Log Sequence Anomaly Detection Method Based on Contrastive Adversarial Training and Dual Feature Extraction

The log messages generated in the system reflect the state of the system at all times. The realization of autonomous detection of abnormalities in log messages can help operators find abnormalities in time and provide a basis for analyzing the causes of abnormalities. First, this paper proposes a lo...

Full description

Saved in:
Bibliographic Details
Published inEntropy (Basel, Switzerland) Vol. 24; no. 1; p. 69
Main Authors Wang, Qiaozheng, Zhang, Xiuguo, Wang, Xuejie, Cao, Zhiying
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 30.12.2021
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The log messages generated in the system reflect the state of the system at all times. The realization of autonomous detection of abnormalities in log messages can help operators find abnormalities in time and provide a basis for analyzing the causes of abnormalities. First, this paper proposes a log sequence anomaly detection method based on contrastive adversarial training and dual feature extraction. This method uses BERT (Bidirectional Encoder Representations from Transformers) and VAE (Variational Auto-Encoder) to extract the semantic features and statistical features of the log sequence, respectively, and the dual features are combined to perform anomaly detection on the log sequence, with a novel contrastive adversarial training method also used to train the model. In addition, this paper introduces the method of obtaining statistical features of log sequence and the method of combining semantic features with statistical features. Furthermore, the specific process of contrastive adversarial training is described. Finally, an experimental comparison is carried out, and the experimental results show that the method in this paper is better than the contrasted log sequence anomaly detection method.
AbstractList The log messages generated in the system reflect the state of the system at all times. The realization of autonomous detection of abnormalities in log messages can help operators find abnormalities in time and provide a basis for analyzing the causes of abnormalities. First, this paper proposes a log sequence anomaly detection method based on contrastive adversarial training and dual feature extraction. This method uses BERT (Bidirectional Encoder Representations from Transformers) and VAE (Variational Auto-Encoder) to extract the semantic features and statistical features of the log sequence, respectively, and the dual features are combined to perform anomaly detection on the log sequence, with a novel contrastive adversarial training method also used to train the model. In addition, this paper introduces the method of obtaining statistical features of log sequence and the method of combining semantic features with statistical features. Furthermore, the specific process of contrastive adversarial training is described. Finally, an experimental comparison is carried out, and the experimental results show that the method in this paper is better than the contrasted log sequence anomaly detection method.
The log messages generated in the system reflect the state of the system at all times. The realization of autonomous detection of abnormalities in log messages can help operators find abnormalities in time and provide a basis for analyzing the causes of abnormalities. First, this paper proposes a log sequence anomaly detection method based on contrastive adversarial training and dual feature extraction. This method uses BERT (Bidirectional Encoder Representations from Transformers) and VAE (Variational Auto-Encoder) to extract the semantic features and statistical features of the log sequence, respectively, and the dual features are combined to perform anomaly detection on the log sequence, with a novel contrastive adversarial training method also used to train the model. In addition, this paper introduces the method of obtaining statistical features of log sequence and the method of combining semantic features with statistical features. Furthermore, the specific process of contrastive adversarial training is described. Finally, an experimental comparison is carried out, and the experimental results show that the method in this paper is better than the contrasted log sequence anomaly detection method.The log messages generated in the system reflect the state of the system at all times. The realization of autonomous detection of abnormalities in log messages can help operators find abnormalities in time and provide a basis for analyzing the causes of abnormalities. First, this paper proposes a log sequence anomaly detection method based on contrastive adversarial training and dual feature extraction. This method uses BERT (Bidirectional Encoder Representations from Transformers) and VAE (Variational Auto-Encoder) to extract the semantic features and statistical features of the log sequence, respectively, and the dual features are combined to perform anomaly detection on the log sequence, with a novel contrastive adversarial training method also used to train the model. In addition, this paper introduces the method of obtaining statistical features of log sequence and the method of combining semantic features with statistical features. Furthermore, the specific process of contrastive adversarial training is described. Finally, an experimental comparison is carried out, and the experimental results show that the method in this paper is better than the contrasted log sequence anomaly detection method.
Author Cao, Zhiying
Wang, Xuejie
Zhang, Xiuguo
Wang, Qiaozheng
AuthorAffiliation School of Information Science and Technology, Dalian Maritime University, Dalian 116026, China; wqz@dlmu.edu.cn (Q.W.); wxj@dlmu.edu.cn (X.W.)
AuthorAffiliation_xml – name: School of Information Science and Technology, Dalian Maritime University, Dalian 116026, China; wqz@dlmu.edu.cn (Q.W.); wxj@dlmu.edu.cn (X.W.)
Author_xml – sequence: 1
  givenname: Qiaozheng
  surname: Wang
  fullname: Wang, Qiaozheng
– sequence: 2
  givenname: Xiuguo
  surname: Zhang
  fullname: Zhang, Xiuguo
– sequence: 3
  givenname: Xuejie
  surname: Wang
  fullname: Wang, Xuejie
– sequence: 4
  givenname: Zhiying
  surname: Cao
  fullname: Cao, Zhiying
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35052095$$D View this record in MEDLINE/PubMed
BookMark eNplkk1PGzEQhq2KqkDaQ_9AtVIv5ZAy_tiNfalEA7RIqXooPVteezY43djU3o3Kv8chgICebI_fefTOxyHZCzEgIe8pfOZcwTEyARSgUa_IAQWlpoID7D2575PDnFcAjDPavCH7vIaagaoPyJ9FXFa_8O-IwWJ1EuLa9DfVKQ5oBx9D9QOHq-iqryajq8p7HsOQTB78pqjdBlM2yZu-ukzGBx-WlQmuOh1L5BzNMCaszv6VhDvYW_K6M33Gd_fnhPw-P7ucf58ufn67mJ8splY0aphKsHLGJNSdQFU7KUzTlSJUS6lxDRPc8A7QSiuEmPG2lbaRDdRCOmFsKZFPyMWO66JZ6evk1ybd6Gi8vgvEtNQmDd72qBVvbMOpgZmVwlkmbV1bZWgLHXTOtoX1Zce6Hts1Oovb8vtn0Oc_wV_pZdxoOZsJRaEAPt0DUixdzoNe-2yx703AOGbNGsaYZKre-v74QrqKYwqlVVsVZZKqUt6EfHjq6NHKw0yL4HgnsCnmnLDT1g9mO4Bi0Peagt5ujX7cmpJx9CLjAfq_9hbAEMBz
CitedBy_id crossref_primary_10_3390_app13137739
crossref_primary_10_3390_app14135388
crossref_primary_10_1016_j_neunet_2024_106680
crossref_primary_10_1007_s10489_023_04674_6
crossref_primary_10_1016_j_mlwa_2024_100554
crossref_primary_10_3390_s23115042
crossref_primary_10_1007_s42979_023_01676_6
crossref_primary_10_1016_j_mlwa_2023_100470
Cites_doi 10.1109/ICWS.2017.13
10.1109/DSN.2007.103
10.1109/ISSRE5003.2020.00018
10.1109/ISSRE.2016.21
10.1109/ICDM.2007.46
10.1109/ICSE43902.2021.00130
10.3390/s20092451
10.31224/osf.io/d4e6a
10.18653/v1/2021.emnlp-main.552
10.1016/j.ipm.2021.102540
10.1145/3133956.3134015
10.3390/jmse9111202
10.1145/1629575.1629587
10.32604/csse.2021.014030
10.1109/IJCNN52387.2021.9534113
10.1109/DASC/PiCom/DataCom/CyberSciTec.2018.00037
10.1109/ICACCI.2017.8125846
10.1609/aaai.v35i15.17569
10.1109/TDSC.2017.2762673
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 by the authors. 2021
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 by the authors. 2021
DBID AAYXX
CITATION
NPM
7TB
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
HCIFZ
KR7
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
5PM
DOA
DOI 10.3390/e24010069
DatabaseName CrossRef
PubMed
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Database
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
SciTech Premium Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ (Directory of Open Access Journals)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Civil Engineering Abstracts
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList
PubMed
CrossRef
MEDLINE - Academic

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 1099-4300
ExternalDocumentID oai_doaj_org_article_936c631a07c84dc28c55c9a1b0f0fdcb
PMC8774910
35052095
10_3390_e24010069
Genre Journal Article
GrantInformation_xml – fundername: National Key R&D Program of China
  grantid: 2018YFB1601502
– fundername: LiaoNing Revitalization Talents Program
  grantid: XLYC1902071
GroupedDBID 29G
2WC
5GY
5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ACIWK
ACUHS
ADBBV
AEGXH
AENEX
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
CS3
DU5
E3Z
ESX
F5P
GROUPED_DOAJ
GX1
HCIFZ
HH5
IAO
ITC
J9A
KQ8
L6V
M7S
MODMG
M~E
OK1
OVT
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
RNS
RPM
TR2
TUS
XSB
~8M
NPM
7TB
8FD
ABUWG
AZQEC
DWQXO
FR3
KR7
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c469t-80c872805f4e95d84a6f4309b11ad6243a3f0ec8c44473bb8c6860548d4ac0233
IEDL.DBID BENPR
ISSN 1099-4300
IngestDate Wed Aug 27 01:28:49 EDT 2025
Thu Aug 21 18:24:37 EDT 2025
Thu Jul 10 23:30:08 EDT 2025
Fri Jul 25 12:03:37 EDT 2025
Thu Jan 02 22:56:12 EST 2025
Tue Jul 01 01:58:09 EDT 2025
Thu Apr 24 22:53:18 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords contrastive learning
BERT
adversarial training
VAE
statistical features
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c469t-80c872805f4e95d84a6f4309b11ad6243a3f0ec8c44473bb8c6860548d4ac0233
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/2621281902?pq-origsite=%requestingapplication%
PMID 35052095
PQID 2621281902
PQPubID 2032401
ParticipantIDs doaj_primary_oai_doaj_org_article_936c631a07c84dc28c55c9a1b0f0fdcb
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8774910
proquest_miscellaneous_2622282953
proquest_journals_2621281902
pubmed_primary_35052095
crossref_citationtrail_10_3390_e24010069
crossref_primary_10_3390_e24010069
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20211230
PublicationDateYYYYMMDD 2021-12-30
PublicationDate_xml – month: 12
  year: 2021
  text: 20211230
  day: 30
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Entropy (Basel, Switzerland)
PublicationTitleAlternate Entropy (Basel)
PublicationYear 2021
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References ref_14
Xia (ref_19) 2020; 6
ref_13
ref_12
ref_11
ref_33
ref_10
ref_32
ref_30
ref_17
ref_15
Kwon (ref_28) 2021; 10
Brown (ref_9) 2018; 12
He (ref_4) 2017; 15
Duan (ref_20) 2021; 58
ref_25
ref_24
ref_23
ref_22
ref_21
Duan (ref_31) 2021; 37
Mei (ref_16) 2020; 43
ref_1
ref_3
ref_2
ref_29
ref_27
ref_26
Meng (ref_18) 2019; 19
ref_8
ref_5
ref_7
ref_6
References_xml – volume: 43
  start-page: 366
  year: 2020
  ident: ref_16
  article-title: A software system anomaly detection method based on log information and CNN-text
  publication-title: Chin. J. Computers.
– ident: ref_26
  doi: 10.1109/ICWS.2017.13
– ident: ref_32
  doi: 10.1109/DSN.2007.103
– ident: ref_24
– ident: ref_15
  doi: 10.1109/ISSRE5003.2020.00018
– ident: ref_27
  doi: 10.1109/ISSRE.2016.21
– volume: 10
  start-page: 18
  year: 2021
  ident: ref_28
  article-title: Defending Deep Neural Networks against Backdoor Attack by Using De-trigger Autoencoder
  publication-title: IEEE Access
– ident: ref_5
  doi: 10.1109/ICDM.2007.46
– ident: ref_14
– ident: ref_1
– ident: ref_17
  doi: 10.1109/ICSE43902.2021.00130
– volume: 12
  start-page: 1
  year: 2018
  ident: ref_9
  article-title: Recurrent neural network attention mechanisms for interpretable system log anomaly detection
  publication-title: First Workshop Mach. Learn. Comput. Syst.
– ident: ref_21
– ident: ref_13
  doi: 10.3390/s20092451
– ident: ref_11
  doi: 10.31224/osf.io/d4e6a
– ident: ref_23
  doi: 10.18653/v1/2021.emnlp-main.552
– volume: 58
  start-page: 102540
  year: 2021
  ident: ref_20
  article-title: QLLog: A log anomaly detection method based on Q-learning algorithm
  publication-title: Inf. Process. Manag.
  doi: 10.1016/j.ipm.2021.102540
– ident: ref_7
  doi: 10.1145/3133956.3134015
– ident: ref_6
  doi: 10.3390/jmse9111202
– ident: ref_29
– ident: ref_33
– ident: ref_3
  doi: 10.1145/1629575.1629587
– ident: ref_2
– volume: 37
  start-page: 135
  year: 2021
  ident: ref_31
  article-title: A Generative Adversarial Networks for Log Anomaly Detection
  publication-title: Comput. Syst. Sci. Eng.
  doi: 10.32604/csse.2021.014030
– ident: ref_12
– ident: ref_30
  doi: 10.1109/IJCNN52387.2021.9534113
– ident: ref_10
  doi: 10.1109/DASC/PiCom/DataCom/CyberSciTec.2018.00037
– volume: 6
  start-page: 1
  year: 2020
  ident: ref_19
  article-title: LogGAN: A log-level generative adversarial network for anomaly detection using permutation event modeling
  publication-title: Inf. Syst. Front.
– ident: ref_8
  doi: 10.1109/ICACCI.2017.8125846
– volume: 19
  start-page: 4739
  year: 2019
  ident: ref_18
  article-title: LogAnomaly: Unsupervised detection of sequential and quantitative anomalies in unstructured logs
  publication-title: IJCAI
– ident: ref_22
– ident: ref_25
  doi: 10.1609/aaai.v35i15.17569
– volume: 15
  start-page: 931
  year: 2017
  ident: ref_4
  article-title: Towards Automated Log Parsing for Large-Scale Log Data Analysis
  publication-title: IEEE Trans. Dependable Secur. Comput.
  doi: 10.1109/TDSC.2017.2762673
SSID ssj0023216
Score 2.3490355
Snippet The log messages generated in the system reflect the state of the system at all times. The realization of autonomous detection of abnormalities in log messages...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 69
SubjectTerms Abnormalities
Accuracy
adversarial training
Anomalies
Artificial intelligence
BERT
Coders
contrastive learning
Deep learning
Feature extraction
Machine learning
Messages
Performance evaluation
Semantics
Software
statistical features
Support vector machines
Training
VAE
SummonAdditionalLinks – databaseName: DOAJ (Directory of Open Access Journals)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYqTlwqELRNWZBb9dBLRPyIYx95ClWll4LELXL8oAjIot2sBP-eGScbsQipF46xfXDGY8988eT7CPnBHVMuKpUzW4lcauNyUxmAKtoGVgTThIifBs7_qLNL-euqvHoh9YU1YT09cG-4fSOUU4LZonJaese1K0tnLGuKWETvGjx9IeYtwdQAtQRnqucREgDq9wPELYakvCvRJ5H0v5VZvi6QfBFxTjfIxyFVpAf9FDfJh9Bukdvf02v6d6h_pgDe7-3dEz0OXSqpaul5UoSmhxCcPIVnZJ-a2TkeajSJL88tuhy9GKQhqG09PV5ACyaDi1mgJ4_drP_bYZtcnp5cHJ3lg2BC7gDldhBtnEa5qTLKYEqvpVVRisI0jFmvuBRWxCI47aSUlWga7ZQGOCO1l9aB0cQnstZO2_CFUEgUfNXoGFlE6XRpPAvMi8grr6KKVUZ-Lg1Zu4FNHEUt7mpAFWjzerR5Rr6PQx96Co23Bh3iaowDkPU6NYAv1IMv1P_zhYxMlmtZD1txXnPF021hwTPybeyGTYQ3I7YN00Uaw_FKuRQZ-dwv_TgTUaZSoTIj1YpTrEx1tae9-ZeIujXk1pCOfX2Pd9sh6xzLaZBjspiQtW62CLuQD3XNXnL9Z-vDCk8
  priority: 102
  providerName: Directory of Open Access Journals
Title Log Sequence Anomaly Detection Method Based on Contrastive Adversarial Training and Dual Feature Extraction
URI https://www.ncbi.nlm.nih.gov/pubmed/35052095
https://www.proquest.com/docview/2621281902
https://www.proquest.com/docview/2622282953
https://pubmed.ncbi.nlm.nih.gov/PMC8774910
https://doaj.org/article/936c631a07c84dc28c55c9a1b0f0fdcb
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Jb9QwFLbo9MIFUbEF2pFBHLhEjZc4zgl16EwrRCsErTS3yPHSIkpSMhkJ_n39HE9gUMUlUmIfrPdsvzXfh9BbqonQToiUqIKlXJY6LYvShypSWZLZsrYOUgNn5-L0kn9c5suYcFvFtsrNnRguatNqyJEfUkFD0Sej729_psAaBdXVSKGxg3ZhVE7Q7mx-_vnLGHIxSsSAJ8R8cH9ovf0iAM67ZYUCWP99Hua_jZJ_WZ7FY_Qouoz4aNDxHnpgmyfo-6f2Cn-NfdDYB_E_1M1vfGz70FrV4LPADI1n3kgZ7N8BhapTK7jccCBhXinYevgiUkRg1Rh8vPZfwClcdxbPf_Xd8NfDU3S5mF98OE0jcUKqfbTbe6ujJdBO5Y7bMjeSK-E4y8qaEGUE5Uwxl1ktNee8YHUttZA-rOHScKW90NgzNGnaxr5A2EvcFLV0jjigUOelIZYY5mhhhBOuSNC7jSArHVHFgdzipvLRBci8GmWeoDfj1NsBSuO-STPQxjgB0K_Dh7a7quJhqkomtGBEZYWW3GgqdZ7rUpE6c5kzuk7Q_kaXVTySq-rPBkrQ63HYHyaokKjGtuswh0JpOWcJej6oflwJy0PLUJ6gYmtTbC11e6T5dh0Au6X3sb1b9vL_y3qFHlJomAEUyWwfTfpubQ-8x9PXU7QjFyfTuLmnIW_gnydLcgfkbgUp
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOcAFgXgFChgEEpeo8SOOc0CoZbts6W4vbKXeguNHQW2TspsV9E_xG_E4D1hUcesx9iiyPON5eMbzIfSaaiK0EyImKmMxl7mO8yz3oYpUliQ2L62Dq4HZoZgc8U_H6fEG-tW_hYGyyl4nBkVtag135NtU0JD0Sej7i-8xoEZBdrWH0GjF4sBe_vAh2_Ld_sjz9w2l4735h0ncoQrE2oeCjVfJWgImU-q4zVMjuRKOsyQvCVFGUM4Uc4nVUnPOM1aWUgvpfX4uDVfaWzjm_3sD3eTMW3J4mT7-OAR4jBLRdi_yk8m29daSQCvgNZsXoAGu8mf_Lcv8y86N76I7nYOKd1qJuoc2bHUfnU7rE_y5q7rGO1V9rs4u8cg2oZCrwrOAQ413vUk02H9Dz6uFWoIqxQHyealA0PG8A6TAqjJ4tPIj4IKuFhbv_WwW7RuLB-joWjb0Idqs6so-Rtjz12SldI44AGznuSGWGOZoZoQTLovQ234jC931MAcojbPCxzKw58Ww5xF6NZBetI07riLaBW4MBNBrOwzUi5OiO7pFzoQWjKgk05IbTaVOU50rUiYucUaXEdrqeVl0CmBZ_BHXCL0cpv3RhXyMqmy9CjQUEtkpi9CjlvXDSlgaCpTSCGVrQrG21PWZ6tvX0B5ceo_eO4FP_r-sF-jWZD6bFtP9w4On6DaFUh3oX5lsoc1msbLPvK_VlM-DgGP05bpP1G9COzwt
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLbKVEJcEIgtUMAgkLhEEy9xnANCHWZGLW1HFbRSb8Hx0iJKUjIZQf8avw6_bDCo4tZjbCuy3v7s5_ch9IpqIrQTIiQqYSGXqQ7TJPWpilSWRDbNrYOjgYOF2DnmH07ikw30q38LA2WVvU1sDLUpNZyRj6mgzaVPRMeuK4s4nM7fXXwPAUEKblp7OI1WRPbs5Q-fvi3f7k49r19TOp8dvd8JO4SBUPu0sPbmWUvAZ4odt2lsJFfCcRalOSHKCMqZYi6yWmrOecLyXGohffzPpeFKe2_H_H9voM0EsqIR2pzMFocfh3SPUSLaXkaMpdHYet9JoDHwmgdsgAKuim7_LdL8y-vN76DbXbiKt1v5uos2bHEPfd0vT_GnrgYbbxflN3V-iae2bsq6CnzQoFLjiXeQBvtv6IBVqSUYVtwAQC8ViD0-6uApsCoMnq78CASkq8ri2c-6al9c3EfH10LSB2hUlIV9hLDntkly6RxxAN_OU0MsMczRxAgnXBKgNz0hM911NAdgjfPMZzZA82ygeYBeDksv2jYeVy2aADeGBdB5uxkoq9OsU-QsZUILRlSUaMmNplLHsU4VySMXOaPzAG31vMw6c7DM_ghvgF4M016R4XZGFbZcNWsoXGvHLEAPW9YPO2FxU64UByhZE4q1ra7PFF_Ommbh0sf3PiR8_P9tPUc3vTZl-7uLvSfoFoW6HWhmGW2hUV2t7FMfeNX5s07CMfp83Ur1GyvsQb8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Log+Sequence+Anomaly+Detection+Method+Based+on+Contrastive+Adversarial+Training+and+Dual+Feature+Extraction&rft.jtitle=Entropy+%28Basel%2C+Switzerland%29&rft.au=Wang%2C+Qiaozheng&rft.au=Zhang%2C+Xiuguo&rft.au=Wang%2C+Xuejie&rft.au=Cao%2C+Zhiying&rft.date=2021-12-30&rft.issn=1099-4300&rft.eissn=1099-4300&rft.volume=24&rft.issue=1&rft_id=info:doi/10.3390%2Fe24010069&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1099-4300&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1099-4300&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1099-4300&client=summon