Quercetin Promotes Diabetic Wound Healing via Switching Macrophages From M1 to M2 Polarization
For patients with diabetes mellitus, excessive and long-lasting inflammatory reactions at the wound site commonly lead to the delayed refractory wound healing. The polarization of macrophages in terms of M1 and M2 phenotypes is closely related to the production of inflammatory cytokines. Quercetin i...
Saved in:
Published in | The Journal of surgical research Vol. 246; pp. 213 - 223 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.02.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | For patients with diabetes mellitus, excessive and long-lasting inflammatory reactions at the wound site commonly lead to the delayed refractory wound healing. The polarization of macrophages in terms of M1 and M2 phenotypes is closely related to the production of inflammatory cytokines. Quercetin is traditionally recognized to have anti-inflammatory effect; however, whether quercetin modulates macrophage polarization from M1 to M2 and thus promotes diabetic wound healing remain unknown.
Wounded male diabetic rats were equally divided into five groups: model group, solvent control group (10% DMSO), and three drug groups treated with quercetin (Q) at concentrations of 10 mg/mL (Q-LD [low dose]), 20 mg/mL (Q-MD [medium dose]), and 40 mg/mL (Q-HD [high dose]), respectively. The anti-inflammatory effect of quercetin on diabetic wounds was observed. Immunohistochemistry and quantificational real-time polymerase chain reaction were applied to test the changes in macrophage polarization and inflammatory responses.
The wound contraction was fastest in Q-HD group. Hematoxylin and eosin (H&E) and Masson's trichrome staining revealed that fibroblast distribution and collagen deposition in quercetin-treated groups were significantly higher than those in the model group. Immunohistochemistry tests showed more CD206-positive cells and less iNOS-positive cells in quercetin-treated groups. Furthermore, the levels of proinflammatory factors in quercetin-treated groups were lower than those in the model group, whereas the levels of the anti-inflammatory factors and angiogenesis-related factors were relatively higher.
In short, quercetin inhibits inflammatory reactions via modulating macrophage polarization switching from M1 to M2 phenotype, thereby accelerating the diabetic wound repair. |
---|---|
AbstractList | For patients with diabetes mellitus, excessive and long-lasting inflammatory reactions at the wound site commonly lead to the delayed refractory wound healing. The polarization of macrophages in terms of M1 and M2 phenotypes is closely related to the production of inflammatory cytokines. Quercetin is traditionally recognized to have anti-inflammatory effect; however, whether quercetin modulates macrophage polarization from M1 to M2 and thus promotes diabetic wound healing remain unknown.
Wounded male diabetic rats were equally divided into five groups: model group, solvent control group (10% DMSO), and three drug groups treated with quercetin (Q) at concentrations of 10 mg/mL (Q-LD [low dose]), 20 mg/mL (Q-MD [medium dose]), and 40 mg/mL (Q-HD [high dose]), respectively. The anti-inflammatory effect of quercetin on diabetic wounds was observed. Immunohistochemistry and quantificational real-time polymerase chain reaction were applied to test the changes in macrophage polarization and inflammatory responses.
The wound contraction was fastest in Q-HD group. Hematoxylin and eosin (H&E) and Masson's trichrome staining revealed that fibroblast distribution and collagen deposition in quercetin-treated groups were significantly higher than those in the model group. Immunohistochemistry tests showed more CD206-positive cells and less iNOS-positive cells in quercetin-treated groups. Furthermore, the levels of proinflammatory factors in quercetin-treated groups were lower than those in the model group, whereas the levels of the anti-inflammatory factors and angiogenesis-related factors were relatively higher.
In short, quercetin inhibits inflammatory reactions via modulating macrophage polarization switching from M1 to M2 phenotype, thereby accelerating the diabetic wound repair. For patients with diabetes mellitus, excessive and long-lasting inflammatory reactions at the wound site commonly lead to the delayed refractory wound healing. The polarization of macrophages in terms of M1 and M2 phenotypes is closely related to the production of inflammatory cytokines. Quercetin is traditionally recognized to have anti-inflammatory effect; however, whether quercetin modulates macrophage polarization from M1 to M2 and thus promotes diabetic wound healing remain unknown.BACKGROUNDFor patients with diabetes mellitus, excessive and long-lasting inflammatory reactions at the wound site commonly lead to the delayed refractory wound healing. The polarization of macrophages in terms of M1 and M2 phenotypes is closely related to the production of inflammatory cytokines. Quercetin is traditionally recognized to have anti-inflammatory effect; however, whether quercetin modulates macrophage polarization from M1 to M2 and thus promotes diabetic wound healing remain unknown.Wounded male diabetic rats were equally divided into five groups: model group, solvent control group (10% DMSO), and three drug groups treated with quercetin (Q) at concentrations of 10 mg/mL (Q-LD [low dose]), 20 mg/mL (Q-MD [medium dose]), and 40 mg/mL (Q-HD [high dose]), respectively. The anti-inflammatory effect of quercetin on diabetic wounds was observed. Immunohistochemistry and quantificational real-time polymerase chain reaction were applied to test the changes in macrophage polarization and inflammatory responses.MATERIALS AND METHODSWounded male diabetic rats were equally divided into five groups: model group, solvent control group (10% DMSO), and three drug groups treated with quercetin (Q) at concentrations of 10 mg/mL (Q-LD [low dose]), 20 mg/mL (Q-MD [medium dose]), and 40 mg/mL (Q-HD [high dose]), respectively. The anti-inflammatory effect of quercetin on diabetic wounds was observed. Immunohistochemistry and quantificational real-time polymerase chain reaction were applied to test the changes in macrophage polarization and inflammatory responses.The wound contraction was fastest in Q-HD group. Hematoxylin and eosin (H&E) and Masson's trichrome staining revealed that fibroblast distribution and collagen deposition in quercetin-treated groups were significantly higher than those in the model group. Immunohistochemistry tests showed more CD206-positive cells and less iNOS-positive cells in quercetin-treated groups. Furthermore, the levels of proinflammatory factors in quercetin-treated groups were lower than those in the model group, whereas the levels of the anti-inflammatory factors and angiogenesis-related factors were relatively higher.RESULTSThe wound contraction was fastest in Q-HD group. Hematoxylin and eosin (H&E) and Masson's trichrome staining revealed that fibroblast distribution and collagen deposition in quercetin-treated groups were significantly higher than those in the model group. Immunohistochemistry tests showed more CD206-positive cells and less iNOS-positive cells in quercetin-treated groups. Furthermore, the levels of proinflammatory factors in quercetin-treated groups were lower than those in the model group, whereas the levels of the anti-inflammatory factors and angiogenesis-related factors were relatively higher.In short, quercetin inhibits inflammatory reactions via modulating macrophage polarization switching from M1 to M2 phenotype, thereby accelerating the diabetic wound repair.CONCLUSIONSIn short, quercetin inhibits inflammatory reactions via modulating macrophage polarization switching from M1 to M2 phenotype, thereby accelerating the diabetic wound repair. |
Author | Fu, Jia Xie, Tingting Lin, Man Huang, Jingjuan You, Tianhui |
Author_xml | – sequence: 1 givenname: Jia surname: Fu fullname: Fu, Jia – sequence: 2 givenname: Jingjuan surname: Huang fullname: Huang, Jingjuan – sequence: 3 givenname: Man surname: Lin fullname: Lin, Man – sequence: 4 givenname: Tingting surname: Xie fullname: Xie, Tingting – sequence: 5 givenname: Tianhui surname: You fullname: You, Tianhui email: youth888cn@aliyun.com |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31606511$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc9uEzEQhy1URNPCA3BBPnLZ4PH-cSxOqFCK1IgiQBwtrz1uHTbr1PYWtU_TZ-HJcJrCoYcijTSa0feN5J8PyN4YRiTkJbA5MOjerOarlOacgZyzUgBPyAyYbKtFJ-o9MmOM86pZsGafHKS0YmWWon5G9mvoWNcCzIj6MmE0mP1Iz2JYh4yJvve6LxtDf4RptPQE9eDHc3rl9e_br798NhfbcalNDJsLfV6M46LSJdAc6JLTszDo6G909mF8Tp46PSR8cd8PyffjD9-OTqrTzx8_Hb07rUzTyVwJKzg4buWiF1I2rRONZlbIDusarIRWYgOurDq0fYG1k67vnXOmrbnltj4kr3d3NzFcTpiyWvtkcBj0iGFKitesbQRfgCjoq3t06tdo1Sb6tY7X6m8oBYAdUB6YUkT3DwGmtsGrlSrBq23wipW6c8QDx_h8l0CO2g-Pmm93JpZ4rjxGlYzH0aD1EU1WNvhHbfnANuWzvNHDT7z-j_sHB_Oxcw |
CitedBy_id | crossref_primary_10_1088_1361_6528_ac2536 crossref_primary_10_1016_j_biopha_2020_110975 crossref_primary_10_22159_ijap_2024v16i6_51718 crossref_primary_10_3390_plants13141943 crossref_primary_10_3390_cimb44120408 crossref_primary_10_3390_pharmaceutics15122675 crossref_primary_10_1016_j_ijbiomac_2025_140943 crossref_primary_10_1016_j_phymed_2021_153636 crossref_primary_10_2174_0118715303280532240415094718 crossref_primary_10_1016_j_heliyon_2023_e13068 crossref_primary_10_1096_fj_202403085RR crossref_primary_10_1016_j_joen_2023_10_016 crossref_primary_10_2147_IJN_S491471 crossref_primary_10_1016_j_jep_2022_115066 crossref_primary_10_1515_jcim_2023_0177 crossref_primary_10_1002_cbf_3678 crossref_primary_10_1039_D1MD00100K crossref_primary_10_1111_jre_12965 crossref_primary_10_1007_s12221_023_00076_0 crossref_primary_10_3389_fimmu_2022_789274 crossref_primary_10_1016_j_ijbiomac_2024_138339 crossref_primary_10_1016_j_addr_2023_115120 crossref_primary_10_1002_adhm_202302836 crossref_primary_10_1038_s41392_022_01151_3 crossref_primary_10_3390_ijms23094928 crossref_primary_10_1021_acsbiomaterials_4c00216 crossref_primary_10_1007_s00210_024_03722_3 crossref_primary_10_1016_j_jep_2022_115334 crossref_primary_10_1080_01932691_2024_2444980 crossref_primary_10_3390_ijms23179573 crossref_primary_10_1021_acsomega_4c02251 crossref_primary_10_3390_foods14030347 crossref_primary_10_3892_etm_2021_10695 crossref_primary_10_3389_fbioe_2024_1352717 crossref_primary_10_3390_molecules29133206 crossref_primary_10_2217_nnm_2022_0281 crossref_primary_10_1016_j_bioadv_2024_214143 crossref_primary_10_1089_wound_2021_0194 crossref_primary_10_3390_gels9010052 crossref_primary_10_3390_molecules28010146 crossref_primary_10_1016_j_addr_2023_114764 crossref_primary_10_3390_pharmaceutics15061655 crossref_primary_10_4103_pm_pm_496_20 crossref_primary_10_1016_j_tice_2025_102743 crossref_primary_10_1016_j_mseb_2022_115933 crossref_primary_10_1016_j_cyto_2022_155832 crossref_primary_10_1016_j_jare_2023_01_009 crossref_primary_10_1021_acsfoodscitech_2c00165 crossref_primary_10_1111_cpr_13316 crossref_primary_10_1111_iwj_14389 crossref_primary_10_1016_j_cej_2021_128836 crossref_primary_10_1016_j_jep_2023_116557 crossref_primary_10_2147_JIR_S506739 crossref_primary_10_1039_D2NR01998A crossref_primary_10_15741_revbio_11_e1645 crossref_primary_10_1016_j_fitote_2021_105062 crossref_primary_10_1016_j_jddst_2022_103534 crossref_primary_10_1016_j_compositesb_2023_110549 crossref_primary_10_1080_08923973_2021_1950758 crossref_primary_10_1093_burnst_tkac051 crossref_primary_10_3390_pharmaceutics15030805 crossref_primary_10_1016_j_jtv_2024_12_014 crossref_primary_10_3390_antiox12051079 crossref_primary_10_1016_j_cej_2024_151342 crossref_primary_10_20900_agmr20210017 crossref_primary_10_1007_s10787_023_01157_5 crossref_primary_10_1016_j_biopha_2023_114469 crossref_primary_10_1007_s12204_021_2276_6 crossref_primary_10_3390_nu12072006 crossref_primary_10_3390_ijms231912043 crossref_primary_10_3390_jfb12020031 crossref_primary_10_1002_adhm_202500734 crossref_primary_10_29235_1814_6023_2022_19_2_219_229 crossref_primary_10_3390_gels9050381 crossref_primary_10_1016_j_jep_2022_115663 crossref_primary_10_3390_bioengineering10101127 crossref_primary_10_3389_fendo_2024_1347021 crossref_primary_10_1002_adhm_202000818 crossref_primary_10_2147_JIR_S371939 crossref_primary_10_3390_biom15010151 crossref_primary_10_3390_app13137826 crossref_primary_10_1080_10408398_2022_2067825 crossref_primary_10_3390_ijms21176231 crossref_primary_10_52711_0974_360X_2023_00363 crossref_primary_10_1007_s00210_023_02870_2 crossref_primary_10_2174_1386207323666200914103719 crossref_primary_10_1021_acs_langmuir_4c02555 crossref_primary_10_1007_s43450_024_00593_w crossref_primary_10_1167_tvst_12_5_12 crossref_primary_10_20473_j_djmkg_v56_i1_p48_52 crossref_primary_10_2217_rme_2020_0066 crossref_primary_10_1186_s11671_024_04061_1 crossref_primary_10_1002_adtp_202300345 crossref_primary_10_1016_j_fbio_2022_102150 crossref_primary_10_1021_acs_analchem_3c02551 crossref_primary_10_1039_D4BM00349G crossref_primary_10_2174_0115733998279112240129074457 crossref_primary_10_1016_j_biopha_2020_110372 crossref_primary_10_1007_s42535_022_00465_5 crossref_primary_10_1039_D2TB00064D crossref_primary_10_1021_acsinfecdis_4c00306 crossref_primary_10_1002_ptr_7069 crossref_primary_10_1002_ptr_8158 crossref_primary_10_2174_2210315511666211015122340 crossref_primary_10_1007_s10561_024_10144_1 crossref_primary_10_1016_j_jff_2021_104540 crossref_primary_10_3390_sci6020034 crossref_primary_10_1016_j_jddst_2022_103575 crossref_primary_10_3389_fimmu_2022_967193 crossref_primary_10_1166_jbn_2022_3427 crossref_primary_10_3390_ijms23010142 crossref_primary_10_1007_s00403_022_02395_3 crossref_primary_10_1016_j_hsr_2023_100080 |
Cites_doi | 10.1016/j.ijbiomac.2018.05.010 10.1016/j.biopha.2018.02.040 10.1038/srep36416 10.1371/journal.pone.0049215 10.1371/journal.pone.0143438 10.4162/nrp.2016.10.6.623 10.1016/j.apnr.2009.04.005 10.1002/path.4133 10.1093/ckj/sfw096 10.1172/JCI59643 10.1152/ajpendo.00329.2016 10.1016/S0006-2952(03)00422-2 10.1016/S0002-9440(10)63754-6 10.1177/1099800415592175 10.3390/md15040112 10.1016/j.bcp.2018.05.007 10.1177/1535370216685187 10.2174/1381612033453749 10.1016/j.thromres.2017.01.002 10.1016/j.imbio.2013.04.019 10.1016/j.it.2004.09.015 10.1080/00015458.2006.11679837 10.1038/srep20328 10.3390/ijms18071545 10.1016/j.smim.2014.04.006 10.1007/s11154-016-9373-0 10.1038/nm0302-240 10.1016/j.jep.2014.12.001 10.1161/ATVBAHA.114.303090 10.1016/j.bbrc.2018.10.030 10.1039/C8NR02538J 10.1046/j.1523-1747.2000.00029.x 10.1017/S1462399411001943 10.1016/j.jep.2017.01.016 10.1002/cbin.10955 10.1016/j.jss.2017.01.011 10.1007/978-3-319-54090-0_14 |
ContentType | Journal Article |
Copyright | 2019 Copyright © 2019. Published by Elsevier Inc. |
Copyright_xml | – notice: 2019 – notice: Copyright © 2019. Published by Elsevier Inc. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.jss.2019.09.011 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 1095-8673 |
EndPage | 223 |
ExternalDocumentID | 31606511 10_1016_j_jss_2019_09_011 S0022480419306456 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .1- .55 .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29L 3O- 4.4 457 4CK 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABBQC ABFNM ABJNI ABMAC ABMZM ABWVN ABXDB ACDAQ ACGFS ACIEU ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADFGL ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFFNX AFJKZ AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CAG COF CS3 DM4 DU5 EBS EFBJH EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HEK HMK HMO HVGLF HZ~ IHE J1W J5H KOM LG5 M29 M41 MO0 N9A O-L O9- OAUVE OK- OW- OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SCC SDF SDG SDP SEL SES SEW SPCBC SSH SSZ T5K UHS WUQ X7M XPP Z5R ZGI ZMT ZU3 ZXP ~G- AACTN AAIAV ABLVK ABYKQ AFCTW AFKWA AHPSJ AJBFU AJOXV AMFUW EFLBG LCYCR RIG ZA5 AAYXX AGRNS CITATION CGR CUY CVF ECM EIF NPM PKN 7X8 |
ID | FETCH-LOGICAL-c469t-7d721f2d98b79945f74a0d796e331d9159e41fa0d6edb7d7af9fbbfffc532d2d3 |
IEDL.DBID | .~1 |
ISSN | 0022-4804 1095-8673 |
IngestDate | Mon Jul 21 10:35:39 EDT 2025 Wed Feb 19 02:31:23 EST 2025 Thu Apr 24 23:00:06 EDT 2025 Tue Jul 01 02:52:50 EDT 2025 Fri Feb 23 02:49:13 EST 2024 Tue Aug 26 16:33:47 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Diabetic rats Inflammation Wound healing Quercetin Macrophage |
Language | English |
License | Copyright © 2019. Published by Elsevier Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c469t-7d721f2d98b79945f74a0d796e331d9159e41fa0d6edb7d7af9fbbfffc532d2d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 31606511 |
PQID | 2305472817 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2305472817 pubmed_primary_31606511 crossref_primary_10_1016_j_jss_2019_09_011 crossref_citationtrail_10_1016_j_jss_2019_09_011 elsevier_sciencedirect_doi_10_1016_j_jss_2019_09_011 elsevier_clinicalkey_doi_10_1016_j_jss_2019_09_011 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2020 2020-02-00 20200201 |
PublicationDateYYYYMMDD | 2020-02-01 |
PublicationDate_xml | – month: 02 year: 2020 text: February 2020 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The Journal of surgical research |
PublicationTitleAlternate | J Surg Res |
PublicationYear | 2020 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Koh, Ann (bib7) 2011; 13 Valitsky, Hoffman, Unterman (bib19) 2017; 313 Wei-Feng, Ming-Min, Jing (bib24) 2015; 161 Liu, Li, Guo (bib21) 2015; 10 Howangyin, Silvestre (bib26) 2014; 34 Chu, Shi, Yan (bib32) 2018; 10 Loo, Wong, Ho (bib4) 2012; 7 Azevedo, Pessoa, Moreira (bib20) 2016; 18 Sukpat, Israsena, Patumraj (bib29) 2016; 99 Shen, Chen, Jiang (bib22) 2017; 198 Kant, Kumar, Prasad (bib5) 2017; 212 Jangde, Srivastava, Singh (bib15) 2018; 115 Albaayit, Abba, Rasedee (bib23) 2015; 9 Ahmed, Mohamed, Moustafa (bib33) 2018; 101 Leibovich, Ross (bib28) 1975; 78 Endale, Park, Kim (bib39) 2013; 218 Lisse, King, Rieger (bib2) 2016; 6 Kotwal, Chien (bib10) 2017; 62 Galiano, Tepper, Pelo (bib27) 2004; 164 Lee, Chau (bib40) 2002; 8 Guo, Lin, Xu (bib3) 2016; 6 Mantovani, Biswas, Galdiero (bib12) 2013; 229 Park, Choi, Park (bib1) 2017; 15 Sica, Mantovani (bib8) 2012; 122 Tokyol, Yilmaz, Kahraman (bib14) 2006; 106 Tamara, Tuk, Fijneman (bib18) 2017; 151 Ahmad, Sultana, Raina (bib34) 2017; 13 Mark, Sahin Katherine, West Zoe (bib9) 2017; 18 Wicks, Torbica, Mace (bib6) 2014; 26 Lin, Juan, Shen (bib38) 2003; 66 Makrantonaki, Jiang, Hossini (bib25) 2016; 17 Wetzler, Kämpfer, Stallmeyer (bib31) 2000; 115 Mckay, Karamichos (bib13) 2017; 242 Wang, Wang, Zhang (bib17) 2018; 22 Alcaraz, Fernández, Guillén (bib41) 2003; 9 Kim, Choi, Joe (bib16) 2016; 10 Mantovani, Sica, Sozzani (bib35) 2004; 25 Chen, Li, Cheng (bib11) 2018; 42 Sachiye, Yuta, Takanori (bib42) 2018; 506 Guiteras, Flaquer, Cruzado (bib36) 2016; 9 Lu, Wu, Liu (bib37) 2018; 154 Ritchie, Prentice (bib30) 2011; 24 Tamara (10.1016/j.jss.2019.09.011_bib18) 2017; 151 Lisse (10.1016/j.jss.2019.09.011_bib2) 2016; 6 Mark (10.1016/j.jss.2019.09.011_bib9) 2017; 18 Kant (10.1016/j.jss.2019.09.011_bib5) 2017; 212 Kotwal (10.1016/j.jss.2019.09.011_bib10) 2017; 62 Liu (10.1016/j.jss.2019.09.011_bib21) 2015; 10 Makrantonaki (10.1016/j.jss.2019.09.011_bib25) 2016; 17 Galiano (10.1016/j.jss.2019.09.011_bib27) 2004; 164 Ritchie (10.1016/j.jss.2019.09.011_bib30) 2011; 24 Alcaraz (10.1016/j.jss.2019.09.011_bib41) 2003; 9 Park (10.1016/j.jss.2019.09.011_bib1) 2017; 15 Mantovani (10.1016/j.jss.2019.09.011_bib12) 2013; 229 Sachiye (10.1016/j.jss.2019.09.011_bib42) 2018; 506 Loo (10.1016/j.jss.2019.09.011_bib4) 2012; 7 Mantovani (10.1016/j.jss.2019.09.011_bib35) 2004; 25 Guiteras (10.1016/j.jss.2019.09.011_bib36) 2016; 9 Guo (10.1016/j.jss.2019.09.011_bib3) 2016; 6 Shen (10.1016/j.jss.2019.09.011_bib22) 2017; 198 Mckay (10.1016/j.jss.2019.09.011_bib13) 2017; 242 Koh (10.1016/j.jss.2019.09.011_bib7) 2011; 13 Wang (10.1016/j.jss.2019.09.011_bib17) 2018; 22 Chen (10.1016/j.jss.2019.09.011_bib11) 2018; 42 Wei-Feng (10.1016/j.jss.2019.09.011_bib24) 2015; 161 Ahmed (10.1016/j.jss.2019.09.011_bib33) 2018; 101 Tokyol (10.1016/j.jss.2019.09.011_bib14) 2006; 106 Leibovich (10.1016/j.jss.2019.09.011_bib28) 1975; 78 Ahmad (10.1016/j.jss.2019.09.011_bib34) 2017; 13 Sica (10.1016/j.jss.2019.09.011_bib8) 2012; 122 Albaayit (10.1016/j.jss.2019.09.011_bib23) 2015; 9 Lee (10.1016/j.jss.2019.09.011_bib40) 2002; 8 Endale (10.1016/j.jss.2019.09.011_bib39) 2013; 218 Jangde (10.1016/j.jss.2019.09.011_bib15) 2018; 115 Wicks (10.1016/j.jss.2019.09.011_bib6) 2014; 26 Kim (10.1016/j.jss.2019.09.011_bib16) 2016; 10 Azevedo (10.1016/j.jss.2019.09.011_bib20) 2016; 18 Wetzler (10.1016/j.jss.2019.09.011_bib31) 2000; 115 Sukpat (10.1016/j.jss.2019.09.011_bib29) 2016; 99 Howangyin (10.1016/j.jss.2019.09.011_bib26) 2014; 34 Valitsky (10.1016/j.jss.2019.09.011_bib19) 2017; 313 Chu (10.1016/j.jss.2019.09.011_bib32) 2018; 10 Lu (10.1016/j.jss.2019.09.011_bib37) 2018; 154 Lin (10.1016/j.jss.2019.09.011_bib38) 2003; 66 |
References_xml | – volume: 7 start-page: e49215 year: 2012 ident: bib4 article-title: Effects of hydrogen peroxide on wound healing in mice in relation to oxidative damage publication-title: Plos One – volume: 10 start-page: 9547 year: 2018 end-page: 9560 ident: bib32 article-title: PEGylated graphene oxide-mediated quercetin modified collagen hybrid scaffold for enhancement of MSCs differentiation potential and diabetic wound healing publication-title: Nanoscale – volume: 161 start-page: 163 year: 2015 end-page: 169 ident: bib24 article-title: Effects of Xie-Zhuo-Chu-Bi-Fang on miR-34a and URAT1 and their relationship in hyperuricemic mice publication-title: J Ethnopharmacol – volume: 313 start-page: E672 year: 2017 end-page: E680 ident: bib19 article-title: Insulin sensitizer prevents and ameliorates experimental type-1 diabetes publication-title: Am J Physiol Endocrinol Metab – volume: 218 start-page: 1452 year: 2013 end-page: 1467 ident: bib39 article-title: Quercetin disrupts tyrosine-phosphorylated phosphatidylinositol 3-kinase and myeloid differentiation factor-88 association, and inhibits MAPK/AP-1 and IKK/NF-κB-induced inflammatory mediators production in RAW 264.7 cells publication-title: Immunobiology – volume: 34 start-page: 1126 year: 2014 end-page: 1135 ident: bib26 article-title: Silvestre, diabetes mellitus and ischemic diseases: molecular mechanisms of vascular repair dysfunction publication-title: Arterioscler Thromb Vasc Biol – volume: 10 start-page: 623 year: 2016 end-page: 628 ident: bib16 article-title: Induction of heme oxygenase-1 with dietary quercetin reduces obesity-induced hepatic inflammation through macrophage phenotype switching publication-title: Nutr Res Pract – volume: 198 start-page: 291 year: 2017 end-page: 301 ident: bib22 article-title: The N-butyl alcohol extract from Hibiscus rosa-sinensis L. flowers enhances healing potential on rat excisional wounds publication-title: J Ethnopharmacol – volume: 78 start-page: 71 year: 1975 end-page: 100 ident: bib28 article-title: The role of the macrophage in wound repair. A study with hydrocortisone and antimacrophage serum publication-title: Am J Pathol – volume: 115 start-page: 245 year: 2000 end-page: 253 ident: bib31 article-title: Large and sustained induction of chemokines during impaired wound healing in the genetically diabetic mouse: prolonged persistence of neutrophils and macrophages during the late phase of repair publication-title: J Invest Dermatol – volume: 122 start-page: 787 year: 2012 end-page: 795 ident: bib8 article-title: Macrophage plasticity and polarization: in vivo veritas publication-title: J Clin Invest – volume: 25 start-page: 677 year: 2004 end-page: 686 ident: bib35 article-title: The chemokine system in diverse forms of macrophage activation and polarization publication-title: Trends Immunol – volume: 9 start-page: 2541 year: 2003 end-page: 2551 ident: bib41 article-title: Anti-inflammatory actions of the heme oxygenase-1 pathway publication-title: Curr Pharm Des – volume: 24 start-page: 88 year: 2011 end-page: 93 ident: bib30 article-title: An exploration of nurses' perceptions regarding the implementation of a best practice guideline on the assessment and management of foot ulcers for people with diabetes publication-title: Appl Nurs Res – volume: 9 start-page: 765 year: 2016 end-page: 771 ident: bib36 article-title: Macrophage in chronic kidney disease publication-title: Clin Kidney J – volume: 8 start-page: 240 year: 2002 end-page: 246 ident: bib40 article-title: Heme oxygenase-1 mediates the anti-inflammatory effect of interleukin-10 in mice publication-title: Nat Med – volume: 42 start-page: 877 year: 2018 end-page: 889 ident: bib11 article-title: Pseudomonas aeruginosa infection alters the macrophage phenotype switching process during wound healing in diabetic mice publication-title: Cell Biol Int – volume: 18 start-page: 1545 year: 2017 end-page: 1555 ident: bib9 article-title: Macrophage phenotypes regulate scar formation and chronic wound healing publication-title: Int J Mol Sci – volume: 164 start-page: 1935 year: 2004 end-page: 1947 ident: bib27 article-title: Topical vascular endothelial growth factor accelerates diabetic wound healing through increased angiogenesis and by mobilizing and recruiting bone marrow-derived cells publication-title: Am J Pathol – volume: 9 start-page: 3507 year: 2015 end-page: 3518 ident: bib23 article-title: Effect of Clausena excavata Burm. f. (Rutaceae) leaf extract on wound healing and antioxidant activity in rats publication-title: Drug Des Dev Ther – volume: 101 start-page: 58 year: 2018 end-page: 73 ident: bib33 article-title: Quercetin and low level laser therapy promote wound healing process in diabetic rats via structural reorganization and modulatory effects on inflammation and oxidative stress publication-title: Biomed Pharmacother – volume: 26 start-page: 341 year: 2014 end-page: 353 ident: bib6 article-title: Mace, myeloid cell dysfunction and the pathogenesis of the diabetic chronic wound publication-title: Semin Immunol – volume: 106 start-page: 68 year: 2006 end-page: 72 ident: bib14 article-title: The effects of desferrioxamine and quercetin on liver injury induced by hepatic ischaemia-reperfusion in rats publication-title: Acta Chir Belg – volume: 13 start-page: e23 year: 2011 ident: bib7 article-title: Dipietro, Inflammation and wound healing: the role of the macrophage publication-title: Expert Rev Mol Med – volume: 151 start-page: 36 year: 2017 end-page: 40 ident: bib18 article-title: Fibrin improves skin wound perfusion in a diabetic rat model publication-title: Thromb Res – volume: 506 start-page: 7 year: 2018 end-page: 11 ident: bib42 article-title: NRF2 and HSF1 coordinately regulate heme oxygenase-1 expression publication-title: Biochem Biophys Res Commun – volume: 212 start-page: 130 year: 2017 end-page: 145 ident: bib5 article-title: Combined effect of substance P and curcumin on cutaneous wound healing in diabetic rats publication-title: J Surg Res – volume: 242 start-page: 565 year: 2017 end-page: 572 ident: bib13 article-title: Quercetin and the ocular surface: what we know and where we are going publication-title: Exp Biol Med (Maywood) – volume: 18 start-page: 181 year: 2016 end-page: 192 ident: bib20 article-title: Effect of topical insulin on second-degree burns in diabetic rats publication-title: Biol Res Nurs – volume: 99 start-page: 213 year: 2016 end-page: 219 ident: bib29 article-title: Pleiotropic effects of Simvastatin on wound healing in diabetic mice publication-title: J Med Assoc Thai – volume: 62 start-page: 353 year: 2017 end-page: 364 ident: bib10 article-title: Macrophage differentiation in normal and accelerated wound healing publication-title: Macrophages – volume: 115 start-page: 1211 year: 2018 end-page: 1217 ident: bib15 article-title: In vitro and in vivo characterization of quercetin loaded multiphase hydrogel for wound healing application publication-title: Int J Biol Macromol – volume: 10 start-page: e0143438 year: 2015 ident: bib21 article-title: The combination of three natural compounds effectively prevented lung carcinogenesis by optimal wound healing publication-title: Plos One – volume: 13 start-page: S633 year: 2017 end-page: S639 ident: bib34 article-title: Hypoglycemic, Hypolipidemic, and wound healing potential of quercetin in Streptozotocin-induced diabetic rats publication-title: Pharmacogn – volume: 154 start-page: 203 year: 2018 end-page: 212 ident: bib37 article-title: Quercetin ameliorates kidney injury and fibrosis by modulating M1/M2 macrophage polarization publication-title: Biochem Pharmacol – volume: 6 start-page: 20328 year: 2016 ident: bib2 article-title: Comparative transcriptomic profiling of hydrogen peroxide signaling networks in zebrafish and human keratinocytes: implications toward conservation, migration and wound healing publication-title: Sci Rep – volume: 66 start-page: 1821 year: 2003 end-page: 1832 ident: bib38 article-title: Inhibition of lipopolysaccharide-induced nitric oxide production by flavonoids in RAW264.7 macrophages involves heme oxygenase-1 publication-title: Biochem Pharmacol – volume: 6 start-page: 36416 year: 2016 ident: bib3 article-title: AGEs induced autophagy impairs cutaneous wound healing via stimulating macrophage polarization to M1 in diabetes publication-title: Sci Rep – volume: 22 start-page: 2876 year: 2018 end-page: 2887 ident: bib17 article-title: Combinatory effect of mesenchymal stromal cells transplantation and quercetin after spinal cord injury in rat publication-title: Eur Rev Med Pharmacol Sci – volume: 229 start-page: 176 year: 2013 end-page: 185 ident: bib12 article-title: Macrophage plasticity and polarization in tissue repair and remodelling publication-title: J Pathol – volume: 17 start-page: 1 year: 2016 end-page: 14 ident: bib25 article-title: Diabetes mellitus and the skin publication-title: Rev Endocr Metab Disord – volume: 15 start-page: 112 year: 2017 ident: bib1 article-title: Promoting wound healing using low molecular weight fucoidan in a full-thickness dermal excision rat model publication-title: Mar Drugs – volume: 13 start-page: S633 issue: Suppl 3 year: 2017 ident: 10.1016/j.jss.2019.09.011_bib34 article-title: Hypoglycemic, Hypolipidemic, and wound healing potential of quercetin in Streptozotocin-induced diabetic rats publication-title: Pharmacogn – volume: 115 start-page: 1211 year: 2018 ident: 10.1016/j.jss.2019.09.011_bib15 article-title: In vitro and in vivo characterization of quercetin loaded multiphase hydrogel for wound healing application publication-title: Int J Biol Macromol doi: 10.1016/j.ijbiomac.2018.05.010 – volume: 101 start-page: 58 year: 2018 ident: 10.1016/j.jss.2019.09.011_bib33 article-title: Quercetin and low level laser therapy promote wound healing process in diabetic rats via structural reorganization and modulatory effects on inflammation and oxidative stress publication-title: Biomed Pharmacother doi: 10.1016/j.biopha.2018.02.040 – volume: 6 start-page: 36416 year: 2016 ident: 10.1016/j.jss.2019.09.011_bib3 article-title: AGEs induced autophagy impairs cutaneous wound healing via stimulating macrophage polarization to M1 in diabetes publication-title: Sci Rep doi: 10.1038/srep36416 – volume: 7 start-page: e49215 year: 2012 ident: 10.1016/j.jss.2019.09.011_bib4 article-title: Effects of hydrogen peroxide on wound healing in mice in relation to oxidative damage publication-title: Plos One doi: 10.1371/journal.pone.0049215 – volume: 10 start-page: e0143438 year: 2015 ident: 10.1016/j.jss.2019.09.011_bib21 article-title: The combination of three natural compounds effectively prevented lung carcinogenesis by optimal wound healing publication-title: Plos One doi: 10.1371/journal.pone.0143438 – volume: 10 start-page: 623 year: 2016 ident: 10.1016/j.jss.2019.09.011_bib16 article-title: Induction of heme oxygenase-1 with dietary quercetin reduces obesity-induced hepatic inflammation through macrophage phenotype switching publication-title: Nutr Res Pract doi: 10.4162/nrp.2016.10.6.623 – volume: 24 start-page: 88 year: 2011 ident: 10.1016/j.jss.2019.09.011_bib30 article-title: An exploration of nurses' perceptions regarding the implementation of a best practice guideline on the assessment and management of foot ulcers for people with diabetes publication-title: Appl Nurs Res doi: 10.1016/j.apnr.2009.04.005 – volume: 229 start-page: 176 year: 2013 ident: 10.1016/j.jss.2019.09.011_bib12 article-title: Macrophage plasticity and polarization in tissue repair and remodelling publication-title: J Pathol doi: 10.1002/path.4133 – volume: 9 start-page: 765 year: 2016 ident: 10.1016/j.jss.2019.09.011_bib36 article-title: Macrophage in chronic kidney disease publication-title: Clin Kidney J doi: 10.1093/ckj/sfw096 – volume: 122 start-page: 787 year: 2012 ident: 10.1016/j.jss.2019.09.011_bib8 article-title: Macrophage plasticity and polarization: in vivo veritas publication-title: J Clin Invest doi: 10.1172/JCI59643 – volume: 313 start-page: E672 year: 2017 ident: 10.1016/j.jss.2019.09.011_bib19 article-title: Insulin sensitizer prevents and ameliorates experimental type-1 diabetes publication-title: Am J Physiol Endocrinol Metab doi: 10.1152/ajpendo.00329.2016 – volume: 66 start-page: 1821 year: 2003 ident: 10.1016/j.jss.2019.09.011_bib38 article-title: Inhibition of lipopolysaccharide-induced nitric oxide production by flavonoids in RAW264.7 macrophages involves heme oxygenase-1 publication-title: Biochem Pharmacol doi: 10.1016/S0006-2952(03)00422-2 – volume: 22 start-page: 2876 year: 2018 ident: 10.1016/j.jss.2019.09.011_bib17 article-title: Combinatory effect of mesenchymal stromal cells transplantation and quercetin after spinal cord injury in rat publication-title: Eur Rev Med Pharmacol Sci – volume: 164 start-page: 1935 year: 2004 ident: 10.1016/j.jss.2019.09.011_bib27 article-title: Topical vascular endothelial growth factor accelerates diabetic wound healing through increased angiogenesis and by mobilizing and recruiting bone marrow-derived cells publication-title: Am J Pathol doi: 10.1016/S0002-9440(10)63754-6 – volume: 18 start-page: 181 year: 2016 ident: 10.1016/j.jss.2019.09.011_bib20 article-title: Effect of topical insulin on second-degree burns in diabetic rats publication-title: Biol Res Nurs doi: 10.1177/1099800415592175 – volume: 15 start-page: 112 year: 2017 ident: 10.1016/j.jss.2019.09.011_bib1 article-title: Promoting wound healing using low molecular weight fucoidan in a full-thickness dermal excision rat model publication-title: Mar Drugs doi: 10.3390/md15040112 – volume: 99 start-page: 213 year: 2016 ident: 10.1016/j.jss.2019.09.011_bib29 article-title: Pleiotropic effects of Simvastatin on wound healing in diabetic mice publication-title: J Med Assoc Thai – volume: 154 start-page: 203 year: 2018 ident: 10.1016/j.jss.2019.09.011_bib37 article-title: Quercetin ameliorates kidney injury and fibrosis by modulating M1/M2 macrophage polarization publication-title: Biochem Pharmacol doi: 10.1016/j.bcp.2018.05.007 – volume: 242 start-page: 565 year: 2017 ident: 10.1016/j.jss.2019.09.011_bib13 article-title: Quercetin and the ocular surface: what we know and where we are going publication-title: Exp Biol Med (Maywood) doi: 10.1177/1535370216685187 – volume: 9 start-page: 3507 year: 2015 ident: 10.1016/j.jss.2019.09.011_bib23 article-title: Effect of Clausena excavata Burm. f. (Rutaceae) leaf extract on wound healing and antioxidant activity in rats publication-title: Drug Des Dev Ther – volume: 9 start-page: 2541 year: 2003 ident: 10.1016/j.jss.2019.09.011_bib41 article-title: Anti-inflammatory actions of the heme oxygenase-1 pathway publication-title: Curr Pharm Des doi: 10.2174/1381612033453749 – volume: 151 start-page: 36 year: 2017 ident: 10.1016/j.jss.2019.09.011_bib18 article-title: Fibrin improves skin wound perfusion in a diabetic rat model publication-title: Thromb Res doi: 10.1016/j.thromres.2017.01.002 – volume: 218 start-page: 1452 year: 2013 ident: 10.1016/j.jss.2019.09.011_bib39 article-title: Quercetin disrupts tyrosine-phosphorylated phosphatidylinositol 3-kinase and myeloid differentiation factor-88 association, and inhibits MAPK/AP-1 and IKK/NF-κB-induced inflammatory mediators production in RAW 264.7 cells publication-title: Immunobiology doi: 10.1016/j.imbio.2013.04.019 – volume: 25 start-page: 677 year: 2004 ident: 10.1016/j.jss.2019.09.011_bib35 article-title: The chemokine system in diverse forms of macrophage activation and polarization publication-title: Trends Immunol doi: 10.1016/j.it.2004.09.015 – volume: 106 start-page: 68 year: 2006 ident: 10.1016/j.jss.2019.09.011_bib14 article-title: The effects of desferrioxamine and quercetin on liver injury induced by hepatic ischaemia-reperfusion in rats publication-title: Acta Chir Belg doi: 10.1080/00015458.2006.11679837 – volume: 6 start-page: 20328 year: 2016 ident: 10.1016/j.jss.2019.09.011_bib2 article-title: Comparative transcriptomic profiling of hydrogen peroxide signaling networks in zebrafish and human keratinocytes: implications toward conservation, migration and wound healing publication-title: Sci Rep doi: 10.1038/srep20328 – volume: 18 start-page: 1545 year: 2017 ident: 10.1016/j.jss.2019.09.011_bib9 article-title: Macrophage phenotypes regulate scar formation and chronic wound healing publication-title: Int J Mol Sci doi: 10.3390/ijms18071545 – volume: 26 start-page: 341 year: 2014 ident: 10.1016/j.jss.2019.09.011_bib6 article-title: Mace, myeloid cell dysfunction and the pathogenesis of the diabetic chronic wound publication-title: Semin Immunol doi: 10.1016/j.smim.2014.04.006 – volume: 17 start-page: 1 year: 2016 ident: 10.1016/j.jss.2019.09.011_bib25 article-title: Diabetes mellitus and the skin publication-title: Rev Endocr Metab Disord doi: 10.1007/s11154-016-9373-0 – volume: 8 start-page: 240 year: 2002 ident: 10.1016/j.jss.2019.09.011_bib40 article-title: Heme oxygenase-1 mediates the anti-inflammatory effect of interleukin-10 in mice publication-title: Nat Med doi: 10.1038/nm0302-240 – volume: 161 start-page: 163 year: 2015 ident: 10.1016/j.jss.2019.09.011_bib24 article-title: Effects of Xie-Zhuo-Chu-Bi-Fang on miR-34a and URAT1 and their relationship in hyperuricemic mice publication-title: J Ethnopharmacol doi: 10.1016/j.jep.2014.12.001 – volume: 34 start-page: 1126 year: 2014 ident: 10.1016/j.jss.2019.09.011_bib26 article-title: Silvestre, diabetes mellitus and ischemic diseases: molecular mechanisms of vascular repair dysfunction publication-title: Arterioscler Thromb Vasc Biol doi: 10.1161/ATVBAHA.114.303090 – volume: 506 start-page: 7 year: 2018 ident: 10.1016/j.jss.2019.09.011_bib42 article-title: NRF2 and HSF1 coordinately regulate heme oxygenase-1 expression publication-title: Biochem Biophys Res Commun doi: 10.1016/j.bbrc.2018.10.030 – volume: 10 start-page: 9547 year: 2018 ident: 10.1016/j.jss.2019.09.011_bib32 article-title: PEGylated graphene oxide-mediated quercetin modified collagen hybrid scaffold for enhancement of MSCs differentiation potential and diabetic wound healing publication-title: Nanoscale doi: 10.1039/C8NR02538J – volume: 115 start-page: 245 year: 2000 ident: 10.1016/j.jss.2019.09.011_bib31 article-title: Large and sustained induction of chemokines during impaired wound healing in the genetically diabetic mouse: prolonged persistence of neutrophils and macrophages during the late phase of repair publication-title: J Invest Dermatol doi: 10.1046/j.1523-1747.2000.00029.x – volume: 13 start-page: e23 year: 2011 ident: 10.1016/j.jss.2019.09.011_bib7 article-title: Dipietro, Inflammation and wound healing: the role of the macrophage publication-title: Expert Rev Mol Med doi: 10.1017/S1462399411001943 – volume: 198 start-page: 291 year: 2017 ident: 10.1016/j.jss.2019.09.011_bib22 article-title: The N-butyl alcohol extract from Hibiscus rosa-sinensis L. flowers enhances healing potential on rat excisional wounds publication-title: J Ethnopharmacol doi: 10.1016/j.jep.2017.01.016 – volume: 78 start-page: 71 year: 1975 ident: 10.1016/j.jss.2019.09.011_bib28 article-title: The role of the macrophage in wound repair. A study with hydrocortisone and antimacrophage serum publication-title: Am J Pathol – volume: 42 start-page: 877 year: 2018 ident: 10.1016/j.jss.2019.09.011_bib11 article-title: Pseudomonas aeruginosa infection alters the macrophage phenotype switching process during wound healing in diabetic mice publication-title: Cell Biol Int doi: 10.1002/cbin.10955 – volume: 212 start-page: 130 year: 2017 ident: 10.1016/j.jss.2019.09.011_bib5 article-title: Combined effect of substance P and curcumin on cutaneous wound healing in diabetic rats publication-title: J Surg Res doi: 10.1016/j.jss.2017.01.011 – volume: 62 start-page: 353 year: 2017 ident: 10.1016/j.jss.2019.09.011_bib10 article-title: Macrophage differentiation in normal and accelerated wound healing publication-title: Macrophages doi: 10.1007/978-3-319-54090-0_14 |
SSID | ssj0002973 |
Score | 2.5891192 |
Snippet | For patients with diabetes mellitus, excessive and long-lasting inflammatory reactions at the wound site commonly lead to the delayed refractory wound healing.... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 213 |
SubjectTerms | Administration, Cutaneous Animals Diabetes Mellitus, Experimental - chemically induced Diabetes Mellitus, Experimental - complications Diabetes Mellitus, Experimental - immunology Diabetic rats Dose-Response Relationship, Drug Humans Inflammation Inflammation - drug therapy Inflammation - immunology Inflammation - pathology Macrophage Macrophage Activation - drug effects Macrophages - drug effects Macrophages - immunology Male Quercetin Quercetin - administration & dosage Rats Skin - immunology Skin - injuries Skin - pathology Streptozocin - toxicity Treatment Outcome Wound healing Wound Healing - drug effects Wound Healing - immunology |
Title | Quercetin Promotes Diabetic Wound Healing via Switching Macrophages From M1 to M2 Polarization |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0022480419306456 https://dx.doi.org/10.1016/j.jss.2019.09.011 https://www.ncbi.nlm.nih.gov/pubmed/31606511 https://www.proquest.com/docview/2305472817 |
Volume | 246 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iFy-i-FpfRPAkVDdp2pijiMuqrCgqegttHliRrrhdvflb_C3-MmfSdsWDCkJPaYaWSTqP5ptvCNnhKjHGJSZKFf66YdZFeWZkpHIm48zZlAfuzsF52r8Rp3fJ3RQ5amthEFbZ2P7apgdr3YzsN9rcfyoKrPEF94P0OQqj6ARpt4WQuMv33r5gHtibqWUMx9ntyWbAeD2MkLGbqUB1ythPvumn2DP4oN48mWuCR3pYv98CmXLlItGXYwSnVEVJLwK2zo1ojXMpDL3FrkkUa43ARdGXIvt4v3otqgCgpIMM-3fdg0UZ0R6I0gGj1ZAOOL3AhLep0FwiN73j66N-1LRNiAzkulUkLWR1nlt1kEulROKlyLpWqtTFMbMK4hcnmIeh1NkcJmde-Tz33psk5pbbeJlMl8PSrRKqwJnjQSbclMIriKV41ziTWGNkJoTqkG6rMG0aTnFsbfGoW_DYgwYda9Sx7sLFWIfsTkSeakKN3ybzdhV0WykKtk2Duf9NSEyEvm2lv8S222XW8InhuUlWuuEYJoFNFJIfMNkhK_X6T149ZpABQtC69r-HrpNZjgl8gIFvkOnqeew2Icqp8q2wjbfIzOHJWf_8E6zK_AU |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcoALouK1PIqR4IIUunacuD5wQMBqS5uqiFb0ZhI_1FQoW7FZql76W_gP_AN-GTNOsohDi4RUKSfHk1hjex72NzMAz4XOrPWZTXJNRzfc-aQqrUp0xVVaepeLmLuz2M2nB_LDYXa4Aj-HWBiCVfayv5PpUVr3LRs9NzdO6ppifFH9UPocTVZ0lvfIym1_dop-2_z11juc5BdCTN7vv50mfWmBxKI_2CbKoecThNObldJaZkHJcuyUzn2acqdRx3vJAzbl3lXYuQw6VFUIwWapcMKl-N1rcF2iuKCyCa_O_-BKqBjUkKKchjdcpUZQ2fGcUoRzHXOrcn6RMrzI2I1Kb3IbbvXWKnvTMWQNVnxzB8zHBaFh2rphexHM5-esA9bUln2mMk2MgptQJ7Lvdfnrx6fTuo2ITVaUVDDsCEXYnE2QlBWctTNWCLZHHnYfEnoXDq6EmfdgtZk1_gEwjdYD3ZziSyWDRuNNjK23mbNWlVLqEYwHhhnbJzGnWhpfzYBWOzbIY0M8NmN8OB_ByyXJSZfB47LOYpgFM4SmojA1qF8uI5JLor_W7r_Ing3TbHBP00VN2fjZAjuhEJZKbHI1gvvd_C-HnnJ0OdFKfvh_P30KN6b7xY7Z2drdfgQ3BZ0eRAz6Y1htvy38EzSx2mo9LmkGX656D_0GJFY5SA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quercetin+Promotes+Diabetic+Wound+Healing+via%C2%A0Switching+Macrophages+From+M1+to+M2+Polarization&rft.jtitle=The+Journal+of+surgical+research&rft.au=Fu%2C+Jia&rft.au=Huang%2C+Jingjuan&rft.au=Lin%2C+Man&rft.au=Xie%2C+Tingting&rft.date=2020-02-01&rft.pub=Elsevier+Inc&rft.issn=0022-4804&rft.volume=246&rft.spage=213&rft.epage=223&rft_id=info:doi/10.1016%2Fj.jss.2019.09.011&rft.externalDocID=S0022480419306456 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-4804&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-4804&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-4804&client=summon |