Log Sequence Anomaly Detection Method Based on Contrastive Adversarial Training and Dual Feature Extraction
The log messages generated in the system reflect the state of the system at all times. The realization of autonomous detection of abnormalities in log messages can help operators find abnormalities in time and provide a basis for analyzing the causes of abnormalities. First, this paper proposes a lo...
Saved in:
Published in | Entropy (Basel, Switzerland) Vol. 24; no. 1; p. 69 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
30.12.2021
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The log messages generated in the system reflect the state of the system at all times. The realization of autonomous detection of abnormalities in log messages can help operators find abnormalities in time and provide a basis for analyzing the causes of abnormalities. First, this paper proposes a log sequence anomaly detection method based on contrastive adversarial training and dual feature extraction. This method uses BERT (Bidirectional Encoder Representations from Transformers) and VAE (Variational Auto-Encoder) to extract the semantic features and statistical features of the log sequence, respectively, and the dual features are combined to perform anomaly detection on the log sequence, with a novel contrastive adversarial training method also used to train the model. In addition, this paper introduces the method of obtaining statistical features of log sequence and the method of combining semantic features with statistical features. Furthermore, the specific process of contrastive adversarial training is described. Finally, an experimental comparison is carried out, and the experimental results show that the method in this paper is better than the contrasted log sequence anomaly detection method. |
---|---|
AbstractList | The log messages generated in the system reflect the state of the system at all times. The realization of autonomous detection of abnormalities in log messages can help operators find abnormalities in time and provide a basis for analyzing the causes of abnormalities. First, this paper proposes a log sequence anomaly detection method based on contrastive adversarial training and dual feature extraction. This method uses BERT (Bidirectional Encoder Representations from Transformers) and VAE (Variational Auto-Encoder) to extract the semantic features and statistical features of the log sequence, respectively, and the dual features are combined to perform anomaly detection on the log sequence, with a novel contrastive adversarial training method also used to train the model. In addition, this paper introduces the method of obtaining statistical features of log sequence and the method of combining semantic features with statistical features. Furthermore, the specific process of contrastive adversarial training is described. Finally, an experimental comparison is carried out, and the experimental results show that the method in this paper is better than the contrasted log sequence anomaly detection method. The log messages generated in the system reflect the state of the system at all times. The realization of autonomous detection of abnormalities in log messages can help operators find abnormalities in time and provide a basis for analyzing the causes of abnormalities. First, this paper proposes a log sequence anomaly detection method based on contrastive adversarial training and dual feature extraction. This method uses BERT (Bidirectional Encoder Representations from Transformers) and VAE (Variational Auto-Encoder) to extract the semantic features and statistical features of the log sequence, respectively, and the dual features are combined to perform anomaly detection on the log sequence, with a novel contrastive adversarial training method also used to train the model. In addition, this paper introduces the method of obtaining statistical features of log sequence and the method of combining semantic features with statistical features. Furthermore, the specific process of contrastive adversarial training is described. Finally, an experimental comparison is carried out, and the experimental results show that the method in this paper is better than the contrasted log sequence anomaly detection method.The log messages generated in the system reflect the state of the system at all times. The realization of autonomous detection of abnormalities in log messages can help operators find abnormalities in time and provide a basis for analyzing the causes of abnormalities. First, this paper proposes a log sequence anomaly detection method based on contrastive adversarial training and dual feature extraction. This method uses BERT (Bidirectional Encoder Representations from Transformers) and VAE (Variational Auto-Encoder) to extract the semantic features and statistical features of the log sequence, respectively, and the dual features are combined to perform anomaly detection on the log sequence, with a novel contrastive adversarial training method also used to train the model. In addition, this paper introduces the method of obtaining statistical features of log sequence and the method of combining semantic features with statistical features. Furthermore, the specific process of contrastive adversarial training is described. Finally, an experimental comparison is carried out, and the experimental results show that the method in this paper is better than the contrasted log sequence anomaly detection method. |
Author | Cao, Zhiying Wang, Xuejie Zhang, Xiuguo Wang, Qiaozheng |
AuthorAffiliation | School of Information Science and Technology, Dalian Maritime University, Dalian 116026, China; wqz@dlmu.edu.cn (Q.W.); wxj@dlmu.edu.cn (X.W.) |
AuthorAffiliation_xml | – name: School of Information Science and Technology, Dalian Maritime University, Dalian 116026, China; wqz@dlmu.edu.cn (Q.W.); wxj@dlmu.edu.cn (X.W.) |
Author_xml | – sequence: 1 givenname: Qiaozheng surname: Wang fullname: Wang, Qiaozheng – sequence: 2 givenname: Xiuguo surname: Zhang fullname: Zhang, Xiuguo – sequence: 3 givenname: Xuejie surname: Wang fullname: Wang, Xuejie – sequence: 4 givenname: Zhiying surname: Cao fullname: Cao, Zhiying |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35052095$$D View this record in MEDLINE/PubMed |
BookMark | eNplkk1PGzEQhq2KqkDaQ_9AtVIv5ZAy_tiNfalEA7RIqXooPVteezY43djU3o3Kv8chgICebI_fefTOxyHZCzEgIe8pfOZcwTEyARSgUa_IAQWlpoID7D2575PDnFcAjDPavCH7vIaagaoPyJ9FXFa_8O-IwWJ1EuLa9DfVKQ5oBx9D9QOHq-iqryajq8p7HsOQTB78pqjdBlM2yZu-ukzGBx-WlQmuOh1L5BzNMCaszv6VhDvYW_K6M33Gd_fnhPw-P7ucf58ufn67mJ8splY0aphKsHLGJNSdQFU7KUzTlSJUS6lxDRPc8A7QSiuEmPG2lbaRDdRCOmFsKZFPyMWO66JZ6evk1ybd6Gi8vgvEtNQmDd72qBVvbMOpgZmVwlkmbV1bZWgLHXTOtoX1Zce6Hts1Oovb8vtn0Oc_wV_pZdxoOZsJRaEAPt0DUixdzoNe-2yx703AOGbNGsaYZKre-v74QrqKYwqlVVsVZZKqUt6EfHjq6NHKw0yL4HgnsCnmnLDT1g9mO4Bi0Peagt5ujX7cmpJx9CLjAfq_9hbAEMBz |
CitedBy_id | crossref_primary_10_3390_app13137739 crossref_primary_10_3390_app14135388 crossref_primary_10_1016_j_neunet_2024_106680 crossref_primary_10_1007_s10489_023_04674_6 crossref_primary_10_1016_j_mlwa_2024_100554 crossref_primary_10_3390_s23115042 crossref_primary_10_1007_s42979_023_01676_6 crossref_primary_10_1016_j_mlwa_2023_100470 |
Cites_doi | 10.1109/ICWS.2017.13 10.1109/DSN.2007.103 10.1109/ISSRE5003.2020.00018 10.1109/ISSRE.2016.21 10.1109/ICDM.2007.46 10.1109/ICSE43902.2021.00130 10.3390/s20092451 10.31224/osf.io/d4e6a 10.18653/v1/2021.emnlp-main.552 10.1016/j.ipm.2021.102540 10.1145/3133956.3134015 10.3390/jmse9111202 10.1145/1629575.1629587 10.32604/csse.2021.014030 10.1109/IJCNN52387.2021.9534113 10.1109/DASC/PiCom/DataCom/CyberSciTec.2018.00037 10.1109/ICACCI.2017.8125846 10.1609/aaai.v35i15.17569 10.1109/TDSC.2017.2762673 |
ContentType | Journal Article |
Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 by the authors. 2021 |
Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 by the authors. 2021 |
DBID | AAYXX CITATION NPM 7TB 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO FR3 HCIFZ KR7 L6V M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 5PM DOA |
DOI | 10.3390/e24010069 |
DatabaseName | CrossRef PubMed Mechanical & Transportation Engineering Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Database ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database SciTech Premium Collection Civil Engineering Abstracts ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ (Directory of Open Access Journals) |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Civil Engineering Abstracts Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef MEDLINE - Academic Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 1099-4300 |
ExternalDocumentID | oai_doaj_org_article_936c631a07c84dc28c55c9a1b0f0fdcb PMC8774910 35052095 10_3390_e24010069 |
Genre | Journal Article |
GrantInformation_xml | – fundername: National Key R&D Program of China grantid: 2018YFB1601502 – fundername: LiaoNing Revitalization Talents Program grantid: XLYC1902071 |
GroupedDBID | 29G 2WC 5GY 5VS 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABJCF ACIWK ACUHS ADBBV AEGXH AENEX AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR BGLVJ CCPQU CITATION CS3 DU5 E3Z ESX F5P GROUPED_DOAJ GX1 HCIFZ HH5 IAO ITC J9A KQ8 L6V M7S MODMG M~E OK1 OVT PGMZT PHGZM PHGZT PIMPY PROAC PTHSS RNS RPM TR2 TUS XSB ~8M NPM 7TB 8FD ABUWG AZQEC DWQXO FR3 KR7 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c469t-80c872805f4e95d84a6f4309b11ad6243a3f0ec8c44473bb8c6860548d4ac0233 |
IEDL.DBID | BENPR |
ISSN | 1099-4300 |
IngestDate | Wed Aug 27 01:28:49 EDT 2025 Thu Aug 21 18:24:37 EDT 2025 Thu Jul 10 23:30:08 EDT 2025 Fri Jul 25 12:03:37 EDT 2025 Thu Jan 02 22:56:12 EST 2025 Tue Jul 01 01:58:09 EDT 2025 Thu Apr 24 22:53:18 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | contrastive learning BERT adversarial training VAE statistical features |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c469t-80c872805f4e95d84a6f4309b11ad6243a3f0ec8c44473bb8c6860548d4ac0233 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.proquest.com/docview/2621281902?pq-origsite=%requestingapplication% |
PMID | 35052095 |
PQID | 2621281902 |
PQPubID | 2032401 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_936c631a07c84dc28c55c9a1b0f0fdcb pubmedcentral_primary_oai_pubmedcentral_nih_gov_8774910 proquest_miscellaneous_2622282953 proquest_journals_2621281902 pubmed_primary_35052095 crossref_citationtrail_10_3390_e24010069 crossref_primary_10_3390_e24010069 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20211230 |
PublicationDateYYYYMMDD | 2021-12-30 |
PublicationDate_xml | – month: 12 year: 2021 text: 20211230 day: 30 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Entropy (Basel, Switzerland) |
PublicationTitleAlternate | Entropy (Basel) |
PublicationYear | 2021 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | ref_14 Xia (ref_19) 2020; 6 ref_13 ref_12 ref_11 ref_33 ref_10 ref_32 ref_30 ref_17 ref_15 Kwon (ref_28) 2021; 10 Brown (ref_9) 2018; 12 He (ref_4) 2017; 15 Duan (ref_20) 2021; 58 ref_25 ref_24 ref_23 ref_22 ref_21 Duan (ref_31) 2021; 37 Mei (ref_16) 2020; 43 ref_1 ref_3 ref_2 ref_29 ref_27 ref_26 Meng (ref_18) 2019; 19 ref_8 ref_5 ref_7 ref_6 |
References_xml | – volume: 43 start-page: 366 year: 2020 ident: ref_16 article-title: A software system anomaly detection method based on log information and CNN-text publication-title: Chin. J. Computers. – ident: ref_26 doi: 10.1109/ICWS.2017.13 – ident: ref_32 doi: 10.1109/DSN.2007.103 – ident: ref_24 – ident: ref_15 doi: 10.1109/ISSRE5003.2020.00018 – ident: ref_27 doi: 10.1109/ISSRE.2016.21 – volume: 10 start-page: 18 year: 2021 ident: ref_28 article-title: Defending Deep Neural Networks against Backdoor Attack by Using De-trigger Autoencoder publication-title: IEEE Access – ident: ref_5 doi: 10.1109/ICDM.2007.46 – ident: ref_14 – ident: ref_1 – ident: ref_17 doi: 10.1109/ICSE43902.2021.00130 – volume: 12 start-page: 1 year: 2018 ident: ref_9 article-title: Recurrent neural network attention mechanisms for interpretable system log anomaly detection publication-title: First Workshop Mach. Learn. Comput. Syst. – ident: ref_21 – ident: ref_13 doi: 10.3390/s20092451 – ident: ref_11 doi: 10.31224/osf.io/d4e6a – ident: ref_23 doi: 10.18653/v1/2021.emnlp-main.552 – volume: 58 start-page: 102540 year: 2021 ident: ref_20 article-title: QLLog: A log anomaly detection method based on Q-learning algorithm publication-title: Inf. Process. Manag. doi: 10.1016/j.ipm.2021.102540 – ident: ref_7 doi: 10.1145/3133956.3134015 – ident: ref_6 doi: 10.3390/jmse9111202 – ident: ref_29 – ident: ref_33 – ident: ref_3 doi: 10.1145/1629575.1629587 – ident: ref_2 – volume: 37 start-page: 135 year: 2021 ident: ref_31 article-title: A Generative Adversarial Networks for Log Anomaly Detection publication-title: Comput. Syst. Sci. Eng. doi: 10.32604/csse.2021.014030 – ident: ref_12 – ident: ref_30 doi: 10.1109/IJCNN52387.2021.9534113 – ident: ref_10 doi: 10.1109/DASC/PiCom/DataCom/CyberSciTec.2018.00037 – volume: 6 start-page: 1 year: 2020 ident: ref_19 article-title: LogGAN: A log-level generative adversarial network for anomaly detection using permutation event modeling publication-title: Inf. Syst. Front. – ident: ref_8 doi: 10.1109/ICACCI.2017.8125846 – volume: 19 start-page: 4739 year: 2019 ident: ref_18 article-title: LogAnomaly: Unsupervised detection of sequential and quantitative anomalies in unstructured logs publication-title: IJCAI – ident: ref_22 – ident: ref_25 doi: 10.1609/aaai.v35i15.17569 – volume: 15 start-page: 931 year: 2017 ident: ref_4 article-title: Towards Automated Log Parsing for Large-Scale Log Data Analysis publication-title: IEEE Trans. Dependable Secur. Comput. doi: 10.1109/TDSC.2017.2762673 |
SSID | ssj0023216 |
Score | 2.3490355 |
Snippet | The log messages generated in the system reflect the state of the system at all times. The realization of autonomous detection of abnormalities in log messages... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 69 |
SubjectTerms | Abnormalities Accuracy adversarial training Anomalies Artificial intelligence BERT Coders contrastive learning Deep learning Feature extraction Machine learning Messages Performance evaluation Semantics Software statistical features Support vector machines Training VAE |
SummonAdditionalLinks | – databaseName: DOAJ (Directory of Open Access Journals) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYqTlwqELRNWZBb9dBLRPyIYx95ClWll4LELXL8oAjIot2sBP-eGScbsQipF46xfXDGY8988eT7CPnBHVMuKpUzW4lcauNyUxmAKtoGVgTThIifBs7_qLNL-euqvHoh9YU1YT09cG-4fSOUU4LZonJaese1K0tnLGuKWETvGjx9IeYtwdQAtQRnqucREgDq9wPELYakvCvRJ5H0v5VZvi6QfBFxTjfIxyFVpAf9FDfJh9Bukdvf02v6d6h_pgDe7-3dEz0OXSqpaul5UoSmhxCcPIVnZJ-a2TkeajSJL88tuhy9GKQhqG09PV5ACyaDi1mgJ4_drP_bYZtcnp5cHJ3lg2BC7gDldhBtnEa5qTLKYEqvpVVRisI0jFmvuBRWxCI47aSUlWga7ZQGOCO1l9aB0cQnstZO2_CFUEgUfNXoGFlE6XRpPAvMi8grr6KKVUZ-Lg1Zu4FNHEUt7mpAFWjzerR5Rr6PQx96Co23Bh3iaowDkPU6NYAv1IMv1P_zhYxMlmtZD1txXnPF021hwTPybeyGTYQ3I7YN00Uaw_FKuRQZ-dwv_TgTUaZSoTIj1YpTrEx1tae9-ZeIujXk1pCOfX2Pd9sh6xzLaZBjspiQtW62CLuQD3XNXnL9Z-vDCk8 priority: 102 providerName: Directory of Open Access Journals |
Title | Log Sequence Anomaly Detection Method Based on Contrastive Adversarial Training and Dual Feature Extraction |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35052095 https://www.proquest.com/docview/2621281902 https://www.proquest.com/docview/2622282953 https://pubmed.ncbi.nlm.nih.gov/PMC8774910 https://doaj.org/article/936c631a07c84dc28c55c9a1b0f0fdcb |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Jb9QwFLbo9MIFUbEF2pFBHLhEjZc4zgl16EwrRCsErTS3yPHSIkpSMhkJ_n39HE9gUMUlUmIfrPdsvzXfh9BbqonQToiUqIKlXJY6LYvShypSWZLZsrYOUgNn5-L0kn9c5suYcFvFtsrNnRguatNqyJEfUkFD0Sej729_psAaBdXVSKGxg3ZhVE7Q7mx-_vnLGHIxSsSAJ8R8cH9ovf0iAM67ZYUCWP99Hua_jZJ_WZ7FY_Qouoz4aNDxHnpgmyfo-6f2Cn-NfdDYB_E_1M1vfGz70FrV4LPADI1n3kgZ7N8BhapTK7jccCBhXinYevgiUkRg1Rh8vPZfwClcdxbPf_Xd8NfDU3S5mF98OE0jcUKqfbTbe6ujJdBO5Y7bMjeSK-E4y8qaEGUE5Uwxl1ktNee8YHUttZA-rOHScKW90NgzNGnaxr5A2EvcFLV0jjigUOelIZYY5mhhhBOuSNC7jSArHVHFgdzipvLRBci8GmWeoDfj1NsBSuO-STPQxjgB0K_Dh7a7quJhqkomtGBEZYWW3GgqdZ7rUpE6c5kzuk7Q_kaXVTySq-rPBkrQ63HYHyaokKjGtuswh0JpOWcJej6oflwJy0PLUJ6gYmtTbC11e6T5dh0Au6X3sb1b9vL_y3qFHlJomAEUyWwfTfpubQ-8x9PXU7QjFyfTuLmnIW_gnydLcgfkbgUp |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOcAFgXgFChgEEpeo8SOOc0CoZbts6W4vbKXeguNHQW2TspsV9E_xG_E4D1hUcesx9iiyPON5eMbzIfSaaiK0EyImKmMxl7mO8yz3oYpUliQ2L62Dq4HZoZgc8U_H6fEG-tW_hYGyyl4nBkVtag135NtU0JD0Sej7i-8xoEZBdrWH0GjF4sBe_vAh2_Ld_sjz9w2l4735h0ncoQrE2oeCjVfJWgImU-q4zVMjuRKOsyQvCVFGUM4Uc4nVUnPOM1aWUgvpfX4uDVfaWzjm_3sD3eTMW3J4mT7-OAR4jBLRdi_yk8m29daSQCvgNZsXoAGu8mf_Lcv8y86N76I7nYOKd1qJuoc2bHUfnU7rE_y5q7rGO1V9rs4u8cg2oZCrwrOAQ413vUk02H9Dz6uFWoIqxQHyealA0PG8A6TAqjJ4tPIj4IKuFhbv_WwW7RuLB-joWjb0Idqs6so-Rtjz12SldI44AGznuSGWGOZoZoQTLovQ234jC931MAcojbPCxzKw58Ww5xF6NZBetI07riLaBW4MBNBrOwzUi5OiO7pFzoQWjKgk05IbTaVOU50rUiYucUaXEdrqeVl0CmBZ_BHXCL0cpv3RhXyMqmy9CjQUEtkpi9CjlvXDSlgaCpTSCGVrQrG21PWZ6tvX0B5ceo_eO4FP_r-sF-jWZD6bFtP9w4On6DaFUh3oX5lsoc1msbLPvK_VlM-DgGP05bpP1G9COzwt |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLbKVEJcEIgtUMAgkLhEEy9xnANCHWZGLW1HFbRSb8Hx0iJKUjIZQf8avw6_bDCo4tZjbCuy3v7s5_ch9IpqIrQTIiQqYSGXqQ7TJPWpilSWRDbNrYOjgYOF2DnmH07ikw30q38LA2WVvU1sDLUpNZyRj6mgzaVPRMeuK4s4nM7fXXwPAUEKblp7OI1WRPbs5Q-fvi3f7k49r19TOp8dvd8JO4SBUPu0sPbmWUvAZ4odt2lsJFfCcRalOSHKCMqZYi6yWmrOecLyXGohffzPpeFKe2_H_H9voM0EsqIR2pzMFocfh3SPUSLaXkaMpdHYet9JoDHwmgdsgAKuim7_LdL8y-vN76DbXbiKt1v5uos2bHEPfd0vT_GnrgYbbxflN3V-iae2bsq6CnzQoFLjiXeQBvtv6IBVqSUYVtwAQC8ViD0-6uApsCoMnq78CASkq8ri2c-6al9c3EfH10LSB2hUlIV9hLDntkly6RxxAN_OU0MsMczRxAgnXBKgNz0hM911NAdgjfPMZzZA82ygeYBeDksv2jYeVy2aADeGBdB5uxkoq9OsU-QsZUILRlSUaMmNplLHsU4VySMXOaPzAG31vMw6c7DM_ghvgF4M016R4XZGFbZcNWsoXGvHLEAPW9YPO2FxU64UByhZE4q1ra7PFF_Ommbh0sf3PiR8_P9tPUc3vTZl-7uLvSfoFoW6HWhmGW2hUV2t7FMfeNX5s07CMfp83Ur1GyvsQb8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Log+Sequence+Anomaly+Detection+Method+Based+on+Contrastive+Adversarial+Training+and+Dual+Feature+Extraction&rft.jtitle=Entropy+%28Basel%2C+Switzerland%29&rft.au=Wang%2C+Qiaozheng&rft.au=Zhang%2C+Xiuguo&rft.au=Wang%2C+Xuejie&rft.au=Cao%2C+Zhiying&rft.date=2021-12-30&rft.issn=1099-4300&rft.eissn=1099-4300&rft.volume=24&rft.issue=1&rft_id=info:doi/10.3390%2Fe24010069&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1099-4300&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1099-4300&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1099-4300&client=summon |