Quercetin Promotes Diabetic Wound Healing via Switching Macrophages From M1 to M2 Polarization

For patients with diabetes mellitus, excessive and long-lasting inflammatory reactions at the wound site commonly lead to the delayed refractory wound healing. The polarization of macrophages in terms of M1 and M2 phenotypes is closely related to the production of inflammatory cytokines. Quercetin i...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of surgical research Vol. 246; pp. 213 - 223
Main Authors Fu, Jia, Huang, Jingjuan, Lin, Man, Xie, Tingting, You, Tianhui
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.02.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract For patients with diabetes mellitus, excessive and long-lasting inflammatory reactions at the wound site commonly lead to the delayed refractory wound healing. The polarization of macrophages in terms of M1 and M2 phenotypes is closely related to the production of inflammatory cytokines. Quercetin is traditionally recognized to have anti-inflammatory effect; however, whether quercetin modulates macrophage polarization from M1 to M2 and thus promotes diabetic wound healing remain unknown. Wounded male diabetic rats were equally divided into five groups: model group, solvent control group (10% DMSO), and three drug groups treated with quercetin (Q) at concentrations of 10 mg/mL (Q-LD [low dose]), 20 mg/mL (Q-MD [medium dose]), and 40 mg/mL (Q-HD [high dose]), respectively. The anti-inflammatory effect of quercetin on diabetic wounds was observed. Immunohistochemistry and quantificational real-time polymerase chain reaction were applied to test the changes in macrophage polarization and inflammatory responses. The wound contraction was fastest in Q-HD group. Hematoxylin and eosin (H&E) and Masson's trichrome staining revealed that fibroblast distribution and collagen deposition in quercetin-treated groups were significantly higher than those in the model group. Immunohistochemistry tests showed more CD206-positive cells and less iNOS-positive cells in quercetin-treated groups. Furthermore, the levels of proinflammatory factors in quercetin-treated groups were lower than those in the model group, whereas the levels of the anti-inflammatory factors and angiogenesis-related factors were relatively higher. In short, quercetin inhibits inflammatory reactions via modulating macrophage polarization switching from M1 to M2 phenotype, thereby accelerating the diabetic wound repair.
AbstractList For patients with diabetes mellitus, excessive and long-lasting inflammatory reactions at the wound site commonly lead to the delayed refractory wound healing. The polarization of macrophages in terms of M1 and M2 phenotypes is closely related to the production of inflammatory cytokines. Quercetin is traditionally recognized to have anti-inflammatory effect; however, whether quercetin modulates macrophage polarization from M1 to M2 and thus promotes diabetic wound healing remain unknown. Wounded male diabetic rats were equally divided into five groups: model group, solvent control group (10% DMSO), and three drug groups treated with quercetin (Q) at concentrations of 10 mg/mL (Q-LD [low dose]), 20 mg/mL (Q-MD [medium dose]), and 40 mg/mL (Q-HD [high dose]), respectively. The anti-inflammatory effect of quercetin on diabetic wounds was observed. Immunohistochemistry and quantificational real-time polymerase chain reaction were applied to test the changes in macrophage polarization and inflammatory responses. The wound contraction was fastest in Q-HD group. Hematoxylin and eosin (H&E) and Masson's trichrome staining revealed that fibroblast distribution and collagen deposition in quercetin-treated groups were significantly higher than those in the model group. Immunohistochemistry tests showed more CD206-positive cells and less iNOS-positive cells in quercetin-treated groups. Furthermore, the levels of proinflammatory factors in quercetin-treated groups were lower than those in the model group, whereas the levels of the anti-inflammatory factors and angiogenesis-related factors were relatively higher. In short, quercetin inhibits inflammatory reactions via modulating macrophage polarization switching from M1 to M2 phenotype, thereby accelerating the diabetic wound repair.
For patients with diabetes mellitus, excessive and long-lasting inflammatory reactions at the wound site commonly lead to the delayed refractory wound healing. The polarization of macrophages in terms of M1 and M2 phenotypes is closely related to the production of inflammatory cytokines. Quercetin is traditionally recognized to have anti-inflammatory effect; however, whether quercetin modulates macrophage polarization from M1 to M2 and thus promotes diabetic wound healing remain unknown.BACKGROUNDFor patients with diabetes mellitus, excessive and long-lasting inflammatory reactions at the wound site commonly lead to the delayed refractory wound healing. The polarization of macrophages in terms of M1 and M2 phenotypes is closely related to the production of inflammatory cytokines. Quercetin is traditionally recognized to have anti-inflammatory effect; however, whether quercetin modulates macrophage polarization from M1 to M2 and thus promotes diabetic wound healing remain unknown.Wounded male diabetic rats were equally divided into five groups: model group, solvent control group (10% DMSO), and three drug groups treated with quercetin (Q) at concentrations of 10 mg/mL (Q-LD [low dose]), 20 mg/mL (Q-MD [medium dose]), and 40 mg/mL (Q-HD [high dose]), respectively. The anti-inflammatory effect of quercetin on diabetic wounds was observed. Immunohistochemistry and quantificational real-time polymerase chain reaction were applied to test the changes in macrophage polarization and inflammatory responses.MATERIALS AND METHODSWounded male diabetic rats were equally divided into five groups: model group, solvent control group (10% DMSO), and three drug groups treated with quercetin (Q) at concentrations of 10 mg/mL (Q-LD [low dose]), 20 mg/mL (Q-MD [medium dose]), and 40 mg/mL (Q-HD [high dose]), respectively. The anti-inflammatory effect of quercetin on diabetic wounds was observed. Immunohistochemistry and quantificational real-time polymerase chain reaction were applied to test the changes in macrophage polarization and inflammatory responses.The wound contraction was fastest in Q-HD group. Hematoxylin and eosin (H&E) and Masson's trichrome staining revealed that fibroblast distribution and collagen deposition in quercetin-treated groups were significantly higher than those in the model group. Immunohistochemistry tests showed more CD206-positive cells and less iNOS-positive cells in quercetin-treated groups. Furthermore, the levels of proinflammatory factors in quercetin-treated groups were lower than those in the model group, whereas the levels of the anti-inflammatory factors and angiogenesis-related factors were relatively higher.RESULTSThe wound contraction was fastest in Q-HD group. Hematoxylin and eosin (H&E) and Masson's trichrome staining revealed that fibroblast distribution and collagen deposition in quercetin-treated groups were significantly higher than those in the model group. Immunohistochemistry tests showed more CD206-positive cells and less iNOS-positive cells in quercetin-treated groups. Furthermore, the levels of proinflammatory factors in quercetin-treated groups were lower than those in the model group, whereas the levels of the anti-inflammatory factors and angiogenesis-related factors were relatively higher.In short, quercetin inhibits inflammatory reactions via modulating macrophage polarization switching from M1 to M2 phenotype, thereby accelerating the diabetic wound repair.CONCLUSIONSIn short, quercetin inhibits inflammatory reactions via modulating macrophage polarization switching from M1 to M2 phenotype, thereby accelerating the diabetic wound repair.
Author Fu, Jia
Xie, Tingting
Lin, Man
Huang, Jingjuan
You, Tianhui
Author_xml – sequence: 1
  givenname: Jia
  surname: Fu
  fullname: Fu, Jia
– sequence: 2
  givenname: Jingjuan
  surname: Huang
  fullname: Huang, Jingjuan
– sequence: 3
  givenname: Man
  surname: Lin
  fullname: Lin, Man
– sequence: 4
  givenname: Tingting
  surname: Xie
  fullname: Xie, Tingting
– sequence: 5
  givenname: Tianhui
  surname: You
  fullname: You, Tianhui
  email: youth888cn@aliyun.com
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31606511$$D View this record in MEDLINE/PubMed
BookMark eNqFkc9uEzEQhy1URNPCA3BBPnLZ4PH-cSxOqFCK1IgiQBwtrz1uHTbr1PYWtU_TZ-HJcJrCoYcijTSa0feN5J8PyN4YRiTkJbA5MOjerOarlOacgZyzUgBPyAyYbKtFJ-o9MmOM86pZsGafHKS0YmWWon5G9mvoWNcCzIj6MmE0mP1Iz2JYh4yJvve6LxtDf4RptPQE9eDHc3rl9e_br798NhfbcalNDJsLfV6M46LSJdAc6JLTszDo6G909mF8Tp46PSR8cd8PyffjD9-OTqrTzx8_Hb07rUzTyVwJKzg4buWiF1I2rRONZlbIDusarIRWYgOurDq0fYG1k67vnXOmrbnltj4kr3d3NzFcTpiyWvtkcBj0iGFKitesbQRfgCjoq3t06tdo1Sb6tY7X6m8oBYAdUB6YUkT3DwGmtsGrlSrBq23wipW6c8QDx_h8l0CO2g-Pmm93JpZ4rjxGlYzH0aD1EU1WNvhHbfnANuWzvNHDT7z-j_sHB_Oxcw
CitedBy_id crossref_primary_10_1088_1361_6528_ac2536
crossref_primary_10_1016_j_biopha_2020_110975
crossref_primary_10_22159_ijap_2024v16i6_51718
crossref_primary_10_3390_plants13141943
crossref_primary_10_3390_cimb44120408
crossref_primary_10_3390_pharmaceutics15122675
crossref_primary_10_1016_j_ijbiomac_2025_140943
crossref_primary_10_1016_j_phymed_2021_153636
crossref_primary_10_2174_0118715303280532240415094718
crossref_primary_10_1016_j_heliyon_2023_e13068
crossref_primary_10_1096_fj_202403085RR
crossref_primary_10_1016_j_joen_2023_10_016
crossref_primary_10_2147_IJN_S491471
crossref_primary_10_1016_j_jep_2022_115066
crossref_primary_10_1515_jcim_2023_0177
crossref_primary_10_1002_cbf_3678
crossref_primary_10_1039_D1MD00100K
crossref_primary_10_1111_jre_12965
crossref_primary_10_1007_s12221_023_00076_0
crossref_primary_10_3389_fimmu_2022_789274
crossref_primary_10_1016_j_ijbiomac_2024_138339
crossref_primary_10_1016_j_addr_2023_115120
crossref_primary_10_1002_adhm_202302836
crossref_primary_10_1038_s41392_022_01151_3
crossref_primary_10_3390_ijms23094928
crossref_primary_10_1021_acsbiomaterials_4c00216
crossref_primary_10_1007_s00210_024_03722_3
crossref_primary_10_1016_j_jep_2022_115334
crossref_primary_10_1080_01932691_2024_2444980
crossref_primary_10_3390_ijms23179573
crossref_primary_10_1021_acsomega_4c02251
crossref_primary_10_3390_foods14030347
crossref_primary_10_3892_etm_2021_10695
crossref_primary_10_3389_fbioe_2024_1352717
crossref_primary_10_3390_molecules29133206
crossref_primary_10_2217_nnm_2022_0281
crossref_primary_10_1016_j_bioadv_2024_214143
crossref_primary_10_1089_wound_2021_0194
crossref_primary_10_3390_gels9010052
crossref_primary_10_3390_molecules28010146
crossref_primary_10_1016_j_addr_2023_114764
crossref_primary_10_3390_pharmaceutics15061655
crossref_primary_10_4103_pm_pm_496_20
crossref_primary_10_1016_j_tice_2025_102743
crossref_primary_10_1016_j_mseb_2022_115933
crossref_primary_10_1016_j_cyto_2022_155832
crossref_primary_10_1016_j_jare_2023_01_009
crossref_primary_10_1021_acsfoodscitech_2c00165
crossref_primary_10_1111_cpr_13316
crossref_primary_10_1111_iwj_14389
crossref_primary_10_1016_j_cej_2021_128836
crossref_primary_10_1016_j_jep_2023_116557
crossref_primary_10_2147_JIR_S506739
crossref_primary_10_1039_D2NR01998A
crossref_primary_10_15741_revbio_11_e1645
crossref_primary_10_1016_j_fitote_2021_105062
crossref_primary_10_1016_j_jddst_2022_103534
crossref_primary_10_1016_j_compositesb_2023_110549
crossref_primary_10_1080_08923973_2021_1950758
crossref_primary_10_1093_burnst_tkac051
crossref_primary_10_3390_pharmaceutics15030805
crossref_primary_10_1016_j_jtv_2024_12_014
crossref_primary_10_3390_antiox12051079
crossref_primary_10_1016_j_cej_2024_151342
crossref_primary_10_20900_agmr20210017
crossref_primary_10_1007_s10787_023_01157_5
crossref_primary_10_1016_j_biopha_2023_114469
crossref_primary_10_1007_s12204_021_2276_6
crossref_primary_10_3390_nu12072006
crossref_primary_10_3390_ijms231912043
crossref_primary_10_3390_jfb12020031
crossref_primary_10_1002_adhm_202500734
crossref_primary_10_29235_1814_6023_2022_19_2_219_229
crossref_primary_10_3390_gels9050381
crossref_primary_10_1016_j_jep_2022_115663
crossref_primary_10_3390_bioengineering10101127
crossref_primary_10_3389_fendo_2024_1347021
crossref_primary_10_1002_adhm_202000818
crossref_primary_10_2147_JIR_S371939
crossref_primary_10_3390_biom15010151
crossref_primary_10_3390_app13137826
crossref_primary_10_1080_10408398_2022_2067825
crossref_primary_10_3390_ijms21176231
crossref_primary_10_52711_0974_360X_2023_00363
crossref_primary_10_1007_s00210_023_02870_2
crossref_primary_10_2174_1386207323666200914103719
crossref_primary_10_1021_acs_langmuir_4c02555
crossref_primary_10_1007_s43450_024_00593_w
crossref_primary_10_1167_tvst_12_5_12
crossref_primary_10_20473_j_djmkg_v56_i1_p48_52
crossref_primary_10_2217_rme_2020_0066
crossref_primary_10_1186_s11671_024_04061_1
crossref_primary_10_1002_adtp_202300345
crossref_primary_10_1016_j_fbio_2022_102150
crossref_primary_10_1021_acs_analchem_3c02551
crossref_primary_10_1039_D4BM00349G
crossref_primary_10_2174_0115733998279112240129074457
crossref_primary_10_1016_j_biopha_2020_110372
crossref_primary_10_1007_s42535_022_00465_5
crossref_primary_10_1039_D2TB00064D
crossref_primary_10_1021_acsinfecdis_4c00306
crossref_primary_10_1002_ptr_7069
crossref_primary_10_1002_ptr_8158
crossref_primary_10_2174_2210315511666211015122340
crossref_primary_10_1007_s10561_024_10144_1
crossref_primary_10_1016_j_jff_2021_104540
crossref_primary_10_3390_sci6020034
crossref_primary_10_1016_j_jddst_2022_103575
crossref_primary_10_3389_fimmu_2022_967193
crossref_primary_10_1166_jbn_2022_3427
crossref_primary_10_3390_ijms23010142
crossref_primary_10_1007_s00403_022_02395_3
crossref_primary_10_1016_j_hsr_2023_100080
Cites_doi 10.1016/j.ijbiomac.2018.05.010
10.1016/j.biopha.2018.02.040
10.1038/srep36416
10.1371/journal.pone.0049215
10.1371/journal.pone.0143438
10.4162/nrp.2016.10.6.623
10.1016/j.apnr.2009.04.005
10.1002/path.4133
10.1093/ckj/sfw096
10.1172/JCI59643
10.1152/ajpendo.00329.2016
10.1016/S0006-2952(03)00422-2
10.1016/S0002-9440(10)63754-6
10.1177/1099800415592175
10.3390/md15040112
10.1016/j.bcp.2018.05.007
10.1177/1535370216685187
10.2174/1381612033453749
10.1016/j.thromres.2017.01.002
10.1016/j.imbio.2013.04.019
10.1016/j.it.2004.09.015
10.1080/00015458.2006.11679837
10.1038/srep20328
10.3390/ijms18071545
10.1016/j.smim.2014.04.006
10.1007/s11154-016-9373-0
10.1038/nm0302-240
10.1016/j.jep.2014.12.001
10.1161/ATVBAHA.114.303090
10.1016/j.bbrc.2018.10.030
10.1039/C8NR02538J
10.1046/j.1523-1747.2000.00029.x
10.1017/S1462399411001943
10.1016/j.jep.2017.01.016
10.1002/cbin.10955
10.1016/j.jss.2017.01.011
10.1007/978-3-319-54090-0_14
ContentType Journal Article
Copyright 2019
Copyright © 2019. Published by Elsevier Inc.
Copyright_xml – notice: 2019
– notice: Copyright © 2019. Published by Elsevier Inc.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.jss.2019.09.011
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
EISSN 1095-8673
EndPage 223
ExternalDocumentID 31606511
10_1016_j_jss_2019_09_011
S0022480419306456
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.1-
.55
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29L
3O-
4.4
457
4CK
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABFNM
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADFGL
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFFNX
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CAG
COF
CS3
DM4
DU5
EBS
EFBJH
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HEK
HMK
HMO
HVGLF
HZ~
IHE
J1W
J5H
KOM
LG5
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OK-
OW-
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPCBC
SSH
SSZ
T5K
UHS
WUQ
X7M
XPP
Z5R
ZGI
ZMT
ZU3
ZXP
~G-
AACTN
AAIAV
ABLVK
ABYKQ
AFCTW
AFKWA
AHPSJ
AJBFU
AJOXV
AMFUW
EFLBG
LCYCR
RIG
ZA5
AAYXX
AGRNS
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
PKN
7X8
ID FETCH-LOGICAL-c469t-7d721f2d98b79945f74a0d796e331d9159e41fa0d6edb7d7af9fbbfffc532d2d3
IEDL.DBID .~1
ISSN 0022-4804
1095-8673
IngestDate Mon Jul 21 10:35:39 EDT 2025
Wed Feb 19 02:31:23 EST 2025
Thu Apr 24 23:00:06 EDT 2025
Tue Jul 01 02:52:50 EDT 2025
Fri Feb 23 02:49:13 EST 2024
Tue Aug 26 16:33:47 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Diabetic rats
Inflammation
Wound healing
Quercetin
Macrophage
Language English
License Copyright © 2019. Published by Elsevier Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c469t-7d721f2d98b79945f74a0d796e331d9159e41fa0d6edb7d7af9fbbfffc532d2d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 31606511
PQID 2305472817
PQPubID 23479
PageCount 11
ParticipantIDs proquest_miscellaneous_2305472817
pubmed_primary_31606511
crossref_primary_10_1016_j_jss_2019_09_011
crossref_citationtrail_10_1016_j_jss_2019_09_011
elsevier_sciencedirect_doi_10_1016_j_jss_2019_09_011
elsevier_clinicalkey_doi_10_1016_j_jss_2019_09_011
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2020
2020-02-00
20200201
PublicationDateYYYYMMDD 2020-02-01
PublicationDate_xml – month: 02
  year: 2020
  text: February 2020
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Journal of surgical research
PublicationTitleAlternate J Surg Res
PublicationYear 2020
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Koh, Ann (bib7) 2011; 13
Valitsky, Hoffman, Unterman (bib19) 2017; 313
Wei-Feng, Ming-Min, Jing (bib24) 2015; 161
Liu, Li, Guo (bib21) 2015; 10
Howangyin, Silvestre (bib26) 2014; 34
Chu, Shi, Yan (bib32) 2018; 10
Loo, Wong, Ho (bib4) 2012; 7
Azevedo, Pessoa, Moreira (bib20) 2016; 18
Sukpat, Israsena, Patumraj (bib29) 2016; 99
Shen, Chen, Jiang (bib22) 2017; 198
Kant, Kumar, Prasad (bib5) 2017; 212
Jangde, Srivastava, Singh (bib15) 2018; 115
Albaayit, Abba, Rasedee (bib23) 2015; 9
Ahmed, Mohamed, Moustafa (bib33) 2018; 101
Leibovich, Ross (bib28) 1975; 78
Endale, Park, Kim (bib39) 2013; 218
Lisse, King, Rieger (bib2) 2016; 6
Kotwal, Chien (bib10) 2017; 62
Galiano, Tepper, Pelo (bib27) 2004; 164
Lee, Chau (bib40) 2002; 8
Guo, Lin, Xu (bib3) 2016; 6
Mantovani, Biswas, Galdiero (bib12) 2013; 229
Park, Choi, Park (bib1) 2017; 15
Sica, Mantovani (bib8) 2012; 122
Tokyol, Yilmaz, Kahraman (bib14) 2006; 106
Tamara, Tuk, Fijneman (bib18) 2017; 151
Ahmad, Sultana, Raina (bib34) 2017; 13
Mark, Sahin Katherine, West Zoe (bib9) 2017; 18
Wicks, Torbica, Mace (bib6) 2014; 26
Lin, Juan, Shen (bib38) 2003; 66
Makrantonaki, Jiang, Hossini (bib25) 2016; 17
Wetzler, Kämpfer, Stallmeyer (bib31) 2000; 115
Mckay, Karamichos (bib13) 2017; 242
Wang, Wang, Zhang (bib17) 2018; 22
Alcaraz, Fernández, Guillén (bib41) 2003; 9
Kim, Choi, Joe (bib16) 2016; 10
Mantovani, Sica, Sozzani (bib35) 2004; 25
Chen, Li, Cheng (bib11) 2018; 42
Sachiye, Yuta, Takanori (bib42) 2018; 506
Guiteras, Flaquer, Cruzado (bib36) 2016; 9
Lu, Wu, Liu (bib37) 2018; 154
Ritchie, Prentice (bib30) 2011; 24
Tamara (10.1016/j.jss.2019.09.011_bib18) 2017; 151
Lisse (10.1016/j.jss.2019.09.011_bib2) 2016; 6
Mark (10.1016/j.jss.2019.09.011_bib9) 2017; 18
Kant (10.1016/j.jss.2019.09.011_bib5) 2017; 212
Kotwal (10.1016/j.jss.2019.09.011_bib10) 2017; 62
Liu (10.1016/j.jss.2019.09.011_bib21) 2015; 10
Makrantonaki (10.1016/j.jss.2019.09.011_bib25) 2016; 17
Galiano (10.1016/j.jss.2019.09.011_bib27) 2004; 164
Ritchie (10.1016/j.jss.2019.09.011_bib30) 2011; 24
Alcaraz (10.1016/j.jss.2019.09.011_bib41) 2003; 9
Park (10.1016/j.jss.2019.09.011_bib1) 2017; 15
Mantovani (10.1016/j.jss.2019.09.011_bib12) 2013; 229
Sachiye (10.1016/j.jss.2019.09.011_bib42) 2018; 506
Loo (10.1016/j.jss.2019.09.011_bib4) 2012; 7
Mantovani (10.1016/j.jss.2019.09.011_bib35) 2004; 25
Guiteras (10.1016/j.jss.2019.09.011_bib36) 2016; 9
Guo (10.1016/j.jss.2019.09.011_bib3) 2016; 6
Shen (10.1016/j.jss.2019.09.011_bib22) 2017; 198
Mckay (10.1016/j.jss.2019.09.011_bib13) 2017; 242
Koh (10.1016/j.jss.2019.09.011_bib7) 2011; 13
Wang (10.1016/j.jss.2019.09.011_bib17) 2018; 22
Chen (10.1016/j.jss.2019.09.011_bib11) 2018; 42
Wei-Feng (10.1016/j.jss.2019.09.011_bib24) 2015; 161
Ahmed (10.1016/j.jss.2019.09.011_bib33) 2018; 101
Tokyol (10.1016/j.jss.2019.09.011_bib14) 2006; 106
Leibovich (10.1016/j.jss.2019.09.011_bib28) 1975; 78
Ahmad (10.1016/j.jss.2019.09.011_bib34) 2017; 13
Sica (10.1016/j.jss.2019.09.011_bib8) 2012; 122
Albaayit (10.1016/j.jss.2019.09.011_bib23) 2015; 9
Lee (10.1016/j.jss.2019.09.011_bib40) 2002; 8
Endale (10.1016/j.jss.2019.09.011_bib39) 2013; 218
Jangde (10.1016/j.jss.2019.09.011_bib15) 2018; 115
Wicks (10.1016/j.jss.2019.09.011_bib6) 2014; 26
Kim (10.1016/j.jss.2019.09.011_bib16) 2016; 10
Azevedo (10.1016/j.jss.2019.09.011_bib20) 2016; 18
Wetzler (10.1016/j.jss.2019.09.011_bib31) 2000; 115
Sukpat (10.1016/j.jss.2019.09.011_bib29) 2016; 99
Howangyin (10.1016/j.jss.2019.09.011_bib26) 2014; 34
Valitsky (10.1016/j.jss.2019.09.011_bib19) 2017; 313
Chu (10.1016/j.jss.2019.09.011_bib32) 2018; 10
Lu (10.1016/j.jss.2019.09.011_bib37) 2018; 154
Lin (10.1016/j.jss.2019.09.011_bib38) 2003; 66
References_xml – volume: 7
  start-page: e49215
  year: 2012
  ident: bib4
  article-title: Effects of hydrogen peroxide on wound healing in mice in relation to oxidative damage
  publication-title: Plos One
– volume: 10
  start-page: 9547
  year: 2018
  end-page: 9560
  ident: bib32
  article-title: PEGylated graphene oxide-mediated quercetin modified collagen hybrid scaffold for enhancement of MSCs differentiation potential and diabetic wound healing
  publication-title: Nanoscale
– volume: 161
  start-page: 163
  year: 2015
  end-page: 169
  ident: bib24
  article-title: Effects of Xie-Zhuo-Chu-Bi-Fang on miR-34a and URAT1 and their relationship in hyperuricemic mice
  publication-title: J Ethnopharmacol
– volume: 313
  start-page: E672
  year: 2017
  end-page: E680
  ident: bib19
  article-title: Insulin sensitizer prevents and ameliorates experimental type-1 diabetes
  publication-title: Am J Physiol Endocrinol Metab
– volume: 218
  start-page: 1452
  year: 2013
  end-page: 1467
  ident: bib39
  article-title: Quercetin disrupts tyrosine-phosphorylated phosphatidylinositol 3-kinase and myeloid differentiation factor-88 association, and inhibits MAPK/AP-1 and IKK/NF-κB-induced inflammatory mediators production in RAW 264.7 cells
  publication-title: Immunobiology
– volume: 34
  start-page: 1126
  year: 2014
  end-page: 1135
  ident: bib26
  article-title: Silvestre, diabetes mellitus and ischemic diseases: molecular mechanisms of vascular repair dysfunction
  publication-title: Arterioscler Thromb Vasc Biol
– volume: 10
  start-page: 623
  year: 2016
  end-page: 628
  ident: bib16
  article-title: Induction of heme oxygenase-1 with dietary quercetin reduces obesity-induced hepatic inflammation through macrophage phenotype switching
  publication-title: Nutr Res Pract
– volume: 198
  start-page: 291
  year: 2017
  end-page: 301
  ident: bib22
  article-title: The N-butyl alcohol extract from Hibiscus rosa-sinensis L. flowers enhances healing potential on rat excisional wounds
  publication-title: J Ethnopharmacol
– volume: 78
  start-page: 71
  year: 1975
  end-page: 100
  ident: bib28
  article-title: The role of the macrophage in wound repair. A study with hydrocortisone and antimacrophage serum
  publication-title: Am J Pathol
– volume: 115
  start-page: 245
  year: 2000
  end-page: 253
  ident: bib31
  article-title: Large and sustained induction of chemokines during impaired wound healing in the genetically diabetic mouse: prolonged persistence of neutrophils and macrophages during the late phase of repair
  publication-title: J Invest Dermatol
– volume: 122
  start-page: 787
  year: 2012
  end-page: 795
  ident: bib8
  article-title: Macrophage plasticity and polarization: in vivo veritas
  publication-title: J Clin Invest
– volume: 25
  start-page: 677
  year: 2004
  end-page: 686
  ident: bib35
  article-title: The chemokine system in diverse forms of macrophage activation and polarization
  publication-title: Trends Immunol
– volume: 9
  start-page: 2541
  year: 2003
  end-page: 2551
  ident: bib41
  article-title: Anti-inflammatory actions of the heme oxygenase-1 pathway
  publication-title: Curr Pharm Des
– volume: 24
  start-page: 88
  year: 2011
  end-page: 93
  ident: bib30
  article-title: An exploration of nurses' perceptions regarding the implementation of a best practice guideline on the assessment and management of foot ulcers for people with diabetes
  publication-title: Appl Nurs Res
– volume: 9
  start-page: 765
  year: 2016
  end-page: 771
  ident: bib36
  article-title: Macrophage in chronic kidney disease
  publication-title: Clin Kidney J
– volume: 8
  start-page: 240
  year: 2002
  end-page: 246
  ident: bib40
  article-title: Heme oxygenase-1 mediates the anti-inflammatory effect of interleukin-10 in mice
  publication-title: Nat Med
– volume: 42
  start-page: 877
  year: 2018
  end-page: 889
  ident: bib11
  article-title: Pseudomonas aeruginosa infection alters the macrophage phenotype switching process during wound healing in diabetic mice
  publication-title: Cell Biol Int
– volume: 18
  start-page: 1545
  year: 2017
  end-page: 1555
  ident: bib9
  article-title: Macrophage phenotypes regulate scar formation and chronic wound healing
  publication-title: Int J Mol Sci
– volume: 164
  start-page: 1935
  year: 2004
  end-page: 1947
  ident: bib27
  article-title: Topical vascular endothelial growth factor accelerates diabetic wound healing through increased angiogenesis and by mobilizing and recruiting bone marrow-derived cells
  publication-title: Am J Pathol
– volume: 9
  start-page: 3507
  year: 2015
  end-page: 3518
  ident: bib23
  article-title: Effect of Clausena excavata Burm. f. (Rutaceae) leaf extract on wound healing and antioxidant activity in rats
  publication-title: Drug Des Dev Ther
– volume: 101
  start-page: 58
  year: 2018
  end-page: 73
  ident: bib33
  article-title: Quercetin and low level laser therapy promote wound healing process in diabetic rats via structural reorganization and modulatory effects on inflammation and oxidative stress
  publication-title: Biomed Pharmacother
– volume: 26
  start-page: 341
  year: 2014
  end-page: 353
  ident: bib6
  article-title: Mace, myeloid cell dysfunction and the pathogenesis of the diabetic chronic wound
  publication-title: Semin Immunol
– volume: 106
  start-page: 68
  year: 2006
  end-page: 72
  ident: bib14
  article-title: The effects of desferrioxamine and quercetin on liver injury induced by hepatic ischaemia-reperfusion in rats
  publication-title: Acta Chir Belg
– volume: 13
  start-page: e23
  year: 2011
  ident: bib7
  article-title: Dipietro, Inflammation and wound healing: the role of the macrophage
  publication-title: Expert Rev Mol Med
– volume: 151
  start-page: 36
  year: 2017
  end-page: 40
  ident: bib18
  article-title: Fibrin improves skin wound perfusion in a diabetic rat model
  publication-title: Thromb Res
– volume: 506
  start-page: 7
  year: 2018
  end-page: 11
  ident: bib42
  article-title: NRF2 and HSF1 coordinately regulate heme oxygenase-1 expression
  publication-title: Biochem Biophys Res Commun
– volume: 212
  start-page: 130
  year: 2017
  end-page: 145
  ident: bib5
  article-title: Combined effect of substance P and curcumin on cutaneous wound healing in diabetic rats
  publication-title: J Surg Res
– volume: 242
  start-page: 565
  year: 2017
  end-page: 572
  ident: bib13
  article-title: Quercetin and the ocular surface: what we know and where we are going
  publication-title: Exp Biol Med (Maywood)
– volume: 18
  start-page: 181
  year: 2016
  end-page: 192
  ident: bib20
  article-title: Effect of topical insulin on second-degree burns in diabetic rats
  publication-title: Biol Res Nurs
– volume: 99
  start-page: 213
  year: 2016
  end-page: 219
  ident: bib29
  article-title: Pleiotropic effects of Simvastatin on wound healing in diabetic mice
  publication-title: J Med Assoc Thai
– volume: 62
  start-page: 353
  year: 2017
  end-page: 364
  ident: bib10
  article-title: Macrophage differentiation in normal and accelerated wound healing
  publication-title: Macrophages
– volume: 115
  start-page: 1211
  year: 2018
  end-page: 1217
  ident: bib15
  article-title: In vitro and in vivo characterization of quercetin loaded multiphase hydrogel for wound healing application
  publication-title: Int J Biol Macromol
– volume: 10
  start-page: e0143438
  year: 2015
  ident: bib21
  article-title: The combination of three natural compounds effectively prevented lung carcinogenesis by optimal wound healing
  publication-title: Plos One
– volume: 13
  start-page: S633
  year: 2017
  end-page: S639
  ident: bib34
  article-title: Hypoglycemic, Hypolipidemic, and wound healing potential of quercetin in Streptozotocin-induced diabetic rats
  publication-title: Pharmacogn
– volume: 154
  start-page: 203
  year: 2018
  end-page: 212
  ident: bib37
  article-title: Quercetin ameliorates kidney injury and fibrosis by modulating M1/M2 macrophage polarization
  publication-title: Biochem Pharmacol
– volume: 6
  start-page: 20328
  year: 2016
  ident: bib2
  article-title: Comparative transcriptomic profiling of hydrogen peroxide signaling networks in zebrafish and human keratinocytes: implications toward conservation, migration and wound healing
  publication-title: Sci Rep
– volume: 66
  start-page: 1821
  year: 2003
  end-page: 1832
  ident: bib38
  article-title: Inhibition of lipopolysaccharide-induced nitric oxide production by flavonoids in RAW264.7 macrophages involves heme oxygenase-1
  publication-title: Biochem Pharmacol
– volume: 6
  start-page: 36416
  year: 2016
  ident: bib3
  article-title: AGEs induced autophagy impairs cutaneous wound healing via stimulating macrophage polarization to M1 in diabetes
  publication-title: Sci Rep
– volume: 22
  start-page: 2876
  year: 2018
  end-page: 2887
  ident: bib17
  article-title: Combinatory effect of mesenchymal stromal cells transplantation and quercetin after spinal cord injury in rat
  publication-title: Eur Rev Med Pharmacol Sci
– volume: 229
  start-page: 176
  year: 2013
  end-page: 185
  ident: bib12
  article-title: Macrophage plasticity and polarization in tissue repair and remodelling
  publication-title: J Pathol
– volume: 17
  start-page: 1
  year: 2016
  end-page: 14
  ident: bib25
  article-title: Diabetes mellitus and the skin
  publication-title: Rev Endocr Metab Disord
– volume: 15
  start-page: 112
  year: 2017
  ident: bib1
  article-title: Promoting wound healing using low molecular weight fucoidan in a full-thickness dermal excision rat model
  publication-title: Mar Drugs
– volume: 13
  start-page: S633
  issue: Suppl 3
  year: 2017
  ident: 10.1016/j.jss.2019.09.011_bib34
  article-title: Hypoglycemic, Hypolipidemic, and wound healing potential of quercetin in Streptozotocin-induced diabetic rats
  publication-title: Pharmacogn
– volume: 115
  start-page: 1211
  year: 2018
  ident: 10.1016/j.jss.2019.09.011_bib15
  article-title: In vitro and in vivo characterization of quercetin loaded multiphase hydrogel for wound healing application
  publication-title: Int J Biol Macromol
  doi: 10.1016/j.ijbiomac.2018.05.010
– volume: 101
  start-page: 58
  year: 2018
  ident: 10.1016/j.jss.2019.09.011_bib33
  article-title: Quercetin and low level laser therapy promote wound healing process in diabetic rats via structural reorganization and modulatory effects on inflammation and oxidative stress
  publication-title: Biomed Pharmacother
  doi: 10.1016/j.biopha.2018.02.040
– volume: 6
  start-page: 36416
  year: 2016
  ident: 10.1016/j.jss.2019.09.011_bib3
  article-title: AGEs induced autophagy impairs cutaneous wound healing via stimulating macrophage polarization to M1 in diabetes
  publication-title: Sci Rep
  doi: 10.1038/srep36416
– volume: 7
  start-page: e49215
  year: 2012
  ident: 10.1016/j.jss.2019.09.011_bib4
  article-title: Effects of hydrogen peroxide on wound healing in mice in relation to oxidative damage
  publication-title: Plos One
  doi: 10.1371/journal.pone.0049215
– volume: 10
  start-page: e0143438
  year: 2015
  ident: 10.1016/j.jss.2019.09.011_bib21
  article-title: The combination of three natural compounds effectively prevented lung carcinogenesis by optimal wound healing
  publication-title: Plos One
  doi: 10.1371/journal.pone.0143438
– volume: 10
  start-page: 623
  year: 2016
  ident: 10.1016/j.jss.2019.09.011_bib16
  article-title: Induction of heme oxygenase-1 with dietary quercetin reduces obesity-induced hepatic inflammation through macrophage phenotype switching
  publication-title: Nutr Res Pract
  doi: 10.4162/nrp.2016.10.6.623
– volume: 24
  start-page: 88
  year: 2011
  ident: 10.1016/j.jss.2019.09.011_bib30
  article-title: An exploration of nurses' perceptions regarding the implementation of a best practice guideline on the assessment and management of foot ulcers for people with diabetes
  publication-title: Appl Nurs Res
  doi: 10.1016/j.apnr.2009.04.005
– volume: 229
  start-page: 176
  year: 2013
  ident: 10.1016/j.jss.2019.09.011_bib12
  article-title: Macrophage plasticity and polarization in tissue repair and remodelling
  publication-title: J Pathol
  doi: 10.1002/path.4133
– volume: 9
  start-page: 765
  year: 2016
  ident: 10.1016/j.jss.2019.09.011_bib36
  article-title: Macrophage in chronic kidney disease
  publication-title: Clin Kidney J
  doi: 10.1093/ckj/sfw096
– volume: 122
  start-page: 787
  year: 2012
  ident: 10.1016/j.jss.2019.09.011_bib8
  article-title: Macrophage plasticity and polarization: in vivo veritas
  publication-title: J Clin Invest
  doi: 10.1172/JCI59643
– volume: 313
  start-page: E672
  year: 2017
  ident: 10.1016/j.jss.2019.09.011_bib19
  article-title: Insulin sensitizer prevents and ameliorates experimental type-1 diabetes
  publication-title: Am J Physiol Endocrinol Metab
  doi: 10.1152/ajpendo.00329.2016
– volume: 66
  start-page: 1821
  year: 2003
  ident: 10.1016/j.jss.2019.09.011_bib38
  article-title: Inhibition of lipopolysaccharide-induced nitric oxide production by flavonoids in RAW264.7 macrophages involves heme oxygenase-1
  publication-title: Biochem Pharmacol
  doi: 10.1016/S0006-2952(03)00422-2
– volume: 22
  start-page: 2876
  year: 2018
  ident: 10.1016/j.jss.2019.09.011_bib17
  article-title: Combinatory effect of mesenchymal stromal cells transplantation and quercetin after spinal cord injury in rat
  publication-title: Eur Rev Med Pharmacol Sci
– volume: 164
  start-page: 1935
  year: 2004
  ident: 10.1016/j.jss.2019.09.011_bib27
  article-title: Topical vascular endothelial growth factor accelerates diabetic wound healing through increased angiogenesis and by mobilizing and recruiting bone marrow-derived cells
  publication-title: Am J Pathol
  doi: 10.1016/S0002-9440(10)63754-6
– volume: 18
  start-page: 181
  year: 2016
  ident: 10.1016/j.jss.2019.09.011_bib20
  article-title: Effect of topical insulin on second-degree burns in diabetic rats
  publication-title: Biol Res Nurs
  doi: 10.1177/1099800415592175
– volume: 15
  start-page: 112
  year: 2017
  ident: 10.1016/j.jss.2019.09.011_bib1
  article-title: Promoting wound healing using low molecular weight fucoidan in a full-thickness dermal excision rat model
  publication-title: Mar Drugs
  doi: 10.3390/md15040112
– volume: 99
  start-page: 213
  year: 2016
  ident: 10.1016/j.jss.2019.09.011_bib29
  article-title: Pleiotropic effects of Simvastatin on wound healing in diabetic mice
  publication-title: J Med Assoc Thai
– volume: 154
  start-page: 203
  year: 2018
  ident: 10.1016/j.jss.2019.09.011_bib37
  article-title: Quercetin ameliorates kidney injury and fibrosis by modulating M1/M2 macrophage polarization
  publication-title: Biochem Pharmacol
  doi: 10.1016/j.bcp.2018.05.007
– volume: 242
  start-page: 565
  year: 2017
  ident: 10.1016/j.jss.2019.09.011_bib13
  article-title: Quercetin and the ocular surface: what we know and where we are going
  publication-title: Exp Biol Med (Maywood)
  doi: 10.1177/1535370216685187
– volume: 9
  start-page: 3507
  year: 2015
  ident: 10.1016/j.jss.2019.09.011_bib23
  article-title: Effect of Clausena excavata Burm. f. (Rutaceae) leaf extract on wound healing and antioxidant activity in rats
  publication-title: Drug Des Dev Ther
– volume: 9
  start-page: 2541
  year: 2003
  ident: 10.1016/j.jss.2019.09.011_bib41
  article-title: Anti-inflammatory actions of the heme oxygenase-1 pathway
  publication-title: Curr Pharm Des
  doi: 10.2174/1381612033453749
– volume: 151
  start-page: 36
  year: 2017
  ident: 10.1016/j.jss.2019.09.011_bib18
  article-title: Fibrin improves skin wound perfusion in a diabetic rat model
  publication-title: Thromb Res
  doi: 10.1016/j.thromres.2017.01.002
– volume: 218
  start-page: 1452
  year: 2013
  ident: 10.1016/j.jss.2019.09.011_bib39
  article-title: Quercetin disrupts tyrosine-phosphorylated phosphatidylinositol 3-kinase and myeloid differentiation factor-88 association, and inhibits MAPK/AP-1 and IKK/NF-κB-induced inflammatory mediators production in RAW 264.7 cells
  publication-title: Immunobiology
  doi: 10.1016/j.imbio.2013.04.019
– volume: 25
  start-page: 677
  year: 2004
  ident: 10.1016/j.jss.2019.09.011_bib35
  article-title: The chemokine system in diverse forms of macrophage activation and polarization
  publication-title: Trends Immunol
  doi: 10.1016/j.it.2004.09.015
– volume: 106
  start-page: 68
  year: 2006
  ident: 10.1016/j.jss.2019.09.011_bib14
  article-title: The effects of desferrioxamine and quercetin on liver injury induced by hepatic ischaemia-reperfusion in rats
  publication-title: Acta Chir Belg
  doi: 10.1080/00015458.2006.11679837
– volume: 6
  start-page: 20328
  year: 2016
  ident: 10.1016/j.jss.2019.09.011_bib2
  article-title: Comparative transcriptomic profiling of hydrogen peroxide signaling networks in zebrafish and human keratinocytes: implications toward conservation, migration and wound healing
  publication-title: Sci Rep
  doi: 10.1038/srep20328
– volume: 18
  start-page: 1545
  year: 2017
  ident: 10.1016/j.jss.2019.09.011_bib9
  article-title: Macrophage phenotypes regulate scar formation and chronic wound healing
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms18071545
– volume: 26
  start-page: 341
  year: 2014
  ident: 10.1016/j.jss.2019.09.011_bib6
  article-title: Mace, myeloid cell dysfunction and the pathogenesis of the diabetic chronic wound
  publication-title: Semin Immunol
  doi: 10.1016/j.smim.2014.04.006
– volume: 17
  start-page: 1
  year: 2016
  ident: 10.1016/j.jss.2019.09.011_bib25
  article-title: Diabetes mellitus and the skin
  publication-title: Rev Endocr Metab Disord
  doi: 10.1007/s11154-016-9373-0
– volume: 8
  start-page: 240
  year: 2002
  ident: 10.1016/j.jss.2019.09.011_bib40
  article-title: Heme oxygenase-1 mediates the anti-inflammatory effect of interleukin-10 in mice
  publication-title: Nat Med
  doi: 10.1038/nm0302-240
– volume: 161
  start-page: 163
  year: 2015
  ident: 10.1016/j.jss.2019.09.011_bib24
  article-title: Effects of Xie-Zhuo-Chu-Bi-Fang on miR-34a and URAT1 and their relationship in hyperuricemic mice
  publication-title: J Ethnopharmacol
  doi: 10.1016/j.jep.2014.12.001
– volume: 34
  start-page: 1126
  year: 2014
  ident: 10.1016/j.jss.2019.09.011_bib26
  article-title: Silvestre, diabetes mellitus and ischemic diseases: molecular mechanisms of vascular repair dysfunction
  publication-title: Arterioscler Thromb Vasc Biol
  doi: 10.1161/ATVBAHA.114.303090
– volume: 506
  start-page: 7
  year: 2018
  ident: 10.1016/j.jss.2019.09.011_bib42
  article-title: NRF2 and HSF1 coordinately regulate heme oxygenase-1 expression
  publication-title: Biochem Biophys Res Commun
  doi: 10.1016/j.bbrc.2018.10.030
– volume: 10
  start-page: 9547
  year: 2018
  ident: 10.1016/j.jss.2019.09.011_bib32
  article-title: PEGylated graphene oxide-mediated quercetin modified collagen hybrid scaffold for enhancement of MSCs differentiation potential and diabetic wound healing
  publication-title: Nanoscale
  doi: 10.1039/C8NR02538J
– volume: 115
  start-page: 245
  year: 2000
  ident: 10.1016/j.jss.2019.09.011_bib31
  article-title: Large and sustained induction of chemokines during impaired wound healing in the genetically diabetic mouse: prolonged persistence of neutrophils and macrophages during the late phase of repair
  publication-title: J Invest Dermatol
  doi: 10.1046/j.1523-1747.2000.00029.x
– volume: 13
  start-page: e23
  year: 2011
  ident: 10.1016/j.jss.2019.09.011_bib7
  article-title: Dipietro, Inflammation and wound healing: the role of the macrophage
  publication-title: Expert Rev Mol Med
  doi: 10.1017/S1462399411001943
– volume: 198
  start-page: 291
  year: 2017
  ident: 10.1016/j.jss.2019.09.011_bib22
  article-title: The N-butyl alcohol extract from Hibiscus rosa-sinensis L. flowers enhances healing potential on rat excisional wounds
  publication-title: J Ethnopharmacol
  doi: 10.1016/j.jep.2017.01.016
– volume: 78
  start-page: 71
  year: 1975
  ident: 10.1016/j.jss.2019.09.011_bib28
  article-title: The role of the macrophage in wound repair. A study with hydrocortisone and antimacrophage serum
  publication-title: Am J Pathol
– volume: 42
  start-page: 877
  year: 2018
  ident: 10.1016/j.jss.2019.09.011_bib11
  article-title: Pseudomonas aeruginosa infection alters the macrophage phenotype switching process during wound healing in diabetic mice
  publication-title: Cell Biol Int
  doi: 10.1002/cbin.10955
– volume: 212
  start-page: 130
  year: 2017
  ident: 10.1016/j.jss.2019.09.011_bib5
  article-title: Combined effect of substance P and curcumin on cutaneous wound healing in diabetic rats
  publication-title: J Surg Res
  doi: 10.1016/j.jss.2017.01.011
– volume: 62
  start-page: 353
  year: 2017
  ident: 10.1016/j.jss.2019.09.011_bib10
  article-title: Macrophage differentiation in normal and accelerated wound healing
  publication-title: Macrophages
  doi: 10.1007/978-3-319-54090-0_14
SSID ssj0002973
Score 2.5891192
Snippet For patients with diabetes mellitus, excessive and long-lasting inflammatory reactions at the wound site commonly lead to the delayed refractory wound healing....
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 213
SubjectTerms Administration, Cutaneous
Animals
Diabetes Mellitus, Experimental - chemically induced
Diabetes Mellitus, Experimental - complications
Diabetes Mellitus, Experimental - immunology
Diabetic rats
Dose-Response Relationship, Drug
Humans
Inflammation
Inflammation - drug therapy
Inflammation - immunology
Inflammation - pathology
Macrophage
Macrophage Activation - drug effects
Macrophages - drug effects
Macrophages - immunology
Male
Quercetin
Quercetin - administration & dosage
Rats
Skin - immunology
Skin - injuries
Skin - pathology
Streptozocin - toxicity
Treatment Outcome
Wound healing
Wound Healing - drug effects
Wound Healing - immunology
Title Quercetin Promotes Diabetic Wound Healing via Switching Macrophages From M1 to M2 Polarization
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0022480419306456
https://dx.doi.org/10.1016/j.jss.2019.09.011
https://www.ncbi.nlm.nih.gov/pubmed/31606511
https://www.proquest.com/docview/2305472817
Volume 246
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iFy-i-FpfRPAkVDdp2pijiMuqrCgqegttHliRrrhdvflb_C3-MmfSdsWDCkJPaYaWSTqP5ptvCNnhKjHGJSZKFf66YdZFeWZkpHIm48zZlAfuzsF52r8Rp3fJ3RQ5amthEFbZ2P7apgdr3YzsN9rcfyoKrPEF94P0OQqj6ARpt4WQuMv33r5gHtibqWUMx9ntyWbAeD2MkLGbqUB1ythPvumn2DP4oN48mWuCR3pYv98CmXLlItGXYwSnVEVJLwK2zo1ojXMpDL3FrkkUa43ARdGXIvt4v3otqgCgpIMM-3fdg0UZ0R6I0gGj1ZAOOL3AhLep0FwiN73j66N-1LRNiAzkulUkLWR1nlt1kEulROKlyLpWqtTFMbMK4hcnmIeh1NkcJmde-Tz33psk5pbbeJlMl8PSrRKqwJnjQSbclMIriKV41ziTWGNkJoTqkG6rMG0aTnFsbfGoW_DYgwYda9Sx7sLFWIfsTkSeakKN3ybzdhV0WykKtk2Duf9NSEyEvm2lv8S222XW8InhuUlWuuEYJoFNFJIfMNkhK_X6T149ZpABQtC69r-HrpNZjgl8gIFvkOnqeew2Icqp8q2wjbfIzOHJWf_8E6zK_AU
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcoALouK1PIqR4IIUunacuD5wQMBqS5uqiFb0ZhI_1FQoW7FZql76W_gP_AN-GTNOsohDi4RUKSfHk1hjex72NzMAz4XOrPWZTXJNRzfc-aQqrUp0xVVaepeLmLuz2M2nB_LDYXa4Aj-HWBiCVfayv5PpUVr3LRs9NzdO6ppifFH9UPocTVZ0lvfIym1_dop-2_z11juc5BdCTN7vv50mfWmBxKI_2CbKoecThNObldJaZkHJcuyUzn2acqdRx3vJAzbl3lXYuQw6VFUIwWapcMKl-N1rcF2iuKCyCa_O_-BKqBjUkKKchjdcpUZQ2fGcUoRzHXOrcn6RMrzI2I1Kb3IbbvXWKnvTMWQNVnxzB8zHBaFh2rphexHM5-esA9bUln2mMk2MgptQJ7Lvdfnrx6fTuo2ITVaUVDDsCEXYnE2QlBWctTNWCLZHHnYfEnoXDq6EmfdgtZk1_gEwjdYD3ZziSyWDRuNNjK23mbNWlVLqEYwHhhnbJzGnWhpfzYBWOzbIY0M8NmN8OB_ByyXJSZfB47LOYpgFM4SmojA1qF8uI5JLor_W7r_Ing3TbHBP00VN2fjZAjuhEJZKbHI1gvvd_C-HnnJ0OdFKfvh_P30KN6b7xY7Z2drdfgQ3BZ0eRAz6Y1htvy38EzSx2mo9LmkGX656D_0GJFY5SA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quercetin+Promotes+Diabetic+Wound+Healing+via%C2%A0Switching+Macrophages+From+M1+to+M2+Polarization&rft.jtitle=The+Journal+of+surgical+research&rft.au=Fu%2C+Jia&rft.au=Huang%2C+Jingjuan&rft.au=Lin%2C+Man&rft.au=Xie%2C+Tingting&rft.date=2020-02-01&rft.pub=Elsevier+Inc&rft.issn=0022-4804&rft.volume=246&rft.spage=213&rft.epage=223&rft_id=info:doi/10.1016%2Fj.jss.2019.09.011&rft.externalDocID=S0022480419306456
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-4804&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-4804&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-4804&client=summon