypNDuXGP2dmd7NKUCUuXHzYtdbOzFjznjN-JuRtIXOOeZaZIBJTyeXMWY417ngKVLlYNMfFjo5Hh-fq8zSfbl31hTVhrTxwa7gDgAhCB-4g7SKVK0wykEFH3kuPamSN2DbkvA2Z6qiWBObV6ghJIPUHV0BsAAfo4U72aUT6b0KWfxdIbmWc8gG530FF-r6d4kNyK9aPyL0tAcHH5PfXmgGCY-X8mpZr3Piii0RPI9g_zq_ZGXDUGOh4dkE_2pWlTX0AtTWdAGaGr9L2Tgd8eGKXNswuflLcmKWWomqVxYOBs1_whbNLu_xB26EpDPJl7eKyxj3bJ-S8nHz7cMi6SxWYB_OtmEHB9mRssNqaWAC_4yGPQwdm8iH3IiRsrfJuNAxOGuU1575IKSjutOXyKdmrF3V8TqgGdisdQMgGB0htYQAAgDzPkxLD5DPybmPsyneK43jxxbwC5oF-qXq_ZORN3_Wyldm4qdMYPdZ3QGXs5gHES9XFS_WveMnI_sbfVbdcryqRS5QaA-iTkdf9a1ho-O-JreNijX0ENxpyg8rIszY8-pnAPIXQvMiI3gmcnanuvqln3xsxbwBYArzw4n_8tpfkrsCSG66YkPtkb7Vcx1eAmVZuQG7rqYbWlJ8G5M54cnxyOmiWDLRHyvwBtncVzg |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VcgAOiDeGAgsCicuqm7WdtQ8IUdooJW1BtJVyM_tyiAh2yEMo3PhD_EZm7MRtUMWtFx_s1e7KM7PzzezuNwAv0zAW5Gd54mTOo9zE3GhBZ9zpFmhkfFpdFzs8andPow_9uL8Bf1Z3YehY5WpNrBZqV1rKkW_LOCQ2KPROb8c_OFWNot3VVQmNWi16fvETQ7bpm_1dlO8rKTt7J--7fFlVgFsMBWc8IcbyPNFOK534FAMc4WLfMhj8Wxdb6XJ66siadsuZMImsEsKmee4iYZQWIfZ7Ba6i4xVkUap_FuCFGO_V7EUh9rY9xXAK0Ydqrfm8qjTARXj232OZ5_xc5xbcXAJU9q7WqNuw4Ys7cOMcbeFd-P2x4IgbeWe0YJ05pdtYmbPPHqXuRwt-jJGxd2xnOGC7eqZZdSqB6YLtIVLHXlldSYJeftIT7YaD74zSwUwz4srSdB1x-At7OB7ryTdWD81wkN7c-ElBmeJ7cHopP_0-bBZl4R8CUxhThwaBa4U-QqVxAISdIo7zSLZyG8Dr1c_O7JLnnMptjDKMd0guWSOXAF40Tcc1ucdFjXZIYk0D4uOuXpSTQbY07wyBrFROGASHlHBIkzxBnNe2NrTEmdcOYGsl72y5SEyzM5UO4HnzGc2b9mx04cs5tZEiUeiRogAe1OrRzATnKaUSaQBqTXHWprr-pRh-rSjEEdZJlMKj_0_rGVzrnhweZAf7R73HcF3ScR4RcRluweZsMvdPEI_NzNPKCBh8uWyr-wutqkkd |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELaWRUJwQLwJLGAQSFysOnZSJweEWLrVLoVlxbJSb8HPUlHS0odQufG3-HXMJGl3i1bc9pJDYtlOZsb-ZjL-hpDnuUw57rMscyKwJJiUGc0xxx1PgSbG59VxsQ-H7f2T5F0_7W-RP6uzMJhWuVoTq4XajS3GyFsilcgGBbtTKzRpEUed7uvJD4YVpPBP66qcRq0iPb_8Ce7b7NVBB2T9Qoju3ue3-6ypMMAsuIVzliF7eci000pnPgdnh7vUx0bm3LrUChfwqhNr2rEzMkus4tzmIbiEG6W5hH4vkcvwXjHamOqfOnsSfL-ayUhCb60ZuFaARFS8sf9VZQLOw7b_pmie2fO6N8j1BqzSN7V23SRbvrxFrp2hMLxNfn8sGWBI1h0taXeBoTc6DvSTBw3woyU7Bi_ZO7o7HNCOnmtaZShQXdI9QO3QK62rSuDNIz3Vbjj4TjE0TDVF3iyNRxOHv6CH44mefqP10BQG6S2Mn5YYNb5DTi7ko98l2-W49PcJVeBfSwMgtkIiUmkYACAoT9OQiDjYiLxcfezCNpznWHpjVIDvg3Ip1nKJyLN100lN9HFeo12U2LoBcnNXN8bTQdGYegGgVijHDQBFDD7kWcgA87WtlRb589oR2VnJu2gWjFlxqt4Rebp-DKaO_2906ccLbCN4pmB3SiJyr1aP9UxgnkIonkdEbSjOxlQ3n5TDrxWdOEA8AVJ48P9pPSFXwN6K9weHvYfkqsDMHp4wIXfI9ny68I8Ams3N48oGKPly0Ub3F90NTVM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On-the-Fly+Fusion+of+Remotely-Sensed+Big+Data+Using+an+Elastic+Computing+Paradigm+with+a+Containerized+Spark+Engine+on+Kubernetes&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Wei+Huang&rft.au=Jianzhong+Zhou&rft.au=Dongying+Zhang&rft.date=2021-04-23&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=21&rft.issue=9&rft.spage=2971&rft_id=info:doi/10.3390%2Fs21092971&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_08327d0b159046998f89766cc3c12136 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |