Bacteria inactivation by sulfate radical: progress and non-negligible disinfection by-products
● Status of inactivation of pathogenic microorganisms by SO 4 *− is reviewed. ● Mechanism of SO 4 *− disinfection is outlined. ● Possible generation of DBPs during disinfection using SO 4 *− is discussed. ● Possible problems and challenges of using SO 4 *− for disinfection are presented. Sulfate rad...
Saved in:
Published in | Frontiers of environmental science & engineering Vol. 17; no. 3; p. 29 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Beijing
Higher Education Press
01.03.2023
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | ● Status of inactivation of pathogenic microorganisms by SO 4 *− is reviewed. ● Mechanism of SO 4 *− disinfection is outlined. ● Possible generation of DBPs during disinfection using SO 4 *− is discussed. ● Possible problems and challenges of using SO 4 *− for disinfection are presented.
Sulfate radicals have been increasingly used for the pathogen inactivation due to their strong redox ability and high selectivity for electron-rich species in the last decade. The application of sulfate radicals in water disinfection has become a very promising technology. However, there is currently a lack of reviews of sulfate radicals inactivated pathogenic microorganisms. At the same time, less attention has been paid to disinfection by-products produced by the use of sulfate radicals to inactivate microorganisms. This paper begins with a brief overview of sulfate radicals' properties. Then, the progress in water disinfection by sulfate radicals is summarized. The mechanism and inactivation kinetics of inactivating microorganisms are briefly described. After that, the disinfection by-products produced by reactions of sulfate radicals with chlorine, bromine, iodide ions and organic halogens in water are also discussed. In response to these possible challenges, this article concludes with some specific solutions and future research directions. |
---|---|
AbstractList | Sulfate radicals have been increasingly used for the pathogen inactivation due to their strong redox ability and high selectivity for electron-rich species in the last decade. The application of sulfate radicals in water disinfection has become a very promising technology. However, there is currently a lack of reviews of sulfate radicals inactivated pathogenic microorganisms. At the same time, less attention has been paid to disinfection by-products produced by the use of sulfate radicals to inactivate microorganisms. This paper begins with a brief overview of sulfate radicals’ properties. Then, the progress in water disinfection by sulfate radicals is summarized. The mechanism and inactivation kinetics of inactivating microorganisms are briefly described. After that, the disinfection by-products produced by reactions of sulfate radicals with chlorine, bromine, iodide ions and organic halogens in water are also discussed. In response to these possible challenges, this article concludes with some specific solutions and future research directions. ● Status of inactivation of pathogenic microorganisms by SO 4 *− is reviewed. ● Mechanism of SO 4 *− disinfection is outlined. ● Possible generation of DBPs during disinfection using SO 4 *− is discussed. ● Possible problems and challenges of using SO 4 *− for disinfection are presented. Sulfate radicals have been increasingly used for the pathogen inactivation due to their strong redox ability and high selectivity for electron-rich species in the last decade. The application of sulfate radicals in water disinfection has become a very promising technology. However, there is currently a lack of reviews of sulfate radicals inactivated pathogenic microorganisms. At the same time, less attention has been paid to disinfection by-products produced by the use of sulfate radicals to inactivate microorganisms. This paper begins with a brief overview of sulfate radicals' properties. Then, the progress in water disinfection by sulfate radicals is summarized. The mechanism and inactivation kinetics of inactivating microorganisms are briefly described. After that, the disinfection by-products produced by reactions of sulfate radicals with chlorine, bromine, iodide ions and organic halogens in water are also discussed. In response to these possible challenges, this article concludes with some specific solutions and future research directions. |
ArticleNumber | 29 |
Author | Wang, Jiajia Feng, Haopeng Peng, Kang Chen, Wenhao Yu, Jiangfang Tang, Lin Tang, Jing Zhou, Xin Ren, Xiaoya Zhang, Yuying Chen, Yu |
Author_xml | – sequence: 1 givenname: Xin surname: Zhou fullname: Zhou, Xin organization: Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China – sequence: 2 givenname: Xiaoya surname: Ren fullname: Ren, Xiaoya organization: Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China – sequence: 3 givenname: Yu surname: Chen fullname: Chen, Yu organization: Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China – sequence: 4 givenname: Haopeng surname: Feng fullname: Feng, Haopeng organization: Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China – sequence: 5 givenname: Jiangfang surname: Yu fullname: Yu, Jiangfang organization: Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China – sequence: 6 givenname: Kang surname: Peng fullname: Peng, Kang organization: Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China – sequence: 7 givenname: Yuying surname: Zhang fullname: Zhang, Yuying organization: Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China – sequence: 8 givenname: Wenhao surname: Chen fullname: Chen, Wenhao organization: Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China – sequence: 9 givenname: Jing surname: Tang fullname: Tang, Jing organization: Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China – sequence: 10 givenname: Jiajia surname: Wang fullname: Wang, Jiajia email: Jiajia Wang organization: Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China – sequence: 11 givenname: Lin surname: Tang fullname: Tang, Lin email: tanglin@hnu.edu.cn organization: Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China |
BookMark | eNp9kc1rFTEUxYNUsNb-Ae4G3LiJzddMbtxpqR9QcKPgypCX3ExTpplnMlPof2-eUxS6eNncuzi_nMM9L8lJnjMS8pqzd5wxfVE51yApE5LyQRhqnpFTwUxPheA_T_7tjL8g57XesvYAFAd5Sn59dH7BklyXctvSvVvSnLvdQ1fXKboFu-JC8m563-3LPBastXM5dC0BzThOaUy7CbuQasoR_SNMmzasfqmvyPPopornj_OM_Ph09f3yC73-9vnr5Ydr6tVgFgqDjMBEVMHwwWMAzXrfcwgRxRBbcAlsB6yXBjQC6p0ZtFFOeqWDc36QZ-Tt9m8z_r1iXexdqh6nyWWc12oFgB44Z-ogffNEejuvJbd0VhgOWgEX_VGVbvdUWoJqKr6pfJlrLRjtvqQ7Vx4sZ_ZQjd2qsa0ae6jGmsboJ4xPy9-rL8Wl6SgpNrI2lzxi-Z_pGAQbdJPGGywY9ocObSzNL2E5hv4B4MO1uA |
CitedBy_id | crossref_primary_10_1038_s41467_025_56339_2 crossref_primary_10_1016_j_envint_2024_108466 crossref_primary_10_1016_j_scitotenv_2024_170982 crossref_primary_10_1016_j_cej_2023_146565 crossref_primary_10_3390_w16020236 crossref_primary_10_1016_j_cej_2023_146636 crossref_primary_10_3390_w16070936 crossref_primary_10_1007_s11783_025_1959_x crossref_primary_10_1007_s11783_025_1928_4 crossref_primary_10_1007_s11783_024_1875_5 crossref_primary_10_1016_j_cclet_2023_109406 crossref_primary_10_1016_j_cej_2024_151180 crossref_primary_10_1016_j_jhazmat_2024_134983 crossref_primary_10_1007_s11783_023_1718_9 crossref_primary_10_1021_acs_est_3c09952 crossref_primary_10_1016_j_cej_2023_144191 |
Cites_doi | 10.1080/10643380500326564 10.1016/j.jenvman.2020.110223 10.1016/j.cej.2017.07.055 10.1016/j.apcatb.2019.02.003 10.1016/j.watres.2017.06.021 10.1021/acs.est.1c06356 10.1016/j.watres.2019.05.047 10.1080/10934529.2017.1312188 10.1016/j.ultsonch.2019.104634 10.1021/acs.est.5b06097 10.1016/j.watres.2015.06.019 10.1021/es300658u 10.1016/j.cej.2019.122660 10.1016/j.watres.2020.115746 10.1139/s07-024 10.1111/php.12210 10.1016/j.cej.2019.05.140 10.1016/j.apcatb.2019.02.018 10.1016/j.cej.2019.122275 10.1016/j.watres.2020.115552 10.1016/j.watres.2014.10.006 10.1016/j.cej.2017.09.159 10.1016/j.watres.2019.114866 10.1039/c2pp25316j 10.1016/j.watres.2020.116479 10.1016/j.jhazmat.2016.04.033 10.1073/pnas.96.11.6020 10.1021/acs.est.8b00576 10.1016/j.chemosphere.2019.124521 10.1021/ac101760y 10.1016/j.jhazmat.2020.124435 10.1016/1010-6030(94)03903-8 10.1007/s11783-021-1389-3 10.1016/j.apcatb.2016.04.003 10.1016/j.cej.2019.122909 10.1016/j.cej.2019.122787 10.1016/j.jwpe.2020.101362 10.1021/acs.est.5b00623 10.1016/j.envpol.2020.114558 10.1021/es903087w 10.1016/j.watres.2008.03.002 10.1016/j.chemosphere.2017.04.076 10.1016/j.tox.2005.12.011 10.1016/j.jhazmat.2020.124243 10.1016/j.watres.2014.01.001 10.1016/j.scitotenv.2020.137831 10.1016/j.chemosphere.2019.05.012 10.3109/10715762.2016.1166488 10.1016/j.watres.2015.07.015 10.1021/acs.analchem.9b05269 10.1016/j.watres.2015.03.028 10.1016/0009-2614(93)89222-4 10.1016/j.cej.2016.10.064 10.1016/j.apcatb.2018.07.003 10.1016/j.jhazmat.2010.03.039 10.1016/j.watres.2015.08.050 10.1021/es503255j 10.1016/j.jhazmat.2022.129720 10.1016/j.apcatb.2015.07.024 10.1016/j.watres.2018.04.054 10.1021/es050634b 10.1016/j.cej.2020.125894 10.1016/j.watres.2017.06.041 10.1016/j.apcatb.2017.03.019 10.1016/j.cej.2019.02.207 10.1016/j.jhazmat.2017.12.023 10.3390/w10121828 10.1016/j.cej.2018.06.186 10.1016/j.cej.2019.03.296 10.1016/j.cej.2020.125606 10.1016/j.watres.2017.03.061 10.1016/j.cej.2019.01.042 10.1016/j.chemosphere.2016.04.025 10.1016/j.pmatsci.2020.100654 10.1016/j.watres.2019.04.030 10.1016/j.watres.2008.11.008 10.1007/3-540-30592-0 10.1016/j.cej.2012.11.112 10.1016/j.scitotenv.2020.142588 10.1016/j.watres.2020.115725 10.1016/j.watres.2017.01.025 10.1016/j.cej.2019.122468 10.1007/s11783-021-1510-7 10.1016/j.jclepro.2017.02.135 10.1016/j.scitotenv.2018.05.258 10.1063/1.555808 10.1016/j.watres.2017.01.052 10.1016/j.cej.2021.132669 10.1016/j.watres.2019.03.071 10.1016/j.coche.2017.12.005 10.1016/j.watres.2019.114929 10.1016/j.cej.2017.11.059 10.1007/s11783-022-1585-9 10.1021/acs.est.6b05536 10.1016/j.cej.2017.07.132 10.1021/es062237m 10.1016/j.watres.2003.10.029 10.1016/j.chemosphere.2018.12.162 10.1039/P29840000503 |
ContentType | Journal Article |
Copyright | Copyright reserved, 2022, The Author(s) . This article is published with open access at link.springer.com and journal.hep.com.cn The Author(s) 2022 The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: Copyright reserved, 2022, The Author(s) . This article is published with open access at link.springer.com and journal.hep.com.cn – notice: The Author(s) 2022 – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 8FE 8FG ABJCF AEUYN AFKRA ATCPS AZQEC BENPR BGLVJ BHPHI CCPQU DWQXO GNUQQ HCIFZ L6V M7S PATMY PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY 7S9 L.6 |
DOI | 10.1007/s11783-023-1629-9 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection (ProQuest) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Engineering Collection Engineering Database Environmental Science Database ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection (ProQuest) Environmental Science Collection AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Engineering Collection Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) Engineering Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Environmental Science Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection Environmental Science Database ProQuest One Academic ProQuest One Academic (New) AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA CrossRef ProQuest Central Student |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Environmental Sciences |
EISSN | 2095-221X |
EndPage | 29 |
ExternalDocumentID | 10_1007_s11783_023_1629_9 10.1007/s11783-023-1629-9 |
GroupedDBID | -5A -5G -BR -EM -~C .VR 06D 0VY 1-T 2J2 2JN 2JY 2KG 2KM 2LR 30V 4.4 406 408 40E 5VS 95- 95. 96X AAAVM AABHQ AAEIZ AAFGU AAIAL AAJKR AANZL AARHV AARTL AATVU AAUYE AAWCG AAYIU AAYQN AAYTO ABDZT ABECU ABFGW ABFTV ABHQN ABJOX ABKAS ABKCH ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTMW ABXPI ACBMV ACBRV ACGFS ACHSB ACHXU ACIPQ ACIWK ACKNC ACMDZ ACMLO ACOKC ACSNA ACTTH ACVWB ACWMK ADHIR ADINQ ADKNI ADKPE ADMDM ADRFC ADTIX ADTPH ADURQ ADYFF ADZKW AEBTG AEFTE AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESTI AETLH AEVTX AEXYK AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGBP AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHBYD AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMYLF ARMRJ AXYYD B-. BDATZ BGNMA CSCUP DNIVK EBLON EBS EIOEI EJD ESBYG FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 H13 HF~ HG6 HMJXF HRMNR HZ~ IPNFZ IXD I~Z J-C JBSCW JZLTJ KOV LLZTM M4Y MA- NQJWS NU0 O9J P4S PF0 PT4 R89 ROL RSV S16 SAP SCL SEV SHX SISQX SNE SNX SOJ SPISZ SRMVM SSLCW STPWE SZN TSG TUC UG4 UNUBA UOJIU UTJUX UZXMN VFIZW W48 YLTOR ZMTXR ~A9 0R~ AACDK AAHBH AAJBT AASML AATNV AAYZH ABAKF ABJCF ABJNI ABTKH ABWNU ACAOD ACDTI ACPIV ACZOJ AEFQL AEMSY AESKC AEUYN AEVLU AFBBN AFKRA AGQEE AGRTI AIGIU AMXSW AOCGG ATCPS BENPR BGLVJ BHPHI C6C CCPQU DDRTE DPUIP HCIFZ IKXTQ IWAJR M7S NPVJJ PATMY PTHSS PYCSY SJYHP SNPRN SOHCF -SB -S~ AAPKM AAXDM AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CAJEB CITATION PHGZM PHGZT Q-- U1G U5L ABRTQ PQGLB 8FE 8FG AZQEC DWQXO GNUQQ L6V PKEHL PQEST PQQKQ PQUKI PRINS 7S9 L.6 |
ID | FETCH-LOGICAL-c469t-863f802f4d916ced8705c518dfe26f201380b8053987e8e7b96794a3c47daac63 |
IEDL.DBID | C6C |
ISSN | 2095-2201 |
IngestDate | Fri Jul 11 01:59:19 EDT 2025 Fri Jul 25 10:57:36 EDT 2025 Fri Jul 25 11:14:48 EDT 2025 Tue Jul 01 02:07:02 EDT 2025 Thu Apr 24 23:11:52 EDT 2025 Fri Feb 21 02:41:50 EST 2025 Thu Nov 03 23:32:43 EDT 2022 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Inactivation mechanisms Disinfection by-products Bacterial inactivation Sulfate radicals Water disinfection |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c469t-863f802f4d916ced8705c518dfe26f201380b8053987e8e7b96794a3c47daac63 |
Notes | Bacterial inactivation Document revised on :2022-08-19 Document received on :2022-05-29 Document accepted on :2022-08-22 Inactivation mechanisms Disinfection by-products Sulfate radicals Water disinfection ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://doi.org/10.1007/s11783-023-1629-9 |
PQID | 2918748125 |
PQPubID | 2044429 |
PageCount | 1 |
ParticipantIDs | proquest_miscellaneous_2887611046 proquest_journals_2918748125 proquest_journals_2720947384 crossref_primary_10_1007_s11783_023_1629_9 crossref_citationtrail_10_1007_s11783_023_1629_9 springer_journals_10_1007_s11783_023_1629_9 higheredpress_frontiers_10_1007_s11783_023_1629_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-03-01 |
PublicationDateYYYYMMDD | 2023-03-01 |
PublicationDate_xml | – month: 03 year: 2023 text: 2023-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Beijing |
PublicationPlace_xml | – name: Beijing – name: Heidelberg |
PublicationTitle | Frontiers of environmental science & engineering |
PublicationTitleAbbrev | Front. Environ. Sci. Eng |
PublicationYear | 2023 |
Publisher | Higher Education Press Springer Nature B.V |
Publisher_xml | – name: Higher Education Press – name: Springer Nature B.V |
References | Liang, Gao, Li, Kang, Feng, Han, Liu, Zhang (CR36) 2022; 16 Zhang, Zhou, Zhang, Tan (CR96) 2014; 90 Zhou, Bu, Shi, Deng, Zhu, Gao (CR100) 2018; 346 Wang, Wang (CR72) 2018; 334 Zhao, Huang, Zhong, Du, Sun (CR97) 2022; 16 Anipsitakis, Tufano, Dionysiou (CR2) 2008; 42 Mertens, von Sonntag (CR45) 1995; 85 Guan, Jiang, Pang, Zhou, Gao, Li, Wang (CR18) 2020; 176 Roginskaya, Mohseni, Ampadu-Boateng, Razskazovskiy (CR58) 2016; 50 Lian, Yao, Hou, Fang, Yan, Song (CR35) 2017; 51 Rodríguez-Chueca, Guerra-Rodriguez, Raez, Lopez-Munoz, Rodriguez (CR55) 2019; 248 Ao, Eloranta, Huang, Santoro, Sun, Lu, Li (CR3) 2021; 188 Lei, Lei, Zhang, Yang (CR32) 2021; 408 Cho, Chung, Choi, Yoon (CR8) 2004; 38 Ji, Kong, Lu, Jin, Kang, Yin, Zhou (CR30) 2016; 313 Lei, Chen, Tu, Huang, Zhang (CR33) 2015; 49 Zhang, Wang, Chu, Yang, Pan, Zhu (CR92) 2019; 160 Liu, Bai, Shi, Wei, Spinney, Goktas, Dionysiou, Xiao (CR37) 2020; 263 Zhao, Ji, Kong, Lu, Yin, Zhou (CR98) 2019; 373 Wang, Kong, Ji, Lu, Yin, Zhou (CR73) 2017; 181 Richardson, Kimura (CR52) 2019; 92 Lutze, Kerlin, Schmidt (CR42) 2015; 72 Wu, Xu, Zhu (CR80) 2019; 58 Michael-Kordatou, Iacovou, Frontistis, Hapeshi, Dionysiou, Fatta-Kassinos (CR46) 2015; 85 Bougie, Dubé (CR6) 2007; 6 Garkusheva, Matafonova, Tsenter, Beck, Batoev, Linden (CR15) 2017; 52 Xiao, Luo, Wei, Luo, Spinney, Yang, Dionysiou (CR86) 2018; 19 Xia, He, Liu, Wang, Zhang, Li, Lu, He, Wong (CR82) 2018; 238 Delker, Hatch, Allen, Crissman, George, Geter, Kilburn, Moore, Nelson, Roop, Slade, Swank, Ward, DeAngelo (CR10) 2006; 221 Rodríguez-Chueca, Silva, Fernandes, Lucas, Puma, Peres, Sampaio (CR57) 2017; 123 Wang, Wang, Li, Wong, An (CR75) 2020; 176 Pignatello, Oliveros, Mackay (CR50) 2006; 36 Guerra-Rodríguez, Rodríguez, Singh, Rodríguez-Chueca (CR19) 2018; 10 Xiao, Liu, Bai, Minakata, Seo, Göktaş, Dionysiou, Tang, Wei, Spinney (CR85) 2019; 371 Ma, Zhang, Huang, Ding, Jin, Li, Cheng, Zheng (CR43) 2019; 362 Xie, Dong, Kong, Ji, Lu, Yin (CR87) 2016; 154 Subramanian, Parakh, Prakash (CR62) 2013; 12 Sabeti, Alimohammadi, Yousefzadeh, Aslani, Ghani, Nabizadeh (CR59) 2017; 17 Neta, Huie, Ross (CR48) 1988; 17 Li, Chen, Xiang, Ling, Fang, Shang, Dionysiou (CR34) 2015; 83 Qi, Zhu, Shitu, Ye, Liu (CR51) 2020; 36 Xiao, Bai, Liu, Shi, Minakata, Huang, Spinney, Seth, Dionysiou, Wei, Sun (CR84) 2020; 173 Wen, Xu, Zhu, Huang, Ma (CR79) 2017; 328 Devasagayam, Tilak, Boloor, Sane, Ghaskadbi, Lele (CR11) 2004; 52 Hou, Ling, Dionysiou, Wan, Huang, Guo, Li, Fang (CR20) 2018; 52 Huie, Clifton (CR28) 1993; 205 Huang, Zhou, Zhou, Huang, Liu, Qian, Gao (CR27) 2017; 122 Zhao, Jiang, Pang, Guan, Li, Wang, Ma, Luo (CR99) 2019; 221 Hu, Hou, Lin, Deng, Hua, Du, Chen, Wu (CR21) 2019; 229 Wang, Chen, Tang, Zeng, Liu, Yan, Deng, Feng, Yu, Wang (CR70) 2018; 639 Liu, Yang, Pang, Zhang, Ma, Luo, Guan, Jiang (CR39) 2018; 333 Xia, Li, Huang, Yin, An, Li, Zhao, Lu, Wong (CR81) 2017; 112 Zhang, Jin, Ma, Gregory, Qi, Wang, Wu, Cang, Li (CR94) 2020; 381 Tait, Clarke, Keller, Batstone (CR64) 2009; 43 Rodríguez-Chueca, Moreira, Lucas, Fernandes, Tavares, Sampaio, Peres (CR56) 2017; 149 Tang, Wang, Tang, Feng, Zhu, Yi, Feng, Yu, Ren (CR65) 2022; 430 Wen, Qiang, Feng, Huang, Ma (CR78) 2018; 352 Lee, Kim, Kim, De Lannoy, Lee (CR31) 2020; 380 Fang, Shang (CR13) 2012; 46 Ferreira, Castro-Alferez, Nahim-Granados, Polo-Lopez, Lucas, Li Puma, Fernandez-Ibanez (CR14) 2020; 381 Marjanovic, Giannakis, Grandjean, de Alencastro, Pulgarin (CR44) 2018; 140 Ike, Karanfil, Cho, Hur (CR29) 2019; 164 Zhang, Li, Wang, Zheng (CR93) 2021; 755 Hu, Zhang, Jiang, Yao, Ye, Lin, Cui (CR25) 2019; 368 Oh, Dong, Lim (CR49) 2016; 194 Moreno-Andrés, Farinango, Romero-Martínez, Acevedo-Merino, Nebot (CR47) 2019; 163 Liu, Lu, Ji (CR38) 2015; 84 Bai, Jiang, Xia, Wei, Spinney, Dionysiou, Minakata, Xiao, Xie, Chai (CR4) 2022; 56 Anipsitakis, Dionysiou, Gonzalez (CR1) 2006; 40 CR9 Hu, Wang, Shen, Wang, Wang, Xu, Zheng, Zhang (CR23) 2020; 722 Waldemer, Tratnyek, Johnson, Nurmi (CR68) 2007; 41 Fancy, Kodadek (CR12) 1999; 96 Wang, Le Roux, Zhang, Croué (CR76) 2014; 48 Venieri, Karapa, Panagiotopoulou, Gounaki (CR66) 2020; 261 Rodríguez-Chueca, Giannakis, Marjanovic, Kohantorabi, Gholami, Grandjean, De Alencastro, Pulgarin (CR54) 2019; 248 Wang, Shao, Gao, Xu, An, Lu (CR77) 2020; 381 Xu, Yuan, Guo, Xiao, Cao, Wang, Liu (CR88) 2013; 217 Sun, Tyree, Huang (CR63) 2016; 50 Hua, Kong, Hou, Zou, Xu, Huang, Fang (CR26) 2019; 158 Zhou, Yang, Chen, Feng, Yu, Tang, Ren, Tang, Wang, Tang (CR101) 2022; 440 Hu, Long (CR24) 2016; 181 Waclawek, Lutze, Grubel, Padil, Cernik, Dionysiou (CR67) 2017; 330 Yang, Dong, Jiang, Wang, Liu (CR89) 2019; 237 Gau, Chen, Zhang, Gross (CR16) 2010; 82 Yu, Feng, Tang, Pang, Zeng, Lu, Dong, Wang, Liu, Feng, Wang, Peng, Ye (CR91) 2020; 111 Lu, Wu, Ji, Kong (CR40) 2015; 78 Shan, Si, Yu, Ding (CR60) 2020; 382 Rodríguez-Chueca, Barahona-Garcia, Blanco-Gutierrez, Isidoro-Garcia, Dos Santos-Garcia (CR53) 2020; 398 Wang, Tang, Zeng, Deng, Liu, Wang, Zhou, Guo, Wang, Zhang (CR71) 2017; 209 Yang, Wang, Yang, Shan, Zhang, Shao, Niu (CR90) 2010; 179 Sonntag (CR61) 2006 Hu, Dong, Qu, Qiang (CR22) 2017; 112 Chen, Yu, Xu, Xiao, Chu, Yin (CR7) 2021; 405 Bianco, Polo López, Fernández Ibáñez, Brigante, Mailhot (CR5) 2017; 118 Wang, Ma, Shi, Yang, Cai, Gao (CR69) 2021; 15 Wang, Wang, Li, An, Zhao, Wong (CR74) 2019; 157 Zhang, Wong, Yip, Hu, Yu, Chan, Wong (CR95) 2010; 44 Ghanbari, Moradi (CR17) 2017; 310 Xia, Tang, Wang, Yin, He, Xie, Sun, He, Wong, Zhang (CR83) 2020; 400 Lutze, Bakkour, Kerlin, von Sonntag, Schmidt (CR41) 2014; 53 G P Anipsitakis (1629_CR2) 2008; 42 H J Lee (1629_CR31) 2020; 380 T T Chen (1629_CR7) 2021; 405 S Yang (1629_CR90) 2010; 179 H Wang (1629_CR69) 2021; 15 P Neta (1629_CR48) 1988; 17 P D Hu (1629_CR24) 2016; 181 J Y Fang (1629_CR13) 2012; 46 R Xiao (1629_CR84) 2020; 173 H R Shan (1629_CR60) 2020; 382 J Lu (1629_CR40) 2015; 78 J H Liang (1629_CR36) 2022; 16 H V Lutze (1629_CR42) 2015; 72 L Bai (1629_CR4) 2022; 56 T P A Devasagayam (1629_CR11) 2004; 52 J Wang (1629_CR70) 2018; 639 S Tait (1629_CR64) 2009; 43 G Subramanian (1629_CR62) 2013; 12 M Marjanovic (1629_CR44) 2018; 140 K Liu (1629_CR38) 2015; 84 L Wang (1629_CR73) 2017; 181 J L Tang (1629_CR65) 2022; 430 G P Anipsitakis (1629_CR1) 2006; 40 C Sonntag (1629_CR61) 2006 S Bougie (1629_CR6) 2007; 6 X Wu (1629_CR80) 2019; 58 Y Ji (1629_CR30) 2016; 313 X Zhou (1629_CR101) 2022; 440 R Mertens (1629_CR45) 1995; 85 C Y Hu (1629_CR21) 2019; 229 H K Ma (1629_CR43) 2019; 362 R Y Xiao (1629_CR86) 2018; 19 1629_CR9 Y Lei (1629_CR33) 2015; 49 J F Yu (1629_CR91) 2020; 111 J J Wang (1629_CR71) 2017; 209 J Moreno-Andrés (1629_CR47) 2019; 163 D H Xia (1629_CR82) 2018; 238 D Delker (1629_CR10) 2006; 221 X W Ao (1629_CR3) 2021; 188 S D Hou (1629_CR20) 2018; 52 J Hu (1629_CR22) 2017; 112 J Rodríguez-Chueca (1629_CR54) 2019; 248 H Zhao (1629_CR97) 2022; 16 L Xu (1629_CR88) 2013; 217 L C Ferreira (1629_CR14) 2020; 381 G Wen (1629_CR78) 2018; 352 J Rodríguez-Chueca (1629_CR55) 2019; 248 C Guan (1629_CR18) 2020; 176 D Xia (1629_CR81) 2017; 112 M Roginskaya (1629_CR58) 2016; 50 B C Gau (1629_CR16) 2010; 82 S Waclawek (1629_CR67) 2017; 330 D H Xia (1629_CR83) 2020; 400 C Zhang (1629_CR93) 2021; 755 J L Wang (1629_CR72) 2018; 334 S D Richardson (1629_CR52) 2019; 92 H V Lutze (1629_CR41) 2014; 53 D Venieri (1629_CR66) 2020; 261 S Guerra-Rodríguez (1629_CR19) 2018; 10 I A Ike (1629_CR29) 2019; 164 R H Waldemer (1629_CR68) 2007; 41 A Bianco (1629_CR5) 2017; 118 Z Li (1629_CR34) 2015; 83 Z Sabeti (1629_CR59) 2017; 17 W Wang (1629_CR75) 2020; 176 W Wang (1629_CR74) 2019; 157 Y R Hu (1629_CR25) 2019; 368 M Cho (1629_CR8) 2004; 38 W D Oh (1629_CR49) 2016; 194 Y Z Liu (1629_CR39) 2018; 333 S Zhou (1629_CR100) 2018; 346 P Sun (1629_CR63) 2016; 50 H X Zhao (1629_CR98) 2019; 373 R E Huie (1629_CR28) 1993; 205 X Huang (1629_CR27) 2017; 122 I Michael-Kordatou (1629_CR46) 2015; 85 J Rodríguez-Chueca (1629_CR53) 2020; 398 X Lei (1629_CR32) 2021; 408 Z Hua (1629_CR26) 2019; 158 L Hu (1629_CR23) 2020; 722 F Ghanbari (1629_CR17) 2017; 310 J J Pignatello (1629_CR50) 2006; 36 W Xie (1629_CR87) 2016; 154 J Rodríguez-Chueca (1629_CR56) 2017; 149 D A Fancy (1629_CR12) 1999; 96 W H Qi (1629_CR51) 2020; 36 L S Zhang (1629_CR95) 2010; 44 Y Zhang (1629_CR96) 2014; 90 N Garkusheva (1629_CR15) 2017; 52 K Liu (1629_CR37) 2020; 263 G Wen (1629_CR79) 2017; 328 R Y Xiao (1629_CR85) 2019; 371 X Zhao (1629_CR99) 2019; 221 J Rodríguez-Chueca (1629_CR57) 2017; 123 J Yang (1629_CR89) 2019; 237 L L Zhang (1629_CR94) 2020; 381 L Lian (1629_CR35) 2017; 51 Z Y Wang (1629_CR77) 2020; 381 A Zhang (1629_CR92) 2019; 160 Y Wang (1629_CR76) 2014; 48 |
References_xml | – volume: 36 start-page: 1 issue: 1 year: 2006 end-page: 84 ident: CR50 article-title: Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry publication-title: Critical Reviews in Environmental Science and Technology doi: 10.1080/10643380500326564 – volume: 261 start-page: 110223 year: 2020 ident: CR66 article-title: Application of activated persulfate for the inactivation of fecal bacterial indicators in water publication-title: Journal of Environmental Management doi: 10.1016/j.jenvman.2020.110223 – volume: 328 start-page: 619 year: 2017 end-page: 628 ident: CR79 article-title: Inactivation of four genera of dominant fungal spores in groundwater using UV and UV/PMS: efficiency and mechanisms publication-title: Chemical Engineering Journal doi: 10.1016/j.cej.2017.07.055 – volume: 248 start-page: 54 year: 2019 end-page: 61 ident: CR55 article-title: Assessment of different iron species as activators of S O and HSO for inactivation of wild bacteria strains publication-title: Applied Catalysis B: Environmental doi: 10.1016/j.apcatb.2019.02.003 – volume: 17 start-page: 342 issue: 2 year: 2017 end-page: 351 ident: CR59 article-title: Application of response surface methodology for modeling and optimization of spores inactivation by the UV/persulfate process publication-title: Water Science and Technology: Water Supply – volume: 123 start-page: 113 year: 2017 end-page: 123 ident: CR57 article-title: Inactivation of pathogenic microorganisms in freshwater using HSO /UV-A LED and HSO /M /UV-A LED oxidation processes publication-title: Water Research doi: 10.1016/j.watres.2017.06.021 – volume: 56 start-page: 624 issue: 1 year: 2022 end-page: 633 ident: CR4 article-title: Mechanistic understanding of superoxide radical-mediated degradation of perfluorocarboxylic acids publication-title: Environmental Science & Technology doi: 10.1021/acs.est.1c06356 – volume: 160 start-page: 304 year: 2019 end-page: 312 ident: CR92 article-title: Integrated control of CX R-type DBP formation by coupling thermally activated persulfate pre-oxidation and chloramination publication-title: Water Research doi: 10.1016/j.watres.2019.05.047 – volume: 52 start-page: 849 issue: 9 year: 2017 end-page: 855 ident: CR15 article-title: Simultaneous atrazine degradation and E-coli inactivation by simulated solar photo-Fenton-like process using persulfate publication-title: Journal of Environmental Science and Health Part A: Toxic/Hazardous Substances & Environmental Engineering doi: 10.1080/10934529.2017.1312188 – volume: 58 start-page: 104634 year: 2019 ident: CR80 article-title: Sonochemical synthesis of Fe O /carbon nanotubes using low frequency ultrasonic devices and their performance for heterogeneous sono-persulfate process on inactivation of publication-title: Ultrasonics Sonochemistry doi: 10.1016/j.ultsonch.2019.104634 – volume: 50 start-page: 4448 issue: 8 year: 2016 end-page: 4458 ident: CR63 article-title: Inactivation of , bacteriophage MS , and spores under UV/H O and UV/peroxydisulfate advanced disinfection conditions publication-title: Environmental Science & Technology doi: 10.1021/acs.est.5b06097 – volume: 83 start-page: 132 year: 2015 end-page: 140 ident: CR34 article-title: Bromate formation in bromide-containing water through the cobalt-mediated activation of peroxymonosulfate publication-title: Water Research doi: 10.1016/j.watres.2015.06.019 – volume: 46 start-page: 8976 issue: 16 year: 2012 end-page: 8983 ident: CR13 article-title: Bromate formation from bromide oxidation by the UV/persulfate process publication-title: Environmental Science & Technology doi: 10.1021/es300658u – volume: 381 start-page: 122660 year: 2020 ident: CR77 article-title: Comprehensive study on the formation of brominated byproducts during heat-activated persulfate degradation publication-title: Chemical Engineering Journal doi: 10.1016/j.cej.2019.122660 – volume: 176 start-page: 115746 year: 2020 ident: CR75 article-title: Visible light activation of persulfate by magnetic hydrochar for bacterial inactivation: efficiency, recyclability and mechanisms publication-title: Water Research doi: 10.1016/j.watres.2020.115746 – volume: 6 start-page: 397 issue: 4 year: 2007 end-page: 407 ident: CR6 article-title: Oxydation des isomères de dichlorobenzène à l’aide du persulfate de sodium soumis à une activation thermique publication-title: Journal of Environmental Engineering & Science doi: 10.1139/s07-024 – volume: 90 start-page: 609 issue: 3 year: 2014 end-page: 614 ident: CR96 article-title: Inactivation of spores using various combinations of ultraviolet treatment with addition of hydrogen peroxide publication-title: Photochemistry and Photobiology doi: 10.1111/php.12210 – volume: 373 start-page: 1348 year: 2019 end-page: 1356 ident: CR98 article-title: Degradation of iohexol by Co activated peroxymonosulfate oxidation: kinetics, reaction pathways, and formation of iodinated byproducts publication-title: Chemical Engineering Journal doi: 10.1016/j.cej.2019.05.140 – volume: 248 start-page: 62 year: 2019 end-page: 72 ident: CR54 article-title: Solar-assisted bacterial disinfection and removal of contaminants of emerging concern by Fe -activated HSO vs. S O in drinking water publication-title: Applied Catalysis B: Environmental doi: 10.1016/j.apcatb.2019.02.018 – volume: 381 start-page: 122275 year: 2020 ident: CR14 article-title: Inactivation of water pathogens with solar photo-activated persulfate oxidation publication-title: Chemical Engineering Journal doi: 10.1016/j.cej.2019.122275 – volume: 173 start-page: 115552 year: 2020 ident: CR84 article-title: Elucidating sulfate radical-mediated disinfection profiles and mechanisms of and in municipal wastewater publication-title: Water Research doi: 10.1016/j.watres.2020.115552 – volume: 72 start-page: 349 year: 2015 end-page: 360 ident: CR42 article-title: Sulfate radical-based water treatment in presence of chloride: formation of chlorate, interconversion of sulfate radicals into hydroxyl radicals and influence of bicarbonate publication-title: Water Research doi: 10.1016/j.watres.2014.10.006 – volume: 333 start-page: 200 year: 2018 end-page: 205 ident: CR39 article-title: Mechanistic insight into suppression of bromate formation by dissolved organic matters in sulfate radical-based advanced oxidation processes publication-title: Chemical Engineering Journal doi: 10.1016/j.cej.2017.09.159 – volume: 163 start-page: 114866 year: 2019 ident: CR47 article-title: Application of persulfate salts for enhancing UV disinfection in marine waters publication-title: Water Research doi: 10.1016/j.watres.2019.114866 – volume: 12 start-page: 456 issue: 3 year: 2013 end-page: 466 ident: CR62 article-title: Photodegradation of methyl orange and photoinactivation of bacteria by visible light activation of persulphate using a tris(2,2′-bipyridyl)ruthenium(II) complex publication-title: Photochemical & Photobiological Sciences doi: 10.1039/c2pp25316j – volume: 188 start-page: 116479 year: 2021 ident: CR3 article-title: Peracetic acid-based advanced oxidation processes for decontamination and disinfection of water: a review publication-title: Water Research doi: 10.1016/j.watres.2020.116479 – volume: 313 start-page: 229 year: 2016 end-page: 237 ident: CR30 article-title: Cobalt catalyzed peroxymonosulfate oxidation of tetrabromobisphenol A: kinetics, reaction pathways, and formation of brominated byproducts publication-title: Journal of Hazardous Materials doi: 10.1016/j.jhazmat.2016.04.033 – volume: 96 start-page: 6020 issue: 11 year: 1999 end-page: 6024 ident: CR12 article-title: Chemistry for the analysis of proteinprotein interactions: rapid and efficient cross-linking triggered by long wavelength light publication-title: Proceedings of the National Academy of Sciences of the United States of America doi: 10.1073/pnas.96.11.6020 – volume: 52 start-page: 6317 issue: 11 year: 2018 end-page: 6325 ident: CR20 article-title: Chlorate formation mechanism in the presence of sulfate radical, chloride, bromide and natural organic matter publication-title: Environmental Science & Technology doi: 10.1021/acs.est.8b00576 – volume: 237 start-page: 124521 year: 2019 ident: CR89 article-title: An overview of bromate formation in chemical oxidation processes: occurrence, mechanism, influencing factors, risk assessment, and control strategies publication-title: Chemosphere doi: 10.1016/j.chemosphere.2019.124521 – volume: 82 start-page: 7821 issue: 18 year: 2010 end-page: 7827 ident: CR16 article-title: Sulfate radical anion as a new reagent for fast photochemical oxidation of proteins publication-title: Analytical Chemistry doi: 10.1021/ac101760y – volume: 408 start-page: 124435 year: 2021 ident: CR32 article-title: Treating disinfection byproducts with UV or solar irradiation and in UV advanced oxidation processes: a review publication-title: Journal of Hazardous Materials doi: 10.1016/j.jhazmat.2020.124435 – volume: 85 start-page: 1 issue: 1–2 year: 1995 end-page: 9 ident: CR45 article-title: Photolysis ( = 354 nm) of tetrachloroethene in aqueous solutions publication-title: Journal of Photochemistry and Photobiology A: Chemistry doi: 10.1016/1010-6030(94)03903-8 – volume: 15 start-page: 102 issue: 5 year: 2021 ident: CR69 article-title: Formation of disinfection by-products during sodium hypochlorite cleaning of fouled membranes from membrane bioreactors publication-title: Frontiers of Environmental Science & Engineering doi: 10.1007/s11783-021-1389-3 – volume: 194 start-page: 169 year: 2016 end-page: 201 ident: CR49 article-title: Generation of sulfate radical through heterogeneous catalysis for organic contaminants removal: current development, challenges and prospects publication-title: Applied Catalysis B: Environmental doi: 10.1016/j.apcatb.2016.04.003 – volume: 382 start-page: 122909 year: 2020 ident: CR60 article-title: Flexible, mesoporous, and monodispersed metallic cobalt-embedded inorganic nanofibrous membranes enable ultra-fast and high-efficiency killing of bacteria publication-title: Chemical Engineering Journal doi: 10.1016/j.cej.2019.122909 – volume: 381 start-page: 122787 year: 2020 ident: CR94 article-title: Oxidative damage of antibiotic resistant and gene in a novel sulfidated micron zero-valent activated persulfate system publication-title: Chemical Engineering Journal doi: 10.1016/j.cej.2019.122787 – volume: 36 start-page: 101362 year: 2020 ident: CR51 article-title: Low concentration peroxymonosulfate and UVA-LED combination for inactivation and wastewater disinfection from recirculating aquaculture systems publication-title: Journal of Water Process Engineering doi: 10.1016/j.jwpe.2020.101362 – volume: 49 start-page: 6838 issue: 11 year: 2015 end-page: 6845 ident: CR33 article-title: Heterogeneous degradation of organic pollutants by persulfate activated by CuO-Fe O : mechanism, stability, and effects of pH and bicarbonate ions publication-title: Environmental Science & Technology doi: 10.1021/acs.est.5b00623 – volume: 263 start-page: 114558 year: 2020 ident: CR37 article-title: Simultaneous disinfection of and degradation of carbamazepine by sulfate radicals: an experimental and modelling study publication-title: Environmental Pollution doi: 10.1016/j.envpol.2020.114558 – volume: 44 start-page: 1392 issue: 4 year: 2010 end-page: 1398 ident: CR95 article-title: Effective photocatalytic disinfection of K-12 using AgBr-Ag-Bi WO nanojunction system irradiated by visible light: the role of diffusing hydroxyl radicals publication-title: Environmental Science & Technology doi: 10.1021/es903087w – volume: 42 start-page: 2899 issue: 12 year: 2008 end-page: 2910 ident: CR2 article-title: Chemical and microbial decontamination of pool water using activated potassium peroxymonosulfate publication-title: Water Research doi: 10.1016/j.watres.2008.03.002 – volume: 181 start-page: 400 year: 2017 end-page: 408 ident: CR73 article-title: Transformation of iodide and formation of iodinated by-products in heat activated persulfate oxidation process publication-title: Chemosphere doi: 10.1016/j.chemosphere.2017.04.076 – volume: 221 start-page: 158 issue: 2–3 year: 2006 end-page: 165 ident: CR10 article-title: Molecular biomarkers of oxidative stress associated with bromate carcinogenicity publication-title: Toxicology doi: 10.1016/j.tox.2005.12.011 – volume: 405 start-page: 124243 year: 2021 ident: CR7 article-title: Formation and degradation mechanisms of CX R-type oxidation by-products during cobalt catalyzed peroxymonosulfate oxidation: The roles of Co and SO center dot publication-title: Journal of Hazardous Materials doi: 10.1016/j.jhazmat.2020.124243 – volume: 53 start-page: 370 year: 2014 end-page: 377 ident: CR41 article-title: Formation of bromate in sulfate radical based oxidation: mechanistic aspects and suppression by dissolved organic matter publication-title: Water Research doi: 10.1016/j.watres.2014.01.001 – volume: 722 start-page: 137831 year: 2020 ident: CR23 article-title: The application of microwaves in sulfate radical-based advanced oxidation processes for environmental remediation: a review publication-title: Science of the Total Environment doi: 10.1016/j.scitotenv.2020.137831 – volume: 229 start-page: 602 year: 2019 end-page: 610 ident: CR21 article-title: Kinetics and model development of iohexol degradation during UV/H O and UV/S O oxidation publication-title: Chemosphere doi: 10.1016/j.chemosphere.2019.05.012 – volume: 50 start-page: 756 issue: 7 year: 2016 end-page: 766 ident: CR58 article-title: DNA damage by the sulfate radical anion: hydrogen abstraction from the sugar moiety versus one-electron oxidation of guanine publication-title: Free Radical Research doi: 10.3109/10715762.2016.1166488 – volume: 84 start-page: 1 year: 2015 end-page: 7 ident: CR38 article-title: Formation of brominated disinfection byproducts and bromate in cobalt catalyzed peroxymonosulfate oxidation of phenol publication-title: Water Research doi: 10.1016/j.watres.2015.07.015 – volume: 92 start-page: 473 issue: 1 year: 2019 end-page: 505 ident: CR52 article-title: Water analysis: emerging contaminants and current issues publication-title: Analytical Chemistry doi: 10.1021/acs.analchem.9b05269 – volume: 78 start-page: 1 year: 2015 end-page: 8 ident: CR40 article-title: Transformation of bromide in thermo activated persulfate oxidation processes publication-title: Water Research doi: 10.1016/j.watres.2015.03.028 – volume: 205 start-page: 163 issue: 2–3 year: 1993 end-page: 167 ident: CR28 article-title: Kinetics of the self-reaction of hydroxymethylperoxyl radicals publication-title: Chemical Physics Letters doi: 10.1016/0009-2614(93)89222-4 – volume: 310 start-page: 41 year: 2017 end-page: 62 ident: CR17 article-title: Application of peroxymonosulfate and its activation methods for degradation of environmental organic pollutants publication-title: Chemical Engineering Journal doi: 10.1016/j.cej.2016.10.064 – volume: 238 start-page: 70 year: 2018 end-page: 81 ident: CR82 article-title: Persulfate-mediated catalytic and photocatalytic bacterial inactivation by magnetic natural ilmenite publication-title: Applied Catalysis B: Environmental doi: 10.1016/j.apcatb.2018.07.003 – volume: 179 start-page: 552 issue: 1–3 year: 2010 end-page: 558 ident: CR90 article-title: Degradation efficiencies of azo dye Acid Orange 7 by the interaction of heat, UV and anions with common oxidants: persulfate, peroxymonosulfate and hydrogen peroxide publication-title: Journal of Hazardous Materials doi: 10.1016/j.jhazmat.2010.03.039 – volume: 85 start-page: 346 year: 2015 end-page: 358 ident: CR46 article-title: Erythromycin oxidation and ERY-resistant inactivation in urban wastewater by sulfate radical-based oxidation process under UV-C irradiation publication-title: Water Research doi: 10.1016/j.watres.2015.08.050 – volume: 48 start-page: 14534 issue: 24 year: 2014 end-page: 14542 ident: CR76 article-title: Formation of brominated disinfection byproducts from natural organic matter isolates and model compounds in a sulfate radical-based oxidation process publication-title: Environmental Science & Technology doi: 10.1021/es503255j – volume: 440 start-page: 129720 year: 2022 ident: CR101 article-title: Single-atom Ru loaded on layered double hydroxide catalyzes peroxymonosulfate for effective inactivation via a non-radical pathway: efficiency and mechanism publication-title: Journal of Hazardous Materials doi: 10.1016/j.jhazmat.2022.129720 – volume: 181 start-page: 103 year: 2016 end-page: 117 ident: CR24 article-title: Cobalt-catalyzed sulfate radical-based advanced oxidation: A review on heterogeneous catalysts and applications publication-title: Applied Catalysis B: Environmental doi: 10.1016/j.apcatb.2015.07.024 – volume: 140 start-page: 220 year: 2018 end-page: 231 ident: CR44 article-title: Effect of µM Fe addition, mild heat and solar UV on sulfate radical-mediated inactivation of bacteria, viruses, and micropollutant degradation in water publication-title: Water Research doi: 10.1016/j.watres.2018.04.054 – volume: 40 start-page: 1000 issue: 3 year: 2006 end-page: 1007 ident: CR1 article-title: Cobalt-mediated activation of peroxymonosulfate and sulfate radical attack on phenolic compounds: implications of chloride ions publication-title: Environmental Science & Technology doi: 10.1021/es050634b – volume: 400 start-page: 125894 year: 2020 ident: CR83 article-title: Piezo-catalytic persulfate activation system for water advanced disinfection: process efficiency and inactivation mechanisms publication-title: Chemical Engineering Journal doi: 10.1016/j.cej.2020.125894 – volume: 122 start-page: 701 year: 2017 end-page: 707 ident: CR27 article-title: Bromate inhibition by reduced graphene oxide in thermal/PMS process publication-title: Water Research doi: 10.1016/j.watres.2017.06.041 – volume: 209 start-page: 285 year: 2017 end-page: 294 ident: CR71 article-title: Atomic scale g-C N /Bi WO 2D/2D heterojunction with enhanced photocatalytic degradation of ibuprofen under visible light irradiation publication-title: Applied Catalysis B: Environmental doi: 10.1016/j.apcatb.2017.03.019 – volume: 368 start-page: 888 year: 2019 end-page: 895 ident: CR25 article-title: Removal of sulfonamide antibiotic resistant bacterial and intracellular antibiotic resistance genes by UVC-activated peroxymonosulfate publication-title: Chemical Engineering Journal doi: 10.1016/j.cej.2019.02.207 – volume: 346 start-page: 73 year: 2018 end-page: 81 ident: CR100 article-title: Electrochemical inactivation of using BDD electrodes: kinetic modeling of microcystins release and degradation publication-title: Journal of Hazardous Materials doi: 10.1016/j.jhazmat.2017.12.023 – volume: 10 start-page: 1828 issue: 12 year: 2018 ident: CR19 article-title: Assessment of sulfate radical-based advanced oxidation processes for water and wastewater treatment: a review publication-title: Water doi: 10.3390/w10121828 – volume: 352 start-page: 316 year: 2018 end-page: 324 ident: CR78 article-title: Bromate formation during the oxidation of bromide-containing water by ozone/peroxymonosulfate process: Influencing factors and mechanisms publication-title: Chemical Engineering Journal doi: 10.1016/j.cej.2018.06.186 – volume: 371 start-page: 222 year: 2019 end-page: 232 ident: CR85 article-title: Inactivation of pathogenic microorganisms by sulfate radical: present and future publication-title: Chemical Engineering Journal doi: 10.1016/j.cej.2019.03.296 – volume: 398 start-page: 125606 year: 2020 ident: CR53 article-title: Magnetic CoFe O ferrite for peroxymonosulfate activation for disinfection of wastewater publication-title: Chemical Engineering Journal doi: 10.1016/j.cej.2020.125606 – volume: 118 start-page: 249 year: 2017 end-page: 260 ident: CR5 article-title: Disinfection of water inoculated with Enterococcus faecalis using solar/Fe(III)EDDS-H O or S O process publication-title: Water Research doi: 10.1016/j.watres.2017.03.061 – ident: CR9 – volume: 362 start-page: 667 year: 2019 end-page: 678 ident: CR43 article-title: A novel three-dimensional galvanic cell enhanced Fe /persulfate system: High efficiency, mechanism and damaging effect of antibiotic resistant E-coli and genes publication-title: Chemical Engineering Journal doi: 10.1016/j.cej.2019.01.042 – volume: 154 start-page: 613 year: 2016 end-page: 619 ident: CR87 article-title: Formation of halogenated disinfection by-products in cobalt-catalyzed peroxymonosulfate oxidation processes in the presence of halides publication-title: Chemosphere doi: 10.1016/j.chemosphere.2016.04.025 – volume: 111 start-page: 100654 year: 2020 ident: CR91 article-title: Metal-free carbon materials for persulfate-based advanced oxidation process: microstructure, property and tailoring publication-title: Progress in Materials Science doi: 10.1016/j.pmatsci.2020.100654 – volume: 158 start-page: 237 year: 2019 end-page: 245 ident: CR26 article-title: DBP alteration from NOM and model compounds after UV/persulfate treatment with post chlorination publication-title: Water Research doi: 10.1016/j.watres.2019.04.030 – volume: 43 start-page: 762 issue: 3 year: 2009 end-page: 772 ident: CR64 article-title: Removal of sulfate from high-strength wastewater by crystallisation publication-title: Water Research doi: 10.1016/j.watres.2008.11.008 – year: 2006 ident: CR61 publication-title: Free-Radical-Induced DNA Damage and Its Repair: A Chemical Perspective doi: 10.1007/3-540-30592-0 – volume: 217 start-page: 169 year: 2013 end-page: 173 ident: CR88 article-title: Sulfate radical-induced degradation of 2,4,6-trichlorophenol: a de novo formation of chlorinated compounds publication-title: Chemical Engineering Journal doi: 10.1016/j.cej.2012.11.112 – volume: 755 start-page: 142588 year: 2021 ident: CR93 article-title: Different inactivation behaviors and mechanisms of representative pathogens ( bacteria, human adenoviruses and spores) in g-C N -based metal-free visible-light-enabled photocatalytic disinfection publication-title: Science of the Total Environment doi: 10.1016/j.scitotenv.2020.142588 – volume: 176 start-page: 115725 year: 2020 ident: CR18 article-title: Formation and control of bromate in sulfate radical-based oxidation processes for the treatment of waters containing bromide: a critical review publication-title: Water Research doi: 10.1016/j.watres.2020.115725 – volume: 112 start-page: 1 year: 2017 end-page: 8 ident: CR22 article-title: Enhanced degradation of iopamidol by peroxymonosulfate catalyzed by two pipe corrosion products (CuO and δ-MnO ) publication-title: Water Research doi: 10.1016/j.watres.2017.01.025 – volume: 380 start-page: 122468 year: 2020 ident: CR31 article-title: Inactivation of bacterial planktonic cells and biofilms by Cu(II)-activated peroxymonosulfate in the presence of chloride ion publication-title: Chemical Engineering Journal doi: 10.1016/j.cej.2019.122468 – volume: 16 start-page: 76 issue: 6 year: 2022 ident: CR97 article-title: Enhanced formation of trihalomethane disinfection byproducts from halobenzoquinones under combined UV/chlorine conditions publication-title: Frontiers of Environmental Science & Engineering doi: 10.1007/s11783-021-1510-7 – volume: 149 start-page: 805 year: 2017 end-page: 817 ident: CR56 article-title: Disinfection of simulated and real winery wastewater using sulphate radicals: peroxymonosulphate/transition metal/UV-A LED oxidation publication-title: Journal of Cleaner Production doi: 10.1016/j.jclepro.2017.02.135 – volume: 639 start-page: 1462 year: 2018 end-page: 1470 ident: CR70 article-title: Antibiotic removal from water: A highly efficient silver phosphate-based Z-scheme photocatalytic system under natural solar light publication-title: Science of the Total Environment doi: 10.1016/j.scitotenv.2018.05.258 – volume: 17 start-page: 1027 issue: 3 year: 1988 end-page: 1284 ident: CR48 article-title: Rate constants for reactions of inorganic radicals in aqueous solution publication-title: Journal of Physical and Chemical Reference Data doi: 10.1063/1.555808 – volume: 112 start-page: 236 year: 2017 end-page: 247 ident: CR81 article-title: Activation of persulfates by natural magnetic pyrrhotite for water disinfection: efficiency, mechanisms, and stability publication-title: Water Research doi: 10.1016/j.watres.2017.01.052 – volume: 430 start-page: 132669 year: 2022 ident: CR65 article-title: Preparation of floating porous g-C N photocatalyst via a facile one-pot method for efficient photocatalytic elimination of tetracycline under visible light irradiation publication-title: Chemical Engineering Journal doi: 10.1016/j.cej.2021.132669 – volume: 157 start-page: 106 year: 2019 end-page: 118 ident: CR74 article-title: Catalyst-free activation of persulfate by visible light for water disinfection: Efficiency and mechanisms publication-title: Water Research doi: 10.1016/j.watres.2019.03.071 – volume: 19 start-page: 51 year: 2018 end-page: 58 ident: CR86 article-title: Activation of peroxymonosulfate/persulfate by nanomaterials for sulfate radical-based advanced oxidation technologies publication-title: Current Opinion in Chemical Engineering doi: 10.1016/j.coche.2017.12.005 – volume: 164 start-page: 114929 year: 2019 ident: CR29 article-title: Oxidation byproducts from the degradation of dissolved organic matter by advanced oxidation processes — A critical review publication-title: Water Research doi: 10.1016/j.watres.2019.114929 – volume: 334 start-page: 1502 year: 2018 end-page: 1517 ident: CR72 article-title: Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants publication-title: Chemical Engineering Journal doi: 10.1016/j.cej.2017.11.059 – volume: 16 start-page: 150 issue: 12 year: 2022 ident: CR36 article-title: Characteristics of typical dissolved black carbons and their influence on the formation of disinfection by-products in chlor(am)ination publication-title: Frontiers of Environmental Science & Engineering doi: 10.1007/s11783-022-1585-9 – volume: 51 start-page: 2954 issue: 5 year: 2017 end-page: 2962 ident: CR35 article-title: Kinetic study of hydroxyl and sulfate radical-mediated oxidation of pharmaceuticals in wastewater effluents publication-title: Environmental Science & Technology doi: 10.1021/acs.est.6b05536 – volume: 330 start-page: 44 year: 2017 end-page: 62 ident: CR67 article-title: Chemistry of persulfates in water and wastewater treatment: a review publication-title: Chemical Engineering Journal doi: 10.1016/j.cej.2017.07.132 – volume: 41 start-page: 1010 issue: 3 year: 2007 end-page: 1015 ident: CR68 article-title: Oxidation of chlorinated ethenes by heat-activated persulfate: kinetics and products publication-title: Environmental Science & Technology doi: 10.1021/es062237m – volume: 38 start-page: 1069 issue: 4 year: 2004 end-page: 1077 ident: CR8 article-title: Linear correlation between inactivation of and OH radical concentration in TiO photocatalytic disinfection publication-title: Water Research doi: 10.1016/j.watres.2003.10.029 – volume: 52 start-page: 794 year: 2004 end-page: 804 ident: CR11 article-title: Free radicals and antioxidants in human health: current status and future prospects publication-title: Journal of the Association of Physicians of India – volume: 221 start-page: 270 year: 2019 end-page: 277 ident: CR99 article-title: Degradation of iopamidol by three UV-based oxidation processes: kinetics, pathways, and formation of iodinated disinfection byproducts publication-title: Chemosphere doi: 10.1016/j.chemosphere.2018.12.162 – volume: 176 start-page: 115725 year: 2020 ident: 1629_CR18 publication-title: Water Research doi: 10.1016/j.watres.2020.115725 – volume: 188 start-page: 116479 year: 2021 ident: 1629_CR3 publication-title: Water Research doi: 10.1016/j.watres.2020.116479 – volume: 181 start-page: 400 year: 2017 ident: 1629_CR73 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2017.04.076 – volume: 83 start-page: 132 year: 2015 ident: 1629_CR34 publication-title: Water Research doi: 10.1016/j.watres.2015.06.019 – volume: 382 start-page: 122909 year: 2020 ident: 1629_CR60 publication-title: Chemical Engineering Journal doi: 10.1016/j.cej.2019.122909 – volume: 56 start-page: 624 issue: 1 year: 2022 ident: 1629_CR4 publication-title: Environmental Science & Technology doi: 10.1021/acs.est.1c06356 – volume: 248 start-page: 62 year: 2019 ident: 1629_CR54 publication-title: Applied Catalysis B: Environmental doi: 10.1016/j.apcatb.2019.02.018 – volume: 149 start-page: 805 year: 2017 ident: 1629_CR56 publication-title: Journal of Cleaner Production doi: 10.1016/j.jclepro.2017.02.135 – volume: 41 start-page: 1010 issue: 3 year: 2007 ident: 1629_CR68 publication-title: Environmental Science & Technology doi: 10.1021/es062237m – volume: 96 start-page: 6020 issue: 11 year: 1999 ident: 1629_CR12 publication-title: Proceedings of the National Academy of Sciences of the United States of America doi: 10.1073/pnas.96.11.6020 – volume: 53 start-page: 370 year: 2014 ident: 1629_CR41 publication-title: Water Research doi: 10.1016/j.watres.2014.01.001 – volume: 408 start-page: 124435 year: 2021 ident: 1629_CR32 publication-title: Journal of Hazardous Materials doi: 10.1016/j.jhazmat.2020.124435 – volume: 43 start-page: 762 issue: 3 year: 2009 ident: 1629_CR64 publication-title: Water Research doi: 10.1016/j.watres.2008.11.008 – volume: 440 start-page: 129720 year: 2022 ident: 1629_CR101 publication-title: Journal of Hazardous Materials doi: 10.1016/j.jhazmat.2022.129720 – volume: 346 start-page: 73 year: 2018 ident: 1629_CR100 publication-title: Journal of Hazardous Materials doi: 10.1016/j.jhazmat.2017.12.023 – ident: 1629_CR9 doi: 10.1039/P29840000503 – volume: 263 start-page: 114558 year: 2020 ident: 1629_CR37 publication-title: Environmental Pollution doi: 10.1016/j.envpol.2020.114558 – volume: 52 start-page: 6317 issue: 11 year: 2018 ident: 1629_CR20 publication-title: Environmental Science & Technology doi: 10.1021/acs.est.8b00576 – volume: 194 start-page: 169 year: 2016 ident: 1629_CR49 publication-title: Applied Catalysis B: Environmental doi: 10.1016/j.apcatb.2016.04.003 – volume: 118 start-page: 249 year: 2017 ident: 1629_CR5 publication-title: Water Research doi: 10.1016/j.watres.2017.03.061 – volume: 164 start-page: 114929 year: 2019 ident: 1629_CR29 publication-title: Water Research doi: 10.1016/j.watres.2019.114929 – volume: 58 start-page: 104634 year: 2019 ident: 1629_CR80 publication-title: Ultrasonics Sonochemistry doi: 10.1016/j.ultsonch.2019.104634 – volume: 111 start-page: 100654 year: 2020 ident: 1629_CR91 publication-title: Progress in Materials Science doi: 10.1016/j.pmatsci.2020.100654 – volume: 12 start-page: 456 issue: 3 year: 2013 ident: 1629_CR62 publication-title: Photochemical & Photobiological Sciences doi: 10.1039/c2pp25316j – volume: 17 start-page: 1027 issue: 3 year: 1988 ident: 1629_CR48 publication-title: Journal of Physical and Chemical Reference Data doi: 10.1063/1.555808 – volume: 400 start-page: 125894 year: 2020 ident: 1629_CR83 publication-title: Chemical Engineering Journal doi: 10.1016/j.cej.2020.125894 – volume: 330 start-page: 44 year: 2017 ident: 1629_CR67 publication-title: Chemical Engineering Journal doi: 10.1016/j.cej.2017.07.132 – volume: 72 start-page: 349 year: 2015 ident: 1629_CR42 publication-title: Water Research doi: 10.1016/j.watres.2014.10.006 – volume: 310 start-page: 41 year: 2017 ident: 1629_CR17 publication-title: Chemical Engineering Journal doi: 10.1016/j.cej.2016.10.064 – volume: 17 start-page: 342 issue: 2 year: 2017 ident: 1629_CR59 publication-title: Water Science and Technology: Water Supply – volume: 755 start-page: 142588 year: 2021 ident: 1629_CR93 publication-title: Science of the Total Environment doi: 10.1016/j.scitotenv.2020.142588 – volume: 352 start-page: 316 year: 2018 ident: 1629_CR78 publication-title: Chemical Engineering Journal doi: 10.1016/j.cej.2018.06.186 – volume: 221 start-page: 270 year: 2019 ident: 1629_CR99 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2018.12.162 – volume: 82 start-page: 7821 issue: 18 year: 2010 ident: 1629_CR16 publication-title: Analytical Chemistry doi: 10.1021/ac101760y – volume: 163 start-page: 114866 year: 2019 ident: 1629_CR47 publication-title: Water Research doi: 10.1016/j.watres.2019.114866 – volume: 6 start-page: 397 issue: 4 year: 2007 ident: 1629_CR6 publication-title: Journal of Environmental Engineering & Science doi: 10.1139/s07-024 – volume: 38 start-page: 1069 issue: 4 year: 2004 ident: 1629_CR8 publication-title: Water Research doi: 10.1016/j.watres.2003.10.029 – volume: 179 start-page: 552 issue: 1–3 year: 2010 ident: 1629_CR90 publication-title: Journal of Hazardous Materials doi: 10.1016/j.jhazmat.2010.03.039 – volume: 154 start-page: 613 year: 2016 ident: 1629_CR87 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2016.04.025 – volume: 209 start-page: 285 year: 2017 ident: 1629_CR71 publication-title: Applied Catalysis B: Environmental doi: 10.1016/j.apcatb.2017.03.019 – volume: 248 start-page: 54 year: 2019 ident: 1629_CR55 publication-title: Applied Catalysis B: Environmental doi: 10.1016/j.apcatb.2019.02.003 – volume: 44 start-page: 1392 issue: 4 year: 2010 ident: 1629_CR95 publication-title: Environmental Science & Technology doi: 10.1021/es903087w – volume: 122 start-page: 701 year: 2017 ident: 1629_CR27 publication-title: Water Research doi: 10.1016/j.watres.2017.06.041 – volume: 85 start-page: 1 issue: 1–2 year: 1995 ident: 1629_CR45 publication-title: Journal of Photochemistry and Photobiology A: Chemistry doi: 10.1016/1010-6030(94)03903-8 – volume: 85 start-page: 346 year: 2015 ident: 1629_CR46 publication-title: Water Research doi: 10.1016/j.watres.2015.08.050 – volume: 92 start-page: 473 issue: 1 year: 2019 ident: 1629_CR52 publication-title: Analytical Chemistry doi: 10.1021/acs.analchem.9b05269 – volume: 10 start-page: 1828 issue: 12 year: 2018 ident: 1629_CR19 publication-title: Water doi: 10.3390/w10121828 – volume: 48 start-page: 14534 issue: 24 year: 2014 ident: 1629_CR76 publication-title: Environmental Science & Technology doi: 10.1021/es503255j – volume: 46 start-page: 8976 issue: 16 year: 2012 ident: 1629_CR13 publication-title: Environmental Science & Technology doi: 10.1021/es300658u – volume: 261 start-page: 110223 year: 2020 ident: 1629_CR66 publication-title: Journal of Environmental Management doi: 10.1016/j.jenvman.2020.110223 – volume: 371 start-page: 222 year: 2019 ident: 1629_CR85 publication-title: Chemical Engineering Journal doi: 10.1016/j.cej.2019.03.296 – volume: 160 start-page: 304 year: 2019 ident: 1629_CR92 publication-title: Water Research doi: 10.1016/j.watres.2019.05.047 – volume: 217 start-page: 169 year: 2013 ident: 1629_CR88 publication-title: Chemical Engineering Journal doi: 10.1016/j.cej.2012.11.112 – volume: 362 start-page: 667 year: 2019 ident: 1629_CR43 publication-title: Chemical Engineering Journal doi: 10.1016/j.cej.2019.01.042 – volume: 238 start-page: 70 year: 2018 ident: 1629_CR82 publication-title: Applied Catalysis B: Environmental doi: 10.1016/j.apcatb.2018.07.003 – volume: 112 start-page: 236 year: 2017 ident: 1629_CR81 publication-title: Water Research doi: 10.1016/j.watres.2017.01.052 – volume: 16 start-page: 150 issue: 12 year: 2022 ident: 1629_CR36 publication-title: Frontiers of Environmental Science & Engineering doi: 10.1007/s11783-022-1585-9 – volume: 16 start-page: 76 issue: 6 year: 2022 ident: 1629_CR97 publication-title: Frontiers of Environmental Science & Engineering doi: 10.1007/s11783-021-1510-7 – volume: 49 start-page: 6838 issue: 11 year: 2015 ident: 1629_CR33 publication-title: Environmental Science & Technology doi: 10.1021/acs.est.5b00623 – volume: 333 start-page: 200 year: 2018 ident: 1629_CR39 publication-title: Chemical Engineering Journal doi: 10.1016/j.cej.2017.09.159 – volume: 157 start-page: 106 year: 2019 ident: 1629_CR74 publication-title: Water Research doi: 10.1016/j.watres.2019.03.071 – volume: 639 start-page: 1462 year: 2018 ident: 1629_CR70 publication-title: Science of the Total Environment doi: 10.1016/j.scitotenv.2018.05.258 – volume: 381 start-page: 122660 year: 2020 ident: 1629_CR77 publication-title: Chemical Engineering Journal doi: 10.1016/j.cej.2019.122660 – volume: 42 start-page: 2899 issue: 12 year: 2008 ident: 1629_CR2 publication-title: Water Research doi: 10.1016/j.watres.2008.03.002 – volume: 405 start-page: 124243 year: 2021 ident: 1629_CR7 publication-title: Journal of Hazardous Materials doi: 10.1016/j.jhazmat.2020.124243 – volume: 373 start-page: 1348 year: 2019 ident: 1629_CR98 publication-title: Chemical Engineering Journal doi: 10.1016/j.cej.2019.05.140 – volume: 313 start-page: 229 year: 2016 ident: 1629_CR30 publication-title: Journal of Hazardous Materials doi: 10.1016/j.jhazmat.2016.04.033 – volume: 51 start-page: 2954 issue: 5 year: 2017 ident: 1629_CR35 publication-title: Environmental Science & Technology doi: 10.1021/acs.est.6b05536 – volume: 398 start-page: 125606 year: 2020 ident: 1629_CR53 publication-title: Chemical Engineering Journal doi: 10.1016/j.cej.2020.125606 – volume: 158 start-page: 237 year: 2019 ident: 1629_CR26 publication-title: Water Research doi: 10.1016/j.watres.2019.04.030 – volume: 36 start-page: 1 issue: 1 year: 2006 ident: 1629_CR50 publication-title: Critical Reviews in Environmental Science and Technology doi: 10.1080/10643380500326564 – volume: 123 start-page: 113 year: 2017 ident: 1629_CR57 publication-title: Water Research doi: 10.1016/j.watres.2017.06.021 – volume: 381 start-page: 122787 year: 2020 ident: 1629_CR94 publication-title: Chemical Engineering Journal doi: 10.1016/j.cej.2019.122787 – volume: 52 start-page: 849 issue: 9 year: 2017 ident: 1629_CR15 publication-title: Journal of Environmental Science and Health Part A: Toxic/Hazardous Substances & Environmental Engineering doi: 10.1080/10934529.2017.1312188 – volume: 205 start-page: 163 issue: 2–3 year: 1993 ident: 1629_CR28 publication-title: Chemical Physics Letters doi: 10.1016/0009-2614(93)89222-4 – volume: 334 start-page: 1502 year: 2018 ident: 1629_CR72 publication-title: Chemical Engineering Journal doi: 10.1016/j.cej.2017.11.059 – volume: 78 start-page: 1 year: 2015 ident: 1629_CR40 publication-title: Water Research doi: 10.1016/j.watres.2015.03.028 – volume: 328 start-page: 619 year: 2017 ident: 1629_CR79 publication-title: Chemical Engineering Journal doi: 10.1016/j.cej.2017.07.055 – volume: 380 start-page: 122468 year: 2020 ident: 1629_CR31 publication-title: Chemical Engineering Journal doi: 10.1016/j.cej.2019.122468 – volume: 40 start-page: 1000 issue: 3 year: 2006 ident: 1629_CR1 publication-title: Environmental Science & Technology doi: 10.1021/es050634b – volume: 221 start-page: 158 issue: 2–3 year: 2006 ident: 1629_CR10 publication-title: Toxicology doi: 10.1016/j.tox.2005.12.011 – volume: 50 start-page: 756 issue: 7 year: 2016 ident: 1629_CR58 publication-title: Free Radical Research doi: 10.3109/10715762.2016.1166488 – volume: 181 start-page: 103 year: 2016 ident: 1629_CR24 publication-title: Applied Catalysis B: Environmental doi: 10.1016/j.apcatb.2015.07.024 – volume: 237 start-page: 124521 year: 2019 ident: 1629_CR89 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2019.124521 – volume: 430 start-page: 132669 year: 2022 ident: 1629_CR65 publication-title: Chemical Engineering Journal doi: 10.1016/j.cej.2021.132669 – volume: 176 start-page: 115746 year: 2020 ident: 1629_CR75 publication-title: Water Research doi: 10.1016/j.watres.2020.115746 – volume: 368 start-page: 888 year: 2019 ident: 1629_CR25 publication-title: Chemical Engineering Journal doi: 10.1016/j.cej.2019.02.207 – volume: 50 start-page: 4448 issue: 8 year: 2016 ident: 1629_CR63 publication-title: Environmental Science & Technology doi: 10.1021/acs.est.5b06097 – volume: 52 start-page: 794 year: 2004 ident: 1629_CR11 publication-title: Journal of the Association of Physicians of India – volume: 112 start-page: 1 year: 2017 ident: 1629_CR22 publication-title: Water Research doi: 10.1016/j.watres.2017.01.025 – volume: 381 start-page: 122275 year: 2020 ident: 1629_CR14 publication-title: Chemical Engineering Journal doi: 10.1016/j.cej.2019.122275 – volume: 84 start-page: 1 year: 2015 ident: 1629_CR38 publication-title: Water Research doi: 10.1016/j.watres.2015.07.015 – volume: 36 start-page: 101362 year: 2020 ident: 1629_CR51 publication-title: Journal of Water Process Engineering doi: 10.1016/j.jwpe.2020.101362 – volume: 19 start-page: 51 year: 2018 ident: 1629_CR86 publication-title: Current Opinion in Chemical Engineering doi: 10.1016/j.coche.2017.12.005 – volume: 722 start-page: 137831 year: 2020 ident: 1629_CR23 publication-title: Science of the Total Environment doi: 10.1016/j.scitotenv.2020.137831 – volume: 90 start-page: 609 issue: 3 year: 2014 ident: 1629_CR96 publication-title: Photochemistry and Photobiology doi: 10.1111/php.12210 – volume: 173 start-page: 115552 year: 2020 ident: 1629_CR84 publication-title: Water Research doi: 10.1016/j.watres.2020.115552 – volume: 140 start-page: 220 year: 2018 ident: 1629_CR44 publication-title: Water Research doi: 10.1016/j.watres.2018.04.054 – volume: 229 start-page: 602 year: 2019 ident: 1629_CR21 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2019.05.012 – volume-title: Free-Radical-Induced DNA Damage and Its Repair: A Chemical Perspective year: 2006 ident: 1629_CR61 doi: 10.1007/3-540-30592-0 – volume: 15 start-page: 102 issue: 5 year: 2021 ident: 1629_CR69 publication-title: Frontiers of Environmental Science & Engineering doi: 10.1007/s11783-021-1389-3 |
SSID | ssj0000884183 |
Score | 2.4049847 |
SecondaryResourceType | review_article |
Snippet | ● Status of inactivation of pathogenic microorganisms by SO 4 *− is reviewed. ● Mechanism of SO 4 *− disinfection is outlined. ● Possible generation of DBPs... Sulfate radicals have been increasingly used for the pathogen inactivation due to their strong redox ability and high selectivity for electron-rich species in... |
SourceID | proquest crossref springer higheredpress |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 29 |
SubjectTerms | Acids Bacteria Bacterial inactivation Bromine By products Byproducts Chlorine Deactivation Disinfection Disinfection by-products E coli Earth and Environmental Science Environment Halogens Inactivation Inactivation mechanisms Iodides Microorganisms Oxidation pathogens Radicals Review Article Selectivity species Sulfate radicals Sulfates Water disinfection |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fSxwxEA717kUQaavSU1tS8EkJvWR_Jb6UWk6OPoiIgk8uySapwrF3uncP_vfOZLN3XLH3nE027GRmvp1vMkPICXdDJzzPQAKpZ2muBTNg9BgXJuEC8Ia2IUH2Kh_fpX_us_sYcGtiWmVnE4OhttMKY-Q_hMLuceCOsp-zZ4Zdo5BdjS00tkgfTLCUPdK_GF1d3yyjLKBDKQ-1OAVgCSbA3XXUZrg_xwuJNGbCeC4UU2vOaecxZFo4GzJS1xDoP6Rp8EWXH8luBJH0Vyv1T-SDqz-Tg9HqzhoMRqVt9sjDRVuRWdOnGq8xtEFYal5ps5h4wJr0RQe25pyGbC3YBtW1pfW0ZrX7iynLZuKofWq6zC2czGZtrdhmn9xdjm5_j1lsq8Aq-BeeM5knXg6FTy1Aw8pZ0Nisyri03oncC6Quh0aCcipZOOkKo3JQWp1UaWG1rvLkgPRgB-4Loco4bTAc6QEJaCkUgKFMWViPV6jcAzLsvmdZxZrj2PpiUq6qJaMIShBBiSIoYcrpcsqsLbix6WG-JqTSY9UH7CG-ac5xJ8gy6mtTIhut0iKR6fvDy8M3IN-Xw6CIyK7o2k0X8AyY65wjZT4gZ935WC3x3_0cbn7hEdnGDvdt2tsx6c1fFu4r4KC5-RYP-xvmswIb priority: 102 providerName: ProQuest |
Title | Bacteria inactivation by sulfate radical: progress and non-negligible disinfection by-products |
URI | https://journal.hep.com.cn/fese/EN/10.1007/s11783-023-1629-9 https://link.springer.com/article/10.1007/s11783-023-1629-9 https://www.proquest.com/docview/2720947384 https://www.proquest.com/docview/2918748125 https://www.proquest.com/docview/2887611046 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB7yuBRKaNqGbpIuKvTUIrqSbVnqLVl2ExIIpTSQXmokS2oDixPi3UP-fWf82GVDEsjJBz0QHn-az_pGMwCfRRgFGUWGFkgjT5WV3OGmx4V0iZDIN6xvAmQv1OllenaVXXXJoukuzAP9_lstRK5JaUy4UNJwswnbmUhyqtIwVuPlcQqCJRVN0k2JpIFL9Gu9hvnYLGte6PW_JqQi-Cb0dI1qPlBHG6czfQM7HVtkR615d2EjVG9hb7K6nIaNHTrrd_DnuE29bNl1RfcV2tNW5u5ZvZhFJJXszjayzHfWhGXhMpitPKtuKl6FvxSb7GaB-eu6D9Giwfy2TQpbv4fL6eTX-JR39RN4iT-9c65VEvVIxtQjByyDR2hmZSa0j0GqKEmjHDmNKDQ6DzrkzihEp03KNPfWlirZgy1cQfgAzLhgHZ07RnT5VkuDrCczHucTJaF4AKP-fRZll1ycalzMilVaZDJBgSYoyAQFDvmyHHLbZtZ4rrNYM1IRKb0DFQt_bsxhb8iiA2ZdkOxs0jzR6ePNhmoUIunJBvBp2YyIIxnFVuFmgX1wX1aCtPEBfO2_j9UUT65n_0W9D-AVVbZvw90OYWt-twgfkf_M3RA29fRkCNtHJ7_PJ_g8nlz8-Dls8PAfq6f9Iw |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-N8QDShPiaKAwwEryALGrHSRMkNA1Y6djY0ybtCWPH9phUpWVphfZP8Tdy5yStiqBve7Z9sXLnu599XwAvhe97GUSKHFCBq8xIblHpcSFtIiTiDeNigOxxNjpVX87Ssw343eXCUFhlpxOjonaTkt7I38qCusehOUp3pz85dY0i72rXQqMRi0N_9QuvbPX7g0_I31dSDvdPPo5421WAl3gVnPE8S0Lel0E5REaldyiwaZmK3AUvsyDJc9e3Ocom3sZ97ge2yFBmTVKqgTOmzBKkewNuqgQtOWWmDz8v3nTwxCoRK39KRC5cIrHOkRqz9cQgJ6dpwkUmC16smMKtHzGuw7sY_7qCd_9y0UbLN7wLd1rIyvYaGbsHG766D9v7yww5HGxVRP0Avn1o6j8bdlFR0kTz5MvsFavn44DIll2a6Bt6x2JsGG6DmcqxalLxyp9TgLQde-Yu6i5OjBbzaVOZtn4Ip9fyu7dhE3fgHwErrDeWHj8D4g6TywKhV1o4pCdKUiU96Hf_U5dthXNqtDHWy9rMxAKNLNDEAo1LXi-WTJvyHusmixUm6UA1Jqhj-bo1Ox0jdasdak2-70INklz9e3gh6j14sRjGY0--HFP5yRznoHHIBDnoe_Cmk48lif_u5_H6Dz6HW6OTr0f66OD48AncliSsMeBuBzZnl3P_FBHYzD6LYs_g-3Wfsz_1FzyN |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3faxQxEB5qCyKIWLV4WtsI-qKEXrK7uV3Bh_bao7VSfLDQJ2OySbRwbI_uHdK_yn_RmezuHVfagg99zg9CZib5Jt_MBOCd8H0vg8hQAmngqTKSWzz0uJA2ERLxhnExQPZEHZ6mX86ysxX42-XCxGj3jpJschqoSlM13Zm4sLNIfBODnPjHhAslC160UZXH_uoP-mz156N9FPB7KUcH34eHvP1WgJfoC055rpKQ92VIHUKj0jvU2KzMRO6ClypIou76NkflRHfc535gC4VKa5IyHThjSpXgvA9gDR0jQd7eUA3njzposqmIpT8lQhcucbKOSb1p1Ut34ePfMbDDuxgAuwR4r3G08eobPYUnLWZlu42SrcOKr57BxsEiRQ4b2zOifg4_9poC0IadV5Q10bz5MnvF6tk4ILRllyaSQ59YDA7DZTBTOVZdVLzyvyhC2o49c-d1FyhGg_mkKU1bv4DTe9nuDVjFFfiXwArrjaXXz4DAw-SyQOyVFQ7nEyWdJT3od_upy7bEOf20MdaL4swkAo0i0CQCjUM-zIdMmvoed3UWS0LSgYpM0Jfld43Z7ASp2-Oh1kR-F-kgydObmwv6KRGhV9aDt_NmtHsic0zlL2bYB28HJYih78HHTj8WU9y6nlf_1XsbHn7bH-mvRyfHr-GRJNWN8XebsDq9nPk3CMimdisaAYOf9211_wC2Tj1f |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bacteria+inactivation+by+sulfate+radical%3A+progress+and+non-negligible+disinfection+by-products&rft.jtitle=Frontiers+of+environmental+science+%26+engineering&rft.au=Zhou%2C+Xin&rft.au=Ren+Xiaoya&rft.au=Chen%2C+Yu&rft.au=Feng+Haopeng&rft.date=2023-03-01&rft.pub=Springer+Nature+B.V&rft.issn=2095-2201&rft.eissn=2095-221X&rft.volume=17&rft.issue=3&rft_id=info:doi/10.1007%2Fs11783-023-1629-9&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2095-2201&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2095-2201&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2095-2201&client=summon |