On-the-Fly Fusion of Remotely-Sensed Big Data Using an Elastic Computing Paradigm with a Containerized Spark Engine on Kubernetes

Remotely-sensed satellite image fusion is indispensable for the generation of long-term gap-free Earth observation data. While cloud computing (CC) provides the big picture for RS big data (RSBD), the fundamental question of the efficient fusion of RSBD on CC platforms has not yet been settled. To t...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 21; no. 9; p. 2971
Main Authors Huang, Wei, Zhou, Jianzhong, Zhang, Dongying
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 23.04.2021
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Remotely-sensed satellite image fusion is indispensable for the generation of long-term gap-free Earth observation data. While cloud computing (CC) provides the big picture for RS big data (RSBD), the fundamental question of the efficient fusion of RSBD on CC platforms has not yet been settled. To this end, we propose a lightweight cloud-native framework for the elastic processing of RSBD in this study. With the scaling mechanisms provided by both the Infrastructure as a Service (IaaS) and Platform as a Services (PaaS) of CC, the Spark-on-Kubernetes operator model running in the framework can enhance the efficiency of Spark-based algorithms without considering bottlenecks such as task latency caused by an unbalanced workload, and can ease the burden to tune the performance parameters for their parallel algorithms. Internally, we propose a task scheduling mechanism (TSM) to dynamically change the Spark executor pods’ affinities to the computing hosts. The TSM learns the workload of a computing host. Learning from the ratio between the number of completed and failed tasks on a computing host, the TSM dispatches Spark executor pods to newer and less-overwhelmed computing hosts. In order to illustrate the advantage, we implement a parallel enhanced spatial and temporal adaptive reflectance fusion model (PESTARFM) to enable the efficient fusion of big RS images with a Spark aggregation function. We construct an OpenStack cloud computing environment to test the usability of the framework. According to the experiments, TSM can improve the performance of the PESTARFM using only PaaS scaling to about 11.7%. When using both the IaaS and PaaS scaling, the maximum performance gain with the TSM can be even greater than 13.6%. The fusion of such big Sentinel and PlanetScope images requires less than 4 min in the experimental environment.
AbstractList Remotely-sensed satellite image fusion is indispensable for the generation of long-term gap-free Earth observation data. While cloud computing (CC) provides the big picture for RS big data (RSBD), the fundamental question of the efficient fusion of RSBD on CC platforms has not yet been settled. To this end, we propose a lightweight cloud-native framework for the elastic processing of RSBD in this study. With the scaling mechanisms provided by both the Infrastructure as a Service (IaaS) and Platform as a Services (PaaS) of CC, the Spark-on-Kubernetes operator model running in the framework can enhance the efficiency of Spark-based algorithms without considering bottlenecks such as task latency caused by an unbalanced workload, and can ease the burden to tune the performance parameters for their parallel algorithms. Internally, we propose a task scheduling mechanism (TSM) to dynamically change the Spark executor pods' affinities to the computing hosts. The TSM learns the workload of a computing host. Learning from the ratio between the number of completed and failed tasks on a computing host, the TSM dispatches Spark executor pods to newer and less-overwhelmed computing hosts. In order to illustrate the advantage, we implement a parallel enhanced spatial and temporal adaptive reflectance fusion model (PESTARFM) to enable the efficient fusion of big RS images with a Spark aggregation function. We construct an OpenStack cloud computing environment to test the usability of the framework. According to the experiments, TSM can improve the performance of the PESTARFM using only PaaS scaling to about 11.7%. When using both the IaaS and PaaS scaling, the maximum performance gain with the TSM can be even greater than 13.6%. The fusion of such big Sentinel and PlanetScope images requires less than 4 min in the experimental environment.Remotely-sensed satellite image fusion is indispensable for the generation of long-term gap-free Earth observation data. While cloud computing (CC) provides the big picture for RS big data (RSBD), the fundamental question of the efficient fusion of RSBD on CC platforms has not yet been settled. To this end, we propose a lightweight cloud-native framework for the elastic processing of RSBD in this study. With the scaling mechanisms provided by both the Infrastructure as a Service (IaaS) and Platform as a Services (PaaS) of CC, the Spark-on-Kubernetes operator model running in the framework can enhance the efficiency of Spark-based algorithms without considering bottlenecks such as task latency caused by an unbalanced workload, and can ease the burden to tune the performance parameters for their parallel algorithms. Internally, we propose a task scheduling mechanism (TSM) to dynamically change the Spark executor pods' affinities to the computing hosts. The TSM learns the workload of a computing host. Learning from the ratio between the number of completed and failed tasks on a computing host, the TSM dispatches Spark executor pods to newer and less-overwhelmed computing hosts. In order to illustrate the advantage, we implement a parallel enhanced spatial and temporal adaptive reflectance fusion model (PESTARFM) to enable the efficient fusion of big RS images with a Spark aggregation function. We construct an OpenStack cloud computing environment to test the usability of the framework. According to the experiments, TSM can improve the performance of the PESTARFM using only PaaS scaling to about 11.7%. When using both the IaaS and PaaS scaling, the maximum performance gain with the TSM can be even greater than 13.6%. The fusion of such big Sentinel and PlanetScope images requires less than 4 min in the experimental environment.
Remotely-sensed satellite image fusion is indispensable for the generation of long-term gap-free Earth observation data. While cloud computing (CC) provides the big picture for RS big data (RSBD), the fundamental question of the efficient fusion of RSBD on CC platforms has not yet been settled. To this end, we propose a lightweight cloud-native framework for the elastic processing of RSBD in this study. With the scaling mechanisms provided by both the Infrastructure as a Service (IaaS) and Platform as a Services (PaaS) of CC, the Spark-on-Kubernetes operator model running in the framework can enhance the efficiency of Spark-based algorithms without considering bottlenecks such as task latency caused by an unbalanced workload, and can ease the burden to tune the performance parameters for their parallel algorithms. Internally, we propose a task scheduling mechanism (TSM) to dynamically change the Spark executor pods' affinities to the computing hosts. The TSM learns the workload of a computing host. Learning from the ratio between the number of completed and failed tasks on a computing host, the TSM dispatches Spark executor pods to newer and less-overwhelmed computing hosts. In order to illustrate the advantage, we implement a parallel enhanced spatial and temporal adaptive reflectance fusion model (PESTARFM) to enable the efficient fusion of big RS images with a Spark aggregation function. We construct an OpenStack cloud computing environment to test the usability of the framework. According to the experiments, TSM can improve the performance of the PESTARFM using only PaaS scaling to about 11.7%. When using both the IaaS and PaaS scaling, the maximum performance gain with the TSM can be even greater than 13.6%. The fusion of such big Sentinel and PlanetScope images requires less than 4 min in the experimental environment.
Author Zhang, Dongying
Zhou, Jianzhong
Huang, Wei
AuthorAffiliation School of Civil and Hydraulic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; huangwei0316@hust.edu.cn (W.H.); zhangdongying@hust.edu.cn (D.Z.)
AuthorAffiliation_xml – name: School of Civil and Hydraulic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; huangwei0316@hust.edu.cn (W.H.); zhangdongying@hust.edu.cn (D.Z.)
Author_xml – sequence: 1
  givenname: Wei
  orcidid: 0000-0003-1696-1503
  surname: Huang
  fullname: Huang, Wei
– sequence: 2
  givenname: Jianzhong
  surname: Zhou
  fullname: Zhou, Jianzhong
– sequence: 3
  givenname: Dongying
  orcidid: 0000-0003-2488-7243
  surname: Zhang
  fullname: Zhang, Dongying
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33922709$$D View this record in MEDLINE/PubMed
BookMark eNplkk1v1DAQhiNURD_gwB9AlrjAIdQf2cS-IMGyCxWViig9WxPbyXpJ7MV2QMuNf46Xbau2XGxr5p1n3rF9XBw470xRPCf4DWMCn0ZKsKCiIY-KI1LRquSU4oM758PiOMY1xpQxxp8Uh7mK0gaLo-LPhSvTypTLYYuWU7TeId-hr2b0yQzb8tK4aDR6b3v0ARKgq2hdj8ChxQAxWYXmftxMaRf8AgG07Uf0y6YVgpxxCawzwf7OhMsNhO9o4focQbnJ56k1wZlk4tPicQdDNM-u95Piarn4Nv9Unl98PJu_Oy9VVYtUck5x3XHQ0AA3glcY65khbZ5f6ZmiututUKm2JrplvFINxkp0na5w2wBmJ8XZnqs9rOUm2BHCVnqw8l_Ah15CyCMNRmLOaKNxS2YC5-aCd1w0da0UU4QSVmfW2z1rM7Wj0cq4FGC4B72fcXYle_9TckJp9p4Br64Bwf-YTExytFGZYQBn_BQlnVHMG0HITvrygXTtp-DyVWUVw6SuqGBZ9eKuo1srNy-dBad7gQo-xmA6qWyClB88G7SDJHinxfL2L-WK1w8qbqD_a_8C-NDH_A
CitedBy_id crossref_primary_10_1109_JIOT_2024_3408166
crossref_primary_10_3390_info12120517
crossref_primary_10_1155_2022_5636449
crossref_primary_10_3390_app131810478
crossref_primary_10_3390_computers14040114
crossref_primary_10_3390_rs14030521
crossref_primary_10_3390_rs13224550
Cites_doi 10.3390/ijgi6030084
10.1109/INFOCOM.2018.8485865
10.1109/JSTARS.2016.2547020
10.1016/j.future.2017.02.044
10.1016/j.isprsjprs.2018.07.017
10.1016/j.future.2016.06.009
10.1002/cpe.5323
10.1016/j.inffus.2020.12.008
10.1109/TII.2020.3022843
10.1016/j.future.2019.04.008
10.1109/CFEC.2018.8358729
10.3390/rs13040645
10.3390/rs11060629
10.1145/2797211
10.3390/rs8080662
10.3390/rs12040607
10.1016/j.ins.2019.10.035
10.1016/j.isprsjprs.2020.04.001
10.1109/HPEC.2017.8091086
10.1007/978-3-030-10549-5_9
10.1038/s41592-019-0650-1
10.1145/3381027
10.1038/nrg.2017.113
10.1016/j.inffus.2016.03.003
10.1109/MGRS.2016.2637824
10.1109/TGRS.2018.2890513
10.1016/j.rse.2010.05.032
10.1145/2723372.2742797
10.1109/ISSREW.2019.00066
10.1016/j.rse.2020.112002
10.1007/978-3-319-14313-2_7
10.1109/TC.2017.2669964
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 by the authors. 2021
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 by the authors. 2021
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s21092971
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni)
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed

CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_08327d0b159046998f89766cc3c12136
PMC8122984
33922709
10_3390_s21092971
Genre Journal Article
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
NPM
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c469t-88206f8ada7a8e98400d5e1b390cd5c2dfd5c2a4cb61db384c700c9ffd40b7a03
IEDL.DBID DOA
ISSN 1424-8220
IngestDate Wed Aug 27 01:30:34 EDT 2025
Thu Aug 21 14:01:14 EDT 2025
Thu Jul 10 19:22:07 EDT 2025
Fri Jul 25 10:00:35 EDT 2025
Thu Apr 03 06:59:23 EDT 2025
Tue Jul 01 03:56:11 EDT 2025
Thu Apr 24 23:11:31 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords big data
cloud computing
fusion algorithm
parallel computing
Kubernetes
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c469t-88206f8ada7a8e98400d5e1b390cd5c2dfd5c2a4cb61db384c700c9ffd40b7a03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1696-1503
0000-0003-2488-7243
OpenAccessLink https://doaj.org/article/08327d0b159046998f89766cc3c12136
PMID 33922709
PQID 2530164293
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_08327d0b159046998f89766cc3c12136
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8122984
proquest_miscellaneous_2520879114
proquest_journals_2530164293
pubmed_primary_33922709
crossref_citationtrail_10_3390_s21092971
crossref_primary_10_3390_s21092971
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210423
PublicationDateYYYYMMDD 2021-04-23
PublicationDate_xml – month: 4
  year: 2021
  text: 20210423
  day: 23
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2021
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Huang (ref_23) 2017; 10
Langmead (ref_1) 2018; 19
Tamiminia (ref_30) 2020; 164
ref_12
Yan (ref_3) 2018; 86
Tong (ref_8) 2020; 512
Zhu (ref_27) 2010; 114
ref_33
ref_10
ref_32
Mann (ref_9) 2015; 48
Sefraoui (ref_28) 2012; 55
Sollfrank (ref_11) 2021; 17
ref_19
ref_18
Yokoya (ref_16) 2017; 5
Ghassemian (ref_4) 2016; 32
Teluguntla (ref_2) 2018; 144
Haase (ref_17) 2020; 17
ref_25
ref_24
ref_22
ref_20
Zhu (ref_15) 2021; 70
Wang (ref_31) 2018; 78
Jha (ref_21) 2021; 33
Cheng (ref_7) 2017; 66
ref_29
Sun (ref_5) 2019; 57
ref_26
Wang (ref_14) 2020; 248
Herodotou (ref_34) 2020; 53
Cigale (ref_13) 2019; 99
ref_6
References_xml – ident: ref_33
  doi: 10.3390/ijgi6030084
– ident: ref_25
  doi: 10.1109/INFOCOM.2018.8485865
– volume: 10
  start-page: 3
  year: 2017
  ident: ref_23
  article-title: In-Memory Parallel Processing of Massive Remotely Sensed Data Using an Apache Spark on Hadoop YARN Model
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2016.2547020
– volume: 86
  start-page: 1154
  year: 2018
  ident: ref_3
  article-title: A cloud-based remote sensing data production system
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2017.02.044
– volume: 144
  start-page: 325
  year: 2018
  ident: ref_2
  article-title: A 30-m landsat-derived cropland extent product of Australia and China using random forest machine learning algorithm on Google Earth Engine cloud computing platform
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2018.07.017
– volume: 78
  start-page: 353
  year: 2018
  ident: ref_31
  article-title: pipsCloud: High performance cloud computing for remote sensing big data management and processing
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2016.06.009
– volume: 33
  start-page: e5323
  year: 2021
  ident: ref_21
  article-title: A study on the evaluation of HPC microservices in containerized environment
  publication-title: Concurr. Comput. Pract. Exp.
  doi: 10.1002/cpe.5323
– volume: 70
  start-page: 72
  year: 2021
  ident: ref_15
  article-title: A spatial-channel progressive fusion ResNet for remote sensing classification
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2020.12.008
– volume: 17
  start-page: 3566
  year: 2021
  ident: ref_11
  article-title: Evaluating Docker for Lightweight Virtualization of Distributed and Time-Sensitive Applications in Industrial Automation
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2020.3022843
– volume: 99
  start-page: 197
  year: 2019
  ident: ref_13
  article-title: SWITCH workbench: A novel approach for the development and deployment of time-critical microservice-based cloud-native applications
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2019.04.008
– ident: ref_24
  doi: 10.1109/CFEC.2018.8358729
– ident: ref_18
  doi: 10.3390/rs13040645
– ident: ref_6
  doi: 10.3390/rs11060629
– volume: 48
  start-page: 1
  year: 2015
  ident: ref_9
  article-title: Allocation of Virtual Machines in Cloud Data Centers—A Survey of Problem Models and Optimization Algorithms
  publication-title: ACM Comput. Surv.
  doi: 10.1145/2797211
– ident: ref_32
  doi: 10.3390/rs8080662
– ident: ref_22
  doi: 10.3390/rs12040607
– volume: 512
  start-page: 1170
  year: 2020
  ident: ref_8
  article-title: A scheduling scheme in the cloud computing environment using deep Q-learning
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2019.10.035
– volume: 164
  start-page: 152
  year: 2020
  ident: ref_30
  article-title: Google Earth Engine for geo-big data applications: A meta-analysis and systematic review
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2020.04.001
– ident: ref_10
  doi: 10.1109/HPEC.2017.8091086
– ident: ref_20
  doi: 10.1007/978-3-030-10549-5_9
– volume: 17
  start-page: 5
  year: 2020
  ident: ref_17
  article-title: CLIJ: GPU-accelerated image processing for everyone
  publication-title: Nat. Methods
  doi: 10.1038/s41592-019-0650-1
– volume: 53
  start-page: 1
  year: 2020
  ident: ref_34
  article-title: A Survey on Automatic Parameter Tuning for Big Data Processing Systems
  publication-title: ACM Comput. Surv.
  doi: 10.1145/3381027
– volume: 19
  start-page: 208
  year: 2018
  ident: ref_1
  article-title: Cloud computing for genomic data analysis and collaboration
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg.2017.113
– volume: 32
  start-page: 75
  year: 2016
  ident: ref_4
  article-title: A review of remote sensing image fusion methods
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2016.03.003
– volume: 5
  start-page: 29
  year: 2017
  ident: ref_16
  article-title: Hyperspectral and Multispectral Data Fusion: A comparative review of the recent literature
  publication-title: IEEE Geosci. Remote Sens. Mag.
  doi: 10.1109/MGRS.2016.2637824
– volume: 57
  start-page: 4294
  year: 2019
  ident: ref_5
  article-title: An Efficient and Scalable Framework for Processing Remotely Sensed Big Data in Cloud Computing Environments
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2018.2890513
– volume: 114
  start-page: 2610
  year: 2010
  ident: ref_27
  article-title: An enhanced spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2010.05.032
– ident: ref_26
  doi: 10.1145/2723372.2742797
– ident: ref_12
  doi: 10.1109/ISSREW.2019.00066
– ident: ref_19
– volume: 55
  start-page: 38
  year: 2012
  ident: ref_28
  article-title: OpenStack: Toward an open-source solution for cloud computing
  publication-title: Int. J. Comput. Appl.
– volume: 248
  start-page: 112002
  year: 2020
  ident: ref_14
  article-title: A summary of the special issue on remote sensing of land change science with Google earth engine
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2020.112002
– ident: ref_29
  doi: 10.1007/978-3-319-14313-2_7
– volume: 66
  start-page: 1341
  year: 2017
  ident: ref_7
  article-title: Cross-Platform Resource Scheduling for Spark and MapReduce on YARN
  publication-title: IEEE Trans. Comput.
  doi: 10.1109/TC.2017.2669964
SSID ssj0023338
Score 2.389891
Snippet Remotely-sensed satellite image fusion is indispensable for the generation of long-term gap-free Earth observation data. While cloud computing (CC) provides...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 2971
SubjectTerms Algorithms
Big Data
Cloud computing
Containerization
Earth
Earth science
fusion algorithm
Kubernetes
Life sciences
parallel computing
Satellites
Scheduling
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwEB7BcoED4k1gQQZx4GKtayd1ckIsbLUC8RDLSr1FfnYrSlLS9rDc-OfMJGl2i1Zcckis2MrYme8bj78BeFWoTJCf5bmXkafRZtwaQTnudAo0taFoj4t9-jw-Pk0_TLNpH3Bb9WmV239i-6P2taMY-YHMFKlBoXd6s_zFqWoU7a72JTSuww2SLqOULj29IFwK-VenJqSQ2h-skN4gGtCjHR_USvVfhS__TZO85Hcmd-B2DxjZ287Cd-FaqO7BrUsygvfhz5eKI47jk8U5m2wo_MXqyL4FtEJYnPMTZKrBs8P5jL03a8PaLAFmKnaEyBnfyrrKDnTzq2mMn89-MgrPMsNIu8rQ8cD5b3zDydI0P1jXNcNOPm5saCqK3D6A08nR93fHvC-twB3y4TXPSbY95sYbbfJQIMsTPgsji5_J-cxJH-lqUmfHI29VnjothCti9Kmw2gj1EPaqugqPgWnkuMoikGzRgNIGO0AYKLIspnIUXQKvtx-7dL3uOJW_WJTIP8gu5WCXBF4OTZed2MZVjQ7JYkMD0sdub9TNrOyXW4nAUmovLII1CgAUecwRd42dU4407MYJ7G_tXfaLdlVeTLEEXgyPcbnRHoqpQr2hNlLkGj1EmsCjbnoMI8FxSqlFkYDemTg7Q919Us3PWklvhFkSrfDk_8N6CjclpdSIlEu1D3vrZhOeISZa2-ftxP8LDpILDg
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nj9MwEB2tlgscEN8EFmQQBy4G13Hq5IAQC1utQAuIpdLeIn-WipIu2Vai3PjnzCRptEE9cskhGcWOx6N5z7HfADwr0kxQnuW5l5GraDNujaA97nQKVNlQNMfFTj6Oj6fq_Vl2tgfbGpvdAF7spHZUT2paL178-rl5jQH_ihgnUvaXF0hbMMvTSfIrmJA0xeeJ6n8myBRpWCsqNDQfpKJGsX8XzPx3t-Sl9DO5Adc73MjetI6-CXuhugXXLqkJ3oY_nyqOcI5PFhs2WdMqGFtG9iWgM8Jiw0-RsAbPDucz9s6sDGs2CzBTsSME0PhW1hZ4oJufTW38fPaD0SotM4wkrAydEpz_xjecnpv6O2ubZtjIh7UNdUULuHdgOjn6-vaYdxUWuENavOI5qbfH3HijTR4KJHvCZ2FkcZicz5z0ka5GOTseeZvmymkhXBGjV8JqI9K7sF8tq3AfmEaqm1rEkw0oSLXBBhANiiyLSo6iS-D5drBL18mPUxWMRYk0hPxS9n5J4Glvet5qbuwyOiSP9QYkk93cWNazsou6EvGl1F5YxGy0DlDkMUf4NXYudSRlN07gYOvvcjv1SpmlpDuGOCiBJ_1jjDr6lWKqsFyTjRS5xkShErjXTo--J9hPKbUoEtCDiTPo6vBJNf_WKHsj2pLohQf_49sewlVJ-2-E4jI9gP1VvQ6PEECt7OMmPP4CRRMYgA
  priority: 102
  providerName: Scholars Portal
Title On-the-Fly Fusion of Remotely-Sensed Big Data Using an Elastic Computing Paradigm with a Containerized Spark Engine on Kubernetes
URI https://www.ncbi.nlm.nih.gov/pubmed/33922709
https://www.proquest.com/docview/2530164293
https://www.proquest.com/docview/2520879114
https://pubmed.ncbi.nlm.nih.gov/PMC8122984
https://doaj.org/article/08327d0b159046998f89766cc3c12136
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NbxMxELWgXOCA-GahRAZx4GLVsb2x90ggSwVqqVoq5bbyZ4kImypNDuXGP2dmd7NKUCUuXHzYtdbOzFjznjN-JuRtIXOOeZaZIBJTyeXMWY417ngKVLlYNMfFjo5Hh-fq8zSfbl31hTVhrTxwa7gDgAhCB-4g7SKVK0wykEFH3kuPamSN2DbkvA2Z6qiWBObV6ghJIPUHV0BsAAfo4U72aUT6b0KWfxdIbmWc8gG530FF-r6d4kNyK9aPyL0tAcHH5PfXmgGCY-X8mpZr3Piii0RPI9g_zq_ZGXDUGOh4dkE_2pWlTX0AtTWdAGaGr9L2Tgd8eGKXNswuflLcmKWWomqVxYOBs1_whbNLu_xB26EpDPJl7eKyxj3bJ-S8nHz7cMi6SxWYB_OtmEHB9mRssNqaWAC_4yGPQwdm8iH3IiRsrfJuNAxOGuU1575IKSjutOXyKdmrF3V8TqgGdisdQMgGB0htYQAAgDzPkxLD5DPybmPsyneK43jxxbwC5oF-qXq_ZORN3_Wyldm4qdMYPdZ3QGXs5gHES9XFS_WveMnI_sbfVbdcryqRS5QaA-iTkdf9a1ho-O-JreNijX0ENxpyg8rIszY8-pnAPIXQvMiI3gmcnanuvqln3xsxbwBYArzw4n_8tpfkrsCSG66YkPtkb7Vcx1eAmVZuQG7rqYbWlJ8G5M54cnxyOmiWDLRHyvwBtncVzg
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VcgAOiDeGAgsCicuqm7WdtQ8IUdooJW1BtJVyM_tyiAh2yEMo3PhD_EZm7MRtUMWtFx_s1e7KM7PzzezuNwAv0zAW5Gd54mTOo9zE3GhBZ9zpFmhkfFpdFzs8andPow_9uL8Bf1Z3YehY5WpNrBZqV1rKkW_LOCQ2KPROb8c_OFWNot3VVQmNWi16fvETQ7bpm_1dlO8rKTt7J--7fFlVgFsMBWc8IcbyPNFOK534FAMc4WLfMhj8Wxdb6XJ66siadsuZMImsEsKmee4iYZQWIfZ7Ba6i4xVkUap_FuCFGO_V7EUh9rY9xXAK0Ydqrfm8qjTARXj232OZ5_xc5xbcXAJU9q7WqNuw4Ys7cOMcbeFd-P2x4IgbeWe0YJ05pdtYmbPPHqXuRwt-jJGxd2xnOGC7eqZZdSqB6YLtIVLHXlldSYJeftIT7YaD74zSwUwz4srSdB1x-At7OB7ryTdWD81wkN7c-ElBmeJ7cHopP_0-bBZl4R8CUxhThwaBa4U-QqVxAISdIo7zSLZyG8Dr1c_O7JLnnMptjDKMd0guWSOXAF40Tcc1ucdFjXZIYk0D4uOuXpSTQbY07wyBrFROGASHlHBIkzxBnNe2NrTEmdcOYGsl72y5SEyzM5UO4HnzGc2b9mx04cs5tZEiUeiRogAe1OrRzATnKaUSaQBqTXHWprr-pRh-rSjEEdZJlMKj_0_rGVzrnhweZAf7R73HcF3ScR4RcRluweZsMvdPEI_NzNPKCBh8uWyr-wutqkkd
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELaWRUJwQLwJLGAQSFysOnZSJweEWLrVLoVlxbJSb8HPUlHS0odQufG3-HXMJGl3i1bc9pJDYtlOZsb-ZjL-hpDnuUw57rMscyKwJJiUGc0xxx1PgSbG59VxsQ-H7f2T5F0_7W-RP6uzMJhWuVoTq4XajS3GyFsilcgGBbtTKzRpEUed7uvJD4YVpPBP66qcRq0iPb_8Ce7b7NVBB2T9Qoju3ue3-6ypMMAsuIVzliF7eci000pnPgdnh7vUx0bm3LrUChfwqhNr2rEzMkus4tzmIbiEG6W5hH4vkcvwXjHamOqfOnsSfL-ayUhCb60ZuFaARFS8sf9VZQLOw7b_pmie2fO6N8j1BqzSN7V23SRbvrxFrp2hMLxNfn8sGWBI1h0taXeBoTc6DvSTBw3woyU7Bi_ZO7o7HNCOnmtaZShQXdI9QO3QK62rSuDNIz3Vbjj4TjE0TDVF3iyNRxOHv6CH44mefqP10BQG6S2Mn5YYNb5DTi7ko98l2-W49PcJVeBfSwMgtkIiUmkYACAoT9OQiDjYiLxcfezCNpznWHpjVIDvg3Ip1nKJyLN100lN9HFeo12U2LoBcnNXN8bTQdGYegGgVijHDQBFDD7kWcgA87WtlRb589oR2VnJu2gWjFlxqt4Rebp-DKaO_2906ccLbCN4pmB3SiJyr1aP9UxgnkIonkdEbSjOxlQ3n5TDrxWdOEA8AVJ48P9pPSFXwN6K9weHvYfkqsDMHp4wIXfI9ny68I8Ams3N48oGKPly0Ub3F90NTVM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On-the-Fly+Fusion+of+Remotely-Sensed+Big+Data+Using+an+Elastic+Computing+Paradigm+with+a+Containerized+Spark+Engine+on+Kubernetes&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Wei+Huang&rft.au=Jianzhong+Zhou&rft.au=Dongying+Zhang&rft.date=2021-04-23&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=21&rft.issue=9&rft.spage=2971&rft_id=info:doi/10.3390%2Fs21092971&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_08327d0b159046998f89766cc3c12136
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon